Merge branch 'vendor/GDB'
[dragonfly.git] / sys / dev / netif / wpi / if_wpi.c
1 /*-
2  * Copyright (c) 2006,2007
3  *      Damien Bergamini <damien.bergamini@free.fr>
4  *      Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20
21 #define VERSION "20071127"
22
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109
110 #define WPI_DEBUG
111
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)      do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)  do { if (wpi_debug & n) kprintf x; } while (0)
115 #define WPI_DEBUG_SET   (wpi_debug != 0)
116
117 enum {
118         WPI_DEBUG_UNUSED        = 0x00000001,   /* Unused */
119         WPI_DEBUG_HW            = 0x00000002,   /* Stage 1 (eeprom) debugging */
120         WPI_DEBUG_TX            = 0x00000004,   /* Stage 2 TX intrp debugging*/
121         WPI_DEBUG_RX            = 0x00000008,   /* Stage 2 RX intrp debugging */
122         WPI_DEBUG_CMD           = 0x00000010,   /* Stage 2 CMD intrp debugging*/
123         WPI_DEBUG_FIRMWARE      = 0x00000020,   /* firmware(9) loading debug  */
124         WPI_DEBUG_DMA           = 0x00000040,   /* DMA (de)allocations/syncs  */
125         WPI_DEBUG_SCANNING      = 0x00000080,   /* Stage 2 Scanning debugging */
126         WPI_DEBUG_NOTIFY        = 0x00000100,   /* State 2 Noftif intr debug */
127         WPI_DEBUG_TEMP          = 0x00000200,   /* TXPower/Temp Calibration */
128         WPI_DEBUG_OPS           = 0x00000400,   /* wpi_ops taskq debug */
129         WPI_DEBUG_WATCHDOG      = 0x00000800,   /* Watch dog debug */
130         WPI_DEBUG_ANY           = 0xffffffff
131 };
132
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET   0
141 #endif
142
143 struct wpi_ident {
144         uint16_t        vendor;
145         uint16_t        device;
146         uint16_t        subdevice;
147         const char      *name;
148 };
149
150 static const struct wpi_ident wpi_ident_table[] = {
151         /* The below entries support ABG regardless of the subid */
152         { 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153         { 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154         /* The below entries only support BG */
155         { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156         { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157         { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158         { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159         { 0, 0, 0, NULL }
160 };
161
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163                     const char name[IFNAMSIZ], int unit, int opmode,
164                     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165                     const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void     wpi_vap_delete(struct ieee80211vap *);
167 static int      wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168                     void **, bus_size_t, bus_size_t, int);
169 static void     wpi_dma_contig_free(struct wpi_dma_info *);
170 static void     wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int      wpi_alloc_shared(struct wpi_softc *);
172 static void     wpi_free_shared(struct wpi_softc *);
173 static int      wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void     wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void     wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int      wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177                     int, int);
178 static void     wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void     wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181                             const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int      wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void     wpi_mem_lock(struct wpi_softc *);
184 static void     wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void     wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void     wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188                     const uint32_t *, int);
189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int      wpi_alloc_fwmem(struct wpi_softc *);
191 static void     wpi_free_fwmem(struct wpi_softc *);
192 static int      wpi_load_firmware(struct wpi_softc *);
193 static void     wpi_unload_firmware(struct wpi_softc *);
194 static int      wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void     wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196                     struct wpi_rx_data *);
197 static void     wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void     wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void     wpi_notif_intr(struct wpi_softc *);
200 static void     wpi_intr(void *);
201 static uint8_t  wpi_plcp_signal(int);
202 static void     wpi_watchdog_callout(void *);
203 static int      wpi_tx_data(struct wpi_softc *, struct mbuf *,
204                     struct ieee80211_node *, int);
205 static void     wpi_start(struct ifnet *);
206 static void     wpi_start_locked(struct ifnet *);
207 static int      wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208                     const struct ieee80211_bpf_params *);
209 static void     wpi_scan_start(struct ieee80211com *);
210 static void     wpi_scan_end(struct ieee80211com *);
211 static void     wpi_set_channel(struct ieee80211com *);
212 static void     wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void     wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int      wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void     wpi_read_eeprom(struct wpi_softc *,
216                     uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void     wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void     wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int      wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int      wpi_wme_update(struct ieee80211com *);
221 static int      wpi_mrr_setup(struct wpi_softc *);
222 static void     wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void     wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int      wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int      wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int      wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int      wpi_scan(struct wpi_softc *);
230 static int      wpi_config(struct wpi_softc *);
231 static void     wpi_stop_master(struct wpi_softc *);
232 static int      wpi_power_up(struct wpi_softc *);
233 static int      wpi_reset(struct wpi_softc *);
234 static void     wpi_hwreset_task(void *, int);
235 static void     wpi_rfreset_task(void *, int);
236 static void     wpi_hw_config(struct wpi_softc *);
237 static void     wpi_init(void *);
238 static void     wpi_init_locked(struct wpi_softc *, int);
239 static void     wpi_stop(struct wpi_softc *);
240 static void     wpi_stop_locked(struct wpi_softc *);
241
242 static void     wpi_newassoc(struct ieee80211_node *, int);
243 static int      wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244                     int);
245 static void     wpi_calib_timeout_callout(void *);
246 static void     wpi_power_calibration(struct wpi_softc *, int);
247 static int      wpi_get_power_index(struct wpi_softc *,
248                     struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258
259
260 static device_method_t wpi_methods[] = {
261         /* Device interface */
262         DEVMETHOD(device_probe,         wpi_probe),
263         DEVMETHOD(device_attach,        wpi_attach),
264         DEVMETHOD(device_detach,        wpi_detach),
265         DEVMETHOD(device_shutdown,      wpi_shutdown),
266         DEVMETHOD(device_suspend,       wpi_suspend),
267         DEVMETHOD(device_resume,        wpi_resume),
268
269         { 0, 0 }
270 };
271
272 static driver_t wpi_driver = {
273         "wpi",
274         wpi_methods,
275         sizeof (struct wpi_softc)
276 };
277
278 static devclass_t wpi_devclass;
279
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
281
282 static const uint8_t wpi_ridx_to_plcp[] = {
283         /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284         /* R1-R4 (ral/ural is R4-R1) */
285         0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286         /* CCK: device-dependent */
287         10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290         12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291         2, 4, 11, 22 /*CCK */
292 };
293
294
295 static int
296 wpi_probe(device_t dev)
297 {
298         const struct wpi_ident *ident;
299
300         wlan_serialize_enter();
301         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
302                 if (pci_get_vendor(dev) == ident->vendor &&
303                     pci_get_device(dev) == ident->device) {
304                         device_set_desc(dev, ident->name);
305                         wlan_serialize_exit();
306                         return 0;
307                 }
308         }
309         wlan_serialize_exit();
310         return ENXIO;
311 }
312
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324         const struct firmware *fp;
325         struct wpi_dma_info *dma = &sc->fw_dma;
326         const struct wpi_firmware_hdr *hdr;
327         const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328         uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329         int error;
330
331         DPRINTFN(WPI_DEBUG_FIRMWARE,
332             ("Attempting Loading Firmware from wpi_fw module\n"));
333
334         wlan_assert_serialized();
335         wlan_serialize_exit();
336         if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337                 device_printf(sc->sc_dev,
338                     "could not load firmware image 'wpifw_fw'\n");
339                 error = ENOENT;
340                 wlan_serialize_enter();
341                 goto fail;
342         }
343         wlan_serialize_enter();
344
345         fp = sc->fw_fp;
346
347         /* Validate the firmware is minimum a particular version */
348         if (fp->version < WPI_FW_MINVERSION) {
349             device_printf(sc->sc_dev,
350                            "firmware version is too old. Need %d, got %d\n",
351                            WPI_FW_MINVERSION,
352                            fp->version);
353             error = ENXIO;
354             goto fail;
355         }
356
357         if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
358                 device_printf(sc->sc_dev,
359                     "firmware file too short: %zu bytes\n", fp->datasize);
360                 error = ENXIO;
361                 goto fail;
362         }
363
364         hdr = (const struct wpi_firmware_hdr *)fp->data;
365
366         /*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
367            |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
368
369         rtextsz = le32toh(hdr->rtextsz);
370         rdatasz = le32toh(hdr->rdatasz);
371         itextsz = le32toh(hdr->itextsz);
372         idatasz = le32toh(hdr->idatasz);
373         btextsz = le32toh(hdr->btextsz);
374
375         /* check that all firmware segments are present */
376         if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
377                 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
378                 device_printf(sc->sc_dev,
379                     "firmware file too short: %zu bytes\n", fp->datasize);
380                 error = ENXIO; /* XXX appropriate error code? */
381                 goto fail;
382         }
383
384         /* get pointers to firmware segments */
385         rtext = (const uint8_t *)(hdr + 1);
386         rdata = rtext + rtextsz;
387         itext = rdata + rdatasz;
388         idata = itext + itextsz;
389         btext = idata + idatasz;
390
391         DPRINTFN(WPI_DEBUG_FIRMWARE,
392             ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
393              "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
394              (le32toh(hdr->version) & 0xff000000) >> 24,
395              (le32toh(hdr->version) & 0x00ff0000) >> 16,
396              (le32toh(hdr->version) & 0x0000ffff),
397              rtextsz, rdatasz,
398              itextsz, idatasz, btextsz));
399
400         DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
401         DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
402         DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
403         DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
404         DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
405
406         /* sanity checks */
407         if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
408             rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
409             itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
410             idatasz > WPI_FW_INIT_DATA_MAXSZ ||
411             btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
412             (btextsz & 3) != 0) {
413                 device_printf(sc->sc_dev, "firmware invalid\n");
414                 error = EINVAL;
415                 goto fail;
416         }
417
418         /* copy initialization images into pre-allocated DMA-safe memory */
419         memcpy(dma->vaddr, idata, idatasz);
420         memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
421
422         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
423
424         /* tell adapter where to find initialization images */
425         wpi_mem_lock(sc);
426         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
427         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
428         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
429             dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
430         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
431         wpi_mem_unlock(sc);
432
433         /* load firmware boot code */
434         if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
435             device_printf(sc->sc_dev, "Failed to load microcode\n");
436             goto fail;
437         }
438
439         /* now press "execute" */
440         WPI_WRITE(sc, WPI_RESET, 0);
441
442         /* wait at most one second for the first alive notification */
443         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
444                 device_printf(sc->sc_dev,
445                     "timeout waiting for adapter to initialize\n");
446                 goto fail;
447         }
448
449         /* copy runtime images into pre-allocated DMA-sage memory */
450         memcpy(dma->vaddr, rdata, rdatasz);
451         memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
452         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
453
454         /* tell adapter where to find runtime images */
455         wpi_mem_lock(sc);
456         wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
457         wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
458         wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
459             dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
460         wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
461         wpi_mem_unlock(sc);
462
463         /* wait at most one second for the first alive notification */
464         if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
465                 device_printf(sc->sc_dev,
466                     "timeout waiting for adapter to initialize2\n");
467                 goto fail;
468         }
469
470         DPRINTFN(WPI_DEBUG_FIRMWARE,
471             ("Firmware loaded to driver successfully\n"));
472         return error;
473 fail:
474         wpi_unload_firmware(sc);
475         return error;
476 }
477
478 /**
479  * Free the referenced firmware image
480  */
481 static void
482 wpi_unload_firmware(struct wpi_softc *sc)
483 {
484         if (sc->fw_fp) {
485                 wlan_assert_serialized();
486                 wlan_serialize_exit();
487                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
488                 wlan_serialize_enter();
489                 sc->fw_fp = NULL;
490         }
491 }
492
493 static int
494 wpi_attach(device_t dev)
495 {
496         struct wpi_softc *sc;
497         struct ifnet *ifp;
498         struct ieee80211com *ic;
499         int ac, error, supportsa = 1;
500         uint32_t tmp;
501         const struct wpi_ident *ident;
502         uint8_t macaddr[IEEE80211_ADDR_LEN];
503
504         wlan_serialize_enter();
505         sc = device_get_softc(dev);
506         sc->sc_dev = dev;
507
508         if (bootverbose || WPI_DEBUG_SET)
509             device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
510
511         /*
512          * Some card's only support 802.11b/g not a, check to see if
513          * this is one such card. A 0x0 in the subdevice table indicates
514          * the entire subdevice range is to be ignored.
515          */
516         for (ident = wpi_ident_table; ident->name != NULL; ident++) {
517                 if (ident->subdevice &&
518                     pci_get_subdevice(dev) == ident->subdevice) {
519                     supportsa = 0;
520                     break;
521                 }
522         }
523
524         /* Create the tasks that can be queued */
525         TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
526         TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
527
528         callout_init(&sc->calib_to_callout);
529         callout_init(&sc->watchdog_to_callout);
530
531         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
532                 device_printf(dev, "chip is in D%d power mode "
533                     "-- setting to D0\n", pci_get_powerstate(dev));
534                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
535         }
536
537         /* disable the retry timeout register */
538         pci_write_config(dev, 0x41, 0, 1);
539
540         /* enable bus-mastering */
541         pci_enable_busmaster(dev);
542
543         sc->mem_rid = PCIR_BAR(0);
544         sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
545             RF_ACTIVE);
546         if (sc->mem == NULL) {
547                 device_printf(dev, "could not allocate memory resource\n");
548                 error = ENOMEM;
549                 goto fail;
550         }
551
552         sc->sc_st = rman_get_bustag(sc->mem);
553         sc->sc_sh = rman_get_bushandle(sc->mem);
554
555         sc->irq_rid = 0;
556         sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
557             RF_ACTIVE | RF_SHAREABLE);
558         if (sc->irq == NULL) {
559                 device_printf(dev, "could not allocate interrupt resource\n");
560                 error = ENOMEM;
561                 goto fail;
562         }
563
564         /*
565          * Allocate DMA memory for firmware transfers.
