Merge from vendor branch GCC:
[dragonfly.git] / sys / dev / raid / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *      $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.17 2005/02/04 02:55:44 dillon Exp $
31  */
32
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36
37 #include "opt_aac.h"
38
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52
53 #include "aac_compat.h"
54
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72
73 static void     aac_startup(void *arg);
74 static void     aac_add_container(struct aac_softc *sc,
75                                   struct aac_mntinforesp *mir, int f);
76 static void     aac_get_bus_info(struct aac_softc *sc);
77
78 /* Command Processing */
79 static void     aac_timeout(void *ssc);
80 static int      aac_start(struct aac_command *cm);
81 static void     aac_complete(void *context, int pending);
82 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void     aac_bio_complete(struct aac_command *cm);
84 static int      aac_wait_command(struct aac_command *cm, int timeout);
85 static void     aac_host_command(struct aac_softc *sc);
86 static void     aac_host_response(struct aac_softc *sc);
87
88 /* Command Buffer Management */
89 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90                                        int nseg, int error);
91 static int      aac_alloc_commands(struct aac_softc *sc);
92 static void     aac_free_commands(struct aac_softc *sc);
93 static void     aac_map_command(struct aac_command *cm);
94 static void     aac_unmap_command(struct aac_command *cm);
95
96 /* Hardware Interface */
97 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98                                int error);
99 static int      aac_check_firmware(struct aac_softc *sc);
100 static int      aac_init(struct aac_softc *sc);
101 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
102                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103                                  u_int32_t arg3, u_int32_t *sp);
104 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
105                                 struct aac_command *cm);
106 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
107                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
109                                      struct aac_fib *fib);
110
111 /* Falcon/PPC interface */
112 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int      aac_fa_get_istatus(struct aac_softc *sc);
115 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117                                    u_int32_t arg0, u_int32_t arg1,
118                                    u_int32_t arg2, u_int32_t arg3);
119 static int      aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121
122 struct aac_interface aac_fa_interface = {
123         aac_fa_get_fwstatus,
124         aac_fa_qnotify,
125         aac_fa_get_istatus,
126         aac_fa_clear_istatus,
127         aac_fa_set_mailbox,
128         aac_fa_get_mailbox,
129         aac_fa_set_interrupts
130 };
131
132 /* StrongARM interface */
133 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int      aac_sa_get_istatus(struct aac_softc *sc);
136 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138                                    u_int32_t arg0, u_int32_t arg1,
139                                    u_int32_t arg2, u_int32_t arg3);
140 static int      aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142
143 struct aac_interface aac_sa_interface = {
144         aac_sa_get_fwstatus,
145         aac_sa_qnotify,
146         aac_sa_get_istatus,
147         aac_sa_clear_istatus,
148         aac_sa_set_mailbox,
149         aac_sa_get_mailbox,
150         aac_sa_set_interrupts
151 };
152
153 /* i960Rx interface */  
154 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int      aac_rx_get_istatus(struct aac_softc *sc);
157 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159                                    u_int32_t arg0, u_int32_t arg1,
160                                    u_int32_t arg2, u_int32_t arg3);
161 static int      aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163
164 struct aac_interface aac_rx_interface = {
165         aac_rx_get_fwstatus,
166         aac_rx_qnotify,
167         aac_rx_get_istatus,
168         aac_rx_clear_istatus,
169         aac_rx_set_mailbox,
170         aac_rx_get_mailbox,
171         aac_rx_set_interrupts
172 };
173
174 /* Debugging and Diagnostics */
175 static void     aac_describe_controller(struct aac_softc *sc);
176 static char     *aac_describe_code(struct aac_code_lookup *table,
177                                    u_int32_t code);
178
179 /* Management Interface */
180 static d_open_t         aac_open;
181 static d_close_t        aac_close;
182 static d_ioctl_t        aac_ioctl;
183 static d_poll_t         aac_poll;
184 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void             aac_handle_aif(struct aac_softc *sc,
186                                            struct aac_fib *fib);
187 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191
192 #define AAC_CDEV_MAJOR  150
193
194 static struct cdevsw aac_cdevsw = {
195         "aac",                  /* name */
196         AAC_CDEV_MAJOR,         /* major */
197         0,                      /* flags */
198         NULL,                   /* port */
199         NULL,                   /* clone */
200
201         aac_open,               /* open */
202         aac_close,              /* close */
203         noread,                 /* read */
204         nowrite,                /* write */
205         aac_ioctl,              /* ioctl */
206         aac_poll,               /* poll */
207         nommap,                 /* mmap */
208         nostrategy,             /* strategy */
209         nodump,                 /* dump */
210         nopsize                 /* psize */
211 };
212
213 DECLARE_DUMMY_MODULE(aac);
214
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219
220 /*
221  * Device Interface
222  */
223
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230         int error, unit;
231
232         debug_called(1);
233         callout_init(&sc->aac_watchdog);
234
235         /*
236          * Initialise per-controller queues.
237          */
238         aac_initq_free(sc);
239         aac_initq_ready(sc);
240         aac_initq_busy(sc);
241         aac_initq_complete(sc);
242         aac_initq_bio(sc);
243
244 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
245         /*
246          * Initialise command-completion task.
247          */
248         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
249 #endif
250
251         /* disable interrupts before we enable anything */
252         AAC_MASK_INTERRUPTS(sc);
253
254         /* mark controller as suspended until we get ourselves organised */
255         sc->aac_state |= AAC_STATE_SUSPEND;
256
257         /*
258          * Check that the firmware on the card is supported.
259          */
260         if ((error = aac_check_firmware(sc)) != 0)
261                 return(error);
262
263         /* Init the sync fib lock */
264         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
265
266         /*
267          * Initialise the adapter.
268          */
269         if ((error = aac_init(sc)) != 0)
270                 return(error);
271
272         /* 
273          * Print a little information about the controller.
274          */
275         aac_describe_controller(sc);
276
277         /*
278          * Register to probe our containers later.
279          */
280         TAILQ_INIT(&sc->aac_container_tqh);
281         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
282
283         /*
284          * Lock for the AIF queue
285          */
286         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
287
288         sc->aac_ich.ich_func = aac_startup;
289         sc->aac_ich.ich_arg = sc;
290         sc->aac_ich.ich_desc = "aac";
291         if (config_intrhook_establish(&sc->aac_ich) != 0) {
292                 device_printf(sc->aac_dev,
293                               "can't establish configuration hook\n");
294                 return(ENXIO);
295         }
296
297         /*
298          * Make the control device.
299          */
300         unit = device_get_unit(sc->aac_dev);
301         cdevsw_add(&aac_cdevsw, -1, unit);
302         sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
303                                  "aac%d", unit);
304 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
305         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
306         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
307 #endif
308         sc->aac_dev_t->si_drv1 = sc;
309         reference_dev(sc->aac_dev_t);
310
311         /* Create the AIF thread */
312 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
313         if (kthread_create((void(*)(void *))aac_host_command, sc,
314                            &sc->aifthread, 0, "aac%daif", unit))
315 #else
316         if (kthread_create((void(*)(void *))aac_host_command, sc,
317                            &sc->aifthread, "aac%daif", unit))
318 #endif
319                 panic("Could not create AIF thread\n");
320
321         /* Register the shutdown method to only be called post-dump */
322         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
323                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
324         device_printf(sc->aac_dev, "shutdown event registration failed\n");
325
326         /* Register with CAM for the non-DASD devices */
327         if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
328                 aac_get_bus_info(sc);
329
330         return(0);
331 }
332
333 /*
334  * Probe for containers, create disks.
335  */
336 static void
337 aac_startup(void *arg)
338 {
339         struct aac_softc *sc;
340         struct aac_fib *fib;
341         struct aac_mntinfo *mi;
342         struct aac_mntinforesp *mir = NULL;
343         int i = 0;
344
345         debug_called(1);
346
347         sc = (struct aac_softc *)arg;
348
349         /* disconnect ourselves from the intrhook chain */
350         config_intrhook_disestablish(&sc->aac_ich);
351
352         aac_alloc_sync_fib(sc, &fib, 0);
353         mi = (struct aac_mntinfo *)&fib->data[0];
354
355         /* loop over possible containers */
356         do {
357                 /* request information on this container */
358                 bzero(mi, sizeof(struct aac_mntinfo));
359                 mi->Command = VM_NameServe;
360                 mi->MntType = FT_FILESYS;
361                 mi->MntCount = i;
362                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
363                                  sizeof(struct aac_mntinfo))) {
364                         debug(2, "error probing container %d", i);
365                         continue;
366                 }
367
368                 mir = (struct aac_mntinforesp *)&fib->data[0];
369                 aac_add_container(sc, mir, 0);
370                 i++;
371         } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
372
373         aac_release_sync_fib(sc);
374
375         /* poke the bus to actually attach the child devices */
376         if (bus_generic_attach(sc->aac_dev))
377                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
378
379         /* mark the controller up */
380         sc->aac_state &= ~AAC_STATE_SUSPEND;
381
382         /* enable interrupts now */
383         AAC_UNMASK_INTERRUPTS(sc);
384
385         /* enable the timeout watchdog */
386         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
387                       aac_timeout, sc);
388 }
389
390 /*
391  * Create a device to respresent a new container
392  */
393 static void
394 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
395 {
396         struct aac_container *co;
397         device_t child;
398
399         /* 
400          * Check container volume type for validity.  Note that many of
401          * the possible types may never show up.
402          */
403         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
404                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
405                        M_INTWAIT);
406                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
407                       mir->MntTable[0].ObjectId,
408                       mir->MntTable[0].FileSystemName,
409                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
410         
411                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
412                         device_printf(sc->aac_dev, "device_add_child failed\n");
413                 else
414                         device_set_ivars(child, co);
415                 device_set_desc(child, aac_describe_code(aac_container_types,
416                                 mir->MntTable[0].VolType));
417                 co->co_disk = child;
418                 co->co_found = f;
419                 bcopy(&mir->MntTable[0], &co->co_mntobj,
420                       sizeof(struct aac_mntobj));
421                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
422                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
423                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
424         }
425 }
426
427 /*
428  * Free all of the resources associated with (sc)
429  *
430  * Should not be called if the controller is active.
