Merge from vendor branch TCSH:
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.32 2007/03/20 00:54:26 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389         vm_object_t object;
390         int pageout_status[count];
391         int numpagedout = 0;
392         int i;
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter and
396          * mark the pages read-only.
397          *
398          * We do not have to fixup the clean/dirty bits here... we can
399          * allow the pager to do it after the I/O completes.
400          */
401
402         for (i = 0; i < count; i++) {
403                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404                 vm_page_io_start(mc[i]);
405                 vm_page_protect(mc[i], VM_PROT_READ);
406         }
407
408         object = mc[0]->object;
409         vm_object_pip_add(object, count);
410
411         vm_pager_put_pages(object, mc, count,
412             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413             pageout_status);
414
415         for (i = 0; i < count; i++) {
416                 vm_page_t mt = mc[i];
417
418                 switch (pageout_status[i]) {
419                 case VM_PAGER_OK:
420                         numpagedout++;
421                         break;
422                 case VM_PAGER_PEND:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_BAD:
426                         /*
427                          * Page outside of range of object. Right now we
428                          * essentially lose the changes by pretending it
429                          * worked.
430                          */
431                         pmap_clear_modify(mt);
432                         vm_page_undirty(mt);
433                         break;
434                 case VM_PAGER_ERROR:
435                 case VM_PAGER_FAIL:
436                         /*
437                          * If page couldn't be paged out, then reactivate the
438                          * page so it doesn't clog the inactive list.  (We
439                          * will try paging out it again later).
440                          */
441                         vm_page_activate(mt);
442                         break;
443                 case VM_PAGER_AGAIN:
444                         break;
445                 }
446
447                 /*
448                  * If the operation is still going, leave the page busy to
449                  * block all other accesses. Also, leave the paging in
450                  * progress indicator set so that we don't attempt an object
451                  * collapse.
452                  */
453                 if (pageout_status[i] != VM_PAGER_PEND) {
454                         vm_object_pip_wakeup(object);
455                         vm_page_io_finish(mt);
456                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457                                 vm_page_protect(mt, VM_PROT_READ);
458                 }
459         }
460         return numpagedout;
461 }
462
463 #if !defined(NO_SWAPPING)
464 /*
465  *      vm_pageout_object_deactivate_pages
466  *
467  *      deactivate enough pages to satisfy the inactive target
468  *      requirements or if vm_page_proc_limit is set, then
469  *      deactivate all of the pages in the object and its
470  *      backing_objects.
471  *
472  *      The object and map must be locked.
473  */
474 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
475
476 static void
477 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
478         vm_pindex_t desired, int map_remove_only)
479 {
480         struct rb_vm_page_scan_info info;
481         int remove_mode;
482
483         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
484                 return;
485
486         while (object) {
487                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
488                         return;
489                 if (object->paging_in_progress)
490                         return;
491
492                 remove_mode = map_remove_only;
493                 if (object->shadow_count > 1)
494                         remove_mode = 1;
495
496                 /*
497                  * scan the objects entire memory queue.  spl protection is
498                  * required to avoid an interrupt unbusy/free race against
499                  * our busy check.
500                  */
501                 crit_enter();
502                 info.limit = remove_mode;
503                 info.map = map;
504                 info.desired = desired;
505                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
506                                 vm_pageout_object_deactivate_pages_callback,
507                                 &info
508                 );
509                 crit_exit();
510                 object = object->backing_object;
511         }
512 }
513                                         
514 static int
515 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
516 {
517         struct rb_vm_page_scan_info *info = data;
518         int actcount;
519
520         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
521                 return(-1);
522         }
523         mycpu->gd_cnt.v_pdpages++;
524         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
525             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
526             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
527                 return(0);
528         }
529
530         actcount = pmap_ts_referenced(p);
531         if (actcount) {
532                 vm_page_flag_set(p, PG_REFERENCED);
533         } else if (p->flags & PG_REFERENCED) {
534                 actcount = 1;
535         }
536
537         if ((p->queue != PQ_ACTIVE) &&
538                 (p->flags & PG_REFERENCED)) {
539                 vm_page_activate(p);
540                 p->act_count += actcount;
541                 vm_page_flag_clear(p, PG_REFERENCED);
542         } else if (p->queue == PQ_ACTIVE) {
543                 if ((p->flags & PG_REFERENCED) == 0) {
544                         p->act_count -= min(p->act_count, ACT_DECLINE);
545                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
546                                 vm_page_protect(p, VM_PROT_NONE);
547                                 vm_page_deactivate(p);
548                         } else {
549                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
551                         }
552                 } else {
553                         vm_page_activate(p);
554                         vm_page_flag_clear(p, PG_REFERENCED);
555                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
556                                 p->act_count += ACT_ADVANCE;
557                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
558                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
559                 }
560         } else if (p->queue == PQ_INACTIVE) {
561                 vm_page_protect(p, VM_PROT_NONE);
562         }
563         return(0);
564 }
565
566 /*
567  * deactivate some number of pages in a map, try to do it fairly, but
568  * that is really hard to do.