566          */
567         if ((error = wpi_alloc_fwmem(sc)) != 0) {
568                 kprintf(": could not allocate firmware memory\n");
569                 error = ENOMEM;
570                 goto fail;
571         }
572
573         /*
574          * Put adapter into a known state.
575          */
576         if ((error = wpi_reset(sc)) != 0) {
577                 device_printf(dev, "could not reset adapter\n");
578                 goto fail;
579         }
580
581         wpi_mem_lock(sc);
582         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
583         if (bootverbose || WPI_DEBUG_SET)
584             device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
585
586         wpi_mem_unlock(sc);
587
588         /* Allocate shared page */
589         if ((error = wpi_alloc_shared(sc)) != 0) {
590                 device_printf(dev, "could not allocate shared page\n");
591                 goto fail;
592         }
593
594         /* tx data queues  - 4 for QoS purposes */
595         for (ac = 0; ac < WME_NUM_AC; ac++) {
596                 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
597                 if (error != 0) {
598                     device_printf(dev, "could not allocate Tx ring %d\n",ac);
599                     goto fail;
600                 }
601         }
602
603         /* command queue to talk to the card's firmware */
604         error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
605         if (error != 0) {
606                 device_printf(dev, "could not allocate command ring\n");
607                 goto fail;
608         }
609
610         /* receive data queue */
611         error = wpi_alloc_rx_ring(sc, &sc->rxq);
612         if (error != 0) {
613                 device_printf(dev, "could not allocate Rx ring\n");
614                 goto fail;
615         }
616
617         ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
618         if (ifp == NULL) {
619                 device_printf(dev, "can not if_alloc()\n");
620                 error = ENOMEM;
621                 goto fail;
622         }
623         ic = ifp->if_l2com;
624
625         ic->ic_ifp = ifp;
626         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
627         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
628
629         /* set device capabilities */
630         ic->ic_caps =
631                   IEEE80211_C_STA               /* station mode supported */
632                 | IEEE80211_C_MONITOR           /* monitor mode supported */
633                 | IEEE80211_C_TXPMGT            /* tx power management */
634                 | IEEE80211_C_SHSLOT            /* short slot time supported */
635                 | IEEE80211_C_SHPREAMBLE        /* short preamble supported */
636                 | IEEE80211_C_WPA               /* 802.11i */
637 /* XXX looks like WME is partly supported? */
638 #if 0
639                 | IEEE80211_C_IBSS              /* IBSS mode support */
640                 | IEEE80211_C_BGSCAN            /* capable of bg scanning */
641                 | IEEE80211_C_WME               /* 802.11e */
642                 | IEEE80211_C_HOSTAP            /* Host access point mode */
643 #endif
644                 ;
645
646         /*
647          * Read in the eeprom and also setup the channels for
648          * net80211. We don't set the rates as net80211 does this for us
649          */
650         wpi_read_eeprom(sc, macaddr);
651
652         if (bootverbose || WPI_DEBUG_SET) {
653             device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
654             device_printf(sc->sc_dev, "Hardware Type: %c\n",
655                           sc->type > 1 ? 'B': '?');
656             device_printf(sc->sc_dev, "Hardware Revision: %c\n",
657                           ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
658             device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
659                           supportsa ? "does" : "does not");
660
661             /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
662                what sc->rev really represents - benjsc 20070615 */
663         }
664
665         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
666         ifp->if_softc = sc;
667         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
668         ifp->if_init = wpi_init;
669         ifp->if_ioctl = wpi_ioctl;
670         ifp->if_start = wpi_start;
671         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
672         ifq_set_ready(&ifp->if_snd);
673
674         ieee80211_ifattach(ic, macaddr);
675         /* override default methods */
676         ic->ic_node_alloc = wpi_node_alloc;
677         ic->ic_newassoc = wpi_newassoc;
678         ic->ic_raw_xmit = wpi_raw_xmit;
679         ic->ic_wme.wme_update = wpi_wme_update;
680         ic->ic_scan_start = wpi_scan_start;
681         ic->ic_scan_end = wpi_scan_end;
682         ic->ic_set_channel = wpi_set_channel;
683         ic->ic_scan_curchan = wpi_scan_curchan;
684         ic->ic_scan_mindwell = wpi_scan_mindwell;
685
686         ic->ic_vap_create = wpi_vap_create;
687         ic->ic_vap_delete = wpi_vap_delete;
688
689         ieee80211_radiotap_attach(ic,
690             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
691                 WPI_TX_RADIOTAP_PRESENT,
692             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
693                 WPI_RX_RADIOTAP_PRESENT);
694
695         /*
696          * Hook our interrupt after all initialization is complete.
697          */
698         error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
699             wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
700         if (error != 0) {
701                 device_printf(dev, "could not set up interrupt\n");
702                 goto fail;
703         }
704
705         if (bootverbose)
706                 ieee80211_announce(ic);
707 #ifdef XXX_DEBUG
708         ieee80211_announce_channels(ic);
709 #endif
710         wlan_serialize_exit();
711         return 0;
712
713 fail:
714         wlan_serialize_exit();
715         wpi_detach(dev);
716         return ENXIO;
717 }
718
719 static int
720 wpi_detach(device_t dev)
721 {
722         struct wpi_softc *sc;
723         struct ifnet *ifp;
724         struct ieee80211com *ic;
725         int ac;
726
727         wlan_serialize_enter();
728         sc = device_get_softc(dev);
729         ifp = sc->sc_ifp;
730         if (ifp != NULL) {
731                 ic = ifp->if_l2com;
732
733                 ieee80211_draintask(ic, &sc->sc_restarttask);
734                 ieee80211_draintask(ic, &sc->sc_radiotask);
735                 wpi_stop(sc);
736                 callout_stop(&sc->watchdog_to_callout);
737                 callout_stop(&sc->calib_to_callout);
738                 ieee80211_ifdetach(ic);
739         }
740
741         if (sc->txq[0].data_dmat) {
742                 for (ac = 0; ac < WME_NUM_AC; ac++)
743                         wpi_free_tx_ring(sc, &sc->txq[ac]);
744
745                 wpi_free_tx_ring(sc, &sc->cmdq);
746                 wpi_free_rx_ring(sc, &sc->rxq);
747                 wpi_free_shared(sc);
748         }
749
750         if (sc->fw_fp != NULL) {
751                 wpi_unload_firmware(sc);
752         }
753
754         if (sc->fw_dma.tag)
755                 wpi_free_fwmem(sc);
756
757         if (sc->irq != NULL) {
758                 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
759                 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
760         }
761
762         if (sc->mem != NULL)
763                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
764
765         if (ifp != NULL)
766                 if_free(ifp);
767
768         wlan_serialize_exit();
769         return 0;
770 }
771
772 static struct ieee80211vap *
773 wpi_vap_create(struct ieee80211com *ic,
774         const char name[IFNAMSIZ], int unit, int opmode, int flags,
775         const uint8_t bssid[IEEE80211_ADDR_LEN],
776         const uint8_t mac[IEEE80211_ADDR_LEN])
777 {
778         struct wpi_vap *wvp;
779         struct ieee80211vap *vap;
780
781         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
782                 return NULL;
783         wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
784             M_80211_VAP, M_INTWAIT | M_ZERO);
785         if (wvp == NULL)
786                 return NULL;
787         vap = &wvp->vap;
788         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
789         /* override with driver methods */
790         wvp->newstate = vap->iv_newstate;
791         vap->iv_newstate = wpi_newstate;
792
793         ieee80211_ratectl_init(vap);
794
795         /* complete setup */
796         ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
797         ic->ic_opmode = opmode;
798         return vap;
799 }
800
801 static void
802 wpi_vap_delete(struct ieee80211vap *vap)
803 {
804         struct wpi_vap *wvp = WPI_VAP(vap);
805
806         ieee80211_ratectl_deinit(vap);
807         ieee80211_vap_detach(vap);
808         kfree(wvp, M_80211_VAP);
809 }
810
811 static void
812 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
813 {
814         if (error != 0)
815                 return;
816
817         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
818
819         *(bus_addr_t *)arg = segs[0].ds_addr;
820 }
821
822 /*
823  * Allocates a contiguous block of dma memory of the requested size and
824  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
825  * allocations greater than 4096 may fail. Hence if the requested alignment is
826  * greater we allocate 'alignment' size extra memory and shift the vaddr and
827  * paddr after the dma load. This bypasses the problem at the cost of a little
828  * more memory.
829  */
830 static int
831 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
832     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
833 {
834         int error;
835         bus_size_t align;
836         bus_size_t reqsize;
837
838         DPRINTFN(WPI_DEBUG_DMA,
839             ("Size: %zd - alignment %zd\n", size, alignment));
840
841         dma->size = size;
842         dma->tag = NULL;
843
844         if (alignment > 4096) {
845                 align = PAGE_SIZE;
846                 reqsize = size + alignment;
847         } else {
848                 align = alignment;
849                 reqsize = size;
850         }
851         error = bus_dma_tag_create(dma->tag, align,
852             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
853             NULL, NULL, reqsize,
854             1, reqsize, flags,
855             &dma->tag);
856         if (error != 0) {
857                 device_printf(sc->sc_dev,
858                     "could not create shared page DMA tag\n");
859                 goto fail;
860         }
861         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
862             flags | BUS_DMA_ZERO, &dma->map);
863         if (error != 0) {
864                 device_printf(sc->sc_dev,
865                     "could not allocate shared page DMA memory\n");
866                 goto fail;
867         }
868
869         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
870             reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
871
872         /* Save the original pointers so we can free all the memory */
873         dma->paddr = dma->paddr_start;
874         dma->vaddr = dma->vaddr_start;
875
876         /*
877          * Check the alignment and increment by 4096 until we get the
878          * requested alignment. Fail if can't obtain the alignment
879          * we requested.
880          */
881         if ((dma->paddr & (alignment -1 )) != 0) {
882                 int i;
883
884                 for (i = 0; i < alignment / 4096; i++) {
885                         if ((dma->paddr & (alignment - 1 )) == 0)
886                                 break;
887                         dma->paddr += 4096;
888                         dma->vaddr += 4096;
889                 }
890                 if (i == alignment / 4096) {
891                         device_printf(sc->sc_dev,
892                             "alignment requirement was not satisfied\n");
893                         goto fail;
894                 }
895         }
896
897         if (error != 0) {
898                 device_printf(sc->sc_dev,
899                     "could not load shared page DMA map\n");
900                 goto fail;
901         }
902
903         if (kvap != NULL)
904                 *kvap = dma->vaddr;
905
906         return 0;
907
908 fail:
909         wpi_dma_contig_free(dma);
910         return error;
911 }
912
913 static void
914 wpi_dma_contig_free(struct wpi_dma_info *dma)
915 {
916         if (dma->tag) {
917                 if (dma->map != NULL) {
918                         if (dma->paddr_start != 0) {
919                                 bus_dmamap_sync(dma->tag, dma->map,
920                                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
921                                 bus_dmamap_unload(dma->tag, dma->map);
922                         }
923                         bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
924                 }
925                 bus_dma_tag_destroy(dma->tag);
926         }
927 }
928
929 /*
930  * Allocate a shared page between host and NIC.
931  */
932 static int
933 wpi_alloc_shared(struct wpi_softc *sc)
934 {
935         int error;
936
937         error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
938             (void **)&sc->shared, sizeof (struct wpi_shared),
939             PAGE_SIZE,
940             BUS_DMA_NOWAIT);
941
942         if (error != 0) {
943                 device_printf(sc->sc_dev,
944                     "could not allocate shared area DMA memory\n");
945         }
946
947         return error;
948 }
949
950 static void
951 wpi_free_shared(struct wpi_softc *sc)
952 {
953         wpi_dma_contig_free(&sc->shared_dma);
954 }
955
956 static int
957 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
958 {
959
960         int i, error;
961
962         ring->cur = 0;
963
964         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
965             (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
966             WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
967
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970                     "%s: could not allocate rx ring DMA memory, error %d\n",
971                     __func__, error);
972                 goto fail;
973         }
974
975         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
976             BUS_SPACE_MAXADDR_32BIT,
977             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
978             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
979         if (error != 0) {
980                 device_printf(sc->sc_dev,
981                     "%s: bus_dma_tag_create_failed, error %d\n",
982                     __func__, error);
983                 goto fail;
984         }
985
986         /*
987          * Setup Rx buffers.
