Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66
67 /*
68  *      The proverbial page-out daemon.
69  */
70
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/sysctl.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_extern.h>
93
94 #include <sys/thread2.h>
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97
98 /*
99  * System initialization
100  */
101
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_clean (vm_page_t);
104 static int vm_pageout_free_page_calc (vm_size_t count);
105 struct thread *pagethread;
106
107 #if !defined(NO_SWAPPING)
108 /* the kernel process "vm_daemon"*/
109 static void vm_daemon (void);
110 static struct   thread *vmthread;
111
112 static struct kproc_desc vm_kp = {
113         "vmdaemon",
114         vm_daemon,
115         &vmthread
116 };
117 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
118 #endif
119
120 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
121 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
122 int vm_pageout_pages_needed=0;  /* pageout daemon needs pages */
123 int vm_page_free_hysteresis = 16;
124
125 #if !defined(NO_SWAPPING)
126 static int vm_pageout_req_swapout;      /* XXX */
127 static int vm_daemon_needed;
128 #endif
129 static int vm_max_launder = 4096;
130 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
131 static int vm_pageout_full_stats_interval = 0;
132 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
133 static int defer_swap_pageouts=0;
134 static int disable_swap_pageouts=0;
135 static u_int vm_anonmem_decline = ACT_DECLINE;
136 static u_int vm_filemem_decline = ACT_DECLINE * 2;
137
138 #if defined(NO_SWAPPING)
139 static int vm_swap_enabled=0;
140 static int vm_swap_idle_enabled=0;
141 #else
142 static int vm_swap_enabled=1;
143 static int vm_swap_idle_enabled=0;
144 #endif
145
146 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
147         CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
148
149 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
150         CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
151
152 SYSCTL_INT(_vm, OID_AUTO, page_free_hysteresis,
153         CTLFLAG_RW, &vm_page_free_hysteresis, 0,
154         "Free more pages than the minimum required");
155
156 SYSCTL_INT(_vm, OID_AUTO, max_launder,
157         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
158
159 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
160         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
161
162 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
163         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
164
165 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
166         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
167
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
169         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
170
171 #if defined(NO_SWAPPING)
172 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173         CTLFLAG_RD, &vm_swap_enabled, 0, "");
174 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
176 #else
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
181 #endif
182
183 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
184         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
185
186 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
187         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
188
189 static int pageout_lock_miss;
190 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
191         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
192
193 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
194
195 #if !defined(NO_SWAPPING)
196 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
197 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
198 static freeer_fcn_t vm_pageout_object_deactivate_pages;
199 static void vm_req_vmdaemon (void);
200 #endif
201 static void vm_pageout_page_stats(int q);
202
203 static __inline int
204 PQAVERAGE(int n)
205 {
206         if (n >= 0)
207                 return((n + (PQ_L2_SIZE - 1)) / PQ_L2_SIZE + 1);
208         else
209                 return((n - (PQ_L2_SIZE - 1)) / PQ_L2_SIZE - 1);
210 }
211
212 /*
213  * vm_pageout_clean:
214  *
215  * Clean the page and remove it from the laundry.  The page must not be
216  * busy on-call.
217  * 
218  * We set the busy bit to cause potential page faults on this page to
219  * block.  Note the careful timing, however, the busy bit isn't set till
220  * late and we cannot do anything that will mess with the page.
221  */
222 static int
223 vm_pageout_clean(vm_page_t m)
224 {
225         vm_object_t object;
226         vm_page_t mc[BLIST_MAX_ALLOC];
227         int error;
228         int ib, is, page_base;
229         vm_pindex_t pindex = m->pindex;
230
231         object = m->object;
232
233         /*
234          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
235          * with the new swapper, but we could have serious problems paging
236          * out other object types if there is insufficient memory.  
237          *
238          * Unfortunately, checking free memory here is far too late, so the
239          * check has been moved up a procedural level.
240          */
241
242         /*
243          * Don't mess with the page if it's busy, held, or special
244          *
245          * XXX do we really need to check hold_count here?  hold_count
246          * isn't supposed to mess with vm_page ops except prevent the
247          * page from being reused.
248          */
249         if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
250                 vm_page_wakeup(m);
251                 return 0;
252         }
253
254         /*
255          * Place page in cluster.  Align cluster for optimal swap space
256          * allocation (whether it is swap or not).  This is typically ~16-32
257          * pages, which also tends to align the cluster to multiples of the
258          * filesystem block size if backed by a filesystem.