569  */
570 static void
571 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
572 {
573         vm_map_entry_t tmpe;
574         vm_object_t obj, bigobj;
575         int nothingwired;
576
577         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
578                 return;
579         }
580
581         bigobj = NULL;
582         nothingwired = TRUE;
583
584         /*
585          * first, search out the biggest object, and try to free pages from
586          * that.
587          */
588         tmpe = map->header.next;
589         while (tmpe != &map->header) {
590                 switch(tmpe->maptype) {
591                 case VM_MAPTYPE_NORMAL:
592                 case VM_MAPTYPE_VPAGETABLE:
593                         obj = tmpe->object.vm_object;
594                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
595                                 ((bigobj == NULL) ||
596                                  (bigobj->resident_page_count < obj->resident_page_count))) {
597                                 bigobj = obj;
598                         }
599                         break;
600                 default:
601                         break;
602                 }
603                 if (tmpe->wired_count > 0)
604                         nothingwired = FALSE;
605                 tmpe = tmpe->next;
606         }
607
608         if (bigobj)
609                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
610
611         /*
612          * Next, hunt around for other pages to deactivate.  We actually
613          * do this search sort of wrong -- .text first is not the best idea.
614          */
615         tmpe = map->header.next;
616         while (tmpe != &map->header) {
617                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
618                         break;
619                 switch(tmpe->maptype) {
620                 case VM_MAPTYPE_NORMAL:
621                 case VM_MAPTYPE_VPAGETABLE:
622                         obj = tmpe->object.vm_object;
623                         if (obj)
624                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
625                         break;
626                 default:
627                         break;
628                 }
629                 tmpe = tmpe->next;
630         };
631
632         /*
633          * Remove all mappings if a process is swapped out, this will free page
634          * table pages.
635          */
636         if (desired == 0 && nothingwired)
637                 pmap_remove(vm_map_pmap(map),
638                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
639         vm_map_unlock(map);
640 }
641 #endif
642
643 /*
644  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
645  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
646  * be trivially freed.
647  */
648 void
649 vm_pageout_page_free(vm_page_t m) 
650 {
651         vm_object_t object = m->object;
652         int type = object->type;
653
654         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
655                 vm_object_reference(object);
656         vm_page_busy(m);
657         vm_page_protect(m, VM_PROT_NONE);
658         vm_page_free(m);
659         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
660                 vm_object_deallocate(object);
661 }
662
663 /*
664  *      vm_pageout_scan does the dirty work for the pageout daemon.
665  */
666
667 struct vm_pageout_scan_info {
668         struct proc *bigproc;
669         vm_offset_t bigsize;
670 };
671
672 static int vm_pageout_scan_callback(struct proc *p, void *data);
673
674 static void
675 vm_pageout_scan(int pass)
676 {
677         struct vm_pageout_scan_info info;
678         vm_page_t m, next;
679         struct vm_page marker;
680         int page_shortage, maxscan, pcount;
681         int addl_page_shortage, addl_page_shortage_init;
682         vm_object_t object;
683         int actcount;
684         int vnodes_skipped = 0;
685         int maxlaunder;
686
687         /*
688          * Do whatever cleanup that the pmap code can.
689          */
690         pmap_collect();
691
692         addl_page_shortage_init = vm_pageout_deficit;
693         vm_pageout_deficit = 0;
694
695         /*
696          * Calculate the number of pages we want to either free or move
697          * to the cache.
698          */
699         page_shortage = vm_paging_target() + addl_page_shortage_init;
700
701         /*
702          * Initialize our marker
703          */
704         bzero(&marker, sizeof(marker));
705         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
706         marker.queue = PQ_INACTIVE;
707         marker.wire_count = 1;
708
709         /*
710          * Start scanning the inactive queue for pages we can move to the
711          * cache or free.  The scan will stop when the target is reached or
712          * we have scanned the entire inactive queue.  Note that m->act_count
713          * is not used to form decisions for the inactive queue, only for the
714          * active queue.