988          */
989         for (i = 0; i < WPI_RX_RING_COUNT; i++) {
990                 struct wpi_rx_data *data = &ring->data[i];
991                 struct mbuf *m;
992                 bus_addr_t paddr;
993
994                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
995                 if (error != 0) {
996                         device_printf(sc->sc_dev,
997                             "%s: bus_dmamap_create failed, error %d\n",
998                             __func__, error);
999                         goto fail;
1000                 }
1001                 m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1002                 if (m == NULL) {
1003                         device_printf(sc->sc_dev,
1004                            "%s: could not allocate rx mbuf\n", __func__);
1005                         error = ENOMEM;
1006                         goto fail;
1007                 }
1008                 /* map page */
1009                 error = bus_dmamap_load(ring->data_dmat, data->map,
1010                     mtod(m, caddr_t), MJUMPAGESIZE,
1011                     wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1012                 if (error != 0 && error != EFBIG) {
1013                         device_printf(sc->sc_dev,
1014                             "%s: bus_dmamap_load failed, error %d\n",
1015                             __func__, error);
1016                         m_freem(m);
1017                         error = ENOMEM; /* XXX unique code */
1018                         goto fail;
1019                 }
1020                 bus_dmamap_sync(ring->data_dmat, data->map,
1021                     BUS_DMASYNC_PREWRITE);
1022
1023                 data->m = m;
1024                 ring->desc[i] = htole32(paddr);
1025         }
1026         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1027             BUS_DMASYNC_PREWRITE);
1028         return 0;
1029 fail:
1030         wpi_free_rx_ring(sc, ring);
1031         return error;
1032 }
1033
1034 static void
1035 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1036 {
1037         int ntries;
1038
1039         wpi_mem_lock(sc);
1040
1041         WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1042
1043         for (ntries = 0; ntries < 100; ntries++) {
1044                 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1045                         break;
1046                 DELAY(10);
1047         }
1048
1049         wpi_mem_unlock(sc);
1050
1051 #ifdef WPI_DEBUG
1052         if (ntries == 100 && wpi_debug > 0)
1053                 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1054 #endif
1055
1056         ring->cur = 0;
1057 }
1058
1059 static void
1060 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1061 {
1062         int i;
1063
1064         wpi_dma_contig_free(&ring->desc_dma);
1065
1066         for (i = 0; i < WPI_RX_RING_COUNT; i++)
1067                 if (ring->data[i].m != NULL)
1068                         m_freem(ring->data[i].m);
1069 }
1070
1071 static int
1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073         int qid)
1074 {
1075         struct wpi_tx_data *data;
1076         int i, error;
1077
1078         ring->qid = qid;
1079         ring->count = count;
1080         ring->queued = 0;
1081         ring->cur = 0;
1082         ring->data = NULL;
1083
1084         error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085                 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086                 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087
1088         if (error != 0) {
1089             device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090             goto fail;
1091         }
1092
1093         /* update shared page with ring's base address */
1094         sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095
1096         error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097                 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098                 BUS_DMA_NOWAIT);
1099
1100         if (error != 0) {
1101                 device_printf(sc->sc_dev,
1102                     "could not allocate tx command DMA memory\n");
1103                 goto fail;
1104         }
1105
1106         ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107             M_INTWAIT | M_ZERO);
1108         if (ring->data == NULL) {
1109                 device_printf(sc->sc_dev,
1110                     "could not allocate tx data slots\n");
1111                 goto fail;
1112         }
1113
1114         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1115             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE,
1116             WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT,
1117             &ring->data_dmat);
1118         if (error != 0) {
1119                 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120                 goto fail;
1121         }
1122
1123         for (i = 0; i < count; i++) {
1124                 data = &ring->data[i];
1125
1126                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127                 if (error != 0) {
1128                         device_printf(sc->sc_dev,
1129                             "could not create tx buf DMA map\n");
1130                         goto fail;
1131                 }
1132                 bus_dmamap_sync(ring->data_dmat, data->map,
1133                     BUS_DMASYNC_PREWRITE);
1134         }
1135
1136         return 0;
1137
1138 fail:
1139         wpi_free_tx_ring(sc, ring);
1140         return error;
1141 }
1142
1143 static void
1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145 {
1146         struct wpi_tx_data *data;
1147         int i, ntries;
1148
1149         wpi_mem_lock(sc);
1150
1151         WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152         for (ntries = 0; ntries < 100; ntries++) {
1153                 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154                         break;
1155                 DELAY(10);
1156         }
1157 #ifdef WPI_DEBUG
1158         if (ntries == 100 && wpi_debug > 0)
1159                 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160                     ring->qid);
1161 #endif
1162         wpi_mem_unlock(sc);
1163
1164         for (i = 0; i < ring->count; i++) {
1165                 data = &ring->data[i];
1166
1167                 if (data->m != NULL) {
1168                         bus_dmamap_unload(ring->data_dmat, data->map);
1169                         m_freem(data->m);
1170                         data->m = NULL;
1171                 }
1172         }
1173
1174         ring->queued = 0;
1175         ring->cur = 0;
1176 }
1177
1178 static void
1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181         struct wpi_tx_data *data;
1182         int i;
1183
1184         wpi_dma_contig_free(&ring->desc_dma);
1185         wpi_dma_contig_free(&ring->cmd_dma);
1186
1187         if (ring->data != NULL) {
1188                 for (i = 0; i < ring->count; i++) {
1189                         data = &ring->data[i];
1190
1191                         if (data->m != NULL) {
1192                                 bus_dmamap_sync(ring->data_dmat, data->map,
1193                                     BUS_DMASYNC_POSTWRITE);
1194                                 bus_dmamap_unload(ring->data_dmat, data->map);
1195                                 m_freem(data->m);
1196                                 data->m = NULL;
1197                         }
1198                 }
1199                 kfree(ring->data, M_DEVBUF);
1200         }
1201
1202         if (ring->data_dmat != NULL)
1203                 bus_dma_tag_destroy(ring->data_dmat);
1204 }
1205
1206 static int
1207 wpi_shutdown(device_t dev)
1208 {
1209         struct wpi_softc *sc;
1210
1211         wlan_serialize_enter();
1212         sc = device_get_softc(dev);
1213         wpi_stop_locked(sc);
1214         wpi_unload_firmware(sc);
1215         wlan_serialize_exit();
1216
1217         return 0;
1218 }
1219
1220 static int
1221 wpi_suspend(device_t dev)
1222 {
1223         struct wpi_softc *sc;
1224
1225         wlan_serialize_enter();
1226         sc = device_get_softc(dev);
1227         wpi_stop(sc);
1228         wlan_serialize_exit();
1229         return 0;
1230 }
1231
1232 static int
1233 wpi_resume(device_t dev)
1234 {
1235         struct wpi_softc *sc;
1236         struct ifnet *ifp;
1237
1238         wlan_serialize_enter();
1239         sc = device_get_softc(dev);
1240         ifp = sc->sc_ifp;
1241         pci_write_config(dev, 0x41, 0, 1);
1242
1243         if (ifp->if_flags & IFF_UP) {
1244                 wpi_init(ifp->if_softc);
1245                 if (ifp->if_flags & IFF_RUNNING)
1246                         wpi_start(ifp);
1247         }
1248         wlan_serialize_exit();
1249         return 0;
1250 }
1251
1252 /* ARGSUSED */
1253 static struct ieee80211_node *
1254 wpi_node_alloc(struct ieee80211vap *vap __unused,
1255         const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1256 {
1257         struct wpi_node *wn;
1258
1259         wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1260
1261         return &wn->ni;
1262 }
1263
1264 /**
1265  * Called by net80211 when ever there is a change to 80211 state machine
1266  */
1267 static int
1268 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1269 {
1270         struct wpi_vap *wvp = WPI_VAP(vap);
1271         struct ieee80211com *ic = vap->iv_ic;
1272         struct ifnet *ifp = ic->ic_ifp;
1273         struct wpi_softc *sc = ifp->if_softc;
1274         int error;
1275
1276         DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1277                 ieee80211_state_name[vap->iv_state],
1278                 ieee80211_state_name[nstate], sc->flags));
1279
1280         if (nstate == IEEE80211_S_AUTH) {
1281                 /* The node must be registered in the firmware before auth */
1282                 error = wpi_auth(sc, vap);
1283                 if (error != 0) {
1284                         device_printf(sc->sc_dev,
1285                             "%s: could not move to auth state, error %d\n",
1286                             __func__, error);
1287                 }
1288         }
1289         if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1290                 error = wpi_run(sc, vap);
1291                 if (error != 0) {
1292                         device_printf(sc->sc_dev,
1293                             "%s: could not move to run state, error %d\n",
1294                             __func__, error);
1295                 }
1296         }
1297         if (nstate == IEEE80211_S_RUN) {
1298                 /* RUN -> RUN transition; just restart the timers */
1299                 wpi_calib_timeout_callout(sc);
1300                 /* XXX split out rate control timer */
1301         }
1302         return wvp->newstate(vap, nstate, arg);
1303 }
1304
1305 /*
1306  * Grab exclusive access to NIC memory.
1307  */
1308 static void
1309 wpi_mem_lock(struct wpi_softc *sc)
1310 {
1311         int ntries;
1312         uint32_t tmp;
1313
1314         tmp = WPI_READ(sc, WPI_GPIO_CTL);
1315         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1316
1317         /* spin until we actually get the lock */
1318         for (ntries = 0; ntries < 100; ntries++) {
1319                 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1320                         (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1321                         break;
1322                 DELAY(10);
1323         }
1324         if (ntries == 100)
1325                 device_printf(sc->sc_dev, "could not lock memory\n");
1326 }
1327
1328 /*
1329  * Release lock on NIC memory.
1330  */
1331 static void
1332 wpi_mem_unlock(struct wpi_softc *sc)
1333 {
1334         uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1335         WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1336 }
1337
1338 static uint32_t
1339 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1340 {
1341         WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1342         return WPI_READ(sc, WPI_READ_MEM_DATA);
1343 }
1344
1345 static void
1346 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1347 {
1348         WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1349         WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1350 }
1351
1352 static void
1353 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1354     const uint32_t *data, int wlen)
1355 {
1356         for (; wlen > 0; wlen--, data++, addr+=4)
1357                 wpi_mem_write(sc, addr, *data);
1358 }
1359
1360 /*
1361  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1362  * using the traditional bit-bang method. Data is read up until len bytes have
1363  * been obtained.
1364  */
1365 static uint16_t
1366 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1367 {
1368         int ntries;
1369         uint32_t val;
1370         uint8_t *out = data;
1371
1372         wpi_mem_lock(sc);
1373
1374         for (; len > 0; len -= 2, addr++) {
1375                 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1376
1377                 for (ntries = 0; ntries < 10; ntries++) {
1378                         if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1379                                 break;
1380                         DELAY(5);
1381                 }
1382
1383                 if (ntries == 10) {
1384                         device_printf(sc->sc_dev, "could not read EEPROM\n");
1385                         return ETIMEDOUT;
1386                 }
1387
1388                 *out++= val >> 16;
1389                 if (len > 1)
1390                         *out ++= val >> 24;
1391         }
1392
1393         wpi_mem_unlock(sc);
1394
1395         return 0;
1396 }
1397
1398 /*
1399  * The firmware text and data segments are transferred to the NIC using DMA.
1400  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1401  * where to find it.  Once the NIC has copied the firmware into its internal
1402  * memory, we can free our local copy in the driver.
1403  */
1404 static int
1405 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1406 {
1407         int error, ntries;
1408
1409         DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1410
1411         size /= sizeof(uint32_t);
1412
1413         wpi_mem_lock(sc);
1414
1415         wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1416             (const uint32_t *)fw, size);
1417
1418         wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1419         wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1420         wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1421
1422         /* run microcode */
1423         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1424
1425         /* wait while the adapter is busy copying the firmware */
1426         for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1427                 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1428                 DPRINTFN(WPI_DEBUG_HW,
1429                     ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1430                      WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1431                 if (status & WPI_TX_IDLE(6)) {
1432                         DPRINTFN(WPI_DEBUG_HW,
1433                             ("Status Match! - ntries = %d\n", ntries));
1434                         break;
1435                 }
1436                 DELAY(10);
1437         }
1438         if (ntries == 1000) {
1439                 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1440                 error = ETIMEDOUT;
1441         }
1442
1443         /* start the microcode executing */
1444         wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1445
1446         wpi_mem_unlock(sc);
1447
1448         return (error);
1449 }
1450
1451 static void
1452 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1453         struct wpi_rx_data *data)
1454 {
1455         struct ifnet *ifp = sc->sc_ifp;
1456         struct ieee80211com *ic = ifp->if_l2com;
1457         struct wpi_rx_ring *ring = &sc->rxq;
1458         struct wpi_rx_stat *stat;
1459         struct wpi_rx_head *head;
1460         struct wpi_rx_tail *tail;
1461         struct ieee80211_node *ni;
1462         struct mbuf *m, *mnew;
1463         bus_addr_t paddr;
1464         int error;
1465
1466         stat = (struct wpi_rx_stat *)(desc + 1);
1467
1468         if (stat->len > WPI_STAT_MAXLEN) {
1469                 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1470                 ifp->if_ierrors++;
1471                 return;
1472         }
1473
1474         head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1475         tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1476
1477         DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1478             "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1479             le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1480             (uintmax_t)le64toh(tail->tstamp)));
1481
1482         /* discard Rx frames with bad CRC early */
1483         if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1484                 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1485                     le32toh(tail->flags)));
1486                 ifp->if_ierrors++;
1487                 return;
1488         }
1489         if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1490                 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1491                     le16toh(head->len)));
1492                 ifp->if_ierrors++;
1493                 return;
1494         }
1495
1496         /* XXX don't need mbuf, just dma buffer */
1497         mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1498         if (mnew == NULL) {
1499                 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1500                     __func__));
1501                 ifp->if_ierrors++;
1502                 return;
1503         }
1504         error = bus_dmamap_load(ring->data_dmat, data->map,
1505             mtod(mnew, caddr_t), MJUMPAGESIZE,
1506             wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1507         if (error != 0 && error != EFBIG) {
1508                 device_printf(sc->sc_dev,
1509                     "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1510                 m_freem(mnew);
1511                 ifp->if_ierrors++;
1512                 return;
1513         }
1514         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1515
1516         /* finalize mbuf and swap in new one */
1517         m = data->m;
1518         m->m_pkthdr.rcvif = ifp;
1519         m->m_data = (caddr_t)(head + 1);
1520         m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521
1522         data->m = mnew;
1523         /* update Rx descriptor */
1524         ring->desc[ring->cur] = htole32(paddr);
1525
1526         if (ieee80211_radiotap_active(ic)) {
1527                 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1528
1529                 tap->wr_flags = 0;
1530                 tap->wr_chan_freq =
1531                         htole16(ic->ic_channels[head->chan].ic_freq);
1532                 tap->wr_chan_flags =
1533                         htole16(ic->ic_channels[head->chan].ic_flags);
1534                 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1535                 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1536                 tap->wr_tsft = tail->tstamp;
1537                 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1538                 switch (head->rate) {
1539                 /* CCK rates */
1540                 case  10: tap->wr_rate =   2; break;
1541                 case  20: tap->wr_rate =   4; break;
1542                 case  55: tap->wr_rate =  11; break;
1543                 case 110: tap->wr_rate =  22; break;
1544                 /* OFDM rates */
1545                 case 0xd: tap->wr_rate =  12; break;
1546                 case 0xf: tap->wr_rate =  18; break;
1547                 case 0x5: tap->wr_rate =  24; break;
1548                 case 0x7: tap->wr_rate =  36; break;
1549                 case 0x9: tap->wr_rate =  48; break;
1550                 case 0xb: tap->wr_rate =  72; break;
1551                 case 0x1: tap->wr_rate =  96; break;
1552                 case 0x3: tap->wr_rate = 108; break;
1553                 /* unknown rate: should not happen */
1554                 default:  tap->wr_rate =   0;
1555                 }
1556                 if (le16toh(head->flags) & 0x4)
1557                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1558         }
1559
1560         ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1561         if (ni != NULL) {
1562                 (void) ieee80211_input(ni, m, stat->rssi, 0);
1563                 ieee80211_free_node(ni);
1564         } else
1565                 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1566 }
1567
1568 static void
1569 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1570 {
1571         struct ifnet *ifp = sc->sc_ifp;
1572         struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1573         struct wpi_tx_data *txdata = &ring->data[desc->idx];
1574         struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1575         struct ieee80211_node *ni = txdata->ni;
1576         struct ieee80211vap *vap = ni->ni_vap;
1577         int retrycnt = 0;
1578
1579         DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580             "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581             stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582             le32toh(stat->status)));
1583
1584         /*
1585          * Update rate control statistics for the node.