431  */
432 void
433 aac_free(struct aac_softc *sc)
434 {
435         debug_called(1);
436
437         /* remove the control device */
438         if (sc->aac_dev_t != NULL)
439                 destroy_dev(sc->aac_dev_t);
440
441         /* throw away any FIB buffers, discard the FIB DMA tag */
442         if (sc->aac_fibs != NULL)
443                 aac_free_commands(sc);
444         if (sc->aac_fib_dmat)
445                 bus_dma_tag_destroy(sc->aac_fib_dmat);
446
447         /* destroy the common area */
448         if (sc->aac_common) {
449                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
450                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
451                                 sc->aac_common_dmamap);
452         }
453         if (sc->aac_common_dmat)
454                 bus_dma_tag_destroy(sc->aac_common_dmat);
455
456         /* disconnect the interrupt handler */
457         if (sc->aac_intr)
458                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
459         if (sc->aac_irq != NULL)
460                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
461                                      sc->aac_irq);
462
463         /* destroy data-transfer DMA tag */
464         if (sc->aac_buffer_dmat)
465                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
466
467         /* destroy the parent DMA tag */
468         if (sc->aac_parent_dmat)
469                 bus_dma_tag_destroy(sc->aac_parent_dmat);
470
471         /* release the register window mapping */
472         if (sc->aac_regs_resource != NULL) {
473                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
474                                      sc->aac_regs_rid, sc->aac_regs_resource);
475         }
476         cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
477 }
478
479 /*
480  * Disconnect from the controller completely, in preparation for unload.
481  */
482 int
483 aac_detach(device_t dev)
484 {
485         struct aac_softc *sc;
486 #if AAC_BROKEN
487         int error;
488 #endif
489
490         debug_called(1);
491
492         sc = device_get_softc(dev);
493
494         callout_stop(&sc->aac_watchdog);
495
496         if (sc->aac_state & AAC_STATE_OPEN)
497         return(EBUSY);
498
499 #if AAC_BROKEN
500         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
501                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
502                 wakeup(sc->aifthread);
503                 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
504         }
505
506         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
507                 panic("Cannot shutdown AIF thread\n");
508
509         if ((error = aac_shutdown(dev)))
510                 return(error);
511
512         aac_free(sc);
513
514         return(0);
515 #else
516         return (EBUSY);
517 #endif
518 }
519
520 /*
521  * Bring the controller down to a dormant state and detach all child devices.
522  *
523  * This function is called before detach or system shutdown.
524  *
525  * Note that we can assume that the bioq on the controller is empty, as we won't
526  * allow shutdown if any device is open.
527  */
528 int
529 aac_shutdown(device_t dev)
530 {
531         struct aac_softc *sc;
532         struct aac_fib *fib;
533         struct aac_close_command *cc;
534         int s;
535
536         debug_called(1);
537
538         sc = device_get_softc(dev);
539
540         s = splbio();
541
542         sc->aac_state |= AAC_STATE_SUSPEND;
543
544         /* 
545          * Send a Container shutdown followed by a HostShutdown FIB to the
546          * controller to convince it that we don't want to talk to it anymore.
547          * We've been closed and all I/O completed already
548          */
549         device_printf(sc->aac_dev, "shutting down controller...");
550
551         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
552         cc = (struct aac_close_command *)&fib->data[0];
553
554         bzero(cc, sizeof(struct aac_close_command));
555         cc->Command = VM_CloseAll;
556         cc->ContainerId = 0xffffffff;
557         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
558             sizeof(struct aac_close_command)))
559                 printf("FAILED.\n");
560         else {
561                 fib->data[0] = 0;
562                 /*
563                  * XXX Issuing this command to the controller makes it shut down
564                  * but also keeps it from coming back up without a reset of the
565                  * PCI bus.  This is not desirable if you are just unloading the
566                  * driver module with the intent to reload it later.
567                  */
568                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
569                     fib, 1)) {
570                         printf("FAILED.\n");
571                 } else {
572                         printf("done.\n");
573                 }
574         }
575
576         AAC_MASK_INTERRUPTS(sc);
577
578         splx(s);
579         return(0);
580 }
581
582 /*
583  * Bring the controller to a quiescent state, ready for system suspend.
584  */
585 int
586 aac_suspend(device_t dev)
587 {
588         struct aac_softc *sc;
589         int s;
590
591         debug_called(1);
592
593         sc = device_get_softc(dev);
594
595         s = splbio();
596
597         sc->aac_state |= AAC_STATE_SUSPEND;
598         
599         AAC_MASK_INTERRUPTS(sc);
600         splx(s);
601         return(0);
602 }
603
604 /*
605  * Bring the controller back to a state ready for operation.
606  */
607 int
608 aac_resume(device_t dev)
609 {
610         struct aac_softc *sc;
611
612         debug_called(1);
613
614         sc = device_get_softc(dev);
615
616         sc->aac_state &= ~AAC_STATE_SUSPEND;
617         AAC_UNMASK_INTERRUPTS(sc);
618         return(0);
619 }
620
621 /*
622  * Take an interrupt.
623  */
624 void
625 aac_intr(void *arg)
626 {
627         struct aac_softc *sc;
628         u_int16_t reason;
629         u_int32_t *resp_queue;
630
631         debug_called(2);
632
633         sc = (struct aac_softc *)arg;
634
635         /*
636          * Optimize the common case of adapter response interrupts.
637          * We must read from the card prior to processing the responses
638          * to ensure the clear is flushed prior to accessing the queues.
639          * Reading the queues from local memory might save us a PCI read.
640          */
641         resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
642         if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
643                 reason = AAC_DB_RESPONSE_READY;
644         else 
645                 reason = AAC_GET_ISTATUS(sc);
646         AAC_CLEAR_ISTATUS(sc, reason);
647         (void)AAC_GET_ISTATUS(sc);
648
649         /* It's not ok to return here because of races with the previous step */
650         if (reason & AAC_DB_RESPONSE_READY)
651                 aac_host_response(sc);
652
653         /* controller wants to talk to the log */
654         if (reason & AAC_DB_PRINTF)
655                 aac_print_printf(sc);
656
657         /* controller has a message for us? */
658         if (reason & AAC_DB_COMMAND_READY) {
659                 /* XXX What happens if the thread is already awake? */
660                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
661                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
662                         wakeup(sc->aifthread);
663                 }
664         }
665 }
666
667 /*
668  * Command Processing
669  */
670
671 /*
672  * Start as much queued I/O as possible on the controller
673  */
674 void
675 aac_startio(struct aac_softc *sc)
676 {
677         struct aac_command *cm;
678
679         debug_called(2);
680
681         for (;;) {
682                 /*
683                  * Try to get a command that's been put off for lack of 
684                  * resources
685                  */
686                 cm = aac_dequeue_ready(sc);
687
688                 /*
689                  * Try to build a command off the bio queue (ignore error 
690                  * return)
691                  */
692                 if (cm == NULL)
693                         aac_bio_command(sc, &cm);
694
695                 /* nothing to do? */
696                 if (cm == NULL)
697                         break;
698
699                 /* try to give the command to the controller */
700                 if (aac_start(cm) == EBUSY) {
701                         /* put it on the ready queue for later */
702                         aac_requeue_ready(cm);
703                         break;
704                 }
705         }
706 }
707
708 /*
709  * Deliver a command to the controller; allocate controller resources at the
710  * last moment when possible.
711  */
712 static int
713 aac_start(struct aac_command *cm)
714 {
715         struct aac_softc *sc;
716         int error;
717
718         debug_called(2);
719
720         sc = cm->cm_sc;
721
722         /* get the command mapped */
723         aac_map_command(cm);
724
725         /* fix up the address values in the FIB */
726         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
727         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
728
729         /* save a pointer to the command for speedy reverse-lookup */
730         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
731                                                          * address issue */
732         /* put the FIB on the outbound queue */
733         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
734         return(error);
735 }
736
737 /*
738  * Handle notification of one or more FIBs coming from the controller.
739  */
740 static void
741 aac_host_command(struct aac_softc *sc)
742 {
743         struct aac_fib *fib;
744         u_int32_t fib_size;
745         int size;
746
747         debug_called(2);
748
749         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
750
751         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
752                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
753                         tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
754
755                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
756                 for (;;) {
757                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
758                                             &fib_size, &fib))
759                                 break;  /* nothing to do */
760         
761                         AAC_PRINT_FIB(sc, fib);
762         
763                         switch (fib->Header.Command) {
764                         case AifRequest:
765                                 aac_handle_aif(sc, fib);
766                                 break;
767                         default:
768                                 device_printf(sc->aac_dev, "unknown command "
769                                               "from controller\n");
770                                 break;
771                         }
772
773                         /* Return the AIF to the controller. */
774                         if ((fib->Header.XferState == 0) ||
775                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
776                                 break;
777
778                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
779                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
780                                 *(AAC_FSAStatus*)fib->data = ST_OK;
781
782                                 /* XXX Compute the Size field? */
783                                 size = fib->Header.Size;
784                                 if (size > sizeof(struct aac_fib)) {
785                                         size = sizeof(struct aac_fib);
786                                         fib->Header.Size = size;
787                                 }
788                                 /*
789                                  * Since we did not generate this command, it
790                                  * cannot go through the normal
791                                  * enqueue->startio chain.