715          *
716          * maxlaunder limits the number of dirty pages we flush per scan.
717          * For most systems a smaller value (16 or 32) is more robust under
718          * extreme memory and disk pressure because any unnecessary writes
719          * to disk can result in extreme performance degredation.  However,
720          * systems with excessive dirty pages (especially when MAP_NOSYNC is
721          * used) will die horribly with limited laundering.  If the pageout
722          * daemon cannot clean enough pages in the first pass, we let it go
723          * all out in succeeding passes.
724          */
725         if ((maxlaunder = vm_max_launder) <= 1)
726                 maxlaunder = 1;
727         if (pass)
728                 maxlaunder = 10000;
729
730         /*
731          * We will generally be in a critical section throughout the 
732          * scan, but we can release it temporarily when we are sitting on a
733          * non-busy page without fear.  this is required to prevent an
734          * interrupt from unbusying or freeing a page prior to our busy
735          * check, leaving us on the wrong queue or checking the wrong
736          * page.
737          */
738         crit_enter();
739 rescan0:
740         addl_page_shortage = addl_page_shortage_init;
741         maxscan = vmstats.v_inactive_count;
742         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
743              m != NULL && maxscan-- > 0 && page_shortage > 0;
744              m = next
745          ) {
746                 mycpu->gd_cnt.v_pdpages++;
747
748                 /*
749                  * Give interrupts a chance
750                  */
751                 crit_exit();
752                 crit_enter();
753
754                 /*
755                  * It's easier for some of the conditions below to just loop
756                  * and catch queue changes here rather then check everywhere
757                  * else.
758                  */
759                 if (m->queue != PQ_INACTIVE)
760                         goto rescan0;
761                 next = TAILQ_NEXT(m, pageq);
762
763                 /*
764                  * skip marker pages
765                  */
766                 if (m->flags & PG_MARKER)
767                         continue;
768
769                 /*
770                  * A held page may be undergoing I/O, so skip it.
771                  */
772                 if (m->hold_count) {
773                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
774                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
775                         addl_page_shortage++;
776                         continue;
777                 }
778
779                 /*
780                  * Dont mess with busy pages, keep in the front of the
781                  * queue, most likely are being paged out.
782                  */
783                 if (m->busy || (m->flags & PG_BUSY)) {
784                         addl_page_shortage++;
785                         continue;
786                 }
787
788                 if (m->object->ref_count == 0) {
789                         /*
790                          * If the object is not being used, we ignore previous 
791                          * references.
792                          */
793                         vm_page_flag_clear(m, PG_REFERENCED);
794                         pmap_clear_reference(m);
795
796                 } else if (((m->flags & PG_REFERENCED) == 0) &&
797                             (actcount = pmap_ts_referenced(m))) {
798                         /*
799                          * Otherwise, if the page has been referenced while 
800                          * in the inactive queue, we bump the "activation
801                          * count" upwards, making it less likely that the
802                          * page will be added back to the inactive queue
803                          * prematurely again.  Here we check the page tables
804                          * (or emulated bits, if any), given the upper level
805                          * VM system not knowing anything about existing 
806                          * references.
807                          */
808                         vm_page_activate(m);
809                         m->act_count += (actcount + ACT_ADVANCE);
810                         continue;
811                 }
812
813                 /*
814                  * If the upper level VM system knows about any page 
815                  * references, we activate the page.  We also set the 
816                  * "activation count" higher than normal so that we will less 
817                  * likely place pages back onto the inactive queue again.
818                  */
819                 if ((m->flags & PG_REFERENCED) != 0) {
820                         vm_page_flag_clear(m, PG_REFERENCED);
821                         actcount = pmap_ts_referenced(m);
822                         vm_page_activate(m);
823                         m->act_count += (actcount + ACT_ADVANCE + 1);
824                         continue;
825                 }
826
827                 /*
828                  * If the upper level VM system doesn't know anything about 
829                  * the page being dirty, we have to check for it again.  As 
830                  * far as the VM code knows, any partially dirty pages are 
831                  * fully dirty.
832                  *
833                  * Pages marked PG_WRITEABLE may be mapped into the user
834                  * address space of a process running on another cpu.  A
835                  * user process (without holding the MP lock) running on
836                  * another cpu may be able to touch the page while we are
837                  * trying to remove it.  To prevent this from occuring we
838                  * must call pmap_remove_all() or otherwise make the page
839                  * read-only.  If the race occured pmap_remove_all() is
840                  * responsible for setting m->dirty.