259          */
260         page_base = pindex % BLIST_MAX_ALLOC;
261         mc[page_base] = m;
262         ib = page_base - 1;
263         is = page_base + 1;
264
265         /*
266          * Scan object for clusterable pages.
267          *
268          * We can cluster ONLY if: ->> the page is NOT
269          * clean, wired, busy, held, or mapped into a
270          * buffer, and one of the following:
271          * 1) The page is inactive, or a seldom used
272          *    active page.
273          * -or-
274          * 2) we force the issue.
275          *
276          * During heavy mmap/modification loads the pageout
277          * daemon can really fragment the underlying file
278          * due to flushing pages out of order and not trying
279          * align the clusters (which leave sporatic out-of-order
280          * holes).  To solve this problem we do the reverse scan
281          * first and attempt to align our cluster, then do a 
282          * forward scan if room remains.
283          */
284
285         vm_object_hold(object);
286         while (ib >= 0) {
287                 vm_page_t p;
288
289                 p = vm_page_lookup_busy_try(object, pindex - page_base + ib,
290                                             TRUE, &error);
291                 if (error || p == NULL)
292                         break;
293                 if ((p->queue - p->pc) == PQ_CACHE ||
294                     (p->flags & PG_UNMANAGED)) {
295                         vm_page_wakeup(p);
296                         break;
297                 }
298                 vm_page_test_dirty(p);
299                 if (((p->dirty & p->valid) == 0 &&
300                      (p->flags & PG_NEED_COMMIT) == 0) ||
301                     p->queue - p->pc != PQ_INACTIVE ||
302                     p->wire_count != 0 ||       /* may be held by buf cache */
303                     p->hold_count != 0) {       /* may be undergoing I/O */
304                         vm_page_wakeup(p);
305                         break;
306                 }
307                 mc[ib] = p;
308                 --ib;
309         }
310         ++ib;   /* fixup */
311
312         while (is < BLIST_MAX_ALLOC &&
313                pindex - page_base + is < object->size) {
314                 vm_page_t p;
315
316                 p = vm_page_lookup_busy_try(object, pindex - page_base + is,
317                                             TRUE, &error);
318                 if (error || p == NULL)
319                         break;
320                 if (((p->queue - p->pc) == PQ_CACHE) ||
321                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
322                         vm_page_wakeup(p);
323                         break;
324                 }
325                 vm_page_test_dirty(p);
326                 if (((p->dirty & p->valid) == 0 &&
327                      (p->flags & PG_NEED_COMMIT) == 0) ||
328                     p->queue - p->pc != PQ_INACTIVE ||
329                     p->wire_count != 0 ||       /* may be held by buf cache */
330                     p->hold_count != 0) {       /* may be undergoing I/O */
331                         vm_page_wakeup(p);
332                         break;
333                 }
334                 mc[is] = p;
335                 ++is;
336         }
337
338         vm_object_drop(object);
339
340         /*
341          * we allow reads during pageouts...
342          */
343         return vm_pageout_flush(&mc[ib], is - ib, 0);
344 }
345
346 /*
347  * vm_pageout_flush() - launder the given pages
348  *
349  *      The given pages are laundered.  Note that we setup for the start of
350  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
351  *      reference count all in here rather then in the parent.  If we want
352  *      the parent to do more sophisticated things we may have to change
353  *      the ordering.
354  *
355  *      The pages in the array must be busied by the caller and will be
356  *      unbusied by this function.
357  */
358 int
359 vm_pageout_flush(vm_page_t *mc, int count, int flags)
360 {
361         vm_object_t object;
362         int pageout_status[count];
363         int numpagedout = 0;
364         int i;
365
366         /*
367          * Initiate I/O.  Bump the vm_page_t->busy counter.
368          */
369         for (i = 0; i < count; i++) {
370                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
371                         ("vm_pageout_flush page %p index %d/%d: partially "
372                          "invalid page", mc[i], i, count));
373                 vm_page_io_start(mc[i]);
374         }
375
376         /*
377          * We must make the pages read-only.  This will also force the
378          * modified bit in the related pmaps to be cleared.  The pager
379          * cannot clear the bit for us since the I/O completion code
380          * typically runs from an interrupt.  The act of making the page
381          * read-only handles the case for us.
382          *
383          * Then we can unbusy the pages, we still hold a reference by virtue
384          * of our soft-busy.