792                                  */
793                                 aac_enqueue_response(sc,
794                                                      AAC_ADAP_NORM_RESP_QUEUE,
795                                                      fib);
796                         }
797                 }
798         }
799         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
800         wakeup(sc->aac_dev);
801
802 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
803         mtx_lock(&Giant);
804 #endif
805         kthread_exit();
806 }
807
808 /*
809  * Handle notification of one or more FIBs completed by the controller
810  */
811 static void
812 aac_host_response(struct aac_softc *sc)
813 {
814         struct aac_command *cm;
815         struct aac_fib *fib;
816         u_int32_t fib_size;
817
818         debug_called(2);
819
820         for (;;) {
821                 /* look for completed FIBs on our queue */
822                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
823                                     &fib))
824                         break;  /* nothing to do */
825         
826                 /* get the command, unmap and queue for later processing */
827                 cm = (struct aac_command *)fib->Header.SenderData;
828                 if (cm == NULL) {
829                         AAC_PRINT_FIB(sc, fib);
830                 } else {
831                         aac_remove_busy(cm);
832                         aac_unmap_command(cm);          /* XXX defer? */
833                         aac_enqueue_complete(cm);
834                 }
835         }
836
837         /* handle completion processing */
838 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
839         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
840 #else
841         aac_complete(sc, 0);
842 #endif
843 }
844
845 /*
846  * Process completed commands.
847  */
848 static void
849 aac_complete(void *context, int pending)
850 {
851         struct aac_softc *sc;
852         struct aac_command *cm;
853         
854         debug_called(2);
855
856         sc = (struct aac_softc *)context;
857
858         /* pull completed commands off the queue */
859         for (;;) {
860                 cm = aac_dequeue_complete(sc);
861                 if (cm == NULL)
862                         break;
863                 cm->cm_flags |= AAC_CMD_COMPLETED;
864
865                 /* is there a completion handler? */
866                 if (cm->cm_complete != NULL) {
867                         cm->cm_complete(cm);
868                 } else {
869                         /* assume that someone is sleeping on this command */
870                         wakeup(cm);
871                 }
872         }
873
874         /* see if we can start some more I/O */
875         aac_startio(sc);
876 }
877
878 /*
879  * Handle a bio submitted from a disk device.
880  */
881 void
882 aac_submit_bio(struct bio *bp)
883 {
884         struct aac_disk *ad;
885         struct aac_softc *sc;
886
887         debug_called(2);
888
889         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
890         sc = ad->ad_controller;
891
892         /* queue the BIO and try to get some work done */
893         aac_enqueue_bio(sc, bp);
894         aac_startio(sc);
895 }
896
897 /*
898  * Get a bio and build a command to go with it.
899  */
900 static int
901 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
902 {
903         struct aac_command *cm;
904         struct aac_fib *fib;
905         struct aac_blockread *br;
906         struct aac_blockwrite *bw;
907         struct aac_disk *ad;
908         struct bio *bp;
909
910         debug_called(2);
911
912         /* get the resources we will need */
913         cm = NULL;
914         if ((bp = aac_dequeue_bio(sc)) == NULL)
915                 goto fail;
916         if (aac_alloc_command(sc, &cm)) /* get a command */
917                 goto fail;
918
919         /* fill out the command */
920         cm->cm_data = (void *)bp->bio_data;
921         cm->cm_datalen = bp->bio_bcount;
922         cm->cm_complete = aac_bio_complete;
923         cm->cm_private = bp;
924         cm->cm_timestamp = time_second;
925         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
926
927         /* build the FIB */
928         fib = cm->cm_fib;
929         fib->Header.XferState =  
930                 AAC_FIBSTATE_HOSTOWNED   | 
931                 AAC_FIBSTATE_INITIALISED | 
932                 AAC_FIBSTATE_EMPTY       | 
933                 AAC_FIBSTATE_FROMHOST    |
934                 AAC_FIBSTATE_REXPECTED   |
935                 AAC_FIBSTATE_NORM        |
936                 AAC_FIBSTATE_ASYNC       |
937                 AAC_FIBSTATE_FAST_RESPONSE;
938         fib->Header.Command = ContainerCommand;
939         fib->Header.Size = sizeof(struct aac_fib_header);
940
941         /* build the read/write request */
942         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
943         if (BIO_IS_READ(bp)) {
944                 br = (struct aac_blockread *)&fib->data[0];
945                 br->Command = VM_CtBlockRead;
946                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
947                 br->BlockNumber = bp->bio_pblkno;
948                 br->ByteCount = bp->bio_bcount;
949                 fib->Header.Size += sizeof(struct aac_blockread);
950                 cm->cm_sgtable = &br->SgMap;
951                 cm->cm_flags |= AAC_CMD_DATAIN;
952         } else {
953                 bw = (struct aac_blockwrite *)&fib->data[0];
954                 bw->Command = VM_CtBlockWrite;
955                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
956                 bw->BlockNumber = bp->bio_pblkno;
957                 bw->ByteCount = bp->bio_bcount;
958                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
959                 fib->Header.Size += sizeof(struct aac_blockwrite);
960                 cm->cm_flags |= AAC_CMD_DATAOUT;
961                 cm->cm_sgtable = &bw->SgMap;
962         }
963
964         *cmp = cm;
965         return(0);
966
967 fail:
968         if (bp != NULL)
969                 aac_enqueue_bio(sc, bp);
970         if (cm != NULL)
971                 aac_release_command(cm);
972         return(ENOMEM);
973 }
974
975 /*
976  * Handle a bio-instigated command that has been completed.
977  */
978 static void
979 aac_bio_complete(struct aac_command *cm)
980 {
981         struct aac_blockread_response *brr;
982         struct aac_blockwrite_response *bwr;
983         struct bio *bp;
984         AAC_FSAStatus status;
985
986         /* fetch relevant status and then release the command */
987         bp = (struct bio *)cm->cm_private;
988         if (BIO_IS_READ(bp)) {
989                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
990                 status = brr->Status;
991         } else {
992                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
993                 status = bwr->Status;
994         }
995         aac_release_command(cm);
996
997         /* fix up the bio based on status */
998         if (status == ST_OK) {
999                 bp->bio_resid = 0;
1000         } else {
1001                 bp->bio_error = EIO;
1002                 bp->bio_flags |= BIO_ERROR;
1003                 /* pass an error string out to the disk layer */
1004                 bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1005                                                     status);
1006         }
1007         aac_biodone(bp);
1008 }
1009
1010 /*
1011  * Dump a block of data to the controller.  If the queue is full, tell the
1012  * caller to hold off and wait for the queue to drain.
1013  */
1014 int
1015 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1016 {
1017         struct aac_softc *sc;
1018         struct aac_command *cm;
1019         struct aac_fib *fib;
1020         struct aac_blockwrite *bw;
1021
1022         sc = ad->ad_controller;
1023         cm = NULL;
1024
1025         if (aac_alloc_command(sc, &cm))
1026                 return (EBUSY);
1027
1028         /* fill out the command */
1029         cm->cm_data = data;
1030         cm->cm_datalen = dumppages * PAGE_SIZE;
1031         cm->cm_complete = NULL;
1032         cm->cm_private = NULL;
1033         cm->cm_timestamp = time_second;
1034         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1035
1036         /* build the FIB */
1037         fib = cm->cm_fib;
1038         fib->Header.XferState =  
1039         AAC_FIBSTATE_HOSTOWNED   | 
1040         AAC_FIBSTATE_INITIALISED | 
1041         AAC_FIBSTATE_FROMHOST    |
1042         AAC_FIBSTATE_REXPECTED   |
1043         AAC_FIBSTATE_NORM;
1044         fib->Header.Command = ContainerCommand;
1045         fib->Header.Size = sizeof(struct aac_fib_header);
1046
1047         bw = (struct aac_blockwrite *)&fib->data[0];
1048         bw->Command = VM_CtBlockWrite;
1049         bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1050         bw->BlockNumber = lba;
1051         bw->ByteCount = dumppages * PAGE_SIZE;
1052         bw->Stable = CUNSTABLE;         /* XXX what's appropriate here? */
1053         fib->Header.Size += sizeof(struct aac_blockwrite);
1054         cm->cm_flags |= AAC_CMD_DATAOUT;
1055         cm->cm_sgtable = &bw->SgMap;
1056
1057         return (aac_start(cm));
1058 }
1059
1060 /*
1061  * Wait for the card's queue to drain when dumping.  Also check for monitor
1062  * printf's
1063  */
1064 void
1065 aac_dump_complete(struct aac_softc *sc)
1066 {
1067         struct aac_fib *fib;
1068         struct aac_command *cm;
1069         u_int16_t reason;
1070         u_int32_t pi, ci, fib_size;
1071
1072         do {
1073                 reason = AAC_GET_ISTATUS(sc);
1074                 if (reason & AAC_DB_RESPONSE_READY) {
1075                         AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1076                         for (;;) {
1077                                 if (aac_dequeue_fib(sc,
1078                                                     AAC_HOST_NORM_RESP_QUEUE,
1079                                                     &fib_size, &fib))
1080                                         break;
1081                                 cm = (struct aac_command *)
1082                                         fib->Header.SenderData;
1083                                 if (cm == NULL)
1084                                         AAC_PRINT_FIB(sc, fib);
1085                                 else {
1086                                         aac_remove_busy(cm);
1087                                         aac_unmap_command(cm);
1088                                         aac_enqueue_complete(cm);
1089                                         aac_release_command(cm);
1090                                 }
1091                         }
1092                 }
1093                 if (reason & AAC_DB_PRINTF) {
1094                         AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1095                         aac_print_printf(sc);
1096                 }
1097                 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1098                         AAC_PRODUCER_INDEX];
1099                 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][        
1100                         AAC_CONSUMER_INDEX];
1101         } while (ci != pi);
1102
1103         return;
1104 }
1105
1106 /*
1107  * Submit a command to the controller, return when it completes.
1108  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1109  *     be stuck here forever.  At the same time, signals are not caught
1110  *     because there is a risk that a signal could wakeup the tsleep before
1111  *     the card has a chance to complete the command.  The passed in timeout
1112  *     is ignored for the same reason.  Since there is no way to cancel a
1113  *     command in progress, we should probably create a 'dead' queue where
1114  *     commands go that have been interrupted/timed-out/etc, that keeps them
1115  *     out of the free pool.  That way, if the card is just slow, it won't
1116  *     spam the memory of a command that has been recycled.