841                  */
842                 if (m->dirty == 0) {
843                         vm_page_test_dirty(m);
844 #if 0
845                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
846                                 pmap_remove_all(m);
847 #endif
848                 } else {
849                         vm_page_dirty(m);
850                 }
851
852                 if (m->valid == 0) {
853                         /*
854                          * Invalid pages can be easily freed
855                          */
856                         vm_pageout_page_free(m);
857                         mycpu->gd_cnt.v_dfree++;
858                         --page_shortage;
859                 } else if (m->dirty == 0) {
860                         /*
861                          * Clean pages can be placed onto the cache queue.
862                          * This effectively frees them.
863                          */
864                         vm_page_cache(m);
865                         --page_shortage;
866                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
867                         /*
868                          * Dirty pages need to be paged out, but flushing
869                          * a page is extremely expensive verses freeing
870                          * a clean page.  Rather then artificially limiting
871                          * the number of pages we can flush, we instead give
872                          * dirty pages extra priority on the inactive queue
873                          * by forcing them to be cycled through the queue
874                          * twice before being flushed, after which the 
875                          * (now clean) page will cycle through once more
876                          * before being freed.  This significantly extends
877                          * the thrash point for a heavily loaded machine.
878                          */
879                         vm_page_flag_set(m, PG_WINATCFLS);
880                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
881                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
882                 } else if (maxlaunder > 0) {
883                         /*
884                          * We always want to try to flush some dirty pages if
885                          * we encounter them, to keep the system stable.
886                          * Normally this number is small, but under extreme
887                          * pressure where there are insufficient clean pages
888                          * on the inactive queue, we may have to go all out.
889                          */
890                         int swap_pageouts_ok;
891                         struct vnode *vp = NULL;
892
893                         object = m->object;
894
895                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
896                                 swap_pageouts_ok = 1;
897                         } else {
898                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
899                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
900                                 vm_page_count_min());
901                                                                                 
902                         }
903
904                         /*
905                          * We don't bother paging objects that are "dead".  
906                          * Those objects are in a "rundown" state.
907                          */
908                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
909                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
910                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
911                                 continue;
912                         }
913
914                         /*
915                          * The object is already known NOT to be dead.   It
916                          * is possible for the vget() to block the whole
917                          * pageout daemon, but the new low-memory handling
918                          * code should prevent it.
919                          *
920                          * The previous code skipped locked vnodes and, worse,
921                          * reordered pages in the queue.  This results in
922                          * completely non-deterministic operation because,
923                          * quite often, a vm_fault has initiated an I/O and
924                          * is holding a locked vnode at just the point where
925                          * the pageout daemon is woken up.
926                          *
927                          * We can't wait forever for the vnode lock, we might
928                          * deadlock due to a vn_read() getting stuck in
929                          * vm_wait while holding this vnode.  We skip the 
930                          * vnode if we can't get it in a reasonable amount
931                          * of time.
932                          */
933
934                         if (object->type == OBJT_VNODE) {
935                                 vp = object->handle;
936
937                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
938                                         ++pageout_lock_miss;
939                                         if (object->flags & OBJ_MIGHTBEDIRTY)
940                                                     vnodes_skipped++;
941                                         continue;
942                                 }
943
944                                 /*
945                                  * The page might have been moved to another
946                                  * queue during potential blocking in vget()
947                                  * above.  The page might have been freed and
948                                  * reused for another vnode.  The object might
949                                  * have been reused for another vnode.
950                                  */
951                                 if (m->queue != PQ_INACTIVE ||
952                                     m->object != object ||
953                                     object->handle != vp) {
954                                         if (object->flags & OBJ_MIGHTBEDIRTY)
955                                                 vnodes_skipped++;
956                                         vput(vp);
957                                         continue;
958                                 }
959         
960                                 /*
961                                  * The page may have been busied during the
962                                  * blocking in vput();  We don't move the
963                                  * page back onto the end of the queue so that
964                                  * statistics are more correct if we don't.