1586          * XXX we should not count mgmt frames since they're always sent at
1587          * the lowest available bit-rate.
1588          * XXX frames w/o ACK shouldn't be used either
1589          */
1590         if (stat->ntries > 0) {
1591                 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1592                 retrycnt = 1;
1593         }
1594         ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1595                 &retrycnt, NULL);
1596
1597         /* XXX oerrors should only count errors !maxtries */
1598         if ((le32toh(stat->status) & 0xff) != 1)
1599                 ifp->if_oerrors++;
1600         else
1601                 ifp->if_opackets++;
1602
1603         bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1604         bus_dmamap_unload(ring->data_dmat, txdata->map);
1605         /* XXX handle M_TXCB? */
1606         m_freem(txdata->m);
1607         txdata->m = NULL;
1608         ieee80211_free_node(txdata->ni);
1609         txdata->ni = NULL;
1610
1611         ring->queued--;
1612
1613         sc->sc_tx_timer = 0;
1614         ifp->if_flags &= ~IFF_OACTIVE;
1615         wpi_start_locked(ifp);
1616 }
1617
1618 static void
1619 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1620 {
1621         struct wpi_tx_ring *ring = &sc->cmdq;
1622         struct wpi_tx_data *data;
1623
1624         DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1625                                  "type=%s len=%d\n", desc->qid, desc->idx,
1626                                  desc->flags, wpi_cmd_str(desc->type),
1627                                  le32toh(desc->len)));
1628
1629         if ((desc->qid & 7) != 4)
1630                 return; /* not a command ack */
1631
1632         data = &ring->data[desc->idx];
1633
1634         /* if the command was mapped in a mbuf, free it */
1635         if (data->m != NULL) {
1636                 bus_dmamap_unload(ring->data_dmat, data->map);
1637                 m_freem(data->m);
1638                 data->m = NULL;
1639         }
1640
1641         sc->flags &= ~WPI_FLAG_BUSY;
1642         wakeup(&ring->cmd[desc->idx]);
1643 }
1644
1645 static void
1646 wpi_notif_intr(struct wpi_softc *sc)
1647 {
1648         struct ifnet *ifp = sc->sc_ifp;
1649         struct ieee80211com *ic = ifp->if_l2com;
1650         struct wpi_rx_desc *desc;
1651         struct wpi_rx_data *data;
1652         uint32_t hw;
1653
1654         hw = le32toh(sc->shared->next);
1655         while (sc->rxq.cur != hw) {
1656                 data = &sc->rxq.data[sc->rxq.cur];
1657                 desc = (void *)data->m->m_ext.ext_buf;
1658
1659                 DPRINTFN(WPI_DEBUG_NOTIFY,
1660                          ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1661                           desc->qid,
1662                           desc->idx,
1663                           desc->flags,
1664                           desc->type,
1665                           le32toh(desc->len)));
1666
1667                 if (!(desc->qid & 0x80))        /* reply to a command */
1668                         wpi_cmd_intr(sc, desc);
1669
1670                 switch (desc->type) {
1671                 case WPI_RX_DONE:
1672                         /* a 802.11 frame was received */
1673                         wpi_rx_intr(sc, desc, data);
1674                         break;
1675
1676                 case WPI_TX_DONE:
1677                         /* a 802.11 frame has been transmitted */
1678                         wpi_tx_intr(sc, desc);
1679                         break;
1680
1681                 case WPI_UC_READY:
1682                 {
1683                         struct wpi_ucode_info *uc =
1684                                 (struct wpi_ucode_info *)(desc + 1);
1685
1686                         /* the microcontroller is ready */
1687                         DPRINTF(("microcode alive notification version %x "
1688                                 "alive %x\n", le32toh(uc->version),
1689                                 le32toh(uc->valid)));
1690
1691                         if (le32toh(uc->valid) != 1) {
1692                                 device_printf(sc->sc_dev,
1693                                     "microcontroller initialization failed\n");
1694                                 wpi_stop_locked(sc);
1695                         }
1696                         break;
1697                 }
1698                 case WPI_STATE_CHANGED:
1699                 {
1700                         uint32_t *status = (uint32_t *)(desc + 1);
1701
1702                         /* enabled/disabled notification */
1703                         DPRINTF(("state changed to %x\n", le32toh(*status)));
1704
1705                         if (le32toh(*status) & 1) {
1706                                 device_printf(sc->sc_dev,
1707                                     "Radio transmitter is switched off\n");
1708                                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1709                                 ifp->if_flags &= ~IFF_RUNNING;
1710                                 /* Disable firmware commands */
1711                                 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1712                         }
1713                         break;
1714                 }
1715                 case WPI_START_SCAN:
1716                 {
1717 #ifdef WPI_DEBUG
1718                         struct wpi_start_scan *scan =
1719                                 (struct wpi_start_scan *)(desc + 1);
1720 #endif
1721
1722                         DPRINTFN(WPI_DEBUG_SCANNING,
1723                                  ("scanning channel %d status %x\n",
1724                             scan->chan, le32toh(scan->status)));
1725                         break;
1726                 }
1727                 case WPI_STOP_SCAN:
1728                 {
1729 #ifdef WPI_DEBUG
1730                         struct wpi_stop_scan *scan =
1731                                 (struct wpi_stop_scan *)(desc + 1);
1732 #endif
1733                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1734
1735                         DPRINTFN(WPI_DEBUG_SCANNING,
1736                             ("scan finished nchan=%d status=%d chan=%d\n",
1737                              scan->nchan, scan->status, scan->chan));
1738
1739                         sc->sc_scan_timer = 0;
1740                         ieee80211_scan_next(vap);
1741                         break;
1742                 }
1743                 case WPI_MISSED_BEACON:
1744                 {
1745                         struct wpi_missed_beacon *beacon =
1746                                 (struct wpi_missed_beacon *)(desc + 1);
1747                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1748
1749                         if (le32toh(beacon->consecutive) >=
1750                             vap->iv_bmissthreshold) {
1751                                 DPRINTF(("Beacon miss: %u >= %u\n",
1752                                          le32toh(beacon->consecutive),
1753                                          vap->iv_bmissthreshold));
1754                                 ieee80211_beacon_miss(ic);
1755                         }
1756                         break;
1757                 }
1758                 }
1759
1760                 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1761         }
1762
1763         /* tell the firmware what we have processed */
1764         hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1765         WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1766 }
1767
1768 static void
1769 wpi_intr(void *arg)
1770 {
1771         struct wpi_softc *sc = arg;
1772         uint32_t r;
1773
1774         r = WPI_READ(sc, WPI_INTR);
1775         if (r == 0 || r == 0xffffffff) {
1776                 return;
1777         }
1778
1779         /* disable interrupts */
1780         WPI_WRITE(sc, WPI_MASK, 0);
1781         /* ack interrupts */
1782         WPI_WRITE(sc, WPI_INTR, r);
1783
1784         if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1785                 struct ifnet *ifp = sc->sc_ifp;
1786                 struct ieee80211com *ic = ifp->if_l2com;
1787                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1788
1789                 device_printf(sc->sc_dev, "fatal firmware error\n");
1790                 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1791                                 "(Hardware Error)"));
1792                 if (vap != NULL)
1793                         ieee80211_cancel_scan(vap);
1794                 ieee80211_runtask(ic, &sc->sc_restarttask);
1795                 sc->flags &= ~WPI_FLAG_BUSY;
1796                 return;
1797         }
1798
1799         if (r & WPI_RX_INTR)
1800                 wpi_notif_intr(sc);
1801
1802         if (r & WPI_ALIVE_INTR) /* firmware initialized */
1803                 wakeup(sc);
1804
1805         /* re-enable interrupts */
1806         if (sc->sc_ifp->if_flags & IFF_UP)
1807                 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1808
1809 }
1810
1811 static uint8_t
1812 wpi_plcp_signal(int rate)
1813 {
1814         switch (rate) {
1815         /* CCK rates (returned values are device-dependent) */
1816         case 2:         return 10;
1817         case 4:         return 20;
1818         case 11:        return 55;
1819         case 22:        return 110;
1820
1821         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1822         /* R1-R4 (ral/ural is R4-R1) */
1823         case 12:        return 0xd;
1824         case 18:        return 0xf;
1825         case 24:        return 0x5;
1826         case 36:        return 0x7;
1827         case 48:        return 0x9;
1828         case 72:        return 0xb;
1829         case 96:        return 0x1;
1830         case 108:       return 0x3;
1831
1832         /* unsupported rates (should not get there) */
1833         default:        return 0;
1834         }
1835 }
1836
1837 /* quickly determine if a given rate is CCK or OFDM */
1838 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1839
1840 /*
1841  * Construct the data packet for a transmit buffer and acutally put
1842  * the buffer onto the transmit ring, kicking the card to process the
1843  * the buffer.