1117  */
1118 static int
1119 aac_wait_command(struct aac_command *cm, int timeout)
1120 {
1121         int s, error = 0;
1122
1123         debug_called(2);
1124
1125         /* Put the command on the ready queue and get things going */
1126         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1127         aac_enqueue_ready(cm);
1128         aac_startio(cm->cm_sc);
1129         s = splbio();
1130         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1131                 error = tsleep(cm, 0, "aacwait", 0);
1132         }
1133         splx(s);
1134         return(error);
1135 }
1136
1137 /*
1138  *Command Buffer Management
1139  */
1140
1141 /*
1142  * Allocate a command.
1143  */
1144 int
1145 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1146 {
1147         struct aac_command *cm;
1148
1149         debug_called(3);
1150
1151         if ((cm = aac_dequeue_free(sc)) == NULL)
1152                 return(ENOMEM);
1153
1154         *cmp = cm;
1155         return(0);
1156 }
1157
1158 /*
1159  * Release a command back to the freelist.
1160  */
1161 void
1162 aac_release_command(struct aac_command *cm)
1163 {
1164         debug_called(3);
1165
1166         /* (re)initialise the command/FIB */
1167         cm->cm_sgtable = NULL;
1168         cm->cm_flags = 0;
1169         cm->cm_complete = NULL;
1170         cm->cm_private = NULL;
1171         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1172         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1173         cm->cm_fib->Header.Flags = 0;
1174         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1175
1176         /* 
1177          * These are duplicated in aac_start to cover the case where an
1178          * intermediate stage may have destroyed them.  They're left
1179          * initialised here for debugging purposes only.
1180          */
1181         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1182         cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1183         cm->cm_fib->Header.SenderData = 0;
1184
1185         aac_enqueue_free(cm);
1186 }
1187
1188 /*
1189  * Map helper for command/FIB allocation.
1190  */
1191 static void
1192 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1193 {
1194         struct aac_softc *sc;
1195
1196         sc = (struct aac_softc *)arg;
1197
1198         debug_called(3);
1199
1200         sc->aac_fibphys = segs[0].ds_addr;
1201 }
1202
1203 /*
1204  * Allocate and initialise commands/FIBs for this adapter.
1205  */
1206 static int
1207 aac_alloc_commands(struct aac_softc *sc)
1208 {
1209         struct aac_command *cm;
1210         int i;
1211  
1212         debug_called(1);
1213
1214         /* allocate the FIBs in DMAable memory and load them */
1215         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1216                          BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1217                 return(ENOMEM);
1218         }
1219
1220         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1221                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1222                         aac_map_command_helper, sc, 0);
1223
1224         /* initialise constant fields in the command structure */
1225         bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1226         for (i = 0; i < AAC_FIB_COUNT; i++) {
1227                 cm = &sc->aac_command[i];
1228                 cm->cm_sc = sc;
1229                 cm->cm_fib = sc->aac_fibs + i;
1230                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1231
1232                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1233                         aac_release_command(cm);
1234         }
1235         return(0);
1236 }
1237
1238 /*
1239  * Free FIBs owned by this adapter.
1240  */
1241 static void
1242 aac_free_commands(struct aac_softc *sc)
1243 {
1244         int i;
1245
1246         debug_called(1);
1247
1248         for (i = 0; i < AAC_FIB_COUNT; i++)
1249                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1250                                    sc->aac_command[i].cm_datamap);
1251
1252         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1253         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1254 }
1255
1256 /*
1257  * Command-mapping helper function - populate this command's s/g table.
1258  */
1259 static void
1260 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1261 {
1262         struct aac_command *cm;
1263         struct aac_fib *fib;
1264         struct aac_sg_table *sg;
1265         int i;
1266
1267         debug_called(3);
1268
1269         cm = (struct aac_command *)arg;
1270         fib = cm->cm_fib;
1271
1272         /* find the s/g table */
1273         sg = cm->cm_sgtable;
1274
1275         /* copy into the FIB */
1276         if (sg != NULL) {
1277                 sg->SgCount = nseg;
1278                 for (i = 0; i < nseg; i++) {
1279                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1280                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1281                 }
1282                 /* update the FIB size for the s/g count */
1283                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1284         }
1285
1286 }
1287
1288 /*
1289  * Map a command into controller-visible space.
1290  */
1291 static void
1292 aac_map_command(struct aac_command *cm)
1293 {
1294         struct aac_softc *sc;
1295
1296         debug_called(2);
1297
1298         sc = cm->cm_sc;
1299
1300         /* don't map more than once */
1301         if (cm->cm_flags & AAC_CMD_MAPPED)
1302                 return;
1303
1304         if (cm->cm_datalen != 0) {
1305                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1306                                 cm->cm_data, cm->cm_datalen,
1307                                 aac_map_command_sg, cm, 0);
1308
1309                 if (cm->cm_flags & AAC_CMD_DATAIN)
1310                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1311                                         BUS_DMASYNC_PREREAD);
1312                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1313                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1314                                         BUS_DMASYNC_PREWRITE);
1315         }
1316         cm->cm_flags |= AAC_CMD_MAPPED;
1317 }
1318
1319 /*
1320  * Unmap a command from controller-visible space.
1321  */
1322 static void
1323 aac_unmap_command(struct aac_command *cm)
1324 {
1325         struct aac_softc *sc;
1326
1327         debug_called(2);
1328
1329         sc = cm->cm_sc;
1330
1331         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1332                 return;
1333
1334         if (cm->cm_datalen != 0) {
1335                 if (cm->cm_flags & AAC_CMD_DATAIN)
1336                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1337                                         BUS_DMASYNC_POSTREAD);
1338                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1339                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1340                                         BUS_DMASYNC_POSTWRITE);
1341
1342                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1343         }
1344         cm->cm_flags &= ~AAC_CMD_MAPPED;
1345 }
1346
1347 /*
1348  * Hardware Interface
1349  */
1350
1351 /*
1352  * Initialise the adapter.
1353  */
1354 static void
1355 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1356 {
1357         struct aac_softc *sc;
1358
1359         debug_called(1);
1360
1361         sc = (struct aac_softc *)arg;
1362
1363         sc->aac_common_busaddr = segs[0].ds_addr;
1364 }
1365
1366 static int
1367 aac_check_firmware(struct aac_softc *sc)
1368 {
1369         u_int32_t major, minor, options;
1370
1371         debug_called(1);
1372
1373         /*
1374          * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1375          * firmware version 1.x are not compatible with this driver.
1376          */
1377         if (sc->flags & AAC_FLAGS_PERC2QC) {
1378                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1379                                      NULL)) {
1380                         device_printf(sc->aac_dev,
1381                                       "Error reading firmware version\n");
1382                         return (EIO);
1383                 }
1384
1385                 /* These numbers are stored as ASCII! */
1386                 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1387                 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1388                 if (major == 1) {
1389                         device_printf(sc->aac_dev,
1390                             "Firmware version %d.%d is not supported.\n",
1391                             major, minor);
1392                         return (EINVAL);
1393                 }
1394         }
1395
1396         /*
1397          * Retrieve the capabilities/supported options word so we know what
1398          * work-arounds to enable.
1399          */
1400         if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1401                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1402                 return (EIO);
1403         }
1404         options = AAC_GET_MAILBOX(sc, 1);
1405         sc->supported_options = options;
1406
1407         if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1408             (sc->flags & AAC_FLAGS_NO4GB) == 0)
1409                 sc->flags |= AAC_FLAGS_4GB_WINDOW;
1410         if (options & AAC_SUPPORTED_NONDASD)
1411                 sc->flags |= AAC_FLAGS_ENABLE_CAM;
1412
1413         return (0);
1414 }
1415
1416 static int
1417 aac_init(struct aac_softc *sc)
1418 {
1419         struct aac_adapter_init *ip;
1420         time_t then;
1421         u_int32_t code;
1422         u_int8_t *qaddr;
1423         int error;
1424
1425         debug_called(1);
1426
1427         /*
1428          * First wait for the adapter to come ready.
1429          */
1430         then = time_second;
1431         do {
1432                 code = AAC_GET_FWSTATUS(sc);
1433                 if (code & AAC_SELF_TEST_FAILED) {
1434                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1435                         return(ENXIO);
1436                 }
1437                 if (code & AAC_KERNEL_PANIC) {
1438                         device_printf(sc->aac_dev,
1439                                       "FATAL: controller kernel panic\n");
1440                         return(ENXIO);
1441                 }
1442                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1443                         device_printf(sc->aac_dev,
1444                                       "FATAL: controller not coming ready, "
1445                                            "status %x\n", code);
1446                         return(ENXIO);
1447                 }
1448         } while (!(code & AAC_UP_AND_RUNNING));
1449
1450         error = ENOMEM;
1451         /*
1452          * Create DMA tag for mapping buffers into controller-addressable space.
1453          */
1454         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1455                                1, 0,                    /* algnmnt, boundary */
1456                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1457                                BUS_SPACE_MAXADDR,       /* highaddr */
1458                                NULL, NULL,              /* filter, filterarg */
1459                                MAXBSIZE,                /* maxsize */
1460                                AAC_MAXSGENTRIES,        /* nsegments */
1461                                MAXBSIZE,                /* maxsegsize */
1462                                BUS_DMA_ALLOCNOW,        /* flags */
1463                                &sc->aac_buffer_dmat)) {
1464                 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1465                 goto out;
1466         }
1467  
1468         /*
1469          * Create DMA tag for mapping FIBs into controller-addressable space..