965                                  */
966                                 if (m->busy || (m->flags & PG_BUSY)) {
967                                         vput(vp);
968                                         continue;
969                                 }
970
971                                 /*
972                                  * If the page has become held it might
973                                  * be undergoing I/O, so skip it
974                                  */
975                                 if (m->hold_count) {
976                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
977                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
978                                         if (object->flags & OBJ_MIGHTBEDIRTY)
979                                                 vnodes_skipped++;
980                                         vput(vp);
981                                         continue;
982                                 }
983                         }
984
985                         /*
986                          * If a page is dirty, then it is either being washed
987                          * (but not yet cleaned) or it is still in the
988                          * laundry.  If it is still in the laundry, then we
989                          * start the cleaning operation. 
990                          *
991                          * This operation may cluster, invalidating the 'next'
992                          * pointer.  To prevent an inordinate number of
993                          * restarts we use our marker to remember our place.
994                          *
995                          * decrement page_shortage on success to account for
996                          * the (future) cleaned page.  Otherwise we could wind
997                          * up laundering or cleaning too many pages.
998                          */
999                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1000                         if (vm_pageout_clean(m) != 0) {
1001                                 --page_shortage;
1002                                 --maxlaunder;
1003                         } 
1004                         next = TAILQ_NEXT(&marker, pageq);
1005                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1006                         if (vp != NULL)
1007                                 vput(vp);
1008                 }
1009         }
1010
1011         /*
1012          * Compute the number of pages we want to try to move from the
1013          * active queue to the inactive queue.
1014          */
1015         page_shortage = vm_paging_target() +
1016             vmstats.v_inactive_target - vmstats.v_inactive_count;
1017         page_shortage += addl_page_shortage;
1018
1019         /*
1020          * Scan the active queue for things we can deactivate. We nominally
1021          * track the per-page activity counter and use it to locate 
1022          * deactivation candidates.
1023          *
1024          * NOTE: we are still in a critical section.
1025          */
1026         pcount = vmstats.v_active_count;
1027         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1028
1029         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1030                 /*
1031                  * Give interrupts a chance.
1032                  */
1033                 crit_exit();
1034                 crit_enter();
1035
1036                 /*
1037                  * If the page was ripped out from under us, just stop.
1038                  */
1039                 if (m->queue != PQ_ACTIVE)
1040                         break;
1041                 next = TAILQ_NEXT(m, pageq);
1042
1043                 /*
1044                  * Don't deactivate pages that are busy.
1045                  */
1046                 if ((m->busy != 0) ||
1047                     (m->flags & PG_BUSY) ||
1048                     (m->hold_count != 0)) {
1049                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1050                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1051                         m = next;
1052                         continue;
1053                 }
1054
1055                 /*
1056                  * The count for pagedaemon pages is done after checking the
1057                  * page for eligibility...
1058                  */
1059                 mycpu->gd_cnt.v_pdpages++;
1060
1061                 /*
1062                  * Check to see "how much" the page has been used.
1063                  */
1064                 actcount = 0;
1065                 if (m->object->ref_count != 0) {
1066                         if (m->flags & PG_REFERENCED) {
1067                                 actcount += 1;
1068                         }
1069                         actcount += pmap_ts_referenced(m);
1070                         if (actcount) {
1071                                 m->act_count += ACT_ADVANCE + actcount;
1072                                 if (m->act_count > ACT_MAX)
1073                                         m->act_count = ACT_MAX;
1074                         }
1075                 }
1076
1077                 /*
1078                  * Since we have "tested" this bit, we need to clear it now.
1079                  */
1080                 vm_page_flag_clear(m, PG_REFERENCED);
1081
1082                 /*
1083                  * Only if an object is currently being used, do we use the
1084                  * page activation count stats.
1085                  */
1086                 if (actcount && (m->object->ref_count != 0)) {
1087                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1088                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1089                 } else {
1090                         m->act_count -= min(m->act_count, ACT_DECLINE);
1091                         if (vm_pageout_algorithm ||
1092                             m->object->ref_count == 0 ||
1093                             m->act_count < pass) {
1094                                 page_shortage--;
1095                                 if (m->object->ref_count == 0) {
1096                                         vm_page_protect(m, VM_PROT_NONE);
1097                                         if (m->dirty == 0)
1098                                                 vm_page_cache(m);
1099                                         else
1100                                                 vm_page_deactivate(m);
1101                                 } else {
1102                                         vm_page_deactivate(m);
1103                                 }
1104                         } else {
1105                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1106                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1107                         }
1108                 }
1109                 m = next;
1110         }
1111
1112         /*
1113          * We try to maintain some *really* free pages, this allows interrupt
1114          * code to be guaranteed space.  Since both cache and free queues 
1115          * are considered basically 'free', moving pages from cache to free
1116          * does not effect other calculations.