385          */
386         for (i = 0; i < count; i++) {
387                 vm_page_protect(mc[i], VM_PROT_READ);
388                 vm_page_wakeup(mc[i]);
389         }
390
391         object = mc[0]->object;
392         vm_object_pip_add(object, count);
393
394         vm_pager_put_pages(object, mc, count,
395             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
396             pageout_status);
397
398         for (i = 0; i < count; i++) {
399                 vm_page_t mt = mc[i];
400
401                 switch (pageout_status[i]) {
402                 case VM_PAGER_OK:
403                         numpagedout++;
404                         break;
405                 case VM_PAGER_PEND:
406                         numpagedout++;
407                         break;
408                 case VM_PAGER_BAD:
409                         /*
410                          * Page outside of range of object. Right now we
411                          * essentially lose the changes by pretending it
412                          * worked.
413                          */
414                         vm_page_busy_wait(mt, FALSE, "pgbad");
415                         pmap_clear_modify(mt);
416                         vm_page_undirty(mt);
417                         vm_page_wakeup(mt);
418                         break;
419                 case VM_PAGER_ERROR:
420                 case VM_PAGER_FAIL:
421                         /*
422                          * A page typically cannot be paged out when we
423                          * have run out of swap.  We leave the page
424                          * marked inactive and will try to page it out
425                          * again later.
426                          *
427                          * Starvation of the active page list is used to
428                          * determine when the system is massively memory
429                          * starved.
430                          */
431                         break;
432                 case VM_PAGER_AGAIN:
433                         break;
434                 }
435
436                 /*
437                  * If the operation is still going, leave the page busy to
438                  * block all other accesses. Also, leave the paging in
439                  * progress indicator set so that we don't attempt an object
440                  * collapse.
441                  *
442                  * For any pages which have completed synchronously, 
443                  * deactivate the page if we are under a severe deficit.
444                  * Do not try to enter them into the cache, though, they
445                  * might still be read-heavy.
446                  */
447                 if (pageout_status[i] != VM_PAGER_PEND) {
448                         vm_page_busy_wait(mt, FALSE, "pgouw");
449                         if (vm_page_count_severe())
450                                 vm_page_deactivate(mt);
451 #if 0
452                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
453                                 vm_page_protect(mt, VM_PROT_READ);
454 #endif
455                         vm_page_io_finish(mt);
456                         vm_page_wakeup(mt);
457                         vm_object_pip_wakeup(object);
458                 }
459         }
460         return numpagedout;
461 }
462
463 #if !defined(NO_SWAPPING)
464 /*
465  * deactivate enough pages to satisfy the inactive target
466  * requirements or if vm_page_proc_limit is set, then
467  * deactivate all of the pages in the object and its
468  * backing_objects.
469  *
470  * The map must be locked.
471  * The caller must hold the vm_object.
472  */
473 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
474
475 static void
476 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
477                                    vm_pindex_t desired, int map_remove_only)
478 {
479         struct rb_vm_page_scan_info info;
480         vm_object_t lobject;
481         vm_object_t tobject;
482         int remove_mode;
483
484         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
485         lobject = object;
486
487         while (lobject) {
488                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
489                         break;
490                 if (lobject->type == OBJT_DEVICE ||
491                     lobject->type == OBJT_MGTDEVICE ||
492                     lobject->type == OBJT_PHYS)
493                         break;
494                 if (lobject->paging_in_progress)
495                         break;
496
497                 remove_mode = map_remove_only;
498                 if (lobject->shadow_count > 1)
499                         remove_mode = 1;
500
501                 /*
502                  * scan the objects entire memory queue.  We hold the
503                  * object's token so the scan should not race anything.
504                  */
505                 info.limit = remove_mode;
506                 info.map = map;
507                 info.desired = desired;
508                 vm_page_rb_tree_RB_SCAN(&lobject->rb_memq, NULL,
509                                 vm_pageout_object_deactivate_pages_callback,
510                                 &info
511                 );
512                 while ((tobject = lobject->backing_object) != NULL) {
513                         KKASSERT(tobject != object);
514                         vm_object_hold(tobject);
515                         if (tobject == lobject->backing_object)
516                                 break;
517                         vm_object_drop(tobject);
518                 }
519                 if (lobject != object) {
520                         if (tobject)
521                                 vm_object_lock_swap();
522                         vm_object_drop(lobject);
523                         /* leaves tobject locked & at top */
524                 }
525                 lobject = tobject;
526         }
527         if (lobject != object)
528                 vm_object_drop(lobject);        /* NULL ok */
529 }
530
531 /*
532  * The caller must hold the vm_object.