1470          */
1471         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1472                                1, 0,                    /* algnmnt, boundary */
1473                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1474                                BUS_SPACE_MAXADDR_32BIT :
1475                                0x7fffffff,              /* lowaddr */
1476                                BUS_SPACE_MAXADDR,       /* highaddr */
1477                                NULL, NULL,              /* filter, filterarg */
1478                                AAC_FIB_COUNT *
1479                                sizeof(struct aac_fib),  /* maxsize */
1480                                1,                       /* nsegments */
1481                                AAC_FIB_COUNT *
1482                                sizeof(struct aac_fib),  /* maxsegsize */
1483                                BUS_DMA_ALLOCNOW,        /* flags */
1484                                &sc->aac_fib_dmat)) {
1485                 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1486                 goto out;
1487         }
1488  
1489         /*
1490          * Create DMA tag for the common structure and allocate it.
1491          */
1492         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1493                                1, 0,                    /* algnmnt, boundary */
1494                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1495                                BUS_SPACE_MAXADDR_32BIT :
1496                                0x7fffffff,              /* lowaddr */
1497                                BUS_SPACE_MAXADDR,       /* highaddr */
1498                                NULL, NULL,              /* filter, filterarg */
1499                                8192 + sizeof(struct aac_common), /* maxsize */
1500                                1,                       /* nsegments */
1501                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1502                                BUS_DMA_ALLOCNOW,        /* flags */
1503                                &sc->aac_common_dmat)) {
1504                 device_printf(sc->aac_dev,
1505                               "can't allocate common structure DMA tag\n");
1506                 goto out;
1507         }
1508         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1509                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1510                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1511                 goto out;
1512         }
1513         /*
1514          * Work around a bug in the 2120 and 2200 that cannot DMA commands
1515          * below address 8192 in physical memory.
1516          * XXX If the padding is not needed, can it be put to use instead
1517          * of ignored?
1518          */
1519         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1520                         sc->aac_common, 8192 + sizeof(*sc->aac_common),
1521                         aac_common_map, sc, 0);
1522
1523         if (sc->aac_common_busaddr < 8192) {
1524                 sc->aac_common =
1525                     (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1526                 sc->aac_common_busaddr += 8192;
1527         }
1528         bzero(sc->aac_common, sizeof(*sc->aac_common));
1529
1530         /* Allocate some FIBs and associated command structs */
1531         if (aac_alloc_commands(sc) != 0)
1532                 goto out;
1533
1534         /*
1535          * Fill in the init structure.  This tells the adapter about the
1536          * physical location of various important shared data structures.
1537          */
1538         ip = &sc->aac_common->ac_init;
1539         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1540         ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1541
1542         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1543                                          offsetof(struct aac_common, ac_fibs);
1544         ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1545         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1546         ip->AdapterFibAlign = sizeof(struct aac_fib);
1547
1548         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1549                                   offsetof(struct aac_common, ac_printf);
1550         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1551
1552         /* The adapter assumes that pages are 4K in size */
1553         ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1554         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1555
1556         /*
1557          * Initialise FIB queues.  Note that it appears that the layout of the
1558          * indexes and the segmentation of the entries may be mandated by the
1559          * adapter, which is only told about the base of the queue index fields.
1560          *
1561          * The initial values of the indices are assumed to inform the adapter
1562          * of the sizes of the respective queues, and theoretically it could 
1563          * work out the entire layout of the queue structures from this.  We
1564          * take the easy route and just lay this area out like everyone else
1565          * does.
1566          *
1567          * The Linux driver uses a much more complex scheme whereby several 
1568          * header records are kept for each queue.  We use a couple of generic 
1569          * list manipulation functions which 'know' the size of each list by
1570          * virtue of a table.
1571          */
1572         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1573         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1574         sc->aac_queues = (struct aac_queue_table *)qaddr;
1575         ip->CommHeaderAddress = sc->aac_common_busaddr +
1576                                 ((u_int32_t)sc->aac_queues -
1577                                 (u_int32_t)sc->aac_common);
1578         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1579
1580         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1581                 AAC_HOST_NORM_CMD_ENTRIES;
1582         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1583                 AAC_HOST_NORM_CMD_ENTRIES;
1584         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1585                 AAC_HOST_HIGH_CMD_ENTRIES;
1586         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1587                 AAC_HOST_HIGH_CMD_ENTRIES;
1588         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1589                 AAC_ADAP_NORM_CMD_ENTRIES;
1590         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1591                 AAC_ADAP_NORM_CMD_ENTRIES;
1592         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1593                 AAC_ADAP_HIGH_CMD_ENTRIES;
1594         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1595                 AAC_ADAP_HIGH_CMD_ENTRIES;
1596         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1597                 AAC_HOST_NORM_RESP_ENTRIES;
1598         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1599                 AAC_HOST_NORM_RESP_ENTRIES;
1600         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1601                 AAC_HOST_HIGH_RESP_ENTRIES;
1602         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1603                 AAC_HOST_HIGH_RESP_ENTRIES;
1604         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1605                 AAC_ADAP_NORM_RESP_ENTRIES;
1606         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1607                 AAC_ADAP_NORM_RESP_ENTRIES;
1608         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1609                 AAC_ADAP_HIGH_RESP_ENTRIES;
1610         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1611                 AAC_ADAP_HIGH_RESP_ENTRIES;
1612         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1613                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1614         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1615                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1616         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1617                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1618         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1619                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1620         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1621                 &sc->aac_queues->qt_HostNormRespQueue[0];
1622         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1623                 &sc->aac_queues->qt_HostHighRespQueue[0];
1624         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1625                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1626         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1627                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1628
1629         /*
1630          * Do controller-type-specific initialisation
1631          */
1632         switch (sc->aac_hwif) {
1633         case AAC_HWIF_I960RX:
1634                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1635                 break;
1636         }
1637
1638         /*
1639          * Give the init structure to the controller.
1640          */
1641         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1642                              sc->aac_common_busaddr +
1643                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1644                              NULL)) {
1645                 device_printf(sc->aac_dev,
1646                               "error establishing init structure\n");
1647                 error = EIO;
1648                 goto out;
1649         }
1650
1651         error = 0;
1652 out:
1653         return(error);
1654 }
1655
1656 /*
1657  * Send a synchronous command to the controller and wait for a result.
1658  */
1659 static int
1660 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1661                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1662                  u_int32_t *sp)
1663 {
1664         time_t then;
1665         u_int32_t status;
1666
1667         debug_called(3);
1668
1669         /* populate the mailbox */
1670         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1671
1672         /* ensure the sync command doorbell flag is cleared */
1673         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1674
1675         /* then set it to signal the adapter */
1676         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1677
1678         /* spin waiting for the command to complete */
1679         then = time_second;
1680         do {
1681                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1682                         debug(1, "timed out");
1683                         return(EIO);
1684                 }
1685         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1686
1687         /* clear the completion flag */
1688         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1689
1690         /* get the command status */
1691         status = AAC_GET_MAILBOX(sc, 0);
1692         if (sp != NULL)
1693                 *sp = status;
1694         return(0);
1695 }
1696
1697 /*
1698  * Grab the sync fib area.
1699  */
1700 int
1701 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1702 {
1703
1704         /*
1705          * If the force flag is set, the system is shutting down, or in
1706          * trouble.  Ignore the mutex.
1707          */
1708         if (!(flags & AAC_SYNC_LOCK_FORCE))
1709                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1710
1711         *fib = &sc->aac_common->ac_sync_fib;
1712
1713         return (1);
1714 }
1715
1716 /*
1717  * Release the sync fib area.
1718  */
1719 void
1720 aac_release_sync_fib(struct aac_softc *sc)
1721 {
1722
1723         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1724 }
1725
1726 /*
1727  * Send a synchronous FIB to the controller and wait for a result.
1728  */
1729 int
1730 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1731                  struct aac_fib *fib, u_int16_t datasize)
1732 {
1733         debug_called(3);
1734
1735         if (datasize > AAC_FIB_DATASIZE)
1736                 return(EINVAL);
1737
1738         /*
1739          * Set up the sync FIB
1740          */
1741         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1742                                 AAC_FIBSTATE_INITIALISED |
1743                                 AAC_FIBSTATE_EMPTY;
1744         fib->Header.XferState |= xferstate;
1745         fib->Header.Command = command;
1746         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1747         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1748         fib->Header.SenderSize = sizeof(struct aac_fib);
1749         fib->Header.SenderFibAddress = (u_int32_t)fib;
1750         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1751                                          offsetof(struct aac_common,
1752                                                   ac_sync_fib);
1753
1754         /*
1755          * Give the FIB to the controller, wait for a response.
1756          */
1757         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1758                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1759                 debug(2, "IO error");
1760                 return(EIO);
1761         }
1762
1763         return (0);
1764 }
1765
1766 /*
1767  * Adapter-space FIB queue manipulation
1768  *
1769  * Note that the queue implementation here is a little funky; neither the PI or
1770  * CI will ever be zero.  This behaviour is a controller feature.
1771  */
1772 static struct {
1773         int             size;
1774         int             notify;
1775 } aac_qinfo[] = {
1776         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1777         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1778         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1779         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1780         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1781         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1782         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1783         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1784 };
1785
1786 /*
1787  * Atomically insert an entry into the nominated queue, returns 0 on success or
1788  * EBUSY if the queue is full.
1789  *
1790  * Note: it would be more efficient to defer notifying the controller in
1791  *       the case where we may be inserting several entries in rapid succession,
1792  *       but implementing this usefully may be difficult (it would involve a
1793  *       separate queue/notify interface).
1794  */
1795 static int
1796 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1797 {
1798         u_int32_t pi, ci;
1799         int s, error;
1800         u_int32_t fib_size;
1801         u_int32_t fib_addr;
1802
1803         debug_called(3);
1804
1805         fib_size = cm->cm_fib->Header.Size; 
1806         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1807
1808         s = splbio();
1809
1810         /* get the producer/consumer indices */
1811         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1812         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1813
1814         /* wrap the queue? */
1815         if (pi >= aac_qinfo[queue].size)
1816                 pi = 0;
1817
1818         /* check for queue full */
1819         if ((pi + 1) == ci) {
1820                 error = EBUSY;
1821                 goto out;
1822         }
1823
1824         /* populate queue entry */
1825         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1826         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1827
1828         /* update producer index */
1829         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1830
1831         /*
1832          * To avoid a race with its completion interrupt, place this command on
1833          * the busy queue prior to advertising it to the controller.