1117          *
1118          * NOTE: we are still in a critical section.
1119          */
1120
1121         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1122                 static int cache_rover = 0;
1123                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1124                 if (!m)
1125                         break;
1126                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1127                     m->busy || 
1128                     m->hold_count || 
1129                     m->wire_count) {
1130 #ifdef INVARIANTS
1131                         kprintf("Warning: busy page %p found in cache\n", m);
1132 #endif
1133                         vm_page_deactivate(m);
1134                         continue;
1135                 }
1136                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1137                 vm_pageout_page_free(m);
1138                 mycpu->gd_cnt.v_dfree++;
1139         }
1140
1141         crit_exit();
1142
1143 #if !defined(NO_SWAPPING)
1144         /*
1145          * Idle process swapout -- run once per second.
1146          */
1147         if (vm_swap_idle_enabled) {
1148                 static long lsec;
1149                 if (time_second != lsec) {
1150                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1151                         vm_req_vmdaemon();
1152                         lsec = time_second;
1153                 }
1154         }
1155 #endif
1156                 
1157         /*
1158          * If we didn't get enough free pages, and we have skipped a vnode
1159          * in a writeable object, wakeup the sync daemon.  And kick swapout
1160          * if we did not get enough free pages.
1161          */
1162         if (vm_paging_target() > 0) {
1163                 if (vnodes_skipped && vm_page_count_min())
1164                         speedup_syncer();
1165 #if !defined(NO_SWAPPING)
1166                 if (vm_swap_enabled && vm_page_count_target()) {
1167                         vm_req_vmdaemon();
1168                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1169                 }
1170 #endif
1171         }
1172
1173         /*
1174          * If we are out of swap and were not able to reach our paging
1175          * target, kill the largest process.
1176          */
1177         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1178             (swap_pager_full && vm_paging_target() > 0)) {
1179 #if 0
1180         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1181 #endif
1182                 info.bigproc = NULL;
1183                 info.bigsize = 0;
1184                 allproc_scan(vm_pageout_scan_callback, &info);
1185                 if (info.bigproc != NULL) {
1186                         killproc(info.bigproc, "out of swap space");
1187                         info.bigproc->p_nice = PRIO_MIN;
1188                         info.bigproc->p_usched->resetpriority(
1189                                 FIRST_LWP_IN_PROC(info.bigproc));
1190                         wakeup(&vmstats.v_free_count);
1191                         PRELE(info.bigproc);
1192                 }
1193         }
1194 }
1195
1196 static int
1197 vm_pageout_scan_callback(struct proc *p, void *data)
1198 {
1199         struct vm_pageout_scan_info *info = data;
1200         vm_offset_t size;
1201
1202         /*
1203          * if this is a system process, skip it
1204          */
1205         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1206             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1207                 return (0);
1208         }
1209
1210         /*
1211          * if the process is in a non-running type state,
1212          * don't touch it.
1213          */
1214         if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1215                 return (0);
1216         }
1217
1218         /*
1219          * get the process size
1220          */
1221         size = vmspace_resident_count(p->p_vmspace) +
1222                 vmspace_swap_count(p->p_vmspace);
1223
1224         /*
1225          * If the this process is bigger than the biggest one
1226          * remember it.
1227          */
1228         if (size > info->bigsize) {
1229                 if (info->bigproc)
1230                         PRELE(info->bigproc);
1231                 PHOLD(p);
1232                 info->bigproc = p;
1233                 info->bigsize = size;
1234         }
1235         return(0);
1236 }
1237
1238 /*
1239  * This routine tries to maintain the pseudo LRU active queue,
1240  * so that during long periods of time where there is no paging,
1241  * that some statistic accumulation still occurs.  This code
1242  * helps the situation where paging just starts to occur.
1243  */
1244 static void
1245 vm_pageout_page_stats(void)
1246 {
1247         vm_page_t m,next;
1248         int pcount,tpcount;             /* Number of pages to check */
1249         static int fullintervalcount = 0;
1250         int page_shortage;
1251
1252         page_shortage = 
1253             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1254             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1255
1256         if (page_shortage <= 0)
1257                 return;
1258
1259         crit_enter();
1260
1261         pcount = vmstats.v_active_count;
1262         fullintervalcount += vm_pageout_stats_interval;
1263         if (fullintervalcount < vm_pageout_full_stats_interval) {
1264                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1265                 if (pcount > tpcount)
1266                         pcount = tpcount;
1267         } else {
1268                 fullintervalcount = 0;
1269         }
1270
1271         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1272         while ((m != NULL) && (pcount-- > 0)) {
1273                 int actcount;
1274
1275                 if (m->queue != PQ_ACTIVE) {
1276                         break;
1277                 }
1278
1279                 next = TAILQ_NEXT(m, pageq);
1280                 /*
1281                  * Don't deactivate pages that are busy.