533  */
534 static int
535 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
536 {
537         struct rb_vm_page_scan_info *info = data;
538         int actcount;
539
540         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
541                 return(-1);
542         }
543         mycpu->gd_cnt.v_pdpages++;
544
545         if (vm_page_busy_try(p, TRUE))
546                 return(0);
547         if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
548                 vm_page_wakeup(p);
549                 return(0);
550         }
551         if (!pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
552                 vm_page_wakeup(p);
553                 return(0);
554         }
555
556         actcount = pmap_ts_referenced(p);
557         if (actcount) {
558                 vm_page_flag_set(p, PG_REFERENCED);
559         } else if (p->flags & PG_REFERENCED) {
560                 actcount = 1;
561         }
562
563         vm_page_and_queue_spin_lock(p);
564         if (p->queue - p->pc != PQ_ACTIVE && (p->flags & PG_REFERENCED)) {
565                 vm_page_and_queue_spin_unlock(p);
566                 vm_page_activate(p);
567                 p->act_count += actcount;
568                 vm_page_flag_clear(p, PG_REFERENCED);
569         } else if (p->queue - p->pc == PQ_ACTIVE) {
570                 if ((p->flags & PG_REFERENCED) == 0) {
571                         p->act_count -= min(p->act_count, ACT_DECLINE);
572                         if (!info->limit &&
573                             (vm_pageout_algorithm || (p->act_count == 0))) {
574                                 vm_page_and_queue_spin_unlock(p);
575                                 vm_page_protect(p, VM_PROT_NONE);
576                                 vm_page_deactivate(p);
577                         } else {
578                                 TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
579                                              p, pageq);
580                                 TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
581                                                   p, pageq);
582                                 vm_page_and_queue_spin_unlock(p);
583                         }
584                 } else {
585                         vm_page_and_queue_spin_unlock(p);
586                         vm_page_activate(p);
587                         vm_page_flag_clear(p, PG_REFERENCED);
588
589                         vm_page_and_queue_spin_lock(p);
590                         if (p->queue - p->pc == PQ_ACTIVE) {
591                                 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
592                                         p->act_count += ACT_ADVANCE;
593                                 TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
594                                              p, pageq);
595                                 TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
596                                                   p, pageq);
597                         }
598                         vm_page_and_queue_spin_unlock(p);
599                 }
600         } else if (p->queue - p->pc == PQ_INACTIVE) {
601                 vm_page_and_queue_spin_unlock(p);
602                 vm_page_protect(p, VM_PROT_NONE);
603         } else {
604                 vm_page_and_queue_spin_unlock(p);
605         }
606         vm_page_wakeup(p);
607         return(0);
608 }
609
610 /*
611  * Deactivate some number of pages in a map, try to do it fairly, but
612  * that is really hard to do.
613  */
614 static void
615 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
616 {
617         vm_map_entry_t tmpe;
618         vm_object_t obj, bigobj;
619         int nothingwired;
620
621         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
622                 return;
623         }
624
625         bigobj = NULL;
626         nothingwired = TRUE;
627
628         /*
629          * first, search out the biggest object, and try to free pages from
630          * that.
631          */
632         tmpe = map->header.next;
633         while (tmpe != &map->header) {
634                 switch(tmpe->maptype) {
635                 case VM_MAPTYPE_NORMAL:
636                 case VM_MAPTYPE_VPAGETABLE:
637                         obj = tmpe->object.vm_object;
638                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
639                                 ((bigobj == NULL) ||
640                                  (bigobj->resident_page_count < obj->resident_page_count))) {
641                                 bigobj = obj;
642                         }
643                         break;
644                 default:
645                         break;
646                 }
647                 if (tmpe->wired_count > 0)
648                         nothingwired = FALSE;
649                 tmpe = tmpe->next;
650         }
651
652         if (bigobj)  {
653                 vm_object_hold(bigobj);
654                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
655                 vm_object_drop(bigobj);
656         }
657
658         /*
659          * Next, hunt around for other pages to deactivate.  We actually
660          * do this search sort of wrong -- .text first is not the best idea.
661          */
662         tmpe = map->header.next;
663         while (tmpe != &map->header) {
664                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
665                         break;
666                 switch(tmpe->maptype) {
667                 case VM_MAPTYPE_NORMAL:
668                 case VM_MAPTYPE_VPAGETABLE:
669                         obj = tmpe->object.vm_object;
670                         if (obj) {
671                                 vm_object_hold(obj);
672                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
673                                 vm_object_drop(obj);
674                         }
675                         break;
676                 default:
677                         break;
678                 }
679                 tmpe = tmpe->next;
680         }
681
682         /*
683          * Remove all mappings if a process is swapped out, this will free page
684          * table pages.