1834          */
1835         aac_enqueue_busy(cm);
1836
1837         /* notify the adapter if we know how */
1838         if (aac_qinfo[queue].notify != 0)
1839                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1840
1841         error = 0;
1842
1843 out:
1844         splx(s);
1845         return(error);
1846 }
1847
1848 /*
1849  * Atomically remove one entry from the nominated queue, returns 0 on
1850  * success or ENOENT if the queue is empty.
1851  */
1852 static int
1853 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1854                 struct aac_fib **fib_addr)
1855 {
1856         u_int32_t pi, ci;
1857         int s, error;
1858         int notify;
1859
1860         debug_called(3);
1861
1862         s = splbio();
1863
1864         /* get the producer/consumer indices */
1865         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1866         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1867
1868         /* check for queue empty */
1869         if (ci == pi) {
1870                 error = ENOENT;
1871                 goto out;
1872         }
1873         
1874         notify = 0;
1875         if (ci == pi + 1)
1876                 notify++;
1877
1878         /* wrap the queue? */
1879         if (ci >= aac_qinfo[queue].size)
1880                 ci = 0;
1881
1882         /* fetch the entry */
1883         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1884         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1885                                        ci)->aq_fib_addr;
1886
1887         /*
1888          * Is this a fast response? If it is, update the fib fields in
1889          * local memory so the whole fib doesn't have to be DMA'd back up.
1890          */
1891         if (*(uintptr_t *)fib_addr & 0x01) {
1892                 *(uintptr_t *)fib_addr &= ~0x01;
1893                 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1894                 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1895         }
1896         /* update consumer index */
1897         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1898
1899         /* if we have made the queue un-full, notify the adapter */
1900         if (notify && (aac_qinfo[queue].notify != 0))
1901                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1902         error = 0;
1903
1904 out:
1905         splx(s);
1906         return(error);
1907 }
1908
1909 /*
1910  * Put our response to an Adapter Initialed Fib on the response queue
1911  */
1912 static int
1913 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1914 {
1915         u_int32_t pi, ci;
1916         int s, error;
1917         u_int32_t fib_size;
1918         u_int32_t fib_addr;
1919
1920         debug_called(1);
1921
1922         /* Tell the adapter where the FIB is */
1923         fib_size = fib->Header.Size; 
1924         fib_addr = fib->Header.SenderFibAddress;
1925         fib->Header.ReceiverFibAddress = fib_addr;
1926
1927         s = splbio();
1928
1929         /* get the producer/consumer indices */
1930         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1931         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1932
1933         /* wrap the queue? */
1934         if (pi >= aac_qinfo[queue].size)
1935                 pi = 0;
1936
1937         /* check for queue full */
1938         if ((pi + 1) == ci) {
1939                 error = EBUSY;
1940                 goto out;
1941         }
1942
1943         /* populate queue entry */
1944         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1945         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1946
1947         /* update producer index */
1948         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1949
1950         /* notify the adapter if we know how */
1951         if (aac_qinfo[queue].notify != 0)
1952                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1953
1954         error = 0;
1955
1956 out:
1957         splx(s);
1958         return(error);
1959 }
1960
1961 /*
1962  * Check for commands that have been outstanding for a suspiciously long time,
1963  * and complain about them.
1964  */
1965 static void
1966 aac_timeout(void *xsc)
1967 {
1968         struct aac_softc *sc = xsc;
1969         int s;
1970         struct aac_command *cm;
1971         time_t deadline;
1972
1973 #if 0
1974         /* simulate an interrupt to handle possibly-missed interrupts */
1975         /*
1976          * XXX This was done to work around another bug which has since been
1977          * fixed.  It is dangerous anyways because you don't want multiple
1978          * threads in the interrupt handler at the same time!  If calling
1979          * is deamed neccesary in the future, proper mutexes must be used.
1980          */
1981         s = splbio();
1982         aac_intr(sc);
1983         splx(s);
1984
1985         /* kick the I/O queue to restart it in the case of deadlock */
1986         aac_startio(sc);
1987 #endif
1988
1989         /*
1990          * traverse the busy command list, bitch about late commands once
1991          * only.
1992          */
1993         deadline = time_second - AAC_CMD_TIMEOUT;
1994         s = splbio();
1995         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1996                 if ((cm->cm_timestamp  < deadline)
1997                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1998                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
1999                         device_printf(sc->aac_dev,
2000                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2001                                       cm, (int)(time_second-cm->cm_timestamp));
2002                         AAC_PRINT_FIB(sc, cm->cm_fib);
2003                 }
2004         }
2005         splx(s);
2006
2007         /* reset the timer for next time */
2008         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2009                       aac_timeout, sc);
2010 }
2011
2012 /*
2013  * Interface Function Vectors
2014  */
2015
2016 /*
2017  * Read the current firmware status word.
2018  */
2019 static int
2020 aac_sa_get_fwstatus(struct aac_softc *sc)
2021 {
2022         debug_called(3);
2023
2024         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2025 }
2026
2027 static int
2028 aac_rx_get_fwstatus(struct aac_softc *sc)
2029 {
2030         debug_called(3);
2031
2032         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2033 }
2034
2035 static int
2036 aac_fa_get_fwstatus(struct aac_softc *sc)
2037 {
2038         int val;
2039
2040         debug_called(3);
2041
2042         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2043         return (val);
2044 }
2045
2046 /*
2047  * Notify the controller of a change in a given queue
2048  */
2049
2050 static void
2051 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2052 {
2053         debug_called(3);
2054
2055         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2056 }
2057
2058 static void
2059 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2060 {
2061         debug_called(3);
2062
2063         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2064 }
2065
2066 static void
2067 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2068 {
2069         debug_called(3);
2070
2071         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2072         AAC_FA_HACK(sc);
2073 }
2074
2075 /*
2076  * Get the interrupt reason bits
2077  */
2078 static int
2079 aac_sa_get_istatus(struct aac_softc *sc)
2080 {
2081         debug_called(3);
2082
2083         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2084 }
2085
2086 static int
2087 aac_rx_get_istatus(struct aac_softc *sc)
2088 {
2089         debug_called(3);
2090
2091         return(AAC_GETREG4(sc, AAC_RX_ODBR));
2092 }
2093
2094 static int
2095 aac_fa_get_istatus(struct aac_softc *sc)
2096 {
2097         int val;
2098
2099         debug_called(3);
2100
2101         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2102         return (val);
2103 }
2104
2105 /*
2106  * Clear some interrupt reason bits
2107  */
2108 static void
2109 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2110 {
2111         debug_called(3);
2112
2113         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2114 }
2115
2116 static void
2117 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2118 {
2119         debug_called(3);
2120
2121         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2122 }
2123
2124 static void
2125 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2126 {
2127         debug_called(3);
2128
2129         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2130         AAC_FA_HACK(sc);
2131 }
2132
2133 /*
2134  * Populate the mailbox and set the command word
2135  */
2136 static void
2137 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2138                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2139 {
2140         debug_called(4);
2141
2142         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2143         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2144         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2145         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2146         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2147 }
2148
2149 static void
2150 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2151                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2152 {
2153         debug_called(4);
2154
2155         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2156         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2157         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2158         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2159         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2160 }
2161
2162 static void
2163 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2164                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2165 {
2166         debug_called(4);
2167
2168         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2169         AAC_FA_HACK(sc);
2170         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2171         AAC_FA_HACK(sc);
2172         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2173         AAC_FA_HACK(sc);
2174         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2175         AAC_FA_HACK(sc);
2176         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2177         AAC_FA_HACK(sc);
2178 }
2179
2180 /*
2181  * Fetch the immediate command status word
2182  */
2183 static int
2184 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2185 {
2186         debug_called(4);
2187
2188         return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2189 }
2190
2191 static int
2192 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2193 {
2194         debug_called(4);
2195
2196         return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2197 }
2198
2199 static int
2200 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2201 {
2202         int val;
2203
2204         debug_called(4);
2205
2206         val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2207         return (val);
2208 }
2209
2210 /*
2211  * Set/clear interrupt masks
2212  */
2213 static void
2214 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2215 {
2216         debug(2, "%sable interrupts", enable ? "en" : "dis");
2217
2218         if (enable) {
2219                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2220         } else {
2221                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2222         }
2223 }
2224
2225 static void
2226 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2227 {
2228         debug(2, "%sable interrupts", enable ? "en" : "dis");
2229
2230         if (enable) {
2231                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2232         } else {
2233                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2234         }
2235 }
2236
2237 static void
2238 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2239 {
2240         debug(2, "%sable interrupts", enable ? "en" : "dis");
2241
2242         if (enable) {
2243                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2244                 AAC_FA_HACK(sc);
2245         } else {
2246                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2247                 AAC_FA_HACK(sc);
2248         }
2249 }
2250
2251 /*
2252  * Debugging and Diagnostics
2253  */
2254
2255 /*
2256  * Print some information about the controller.