1282                  */
1283                 if ((m->busy != 0) ||
1284                     (m->flags & PG_BUSY) ||
1285                     (m->hold_count != 0)) {
1286                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1287                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1288                         m = next;
1289                         continue;
1290                 }
1291
1292                 actcount = 0;
1293                 if (m->flags & PG_REFERENCED) {
1294                         vm_page_flag_clear(m, PG_REFERENCED);
1295                         actcount += 1;
1296                 }
1297
1298                 actcount += pmap_ts_referenced(m);
1299                 if (actcount) {
1300                         m->act_count += ACT_ADVANCE + actcount;
1301                         if (m->act_count > ACT_MAX)
1302                                 m->act_count = ACT_MAX;
1303                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1304                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1305                 } else {
1306                         if (m->act_count == 0) {
1307                                 /*
1308                                  * We turn off page access, so that we have
1309                                  * more accurate RSS stats.  We don't do this
1310                                  * in the normal page deactivation when the
1311                                  * system is loaded VM wise, because the
1312                                  * cost of the large number of page protect
1313                                  * operations would be higher than the value
1314                                  * of doing the operation.
1315                                  */
1316                                 vm_page_protect(m, VM_PROT_NONE);
1317                                 vm_page_deactivate(m);
1318                         } else {
1319                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1320                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1321                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1322                         }
1323                 }
1324
1325                 m = next;
1326         }
1327         crit_exit();
1328 }
1329
1330 static int
1331 vm_pageout_free_page_calc(vm_size_t count)
1332 {
1333         if (count < vmstats.v_page_count)
1334                  return 0;
1335         /*
1336          * free_reserved needs to include enough for the largest swap pager
1337          * structures plus enough for any pv_entry structs when paging.
1338          */
1339         if (vmstats.v_page_count > 1024)
1340                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1341         else
1342                 vmstats.v_free_min = 4;
1343         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1344                 vmstats.v_interrupt_free_min;
1345         vmstats.v_free_reserved = vm_pageout_page_count +
1346                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1347         vmstats.v_free_severe = vmstats.v_free_min / 2;
1348         vmstats.v_free_min += vmstats.v_free_reserved;
1349         vmstats.v_free_severe += vmstats.v_free_reserved;
1350         return 1;
1351 }
1352
1353
1354 /*
1355  *      vm_pageout is the high level pageout daemon.
1356  */
1357 static void
1358 vm_pageout(void)
1359 {
1360         int pass;
1361
1362         /*
1363          * Initialize some paging parameters.
1364          */
1365
1366         vmstats.v_interrupt_free_min = 2;
1367         if (vmstats.v_page_count < 2000)
1368                 vm_pageout_page_count = 8;
1369
1370         vm_pageout_free_page_calc(vmstats.v_page_count);
1371         /*
1372          * v_free_target and v_cache_min control pageout hysteresis.  Note
1373          * that these are more a measure of the VM cache queue hysteresis
1374          * then the VM free queue.  Specifically, v_free_target is the
1375          * high water mark (free+cache pages).
1376          *
1377          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1378          * low water mark, while v_free_min is the stop.  v_cache_min must
1379          * be big enough to handle memory needs while the pageout daemon
1380          * is signalled and run to free more pages.
1381          */
1382         if (vmstats.v_free_count > 6144)
1383                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1384         else
1385                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1386
1387         if (vmstats.v_free_count > 2048) {
1388                 vmstats.v_cache_min = vmstats.v_free_target;
1389                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1390                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1391         } else {
1392                 vmstats.v_cache_min = 0;
1393                 vmstats.v_cache_max = 0;
1394                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1395         }
1396         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1397                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1398
1399         /* XXX does not really belong here */
1400         if (vm_page_max_wired == 0)
1401                 vm_page_max_wired = vmstats.v_free_count / 3;
1402
1403         if (vm_pageout_stats_max == 0)
1404                 vm_pageout_stats_max = vmstats.v_free_target;
1405
1406         /*
1407          * Set interval in seconds for stats scan.