1844  */
1845 static int
1846 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1847         int ac)
1848 {
1849         struct ieee80211vap *vap = ni->ni_vap;
1850         struct ifnet *ifp = sc->sc_ifp;
1851         struct ieee80211com *ic = ifp->if_l2com;
1852         const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1853         struct wpi_tx_ring *ring = &sc->txq[ac];
1854         struct wpi_tx_desc *desc;
1855         struct wpi_tx_data *data;
1856         struct wpi_tx_cmd *cmd;
1857         struct wpi_cmd_data *tx;
1858         struct ieee80211_frame *wh;
1859         const struct ieee80211_txparam *tp;
1860         struct ieee80211_key *k;
1861         struct mbuf *mnew;
1862         int i, error, nsegs, rate, hdrlen, ismcast;
1863         bus_dma_segment_t segs[WPI_MAX_SCATTER];
1864
1865         desc = &ring->desc[ring->cur];
1866         data = &ring->data[ring->cur];
1867
1868         wh = mtod(m0, struct ieee80211_frame *);
1869
1870         hdrlen = ieee80211_hdrsize(wh);
1871         ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1872
1873         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1874                 k = ieee80211_crypto_encap(ni, m0);
1875                 if (k == NULL) {
1876                         m_freem(m0);
1877                         return ENOBUFS;
1878                 }
1879                 /* packet header may have moved, reset our local pointer */
1880                 wh = mtod(m0, struct ieee80211_frame *);
1881         }
1882
1883         cmd = &ring->cmd[ring->cur];
1884         cmd->code = WPI_CMD_TX_DATA;
1885         cmd->flags = 0;
1886         cmd->qid = ring->qid;
1887         cmd->idx = ring->cur;
1888
1889         tx = (struct wpi_cmd_data *)cmd->data;
1890         tx->flags = htole32(WPI_TX_AUTO_SEQ);
1891         tx->timeout = htole16(0);
1892         tx->ofdm_mask = 0xff;
1893         tx->cck_mask = 0x0f;
1894         tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1895         tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1896         tx->len = htole16(m0->m_pkthdr.len);
1897
1898         if (!ismcast) {
1899                 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1900                     !cap->cap_wmeParams[ac].wmep_noackPolicy)
1901                         tx->flags |= htole32(WPI_TX_NEED_ACK);
1902                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1903                         tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1904                         tx->rts_ntries = 7;
1905                 }
1906         }
1907         /* pick a rate */
1908         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1909         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1910                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1911                 /* tell h/w to set timestamp in probe responses */
1912                 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1913                         tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1914                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1915                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1916                         tx->timeout = htole16(3);
1917                 else
1918                         tx->timeout = htole16(2);
1919                 rate = tp->mgmtrate;
1920         } else if (ismcast) {
1921                 rate = tp->mcastrate;
1922         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1923                 rate = tp->ucastrate;
1924         } else {
1925                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1926                 rate = ni->ni_txrate;
1927         }
1928         tx->rate = wpi_plcp_signal(rate);
1929
1930         /* be very persistant at sending frames out */
1931 #if 0
1932         tx->data_ntries = tp->maxretry;
1933 #else
1934         tx->data_ntries = 30;           /* XXX way too high */
1935 #endif
1936
1937         if (ieee80211_radiotap_active_vap(vap)) {
1938                 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1939                 tap->wt_flags = 0;
1940                 tap->wt_rate = rate;
1941                 tap->wt_hwqueue = ac;
1942                 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1943                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1944
1945                 ieee80211_radiotap_tx(vap, m0);
1946         }
1947
1948         /* save and trim IEEE802.11 header */
1949         m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1950         m_adj(m0, hdrlen);
1951
1952         error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1953             1, &nsegs, BUS_DMA_NOWAIT);
1954         if (error != 0 && error != EFBIG) {
1955                 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1956                     error);
1957                 m_freem(m0);
1958                 return error;
1959         }
1960         if (error != 0) {
1961                 /* XXX use m_collapse */
1962                 mnew = m_defrag(m0, MB_DONTWAIT);
1963                 if (mnew == NULL) {
1964                         device_printf(sc->sc_dev,
1965                             "could not defragment mbuf\n");
1966                         m_freem(m0);
1967                         return ENOBUFS;
1968                 }
1969                 m0 = mnew;
1970
1971                 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1972                     m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1973                 if (error != 0) {
1974                         device_printf(sc->sc_dev,
1975                             "could not map mbuf (error %d)\n", error);
1976                         m_freem(m0);
1977                         return error;
1978                 }
1979         }
1980
1981         data->m = m0;
1982         data->ni = ni;
1983
1984         DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1985             ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1986
1987         /* first scatter/gather segment is used by the tx data command */
1988         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1989             (1 + nsegs) << 24);
1990         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1991             ring->cur * sizeof (struct wpi_tx_cmd));
1992         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1993         for (i = 1; i <= nsegs; i++) {
1994                 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1995                 desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1996         }
1997
1998         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1999         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2000             BUS_DMASYNC_PREWRITE);
2001
2002         ring->queued++;
2003
2004         /* kick ring */
2005         ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2006         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2007
2008         return 0;
2009 }
2010
2011 /**
2012  * Process data waiting to be sent on the IFNET output queue
2013  */
2014 static void
2015 wpi_start(struct ifnet *ifp)
2016 {
2017         wpi_start_locked(ifp);
2018 }
2019
2020 static void
2021 wpi_start_locked(struct ifnet *ifp)
2022 {
2023         struct wpi_softc *sc = ifp->if_softc;
2024         struct ieee80211_node *ni;
2025         struct mbuf *m;
2026         int ac;
2027
2028         if ((ifp->if_flags & IFF_RUNNING) == 0) {
2029                 ifq_purge(&ifp->if_snd);
2030                 return;
2031         }
2032
2033         for (;;) {
2034                 m = ifq_dequeue(&ifp->if_snd, NULL);
2035                 if (m == NULL)
2036                         break;
2037                 ac = M_WME_GETAC(m);
2038                 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2039                         /* there is no place left in this ring */
2040                         /*
2041                          * XXX: we CANNOT do it this way. If something
2042                          * is prepended already, this is going to blow.
2043                          */
2044                         ifp->if_flags |= IFF_OACTIVE;
2045                         ifq_prepend(&ifp->if_snd, m);
2046                         break;
2047                 }
2048                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2049                 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2050                         ieee80211_free_node(ni);
2051                         ifp->if_oerrors++;
2052                         break;
2053                 }
2054                 sc->sc_tx_timer = 5;
2055         }
2056 }
2057
2058 static int
2059 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2060         const struct ieee80211_bpf_params *params)
2061 {
2062         struct ieee80211com *ic = ni->ni_ic;
2063         struct ifnet *ifp = ic->ic_ifp;
2064         struct wpi_softc *sc = ifp->if_softc;
2065
2066         /* prevent management frames from being sent if we're not ready */
2067         if (!(ifp->if_flags & IFF_RUNNING)) {
2068                 m_freem(m);
2069                 ieee80211_free_node(ni);
2070                 return ENETDOWN;
2071         }
2072
2073         /* management frames go into ring 0 */
2074         if (sc->txq[0].queued > sc->txq[0].count - 8) {
2075                 ifp->if_flags |= IFF_OACTIVE;
2076                 m_freem(m);
2077                 ieee80211_free_node(ni);
2078                 return ENOBUFS;         /* XXX */
2079         }
2080
2081         ifp->if_opackets++;
2082         if (wpi_tx_data(sc, m, ni, 0) != 0)
2083                 goto bad;
2084         sc->sc_tx_timer = 5;
2085         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2086
2087         return 0;
2088 bad:
2089         ifp->if_oerrors++;
2090         ieee80211_free_node(ni);
2091         return EIO;             /* XXX */
2092 }
2093
2094 static int
2095 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2096 {
2097         struct wpi_softc *sc = ifp->if_softc;
2098         struct ieee80211com *ic = ifp->if_l2com;
2099         struct ifreq *ifr = (struct ifreq *) data;
2100         int error = 0, startall = 0;
2101
2102         switch (cmd) {
2103         case SIOCSIFFLAGS:
2104                 if ((ifp->if_flags & IFF_UP)) {
2105                         if (!(ifp->if_flags & IFF_RUNNING)) {
2106                                 wpi_init_locked(sc, 0);
2107                                 startall = 1;
2108                         }
2109                 } else if ((ifp->if_flags & IFF_RUNNING) ||
2110                            (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2111                         wpi_stop_locked(sc);
2112                 if (startall)
2113                         ieee80211_start_all(ic);
2114                 break;
2115         case SIOCGIFMEDIA:
2116                 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2117                 break;
2118         case SIOCGIFADDR:
2119                 error = ether_ioctl(ifp, cmd, data);
2120                 break;
2121         default:
2122                 error = EINVAL;
2123                 break;
2124         }
2125         return error;
2126 }
2127
2128 /*
2129  * Extract various information from EEPROM.
2130  */
2131 static void
2132 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2133 {
2134         int i;
2135
2136         /* read the hardware capabilities, revision and SKU type */
2137         wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2138         wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2139         wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2140
2141         /* read the regulatory domain */
2142         wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2143
2144         /* read in the hw MAC address */
2145         wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2146
2147         /* read the list of authorized channels */
2148         for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2149                 wpi_read_eeprom_channels(sc,i);
2150
2151         /* read the power level calibration info for each group */
2152         for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2153                 wpi_read_eeprom_group(sc,i);
2154 }
2155
2156 /*
2157  * Send a command to the firmware.
2158  */
2159 static int
2160 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2161 {
2162         struct wpi_tx_ring *ring = &sc->cmdq;
2163         struct wpi_tx_desc *desc;
2164         struct wpi_tx_cmd *cmd;
2165
2166 #ifdef WPI_DEBUG
2167         if (!async) {
2168                 wlan_assert_serialized();
2169         }
2170 #endif
2171
2172         DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2173                     async));
2174
2175         if (sc->flags & WPI_FLAG_BUSY) {
2176                 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2177                     __func__, code);
2178                 return EAGAIN;
2179         }
2180         sc->flags|= WPI_FLAG_BUSY;
2181
2182         KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2183             code, size));
2184
2185         desc = &ring->desc[ring->cur];
2186         cmd = &ring->cmd[ring->cur];
2187
2188         cmd->code = code;
2189         cmd->flags = 0;
2190         cmd->qid = ring->qid;
2191         cmd->idx = ring->cur;
2192         memcpy(cmd->data, buf, size);
2193
2194         desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2195         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2196                 ring->cur * sizeof (struct wpi_tx_cmd));
2197         desc->segs[0].len  = htole32(4 + size);
2198
2199         /* kick cmd ring */
2200         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2201         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2202
2203         if (async) {
2204                 sc->flags &= ~ WPI_FLAG_BUSY;
2205                 return 0;
2206         }
2207
2208         return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2209 }
2210
2211 static int
2212 wpi_wme_update(struct ieee80211com *ic)
2213 {
2214 #define WPI_EXP2(v)     htole16((1 << (v)) - 1)
2215 #define WPI_USEC(v)     htole16(IEEE80211_TXOP_TO_US(v))
2216         struct wpi_softc *sc = ic->ic_ifp->if_softc;
2217         const struct wmeParams *wmep;
2218         struct wpi_wme_setup wme;
2219         int ac;
2220
2221         /* don't override default WME values if WME is not actually enabled */
2222         if (!(ic->ic_flags & IEEE80211_F_WME))
2223                 return 0;
2224
2225         wme.flags = 0;
2226         for (ac = 0; ac < WME_NUM_AC; ac++) {
2227                 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2228                 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2229                 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2230                 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2231                 wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2232
2233                 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2234                     "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2235                     wme.ac[ac].cwmax, wme.ac[ac].txop));
2236         }
2237         return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2238 #undef WPI_USEC
2239 #undef WPI_EXP2
2240 }
2241
2242 /*
2243  * Configure h/w multi-rate retries.
2244  */
2245 static int
2246 wpi_mrr_setup(struct wpi_softc *sc)
2247 {
2248         struct ifnet *ifp = sc->sc_ifp;
2249         struct ieee80211com *ic = ifp->if_l2com;
2250         struct wpi_mrr_setup mrr;
2251         int i, error;
2252
2253         memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2254
2255         /* CCK rates (not used with 802.11a) */
2256         for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2257                 mrr.rates[i].flags = 0;
2258                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2259                 /* fallback to the immediate lower CCK rate (if any) */
2260                 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2261                 /* try one time at this rate before falling back to "next" */
2262                 mrr.rates[i].ntries = 1;
2263         }
2264
2265         /* OFDM rates (not used with 802.11b) */
2266         for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2267                 mrr.rates[i].flags = 0;
2268                 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2269                 /* fallback to the immediate lower OFDM rate (if any) */
2270                 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2271                 mrr.rates[i].next = (i == WPI_OFDM6) ?
2272                     ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2273                         WPI_OFDM6 : WPI_CCK2) :
2274                     i - 1;
2275                 /* try one time at this rate before falling back to "next" */
2276                 mrr.rates[i].ntries = 1;
2277         }
2278
2279         /* setup MRR for control frames */
2280         mrr.which = htole32(WPI_MRR_CTL);
2281         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2282         if (error != 0) {
2283                 device_printf(sc->sc_dev,
2284                     "could not setup MRR for control frames\n");
2285                 return error;
2286         }
2287
2288         /* setup MRR for data frames */
2289         mrr.which = htole32(WPI_MRR_DATA);
2290         error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2291         if (error != 0) {
2292                 device_printf(sc->sc_dev,
2293                     "could not setup MRR for data frames\n");
2294                 return error;
2295         }
2296
2297         return 0;
2298 }
2299
2300 static void
2301 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2302 {
2303         struct wpi_cmd_led led;
2304
2305         led.which = which;
2306         led.unit = htole32(100000);     /* on/off in unit of 100ms */
2307         led.off = off;
2308         led.on = on;
2309
2310         (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2311 }
2312
2313 static void
2314 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2315 {
2316         struct wpi_cmd_tsf tsf;
2317         uint64_t val, mod;
2318
2319         memset(&tsf, 0, sizeof tsf);
2320         memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2321         tsf.bintval = htole16(ni->ni_intval);
2322         tsf.lintval = htole16(10);
2323
2324         /* compute remaining time until next beacon */
2325         val = (uint64_t)ni->ni_intval  * 1024;  /* msec -> usec */
2326         mod = le64toh(tsf.tstamp) % val;
2327         tsf.binitval = htole32((uint32_t)(val - mod));
2328
2329         if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2330                 device_printf(sc->sc_dev, "could not enable TSF\n");
2331 }
2332
2333 #if 0
2334 /*
2335  * Build a beacon frame that the firmware will broadcast periodically in
2336  * IBSS or HostAP modes.