2257  */
2258 static void
2259 aac_describe_controller(struct aac_softc *sc)
2260 {
2261         struct aac_fib *fib;
2262         struct aac_adapter_info *info;
2263
2264         debug_called(2);
2265
2266         aac_alloc_sync_fib(sc, &fib, 0);
2267
2268         fib->data[0] = 0;
2269         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2270                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2271                 aac_release_sync_fib(sc);
2272                 return;
2273         }
2274         info = (struct aac_adapter_info *)&fib->data[0];   
2275
2276         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2277                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2278                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2279                       aac_describe_code(aac_battery_platform,
2280                                         info->batteryPlatform));
2281
2282         /* save the kernel revision structure for later use */
2283         sc->aac_revision = info->KernelRevision;
2284         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2285                       info->KernelRevision.external.comp.major,
2286                       info->KernelRevision.external.comp.minor,
2287                       info->KernelRevision.external.comp.dash,
2288                       info->KernelRevision.buildNumber,
2289                       (u_int32_t)(info->SerialNumber & 0xffffff));
2290
2291         aac_release_sync_fib(sc);
2292
2293         if (1 || bootverbose) {
2294                 device_printf(sc->aac_dev, "Supported Options=%b\n",
2295                               sc->supported_options,
2296                               "\20"
2297                               "\1SNAPSHOT"
2298                               "\2CLUSTERS"
2299                               "\3WCACHE"
2300                               "\4DATA64"
2301                               "\5HOSTTIME"
2302                               "\6RAID50"
2303                               "\7WINDOW4GB"
2304                               "\10SCSIUPGD"
2305                               "\11SOFTERR"
2306                               "\12NORECOND"
2307                               "\13SGMAP64"
2308                               "\14ALARM"
2309                               "\15NONDASD");
2310         }
2311 }
2312
2313 /*
2314  * Look up a text description of a numeric error code and return a pointer to
2315  * same.
2316  */
2317 static char *
2318 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2319 {
2320         int i;
2321
2322         for (i = 0; table[i].string != NULL; i++)
2323                 if (table[i].code == code)
2324                         return(table[i].string);
2325         return(table[i + 1].string);
2326 }
2327
2328 /*
2329  * Management Interface
2330  */
2331
2332 static int
2333 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2334 {
2335         struct aac_softc *sc;
2336
2337         debug_called(2);
2338
2339         sc = dev->si_drv1;
2340
2341         /* Check to make sure the device isn't already open */
2342         if (sc->aac_state & AAC_STATE_OPEN) {
2343                 return EBUSY;
2344         }
2345         sc->aac_state |= AAC_STATE_OPEN;
2346
2347         return 0;
2348 }
2349
2350 static int
2351 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2352 {
2353         struct aac_softc *sc;
2354
2355         debug_called(2);
2356
2357         sc = dev->si_drv1;
2358
2359         /* Mark this unit as no longer open  */
2360         sc->aac_state &= ~AAC_STATE_OPEN;
2361
2362         return 0;
2363 }
2364
2365 static int
2366 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2367 {
2368         struct aac_softc *sc = dev->si_drv1;
2369         int error = 0;
2370         int i;
2371
2372         debug_called(2);
2373
2374         if (cmd == AACIO_STATS) {
2375                 union aac_statrequest *as = (union aac_statrequest *)arg;
2376
2377                 switch (as->as_item) {
2378                 case AACQ_FREE:
2379                 case AACQ_BIO:
2380                 case AACQ_READY:
2381                 case AACQ_BUSY:
2382                 case AACQ_COMPLETE:
2383                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2384                               sizeof(struct aac_qstat));
2385                         break;
2386                 default:
2387                         error = ENOENT;
2388                         break;
2389                 }
2390                 return(error);
2391         }
2392
2393         arg = *(caddr_t *)arg;
2394
2395         switch (cmd) {
2396         /* AACIO_STATS already handled above */
2397         case FSACTL_SENDFIB:
2398                 debug(1, "FSACTL_SENDFIB");
2399                 error = aac_ioctl_sendfib(sc, arg);
2400                 break;
2401         case FSACTL_AIF_THREAD:
2402                 debug(1, "FSACTL_AIF_THREAD");
2403                 error = EINVAL;
2404                 break;
2405         case FSACTL_OPEN_GET_ADAPTER_FIB:
2406                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2407                 /*
2408                  * Pass the caller out an AdapterFibContext.
2409                  *
2410                  * Note that because we only support one opener, we
2411                  * basically ignore this.  Set the caller's context to a magic
2412                  * number just in case.
2413                  *
2414                  * The Linux code hands the driver a pointer into kernel space,
2415                  * and then trusts it when the caller hands it back.  Aiee!
2416                  * Here, we give it the proc pointer of the per-adapter aif 
2417                  * thread. It's only used as a sanity check in other calls.
2418                  */
2419                 i = (int)sc->aifthread;
2420                 error = copyout(&i, arg, sizeof(i));
2421                 break;
2422         case FSACTL_GET_NEXT_ADAPTER_FIB:
2423                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2424                 error = aac_getnext_aif(sc, arg);
2425                 break;
2426         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2427                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2428                 /* don't do anything here */
2429                 break;
2430         case FSACTL_MINIPORT_REV_CHECK:
2431                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2432                 error = aac_rev_check(sc, arg);
2433                 break;
2434         case FSACTL_QUERY_DISK:
2435                 debug(1, "FSACTL_QUERY_DISK");
2436                 error = aac_query_disk(sc, arg);
2437                         break;
2438         case FSACTL_DELETE_DISK:
2439                 /*
2440                  * We don't trust the underland to tell us when to delete a
2441                  * container, rather we rely on an AIF coming from the 
2442                  * controller
2443                  */
2444                 error = 0;
2445                 break;
2446         default:
2447                 debug(1, "unsupported cmd 0x%lx\n", cmd);
2448                 error = EINVAL;
2449                 break;
2450         }
2451         return(error);
2452 }
2453
2454 static int
2455 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2456 {
2457         struct aac_softc *sc;
2458         int revents;
2459
2460         sc = dev->si_drv1;
2461         revents = 0;
2462
2463         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2464         if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2465                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2466                         revents |= poll_events & (POLLIN | POLLRDNORM);
2467         }
2468         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2469
2470         if (revents == 0) {
2471                 if (poll_events & (POLLIN | POLLRDNORM))
2472                         selrecord(td, &sc->rcv_select);
2473         }
2474
2475         return (revents);
2476 }
2477
2478 /*
2479  * Send a FIB supplied from userspace
2480  */
2481 static int
2482 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2483 {
2484         struct aac_command *cm;
2485         int size, error;
2486
2487         debug_called(2);
2488
2489         cm = NULL;
2490
2491         /*
2492          * Get a command
2493          */
2494         if (aac_alloc_command(sc, &cm)) {
2495                 error = EBUSY;
2496                 goto out;
2497         }
2498
2499         /*
2500          * Fetch the FIB header, then re-copy to get data as well.
2501          */
2502         if ((error = copyin(ufib, cm->cm_fib,
2503                             sizeof(struct aac_fib_header))) != 0)
2504                 goto out;
2505         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2506         if (size > sizeof(struct aac_fib)) {
2507                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2508                               size, sizeof(struct aac_fib));
2509                 size = sizeof(struct aac_fib);
2510         }
2511         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2512                 goto out;
2513         cm->cm_fib->Header.Size = size;
2514         cm->cm_timestamp = time_second;
2515
2516         /*
2517          * Pass the FIB to the controller, wait for it to complete.
2518          */
2519         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2520                 printf("aac_wait_command return %d\n", error);
2521                 goto out;
2522         }
2523
2524         /*
2525          * Copy the FIB and data back out to the caller.
2526          */
2527         size = cm->cm_fib->Header.Size;
2528         if (size > sizeof(struct aac_fib)) {
2529                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2530                               size, sizeof(struct aac_fib));
2531                 size = sizeof(struct aac_fib);
2532         }
2533         error = copyout(cm->cm_fib, ufib, size);
2534
2535 out:
2536         if (cm != NULL) {
2537                 aac_release_command(cm);
2538         }
2539         return(error);
2540 }
2541
2542 /*
2543  * Handle an AIF sent to us by the controller; queue it for later reference.
2544  * If the queue fills up, then drop the older entries.
2545  */
2546 static void
2547 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2548 {
2549         struct aac_aif_command *aif;
2550         struct aac_container *co, *co_next;
2551         struct aac_mntinfo *mi;
2552         struct aac_mntinforesp *mir = NULL;
2553         u_int16_t rsize;
2554         int next, found;
2555         int added = 0, i = 0;
2556
2557         debug_called(2);
2558
2559         aif = (struct aac_aif_command*)&fib->data[0];
2560         aac_print_aif(sc, aif);
2561
2562         /* Is it an event that we should care about? */
2563         switch (aif->command) {
2564         case AifCmdEventNotify:
2565                 switch (aif->data.EN.type) {
2566                 case AifEnAddContainer:
2567                 case AifEnDeleteContainer:
2568                         /*
2569                          * A container was added or deleted, but the message 
2570                          * doesn't tell us anything else!  Re-enumerate the
2571                          * containers and sort things out.
2572                          */
2573                         aac_alloc_sync_fib(sc, &fib, 0);
2574                         mi = (struct aac_mntinfo *)&fib->data[0];
2575                         do {
2576                                 /*
2577                                  * Ask the controller for its containers one at
2578                                  * a time.
2579                                  * XXX What if the controller's list changes
2580                                  * midway through this enumaration?
2581                                  * XXX This should be done async.
2582                                  */
2583                                 bzero(mi, sizeof(struct aac_mntinfo));
2584                                 mi->Command = VM_NameServe;
2585                                 mi->MntType = FT_FILESYS;
2586                                 mi->MntCount = i;
2587                                 rsize = sizeof(mir);
2588                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2589                                                  sizeof(struct aac_mntinfo))) {
2590                                         debug(2, "Error probing container %d\n",
2591                                               i);
2592                                         continue;
2593                                 }
2594                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2595                                 /*
2596                                  * Check the container against our list.
2597                                  * co->co_found was already set to 0 in a
2598                                  * previous run.
2599                                  */
2600                                 if ((mir->Status == ST_OK) &&
2601                                     (mir->MntTable[0].VolType != CT_NONE)) {
2602                                         found = 0;
2603                                         TAILQ_FOREACH(co,
2604                                                       &sc->aac_container_tqh, 
2605                                                       co_link) {
2606                                                 if (co->co_mntobj.ObjectId ==
2607                                                     mir->MntTable[0].ObjectId) {
2608                                                         co->co_found = 1;
2609                                                         found = 1;
2610                                                         break;
2611                                                 }
2612                                         }
2613                                         /*
2614                                          * If the container matched, continue
2615                                          * in the list.