1408          */
1409         if (vm_pageout_stats_interval == 0)
1410                 vm_pageout_stats_interval = 5;
1411         if (vm_pageout_full_stats_interval == 0)
1412                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1413         
1414
1415         /*
1416          * Set maximum free per pass
1417          */
1418         if (vm_pageout_stats_free_max == 0)
1419                 vm_pageout_stats_free_max = 5;
1420
1421         swap_pager_swap_init();
1422         pass = 0;
1423         /*
1424          * The pageout daemon is never done, so loop forever.
1425          */
1426         while (TRUE) {
1427                 int error;
1428
1429                 /*
1430                  * If we have enough free memory, wakeup waiters.  Do
1431                  * not clear vm_pages_needed until we reach our target,
1432                  * otherwise we may be woken up over and over again and
1433                  * waste a lot of cpu.
1434                  */
1435                 crit_enter();
1436                 if (vm_pages_needed && !vm_page_count_min()) {
1437                         if (vm_paging_needed() <= 0)
1438                                 vm_pages_needed = 0;
1439                         wakeup(&vmstats.v_free_count);
1440                 }
1441                 if (vm_pages_needed) {
1442                         /*
1443                          * Still not done, take a second pass without waiting
1444                          * (unlimited dirty cleaning), otherwise sleep a bit
1445                          * and try again.
1446                          */
1447                         ++pass;
1448                         if (pass > 1)
1449                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1450                 } else {
1451                         /*
1452                          * Good enough, sleep & handle stats.  Prime the pass
1453                          * for the next run.
1454                          */
1455                         if (pass > 1)
1456                                 pass = 1;
1457                         else
1458                                 pass = 0;
1459                         error = tsleep(&vm_pages_needed,
1460                                 0, "psleep", vm_pageout_stats_interval * hz);
1461                         if (error && !vm_pages_needed) {
1462                                 crit_exit();
1463                                 pass = 0;
1464                                 vm_pageout_page_stats();
1465                                 continue;
1466                         }
1467                 }
1468
1469                 if (vm_pages_needed)
1470                         mycpu->gd_cnt.v_pdwakeups++;
1471                 crit_exit();
1472                 vm_pageout_scan(pass);
1473                 vm_pageout_deficit = 0;
1474         }
1475 }
1476
1477 void
1478 pagedaemon_wakeup(void)
1479 {
1480         if (!vm_pages_needed && curthread != pagethread) {
1481                 vm_pages_needed++;
1482                 wakeup(&vm_pages_needed);
1483         }
1484 }
1485
1486 #if !defined(NO_SWAPPING)
1487 static void
1488 vm_req_vmdaemon(void)
1489 {
1490         static int lastrun = 0;
1491
1492         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1493                 wakeup(&vm_daemon_needed);
1494                 lastrun = ticks;
1495         }
1496 }
1497
1498 static int vm_daemon_callback(struct proc *p, void *data __unused);
1499
1500 static void
1501 vm_daemon(void)
1502 {
1503         while (TRUE) {
1504                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1505                 if (vm_pageout_req_swapout) {
1506                         swapout_procs(vm_pageout_req_swapout);
1507                         vm_pageout_req_swapout = 0;
1508                 }
1509                 /*
1510                  * scan the processes for exceeding their rlimits or if
1511                  * process is swapped out -- deactivate pages
1512                  */
1513                 allproc_scan(vm_daemon_callback, NULL);
1514         }
1515 }
1516
1517 static int
1518 vm_daemon_callback(struct proc *p, void *data __unused)
1519 {
1520         vm_pindex_t limit, size;
1521
1522         /*
1523          * if this is a system process or if we have already
1524          * looked at this process, skip it.
1525          */
1526         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1527                 return (0);
1528
1529         /*
1530          * if the process is in a non-running type state,
1531          * don't touch it.
1532          */
1533         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1534                 return (0);
1535
1536         /*
1537          * get a limit
1538          */
1539         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1540                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1541
1542         /*
1543          * let processes that are swapped out really be
1544          * swapped out.  Set the limit to nothing to get as
1545          * many pages out to swap as possible.
1546          */
1547         if (p->p_flag & P_SWAPPEDOUT)
1548                 limit = 0;
1549
1550         size = vmspace_resident_count(p->p_vmspace);
1551         if (limit >= 0 && size >= limit) {
1552                 vm_pageout_map_deactivate_pages(
1553                     &p->p_vmspace->vm_map, limit);
1554         }
1555         return (0);
1556 }
1557
1558 #endif