2337  */
2338 static int
2339 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2340 {
2341         struct ifnet *ifp = sc->sc_ifp;
2342         struct ieee80211com *ic = ifp->if_l2com;
2343         struct wpi_tx_ring *ring = &sc->cmdq;
2344         struct wpi_tx_desc *desc;
2345         struct wpi_tx_data *data;
2346         struct wpi_tx_cmd *cmd;
2347         struct wpi_cmd_beacon *bcn;
2348         struct ieee80211_beacon_offsets bo;
2349         struct mbuf *m0;
2350         bus_addr_t physaddr;
2351         int error;
2352
2353         desc = &ring->desc[ring->cur];
2354         data = &ring->data[ring->cur];
2355
2356         m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2357         if (m0 == NULL) {
2358                 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2359                 return ENOMEM;
2360         }
2361
2362         cmd = &ring->cmd[ring->cur];
2363         cmd->code = WPI_CMD_SET_BEACON;
2364         cmd->flags = 0;
2365         cmd->qid = ring->qid;
2366         cmd->idx = ring->cur;
2367
2368         bcn = (struct wpi_cmd_beacon *)cmd->data;
2369         memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2370         bcn->id = WPI_ID_BROADCAST;
2371         bcn->ofdm_mask = 0xff;
2372         bcn->cck_mask = 0x0f;
2373         bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2374         bcn->len = htole16(m0->m_pkthdr.len);
2375         bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2376                 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2377         bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2378
2379         /* save and trim IEEE802.11 header */
2380         m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2381         m_adj(m0, sizeof (struct ieee80211_frame));
2382
2383         /* assume beacon frame is contiguous */
2384         error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2385             m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2386         if (error != 0) {
2387                 device_printf(sc->sc_dev, "could not map beacon\n");
2388                 m_freem(m0);
2389                 return error;
2390         }
2391
2392         data->m = m0;
2393
2394         /* first scatter/gather segment is used by the beacon command */
2395         desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2396         desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2397                 ring->cur * sizeof (struct wpi_tx_cmd));
2398         desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2399         desc->segs[1].addr = htole32(physaddr);
2400         desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2401
2402         /* kick cmd ring */
2403         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2404         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2405
2406         return 0;
2407 }
2408 #endif
2409
2410 static int
2411 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2412 {
2413         struct ieee80211com *ic = vap->iv_ic;
2414         struct ieee80211_node *ni;
2415         struct wpi_node_info node;
2416         int error;
2417
2418
2419         /* update adapter's configuration */
2420         sc->config.associd = 0;
2421         sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2422         ni = ieee80211_ref_node(vap->iv_bss);
2423         IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2424         sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2425         if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2426                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2427                     WPI_CONFIG_24GHZ);
2428         }
2429         if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2430                 sc->config.cck_mask  = 0;
2431                 sc->config.ofdm_mask = 0x15;
2432         } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2433                 sc->config.cck_mask  = 0x03;
2434                 sc->config.ofdm_mask = 0;
2435         } else {
2436                 /* XXX assume 802.11b/g */
2437                 sc->config.cck_mask  = 0x0f;
2438                 sc->config.ofdm_mask = 0x15;
2439         }
2440
2441         DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2442                 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2443         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2444                 sizeof (struct wpi_config), 1);
2445         if (error != 0) {
2446                 device_printf(sc->sc_dev, "could not configure\n");
2447                 ieee80211_free_node(ni);
2448                 return error;
2449         }
2450
2451         /* configuration has changed, set Tx power accordingly */
2452         if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2453                 device_printf(sc->sc_dev, "could not set Tx power\n");
2454                 ieee80211_free_node(ni);
2455                 return error;
2456         }
2457
2458         /* add default node */
2459         memset(&node, 0, sizeof node);
2460         IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2461         ieee80211_free_node(ni);
2462         node.id = WPI_ID_BSS;
2463         node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2464             wpi_plcp_signal(12) : wpi_plcp_signal(2);
2465         node.action = htole32(WPI_ACTION_SET_RATE);
2466         node.antenna = WPI_ANTENNA_BOTH;
2467         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2468         if (error != 0)
2469                 device_printf(sc->sc_dev, "could not add BSS node\n");
2470
2471         return (error);
2472 }
2473
2474 static int
2475 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2476 {
2477         struct ieee80211com *ic = vap->iv_ic;
2478         struct ieee80211_node *ni;
2479         int error;
2480
2481         if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2482                 /* link LED blinks while monitoring */
2483                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2484                 return 0;
2485         }
2486
2487         ni = ieee80211_ref_node(vap->iv_bss);
2488         wpi_enable_tsf(sc, ni);
2489
2490         /* update adapter's configuration */
2491         sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2492         /* short preamble/slot time are negotiated when associating */
2493         sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2494             WPI_CONFIG_SHSLOT);
2495         if (ic->ic_flags & IEEE80211_F_SHSLOT)
2496                 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2497         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2498                 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2499         sc->config.filter |= htole32(WPI_FILTER_BSS);
2500
2501         /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2502
2503         DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2504                     sc->config.flags));
2505         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2506                     wpi_config), 1);
2507         if (error != 0) {
2508                 device_printf(sc->sc_dev, "could not update configuration\n");
2509                 ieee80211_free_node(ni);
2510                 return error;
2511         }
2512
2513         error = wpi_set_txpower(sc, ni->ni_chan, 1);
2514         ieee80211_free_node(ni);
2515         if (error != 0) {
2516                 device_printf(sc->sc_dev, "could set txpower\n");
2517                 return error;
2518         }
2519
2520         /* link LED always on while associated */
2521         wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2522
2523         /* start automatic rate control timer */
2524         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2525
2526         return (error);
2527 }
2528
2529 /*
2530  * Send a scan request to the firmware.  Since this command is huge, we map it
2531  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2532  * much of this code is similar to that in wpi_cmd but because we must manually
2533  * construct the probe & channels, we duplicate what's needed here. XXX In the
2534  * future, this function should be modified to use wpi_cmd to help cleanup the
2535  * code base.
2536  */
2537 static int
2538 wpi_scan(struct wpi_softc *sc)
2539 {
2540         struct ifnet *ifp = sc->sc_ifp;
2541         struct ieee80211com *ic = ifp->if_l2com;
2542         struct ieee80211_scan_state *ss = ic->ic_scan;
2543         struct wpi_tx_ring *ring = &sc->cmdq;
2544         struct wpi_tx_desc *desc;
2545         struct wpi_tx_data *data;
2546         struct wpi_tx_cmd *cmd;
2547         struct wpi_scan_hdr *hdr;
2548         struct wpi_scan_chan *chan;
2549         struct ieee80211_frame *wh;
2550         struct ieee80211_rateset *rs;
2551         struct ieee80211_channel *c;
2552         enum ieee80211_phymode mode;
2553         uint8_t *frm;
2554         int nrates, pktlen, error, i, nssid;
2555         bus_addr_t physaddr;
2556
2557         desc = &ring->desc[ring->cur];
2558         data = &ring->data[ring->cur];
2559
2560         data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2561         if (data->m == NULL) {
2562                 device_printf(sc->sc_dev,
2563                     "could not allocate mbuf for scan command\n");
2564                 return ENOMEM;
2565         }
2566
2567         cmd = mtod(data->m, struct wpi_tx_cmd *);
2568         cmd->code = WPI_CMD_SCAN;
2569         cmd->flags = 0;
2570         cmd->qid = ring->qid;
2571         cmd->idx = ring->cur;
2572
2573         hdr = (struct wpi_scan_hdr *)cmd->data;
2574         memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2575
2576         /*
2577          * Move to the next channel if no packets are received within 5 msecs
2578          * after sending the probe request (this helps to reduce the duration
2579          * of active scans).
2580          */
2581         hdr->quiet = htole16(5);
2582         hdr->threshold = htole16(1);
2583
2584         if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2585                 /* send probe requests at 6Mbps */
2586                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2587
2588                 /* Enable crc checking */
2589                 hdr->promotion = htole16(1);
2590         } else {
2591                 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2592                 /* send probe requests at 1Mbps */
2593                 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2594         }
2595         hdr->tx.id = WPI_ID_BROADCAST;
2596         hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2597         hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2598
2599         memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2600         nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2601         for (i = 0; i < nssid; i++) {
2602                 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2603                 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2604                 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2605                     hdr->scan_essids[i].esslen);
2606 #ifdef WPI_DEBUG
2607                 if (wpi_debug & WPI_DEBUG_SCANNING) {
2608                         kprintf("Scanning Essid: ");
2609                         ieee80211_print_essid(hdr->scan_essids[i].essid,
2610                             hdr->scan_essids[i].esslen);
2611                         kprintf("\n");
2612                 }
2613 #endif
2614         }
2615
2616         /*
2617          * Build a probe request frame.  Most of the following code is a
2618          * copy & paste of what is done in net80211.
2619          */
2620         wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2621         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2622                 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2623         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2624         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2625         IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2626         IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2627         *(u_int16_t *)&wh->i_dur[0] = 0;        /* filled by h/w */
2628         *(u_int16_t *)&wh->i_seq[0] = 0;        /* filled by h/w */
2629
2630         frm = (uint8_t *)(wh + 1);
2631
2632         /* add essid IE, the hardware will fill this in for us */
2633         *frm++ = IEEE80211_ELEMID_SSID;
2634         *frm++ = 0;
2635
2636         mode = ieee80211_chan2mode(ic->ic_curchan);
2637         rs = &ic->ic_sup_rates[mode];
2638
2639         /* add supported rates IE */
2640         *frm++ = IEEE80211_ELEMID_RATES;
2641         nrates = rs->rs_nrates;
2642         if (nrates > IEEE80211_RATE_SIZE)
2643                 nrates = IEEE80211_RATE_SIZE;
2644         *frm++ = nrates;
2645         memcpy(frm, rs->rs_rates, nrates);
2646         frm += nrates;
2647
2648         /* add supported xrates IE */
2649         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2650                 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2651                 *frm++ = IEEE80211_ELEMID_XRATES;
2652                 *frm++ = nrates;
2653                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2654                 frm += nrates;
2655         }
2656
2657         /* setup length of probe request */
2658         hdr->tx.len = htole16(frm - (uint8_t *)wh);
2659
2660         /*
2661          * Construct information about the channel that we
2662          * want to scan. The firmware expects this to be directly
2663          * after the scan probe request
2664          */
2665         c = ic->ic_curchan;
2666         chan = (struct wpi_scan_chan *)frm;
2667         chan->chan = ieee80211_chan2ieee(ic, c);
2668         chan->flags = 0;
2669         if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2670                 chan->flags |= WPI_CHAN_ACTIVE;
2671                 if (nssid != 0)
2672                         chan->flags |= WPI_CHAN_DIRECT;
2673         }
2674         chan->gain_dsp = 0x6e; /* Default level */
2675         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2676                 chan->active = htole16(10);
2677                 chan->passive = htole16(ss->ss_maxdwell);
2678                 chan->gain_radio = 0x3b;
2679         } else {
2680                 chan->active = htole16(20);
2681                 chan->passive = htole16(ss->ss_maxdwell);
2682                 chan->gain_radio = 0x28;
2683         }
2684
2685         DPRINTFN(WPI_DEBUG_SCANNING,
2686             ("Scanning %u Passive: %d\n",
2687              chan->chan,
2688              c->ic_flags & IEEE80211_CHAN_PASSIVE));
2689
2690         hdr->nchan++;
2691         chan++;
2692
2693         frm += sizeof (struct wpi_scan_chan);
2694 #if 0
2695         // XXX All Channels....
2696         for (c  = &ic->ic_channels[1];
2697              c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2698                 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2699                         continue;
2700
2701                 chan->chan = ieee80211_chan2ieee(ic, c);
2702                 chan->flags = 0;
2703                 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2704                     chan->flags |= WPI_CHAN_ACTIVE;
2705                     if (ic->ic_des_ssid[0].len != 0)
2706                         chan->flags |= WPI_CHAN_DIRECT;
2707                 }
2708                 chan->gain_dsp = 0x6e; /* Default level */
2709                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2710                         chan->active = htole16(10);
2711                         chan->passive = htole16(110);
2712                         chan->gain_radio = 0x3b;
2713                 } else {
2714                         chan->active = htole16(20);
2715                         chan->passive = htole16(120);
2716                         chan->gain_radio = 0x28;
2717                 }
2718
2719                 DPRINTFN(WPI_DEBUG_SCANNING,
2720                          ("Scanning %u Passive: %d\n",
2721                           chan->chan,
2722                           c->ic_flags & IEEE80211_CHAN_PASSIVE));
2723
2724                 hdr->nchan++;
2725                 chan++;
2726
2727                 frm += sizeof (struct wpi_scan_chan);
2728         }
2729 #endif
2730
2731         hdr->len = htole16(frm - (uint8_t *)hdr);
2732         pktlen = frm - (uint8_t *)cmd;
2733
2734         error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2735             wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2736         if (error != 0) {
2737                 device_printf(sc->sc_dev, "could not map scan command\n");
2738                 m_freem(data->m);
2739                 data->m = NULL;
2740                 return error;
2741         }
2742
2743         desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2744         desc->segs[0].addr = htole32(physaddr);
2745         desc->segs[0].len  = htole32(pktlen);
2746
2747         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2748             BUS_DMASYNC_PREWRITE);
2749         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2750
2751         /* kick cmd ring */
2752         ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2753         WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2754
2755         sc->sc_scan_timer = 5;
2756         return 0;       /* will be notified async. of failure/success */
2757 }
2758
2759 /**
2760  * Configure the card to listen to a particular channel, this transisions the
2761  * card in to being able to receive frames from remote devices.