2616                                          */
2617                                         if (found) {
2618                                                 i++;
2619                                                 continue;
2620                                         }
2621
2622                                         /*
2623                                          * This is a new container.  Do all the
2624                                          * appropriate things to set it up.                                              */
2625                                         aac_add_container(sc, mir, 1);
2626                                         added = 1;
2627                                 }
2628                                 i++;
2629                         } while ((i < mir->MntRespCount) &&
2630                                  (i < AAC_MAX_CONTAINERS));
2631                         aac_release_sync_fib(sc);
2632
2633                         /*
2634                          * Go through our list of containers and see which ones
2635                          * were not marked 'found'.  Since the controller didn't
2636                          * list them they must have been deleted.  Do the
2637                          * appropriate steps to destroy the device.  Also reset
2638                          * the co->co_found field.
2639                          */
2640                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2641                         while (co != NULL) {
2642                                 if (co->co_found == 0) {
2643                                         device_delete_child(sc->aac_dev,
2644                                                             co->co_disk);
2645                                         co_next = TAILQ_NEXT(co, co_link);
2646                                         AAC_LOCK_ACQUIRE(&sc->
2647                                                         aac_container_lock);
2648                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2649                                                      co_link);
2650                                         AAC_LOCK_RELEASE(&sc->
2651                                                          aac_container_lock);
2652                                         FREE(co, M_AACBUF);
2653                                         co = co_next;
2654                                 } else {
2655                                         co->co_found = 0;
2656                                         co = TAILQ_NEXT(co, co_link);
2657                                 }
2658                         }
2659
2660                         /* Attach the newly created containers */
2661                         if (added)
2662                                 bus_generic_attach(sc->aac_dev);
2663         
2664                                 break;
2665
2666                 default:
2667                         break;
2668                 }
2669
2670         default:
2671                 break;
2672         }
2673
2674         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2675         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2676         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2677         if (next != sc->aac_aifq_tail) {
2678                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2679                 sc->aac_aifq_head = next;
2680
2681                 /* On the off chance that someone is sleeping for an aif... */
2682                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2683                         wakeup(sc->aac_aifq);
2684                 /* token may have been lost */
2685                 /* Wakeup any poll()ers */
2686                 selwakeup(&sc->rcv_select);
2687                 /* token may have been lost */
2688         }
2689         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2690
2691         return;
2692 }
2693
2694 /*
2695  * Return the Revision of the driver to userspace and check to see if the
2696  * userspace app is possibly compatible.  This is extremely bogus since
2697  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2698  * returning what the card reported.
2699  */
2700 static int
2701 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2702 {
2703         struct aac_rev_check rev_check;
2704         struct aac_rev_check_resp rev_check_resp;
2705         int error = 0;
2706
2707         debug_called(2);
2708
2709         /*
2710          * Copyin the revision struct from userspace
2711          */
2712         if ((error = copyin(udata, (caddr_t)&rev_check,
2713                         sizeof(struct aac_rev_check))) != 0) {
2714                 return error;
2715         }
2716
2717         debug(2, "Userland revision= %d\n",
2718               rev_check.callingRevision.buildNumber);
2719
2720         /*
2721          * Doctor up the response struct.
2722          */
2723         rev_check_resp.possiblyCompatible = 1;
2724         rev_check_resp.adapterSWRevision.external.ul =
2725             sc->aac_revision.external.ul;
2726         rev_check_resp.adapterSWRevision.buildNumber =
2727             sc->aac_revision.buildNumber;
2728
2729         return(copyout((caddr_t)&rev_check_resp, udata,
2730                         sizeof(struct aac_rev_check_resp)));
2731 }
2732
2733 /*
2734  * Pass the caller the next AIF in their queue
2735  */
2736 static int
2737 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2738 {
2739         struct get_adapter_fib_ioctl agf;
2740         int error, s;
2741
2742         debug_called(2);
2743
2744         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2745
2746                 /*
2747                  * Check the magic number that we gave the caller.
2748                  */
2749                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2750                         error = EFAULT;
2751                 } else {
2752         
2753                         s = splbio();
2754                         error = aac_return_aif(sc, agf.AifFib);
2755         
2756                         if ((error == EAGAIN) && (agf.Wait)) {
2757                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2758                                 while (error == EAGAIN) {
2759                                         error = tsleep(sc->aac_aifq,
2760                                                        PCATCH, "aacaif", 0);
2761                                         if (error == 0)
2762                                                 error = aac_return_aif(sc,
2763                                                     agf.AifFib);
2764                                 }
2765                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2766                         }
2767                 splx(s);
2768                 }
2769         }
2770         return(error);
2771 }
2772
2773 /*
2774  * Hand the next AIF off the top of the queue out to userspace.
2775  *
2776  * YYY token could be lost during copyout
2777  */
2778 static int
2779 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2780 {
2781         int error;
2782
2783         debug_called(2);
2784
2785         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2786         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2787                 error = EAGAIN;
2788         } else {
2789                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2790                                 sizeof(struct aac_aif_command));
2791                 if (error)
2792                         printf("aac_return_aif: copyout returned %d\n", error);
2793                 if (!error)
2794                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2795                                             AAC_AIFQ_LENGTH;
2796         }
2797         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2798         return(error);
2799 }
2800
2801 /*
2802  * Give the userland some information about the container.  The AAC arch
2803  * expects the driver to be a SCSI passthrough type driver, so it expects
2804  * the containers to have b:t:l numbers.  Fake it.
2805  */
2806 static int
2807 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2808 {
2809         struct aac_query_disk query_disk;
2810         struct aac_container *co;
2811         struct aac_disk *disk;
2812         int error, id;
2813
2814         debug_called(2);
2815
2816         disk = NULL;
2817
2818         error = copyin(uptr, (caddr_t)&query_disk,
2819                        sizeof(struct aac_query_disk));
2820         if (error)
2821                 return (error);
2822
2823         id = query_disk.ContainerNumber;
2824         if (id == -1)
2825                 return (EINVAL);
2826
2827         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2828         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2829                 if (co->co_mntobj.ObjectId == id)
2830                         break;
2831                 }
2832
2833                 if (co == NULL) {
2834                         query_disk.Valid = 0;
2835                         query_disk.Locked = 0;
2836                         query_disk.Deleted = 1;         /* XXX is this right? */
2837                 } else {
2838                         disk = device_get_softc(co->co_disk);
2839                         query_disk.Valid = 1;
2840                         query_disk.Locked =
2841                             (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2842                         query_disk.Deleted = 0;
2843                         query_disk.Bus = device_get_unit(sc->aac_dev);
2844                         query_disk.Target = disk->unit;
2845                         query_disk.Lun = 0;
2846                         query_disk.UnMapped = 0;
2847                         bcopy(disk->ad_dev_t->si_name,
2848                               &query_disk.diskDeviceName[0], 10);
2849                 }
2850         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2851
2852         error = copyout((caddr_t)&query_disk, uptr,
2853                         sizeof(struct aac_query_disk));
2854
2855         return (error);
2856 }
2857
2858 static void
2859 aac_get_bus_info(struct aac_softc *sc)
2860 {
2861         struct aac_fib *fib;
2862         struct aac_ctcfg *c_cmd;
2863         struct aac_ctcfg_resp *c_resp;
2864         struct aac_vmioctl *vmi;
2865         struct aac_vmi_businf_resp *vmi_resp;
2866         struct aac_getbusinf businfo;
2867         struct aac_cam_inf *caminf;
2868         device_t child;
2869         int i, found, error;
2870
2871         aac_alloc_sync_fib(sc, &fib, 0);
2872         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2873         bzero(c_cmd, sizeof(struct aac_ctcfg));
2874
2875         c_cmd->Command = VM_ContainerConfig;
2876         c_cmd->cmd = CT_GET_SCSI_METHOD;
2877         c_cmd->param = 0;
2878
2879         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2880             sizeof(struct aac_ctcfg));
2881         if (error) {
2882                 device_printf(sc->aac_dev, "Error %d sending "
2883                     "VM_ContainerConfig command\n", error);
2884                 aac_release_sync_fib(sc);
2885                 return;
2886         }
2887
2888         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2889         if (c_resp->Status != ST_OK) {
2890                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2891                     c_resp->Status);
2892                 aac_release_sync_fib(sc);
2893                 return;
2894         }
2895
2896         sc->scsi_method_id = c_resp->param;
2897
2898         vmi = (struct aac_vmioctl *)&fib->data[0];
2899         bzero(vmi, sizeof(struct aac_vmioctl));
2900
2901         vmi->Command = VM_Ioctl;
2902         vmi->ObjType = FT_DRIVE;
2903         vmi->MethId = sc->scsi_method_id;
2904         vmi->ObjId = 0;
2905         vmi->IoctlCmd = GetBusInfo;
2906
2907         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2908             sizeof(struct aac_vmioctl));
2909         if (error) {
2910                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2911                     error);
2912                 aac_release_sync_fib(sc);
2913                 return;
2914         }
2915
2916         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2917         if (vmi_resp->Status != ST_OK) {
2918                 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2919                 aac_release_sync_fib(sc);
2920                 return;
2921         }
2922
2923         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2924         aac_release_sync_fib(sc);
2925
2926         found = 0;
2927         for (i = 0; i < businfo.BusCount; i++) {
2928                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2929                         continue;
2930
2931                 MALLOC(caminf, struct aac_cam_inf *,
2932                     sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2933
2934                 child = device_add_child(sc->aac_dev, "aacp", -1);
2935                 if (child == NULL) {
2936                         device_printf(sc->aac_dev, "device_add_child failed\n");
2937                         continue;
2938                 }
2939
2940                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2941                 caminf->BusNumber = i;
2942                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2943                 caminf->aac_sc = sc;
2944
2945                 device_set_ivars(child, caminf);
2946                 device_set_desc(child, "SCSI Passthrough Bus");
2947
2948                 found = 1;
2949         }
2950
2951         if (found)
2952                 bus_generic_attach(sc->aac_dev);
2953
2954         return;
2955 }