2762  */
2763 static int
2764 wpi_config(struct wpi_softc *sc)
2765 {
2766         struct ifnet *ifp = sc->sc_ifp;
2767         struct ieee80211com *ic = ifp->if_l2com;
2768         struct wpi_power power;
2769         struct wpi_bluetooth bluetooth;
2770         struct wpi_node_info node;
2771         int error;
2772
2773         /* set power mode */
2774         memset(&power, 0, sizeof power);
2775         power.flags = htole32(WPI_POWER_CAM|0x8);
2776         error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2777         if (error != 0) {
2778                 device_printf(sc->sc_dev, "could not set power mode\n");
2779                 return error;
2780         }
2781
2782         /* configure bluetooth coexistence */
2783         memset(&bluetooth, 0, sizeof bluetooth);
2784         bluetooth.flags = 3;
2785         bluetooth.lead = 0xaa;
2786         bluetooth.kill = 1;
2787         error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2788             0);
2789         if (error != 0) {
2790                 device_printf(sc->sc_dev,
2791                     "could not configure bluetooth coexistence\n");
2792                 return error;
2793         }
2794
2795         /* configure adapter */
2796         memset(&sc->config, 0, sizeof (struct wpi_config));
2797         IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2798         /*set default channel*/
2799         sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2800         sc->config.flags = htole32(WPI_CONFIG_TSF);
2801         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2802                 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2803                     WPI_CONFIG_24GHZ);
2804         }
2805         sc->config.filter = 0;
2806         switch (ic->ic_opmode) {
2807         case IEEE80211_M_STA:
2808         case IEEE80211_M_WDS:   /* No know setup, use STA for now */
2809                 sc->config.mode = WPI_MODE_STA;
2810                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2811                 break;
2812         case IEEE80211_M_IBSS:
2813         case IEEE80211_M_AHDEMO:
2814                 sc->config.mode = WPI_MODE_IBSS;
2815                 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2816                                              WPI_FILTER_MULTICAST);
2817                 break;
2818         case IEEE80211_M_HOSTAP:
2819                 sc->config.mode = WPI_MODE_HOSTAP;
2820                 break;
2821         case IEEE80211_M_MONITOR:
2822                 sc->config.mode = WPI_MODE_MONITOR;
2823                 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2824                         WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2825                 break;
2826         default:
2827                 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2828                 return EINVAL;
2829         }
2830         sc->config.cck_mask  = 0x0f;    /* not yet negotiated */
2831         sc->config.ofdm_mask = 0xff;    /* not yet negotiated */
2832         error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2833                 sizeof (struct wpi_config), 0);
2834         if (error != 0) {
2835                 device_printf(sc->sc_dev, "configure command failed\n");
2836                 return error;
2837         }
2838
2839         /* configuration has changed, set Tx power accordingly */
2840         if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2841             device_printf(sc->sc_dev, "could not set Tx power\n");
2842             return error;
2843         }
2844
2845         /* add broadcast node */
2846         memset(&node, 0, sizeof node);
2847         IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2848         node.id = WPI_ID_BROADCAST;
2849         node.rate = wpi_plcp_signal(2);
2850         error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2851         if (error != 0) {
2852                 device_printf(sc->sc_dev, "could not add broadcast node\n");
2853                 return error;
2854         }
2855
2856         /* Setup rate scalling */
2857         error = wpi_mrr_setup(sc);
2858         if (error != 0) {
2859                 device_printf(sc->sc_dev, "could not setup MRR\n");
2860                 return error;
2861         }
2862
2863         return 0;
2864 }
2865
2866 static void
2867 wpi_stop_master(struct wpi_softc *sc)
2868 {
2869         uint32_t tmp;
2870         int ntries;
2871
2872         DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2873
2874         tmp = WPI_READ(sc, WPI_RESET);
2875         WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2876
2877         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2878         if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2879                 return; /* already asleep */
2880
2881         for (ntries = 0; ntries < 100; ntries++) {
2882                 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2883                         break;
2884                 DELAY(10);
2885         }
2886         if (ntries == 100) {
2887                 device_printf(sc->sc_dev, "timeout waiting for master\n");
2888         }
2889 }
2890
2891 static int
2892 wpi_power_up(struct wpi_softc *sc)
2893 {
2894         uint32_t tmp;
2895         int ntries;
2896
2897         wpi_mem_lock(sc);
2898         tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2899         wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2900         wpi_mem_unlock(sc);
2901
2902         for (ntries = 0; ntries < 5000; ntries++) {
2903                 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2904                         break;
2905                 DELAY(10);
2906         }
2907         if (ntries == 5000) {
2908                 device_printf(sc->sc_dev,
2909                     "timeout waiting for NIC to power up\n");
2910                 return ETIMEDOUT;
2911         }
2912         return 0;
2913 }
2914
2915 static int
2916 wpi_reset(struct wpi_softc *sc)
2917 {
2918         uint32_t tmp;
2919         int ntries;
2920
2921         DPRINTFN(WPI_DEBUG_HW,
2922             ("Resetting the card - clearing any uploaded firmware\n"));
2923
2924         /* clear any pending interrupts */
2925         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2926
2927         tmp = WPI_READ(sc, WPI_PLL_CTL);
2928         WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2929
2930         tmp = WPI_READ(sc, WPI_CHICKEN);
2931         WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2932
2933         tmp = WPI_READ(sc, WPI_GPIO_CTL);
2934         WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2935
2936         /* wait for clock stabilization */
2937         for (ntries = 0; ntries < 25000; ntries++) {
2938                 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2939                         break;
2940                 DELAY(10);
2941         }
2942         if (ntries == 25000) {
2943                 device_printf(sc->sc_dev,
2944                     "timeout waiting for clock stabilization\n");
2945                 return ETIMEDOUT;
2946         }
2947
2948         /* initialize EEPROM */
2949         tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2950
2951         if ((tmp & WPI_EEPROM_VERSION) == 0) {
2952                 device_printf(sc->sc_dev, "EEPROM not found\n");
2953                 return EIO;
2954         }
2955         WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2956
2957         return 0;
2958 }
2959
2960 static void
2961 wpi_hw_config(struct wpi_softc *sc)
2962 {
2963         uint32_t rev, hw;
2964
2965         /* voodoo from the Linux "driver".. */
2966         hw = WPI_READ(sc, WPI_HWCONFIG);
2967
2968         rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2969         if ((rev & 0xc0) == 0x40)
2970                 hw |= WPI_HW_ALM_MB;
2971         else if (!(rev & 0x80))
2972                 hw |= WPI_HW_ALM_MM;
2973
2974         if (sc->cap == 0x80)
2975                 hw |= WPI_HW_SKU_MRC;
2976
2977         hw &= ~WPI_HW_REV_D;
2978         if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2979                 hw |= WPI_HW_REV_D;
2980
2981         if (sc->type > 1)
2982                 hw |= WPI_HW_TYPE_B;
2983
2984         WPI_WRITE(sc, WPI_HWCONFIG, hw);
2985 }
2986
2987 static void
2988 wpi_rfkill_resume(struct wpi_softc *sc)
2989 {
2990         struct ifnet *ifp = sc->sc_ifp;
2991         struct ieee80211com *ic = ifp->if_l2com;
2992         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2993         int ntries;
2994
2995         /* enable firmware again */
2996         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2997         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2998
2999         /* wait for thermal sensors to calibrate */
3000         for (ntries = 0; ntries < 1000; ntries++) {
3001                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3002                         break;
3003                 DELAY(10);
3004         }
3005
3006         if (ntries == 1000) {
3007                 device_printf(sc->sc_dev,
3008                     "timeout waiting for thermal calibration\n");
3009                 return;
3010         }
3011         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3012
3013         if (wpi_config(sc) != 0) {
3014                 device_printf(sc->sc_dev, "device config failed\n");
3015                 return;
3016         }
3017
3018         ifp->if_flags &= ~IFF_OACTIVE;
3019         ifp->if_flags |= IFF_RUNNING;
3020         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3021
3022         if (vap != NULL) {
3023                 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3024                         if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3025                                 ieee80211_beacon_miss(ic);
3026                                 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3027                         } else
3028                                 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3029                 } else {
3030                         ieee80211_scan_next(vap);
3031                         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3032                 }
3033         }
3034
3035         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3036 }
3037
3038 static void
3039 wpi_init_locked(struct wpi_softc *sc, int force)
3040 {
3041         struct ifnet *ifp = sc->sc_ifp;
3042         uint32_t tmp;
3043         int ntries, qid;
3044
3045         wpi_stop_locked(sc);
3046         (void)wpi_reset(sc);
3047
3048         wpi_mem_lock(sc);
3049         wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3050         DELAY(20);
3051         tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3052         wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3053         wpi_mem_unlock(sc);
3054
3055         (void)wpi_power_up(sc);
3056         wpi_hw_config(sc);
3057
3058         /* init Rx ring */
3059         wpi_mem_lock(sc);
3060         WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3061         WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3062             offsetof(struct wpi_shared, next));
3063         WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3064         WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3065         wpi_mem_unlock(sc);
3066
3067         /* init Tx rings */
3068         wpi_mem_lock(sc);
3069         wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3070         wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3071         wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3072         wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3073         wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3074         wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3075         wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3076
3077         WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3078         WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3079
3080         for (qid = 0; qid < 6; qid++) {
3081                 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3082                 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3083                 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3084         }
3085         wpi_mem_unlock(sc);
3086
3087         /* clear "radio off" and "disable command" bits (reversed logic) */
3088         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3089         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3090         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3091
3092         /* clear any pending interrupts */
3093         WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3094
3095         /* enable interrupts */
3096         WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3097
3098         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3099         WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100
3101         if ((wpi_load_firmware(sc)) != 0) {
3102             device_printf(sc->sc_dev,
3103                 "A problem occurred loading the firmware to the driver\n");
3104             return;
3105         }
3106
3107         /* At this point the firmware is up and running. If the hardware
3108          * RF switch is turned off thermal calibration will fail, though
3109          * the card is still happy to continue to accept commands, catch
3110          * this case and schedule a task to watch for it to be turned on.
3111          */
3112         wpi_mem_lock(sc);
3113         tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3114         wpi_mem_unlock(sc);
3115
3116         if (!(tmp & 0x1)) {
3117                 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3118                 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3119                 goto out;
3120         }
3121
3122         /* wait for thermal sensors to calibrate */
3123         for (ntries = 0; ntries < 1000; ntries++) {
3124                 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3125                         break;
3126                 DELAY(10);
3127         }
3128
3129         if (ntries == 1000) {
3130                 device_printf(sc->sc_dev,
3131                     "timeout waiting for thermal sensors calibration\n");
3132                 return;
3133         }
3134         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3135
3136         if (wpi_config(sc) != 0) {
3137                 device_printf(sc->sc_dev, "device config failed\n");
3138                 return;
3139         }
3140
3141         ifp->if_flags &= ~IFF_OACTIVE;
3142         ifp->if_flags |= IFF_RUNNING;
3143 out:
3144         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3145 }
3146
3147 static void
3148 wpi_init(void *arg)
3149 {
3150         struct wpi_softc *sc = arg;
3151         struct ifnet *ifp = sc->sc_ifp;
3152         struct ieee80211com *ic = ifp->if_l2com;
3153
3154         wpi_init_locked(sc, 0);
3155
3156         if (ifp->if_flags & IFF_RUNNING)
3157                 ieee80211_start_all(ic);                /* start all vaps */
3158 }
3159
3160 static void
3161 wpi_stop_locked(struct wpi_softc *sc)
3162 {
3163         struct ifnet *ifp = sc->sc_ifp;
3164         uint32_t tmp;
3165         int ac;
3166
3167         sc->sc_tx_timer = 0;
3168         sc->sc_scan_timer = 0;
3169         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3170         sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3171         callout_stop(&sc->watchdog_to_callout);
3172         callout_stop(&sc->calib_to_callout);
3173
3174
3175         /* disable interrupts */
3176         WPI_WRITE(sc, WPI_MASK, 0);
3177         WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3178         WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3179         WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3180
3181         wpi_mem_lock(sc);
3182         wpi_mem_write(sc, WPI_MEM_MODE, 0);
3183         wpi_mem_unlock(sc);
3184
3185         /* reset all Tx rings */
3186         for (ac = 0; ac < 4; ac++)
3187                 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3188         wpi_reset_tx_ring(sc, &sc->cmdq);
3189
3190         /* reset Rx ring */
3191         wpi_reset_rx_ring(sc, &sc->rxq);
3192
3193         wpi_mem_lock(sc);
3194         wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3195         wpi_mem_unlock(sc);
3196
3197         DELAY(5);
3198
3199         wpi_stop_master(sc);
3200
3201         tmp = WPI_READ(sc, WPI_RESET);
3202         WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3203         sc->flags &= ~WPI_FLAG_BUSY;
3204 }
3205
3206 static void
3207 wpi_stop(struct wpi_softc *sc)
3208 {
3209         wpi_stop_locked(sc);
3210 }
3211
3212 static void
3213 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3214 {
3215         /* XXX move */
3216         ieee80211_ratectl_node_init(ni);
3217 }
3218
3219 static void
3220 wpi_calib_timeout_callout(void *arg)
3221 {
3222         struct wpi_softc *sc = arg;
3223         struct ifnet *ifp = sc->sc_ifp;
3224         struct ieee80211com *ic = ifp->if_l2com;
3225         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3226         int temp;
3227
3228         if (vap->iv_state != IEEE80211_S_RUN)
3229                 return;
3230
3231         /* update sensor data */
3232         temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3233         DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3234
3235         wpi_power_calibration(sc, temp);
3236
3237         callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3238 }
3239
3240 /*
3241  * This function is called periodically (every 60 seconds) to adjust output
3242  * power to temperature changes.
3243  */
3244 static void
3245 wpi_power_calibration(struct wpi_softc *sc, int temp)
3246 {
3247         struct ifnet *ifp = sc->sc_ifp;
3248         struct ieee80211com *ic = ifp->if_l2com;
3249         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3250
3251         /* sanity-check read value */
3252         if (temp < -260 || temp > 25) {
3253                 /* this can't be correct, ignore */
3254                 DPRINTFN(WPI_DEBUG_TEMP,
3255                     ("out-of-range temperature reported: %d\n", temp));
3256                 return;
3257         }
3258
3259         DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3260
3261         /* adjust Tx power if need be */
3262         if (abs(temp - sc->temp) <= 6)
3263                 return;
3264
3265         sc->temp = temp;
3266
3267         if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3268                 /* just warn, too bad for the automatic calibration... */
3269                 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3270         }
3271 }
3272
3273 /**
3274  * Read the eeprom to find out what channels are valid for the given
3275  * band and update net80211 with what we find.
3276  */
3277 static void
3278 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3279 {
3280         struct ifnet *ifp = sc->sc_ifp;
3281         struct ieee80211com *ic = ifp->if_l2com;
3282         const struct wpi_chan_band *band = &wpi_bands[n];
3283         struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3284         struct ieee80211_channel *c;
3285         int chan, i, passive;
3286
3287         wpi_read_prom_data(sc, band->addr, channels,
3288             band->nchan * sizeof (struct wpi_eeprom_chan));
3289
3290         for (i = 0; i < band->nchan; i++) {
3291                 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3292                         DPRINTFN(WPI_DEBUG_HW,
3293                             ("Channel Not Valid: %d, band %d\n",
3294                              band->chan[i],n));
3295                         continue;
3296                 }
3297
3298                 passive = 0;
3299                 chan = band->chan[i];
3300                 c = &ic->ic_channels[ic->ic_nchans++];
3301
3302                 /* is active scan allowed on this channel? */
3303                 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3304                         passive = IEEE80211_CHAN_PASSIVE;
3305                 }
3306
3307                 if (n == 0) {   /* 2GHz band */
3308                         c->ic_ieee = chan;
3309                         c->ic_freq = ieee80211_ieee2mhz(chan,
3310                             IEEE80211_CHAN_2GHZ);
3311                         c->ic_flags = IEEE80211_CHAN_B | passive;
3312
3313                         c = &ic->ic_channels[ic->ic_nchans++];
3314                         c->ic_ieee = chan;
3315                         c->ic_freq = ieee80211_ieee2mhz(chan,
3316                             IEEE80211_CHAN_2GHZ);
3317                         c->ic_flags = IEEE80211_CHAN_G | passive;
3318
3319                 } else {        /* 5GHz band */
3320                         /*
3321                          * Some 3945ABG adapters support channels 7, 8, 11
3322                          * and 12 in the 2GHz *and* 5GHz bands.
3323                          * Because of limitations in our net80211(9) stack,
3324                          * we can't support these channels in 5GHz band.
3325                          * XXX not true; just need to map to proper frequency
3326                          */
3327                         if (chan <= 14)
3328                                 continue;
3329
3330                         c->ic_ieee = chan;
3331                         c->ic_freq = ieee80211_ieee2mhz(chan,
3332                             IEEE80211_CHAN_5GHZ);
3333                         c->ic_flags = IEEE80211_CHAN_A | passive;
3334                 }
3335
3336                 /* save maximum allowed power for this channel */
3337                 sc->maxpwr[chan] = channels[i].maxpwr;
3338
3339 #if 0
3340                 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3341                 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3342                 //ic->ic_channels[chan].ic_minpower...
3343                 //ic->ic_channels[chan].ic_maxregtxpower...
3344 #endif
3345
3346                 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3347                     " passive=%d, offset %d\n", chan, c->ic_freq,
3348                     channels[i].flags, sc->maxpwr[chan],
3349                     (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3350                     ic->ic_nchans));
3351         }
3352 }
3353
3354 static void
3355 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3356 {
3357         struct wpi_power_group *group = &sc->groups[n];
3358         struct wpi_eeprom_group rgroup;
3359         int i;
3360
3361         wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3362             sizeof rgroup);
3363
3364         /* save power group information */
3365         group->chan   = rgroup.chan;
3366         group->maxpwr = rgroup.maxpwr;
3367         /* temperature at which the samples were taken */
3368         group->temp   = (int16_t)le16toh(rgroup.temp);
3369
3370         DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3371                     group->chan, group->maxpwr, group->temp));
3372
3373         for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3374                 group->samples[i].index = rgroup.samples[i].index;
3375                 group->samples[i].power = rgroup.samples[i].power;
3376
3377                 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3378                             group->samples[i].index, group->samples[i].power));
3379         }
3380 }
3381
3382 /*
3383  * Update Tx power to match what is defined for channel `c'.
3384  */
3385 static int
3386 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3387 {
3388         struct ifnet *ifp = sc->sc_ifp;
3389         struct ieee80211com *ic = ifp->if_l2com;
3390         struct wpi_power_group *group;
3391         struct wpi_cmd_txpower txpower;
3392         u_int chan;
3393         int i;
3394
3395         /* get channel number */
3396         chan = ieee80211_chan2ieee(ic, c);
3397
3398         /* find the power group to which this channel belongs */
3399         if (IEEE80211_IS_CHAN_5GHZ(c)) {
3400                 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3401                         if (chan <= group->chan)
3402                                 break;
3403         } else
3404                 group = &sc->groups[0];
3405
3406         memset(&txpower, 0, sizeof txpower);
3407         txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3408         txpower.channel = htole16(chan);
3409
3410         /* set Tx power for all OFDM and CCK rates */
3411         for (i = 0; i <= 11 ; i++) {
3412                 /* retrieve Tx power for this channel/rate combination */
3413                 int idx = wpi_get_power_index(sc, group, c,
3414                     wpi_ridx_to_rate[i]);
3415
3416                 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3417
3418                 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3419                         txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3420                         txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3421                 } else {
3422                         txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3423                         txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3424                 }
3425                 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3426                             chan, wpi_ridx_to_rate[i], idx));
3427         }
3428
3429         return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3430 }
3431
3432 /*
3433  * Determine Tx power index for a given channel/rate combination.
3434  * This takes into account the regulatory information from EEPROM and the
3435  * current temperature.
3436  */
3437 static int
3438 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3439     struct ieee80211_channel *c, int rate)
3440 {
3441 /* fixed-point arithmetic division using a n-bit fractional part */
3442 #define fdivround(a, b, n)      \
3443         ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3444
3445 /* linear interpolation */
3446 #define interpolate(x, x1, y1, x2, y2, n)       \
3447         ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3448
3449         struct ifnet *ifp = sc->sc_ifp;
3450         struct ieee80211com *ic = ifp->if_l2com;
3451         struct wpi_power_sample *sample;
3452         int pwr, idx;
3453         u_int chan;
3454
3455         /* get channel number */
3456         chan = ieee80211_chan2ieee(ic, c);
3457
3458         /* default power is group's maximum power - 3dB */
3459         pwr = group->maxpwr / 2;
3460
3461         /* decrease power for highest OFDM rates to reduce distortion */
3462         switch (rate) {
3463                 case 72:        /* 36Mb/s */
3464                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3465                         break;
3466                 case 96:        /* 48Mb/s */
3467                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3468                         break;
3469                 case 108:       /* 54Mb/s */
3470                         pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3471                         break;
3472         }
3473
3474         /* never exceed channel's maximum allowed Tx power */
3475         pwr = min(pwr, sc->maxpwr[chan]);
3476
3477         /* retrieve power index into gain tables from samples */
3478         for (sample = group->samples; sample < &group->samples[3]; sample++)
3479                 if (pwr > sample[1].power)
3480                         break;
3481         /* fixed-point linear interpolation using a 19-bit fractional part */
3482         idx = interpolate(pwr, sample[0].power, sample[0].index,
3483             sample[1].power, sample[1].index, 19);
3484
3485         /*
3486          *  Adjust power index based on current temperature
3487          *      - if colder than factory-calibrated: decreate output power
3488          *      - if warmer than factory-calibrated: increase output power
3489          */
3490         idx -= (sc->temp - group->temp) * 11 / 100;
3491
3492         /* decrease power for CCK rates (-5dB) */
3493         if (!WPI_RATE_IS_OFDM(rate))
3494                 idx += 10;
3495
3496         /* keep power index in a valid range */
3497         if (idx < 0)
3498                 return 0;
3499         if (idx > WPI_MAX_PWR_INDEX)
3500                 return WPI_MAX_PWR_INDEX;
3501         return idx;
3502
3503 #undef interpolate
3504 #undef fdivround
3505 }
3506
3507 /**
3508  * Called by net80211 framework to indicate that a scan
3509  * is starting. This function doesn't actually do the scan,
3510  * wpi_scan_curchan starts things off. This function is more
3511  * of an early warning from the framework we should get ready
3512  * for the scan.
3513  */
3514 static void
3515 wpi_scan_start(struct ieee80211com *ic)
3516 {
3517         struct ifnet *ifp = ic->ic_ifp;
3518         struct wpi_softc *sc = ifp->if_softc;
3519
3520         wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3521 }
3522
3523 /**
3524  * Called by the net80211 framework, indicates that the
3525  * scan has ended. If there is a scan in progress on the card
3526  * then it should be aborted.
3527  */
3528 static void
3529 wpi_scan_end(struct ieee80211com *ic)
3530 {
3531         /* XXX ignore */
3532 }
3533
3534 /**
3535  * Called by the net80211 framework to indicate to the driver
3536  * that the channel should be changed
3537  */
3538 static void
3539 wpi_set_channel(struct ieee80211com *ic)
3540 {
3541         struct ifnet *ifp = ic->ic_ifp;
3542         struct wpi_softc *sc = ifp->if_softc;
3543         int error;
3544
3545         /*
3546          * Only need to set the channel in Monitor mode. AP scanning and auth
3547          * are already taken care of by their respective firmware commands.
3548          */
3549         if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3550                 error = wpi_config(sc);
3551                 if (error != 0)
3552                         device_printf(sc->sc_dev,
3553                             "error %d settting channel\n", error);
3554         }
3555 }
3556
3557 /**
3558  * Called by net80211 to indicate that we need to scan the current
3559  * channel. The channel is previously be set via the wpi_set_channel
3560  * callback.
3561  */
3562 static void
3563 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3564 {
3565         struct ieee80211vap *vap = ss->ss_vap;
3566         struct ifnet *ifp = vap->iv_ic->ic_ifp;
3567         struct wpi_softc *sc = ifp->if_softc;
3568
3569         if (wpi_scan(sc))
3570                 ieee80211_cancel_scan(vap);
3571 }
3572
3573 /**
3574  * Called by the net80211 framework to indicate
3575  * the minimum dwell time has been met, terminate the scan.
3576  * We don't actually terminate the scan as the firmware will notify
3577  * us when it's finished and we have no way to interrupt it.
3578  */
3579 static void
3580 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3581 {
3582         /* NB: don't try to abort scan; wait for firmware to finish */
3583 }
3584
3585 static void
3586 wpi_hwreset_task(void *arg, int pending)
3587 {
3588         struct wpi_softc *sc;
3589
3590         wlan_serialize_enter();
3591         sc = arg;
3592         wpi_init_locked(sc, 0);
3593         wlan_serialize_exit();
3594 }
3595
3596 static void
3597 wpi_rfreset_task(void *arg, int pending)
3598 {
3599         struct wpi_softc *sc;
3600
3601         wlan_serialize_enter();
3602         sc = arg;
3603         wpi_rfkill_resume(sc);
3604         wlan_serialize_exit();
3605 }
3606
3607 /*
3608  * Allocate DMA-safe memory for firmware transfer.
3609  */
3610 static int
3611 wpi_alloc_fwmem(struct wpi_softc *sc)
3612 {
3613         /* allocate enough contiguous space to store text and data */
3614         return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3615             WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3616             BUS_DMA_NOWAIT);
3617 }
3618
3619 static void
3620 wpi_free_fwmem(struct wpi_softc *sc)
3621 {
3622         wpi_dma_contig_free(&sc->fw_dma);
3623 }
3624
3625 /**
3626  * Called every second, wpi_watchdog_callout used by the watch dog timer
3627  * to check that the card is still alive
3628  */
3629 static void
3630 wpi_watchdog_callout(void *arg)
3631 {
3632         struct wpi_softc *sc;
3633         struct ifnet *ifp;
3634         struct ieee80211com *ic;
3635         uint32_t tmp;
3636
3637         wlan_serialize_enter();
3638         sc = arg;
3639         ifp = sc->sc_ifp;
3640         ic = ifp->if_l2com;
3641         DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3642
3643         if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3644                 /* No need to lock firmware memory */
3645                 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3646
3647                 if ((tmp & 0x1) == 0) {
3648                         /* Radio kill switch is still off */
3649                         callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3650                         wlan_serialize_exit();
3651                         return;
3652                 }
3653
3654                 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3655                 ieee80211_runtask(ic, &sc->sc_radiotask);
3656                 wlan_serialize_exit();
3657                 return;
3658         }
3659
3660         if (sc->sc_tx_timer > 0) {
3661                 if (--sc->sc_tx_timer == 0) {
3662                         device_printf(sc->sc_dev,"device timeout\n");
3663                         ifp->if_oerrors++;
3664                         wlan_serialize_exit();
3665                         ieee80211_runtask(ic, &sc->sc_restarttask);
3666                         wlan_serialize_enter();
3667                 }
3668         }
3669         if (sc->sc_scan_timer > 0) {
3670                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3671                 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3672                         device_printf(sc->sc_dev,"scan timeout\n");
3673                         ieee80211_cancel_scan(vap);
3674                         wlan_serialize_exit();
3675                         ieee80211_runtask(ic, &sc->sc_restarttask);
3676                         wlan_serialize_enter();
3677                 }
3678         }
3679
3680         if (ifp->if_flags & IFF_RUNNING)
3681                 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3682
3683         wlan_serialize_exit();
3684 }
3685
3686 #ifdef WPI_DEBUG
3687 static const char *wpi_cmd_str(int cmd)
3688 {
3689         switch (cmd) {
3690         case WPI_DISABLE_CMD:   return "WPI_DISABLE_CMD";
3691         case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3692         case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3693         case WPI_CMD_SET_WME:   return "WPI_CMD_SET_WME";
3694         case WPI_CMD_TSF:       return "WPI_CMD_TSF";
3695         case WPI_CMD_ADD_NODE:  return "WPI_CMD_ADD_NODE";
3696         case WPI_CMD_TX_DATA:   return "WPI_CMD_TX_DATA";
3697         case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3698         case WPI_CMD_SET_LED:   return "WPI_CMD_SET_LED";
3699         case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3700         case WPI_CMD_SCAN:      return "WPI_CMD_SCAN";
3701         case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3702         case WPI_CMD_TXPOWER:   return "WPI_CMD_TXPOWER";
3703         case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3704
3705         default:
3706                 KASSERT(1, ("Unknown Command: %d", cmd));
3707                 return "UNKNOWN CMD";   /* Make the compiler happy */
3708         }
3709 }
3710 #endif
3711
3712 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3713 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3714 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3715 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);