685          */
686         if (desired == 0 && nothingwired)
687                 pmap_remove(vm_map_pmap(map),
688                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
689         vm_map_unlock(map);
690 }
691 #endif
692
693 /*
694  * Called when the pageout scan wants to free a page.  We no longer
695  * try to cycle the vm_object here with a reference & dealloc, which can
696  * cause a non-trivial object collapse in a critical path.
697  *
698  * It is unclear why we cycled the ref_count in the past, perhaps to try
699  * to optimize shadow chain collapses but I don't quite see why it would
700  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
701  * synchronously and not have to be kicked-start.
702  */
703 static void
704 vm_pageout_page_free(vm_page_t m) 
705 {
706         vm_page_protect(m, VM_PROT_NONE);
707         vm_page_free(m);
708 }
709
710 /*
711  * vm_pageout_scan does the dirty work for the pageout daemon.
712  */
713 struct vm_pageout_scan_info {
714         struct proc *bigproc;
715         vm_offset_t bigsize;
716 };
717
718 static int vm_pageout_scan_callback(struct proc *p, void *data);
719
720 static int
721 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
722                          int *vnodes_skippedp)
723 {
724         vm_page_t m;
725         struct vm_page marker;
726         struct vnode *vpfailed;         /* warning, allowed to be stale */
727         int maxscan;
728         int count;
729         int delta = 0;
730         vm_object_t object;
731         int actcount;
732         int maxlaunder;
733
734         /*
735          * Start scanning the inactive queue for pages we can move to the
736          * cache or free.  The scan will stop when the target is reached or
737          * we have scanned the entire inactive queue.  Note that m->act_count
738          * is not used to form decisions for the inactive queue, only for the
739          * active queue.
740          *
741          * maxlaunder limits the number of dirty pages we flush per scan.
742          * For most systems a smaller value (16 or 32) is more robust under
743          * extreme memory and disk pressure because any unnecessary writes
744          * to disk can result in extreme performance degredation.  However,
745          * systems with excessive dirty pages (especially when MAP_NOSYNC is
746          * used) will die horribly with limited laundering.  If the pageout
747          * daemon cannot clean enough pages in the first pass, we let it go
748          * all out in succeeding passes.
749          */
750         if ((maxlaunder = vm_max_launder) <= 1)
751                 maxlaunder = 1;
752         if (pass)
753                 maxlaunder = 10000;
754
755         /*
756          * Initialize our marker
757          */
758         bzero(&marker, sizeof(marker));
759         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
760         marker.queue = PQ_INACTIVE + q;
761         marker.pc = q;
762         marker.wire_count = 1;
763
764         /*
765          * Inactive queue scan.
766          *
767          * NOTE: The vm_page must be spinlocked before the queue to avoid
768          *       deadlocks, so it is easiest to simply iterate the loop
769          *       with the queue unlocked at the top.
770          */
771         vpfailed = NULL;
772
773         vm_page_queues_spin_lock(PQ_INACTIVE + q);
774         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
775         maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
776
777         /*
778          * Queue locked at top of loop to avoid stack marker issues.
779          */
780         while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
781                maxscan-- > 0 && avail_shortage - delta > 0)
782         {
783                 KKASSERT(m->queue - m->pc == PQ_INACTIVE);
784                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
785                              &marker, pageq);
786                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
787                                    &marker, pageq);
788                 mycpu->gd_cnt.v_pdpages++;
789
790                 /*
791                  * Skip marker pages (atomic against other markers to avoid
792                  * infinite hop-over scans).
793                  */
794                 if (m->flags & PG_MARKER)
795                         continue;
796
797                 /*
798                  * Try to busy the page.  Don't mess with pages which are
799                  * already busy or reorder them in the queue.
800                  */
801                 if (vm_page_busy_try(m, TRUE))
802                         continue;
803
804                 /*
805                  * Remaining operations run with the page busy and neither
806                  * the page or the queue will be spin-locked.
807                  */
808                 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
809                 KKASSERT(m->queue - m->pc == PQ_INACTIVE);
810                 lwkt_yield();
811
812                 /*
813                  * It is possible for a page to be busied ad-hoc (e.g. the
814                  * pmap_collect() code) and wired and race against the
815                  * allocation of a new page.  vm_page_alloc() may be forced
816                  * to deactivate the wired page in which case it winds up
817                  * on the inactive queue and must be handled here.  We
818                  * correct the problem simply by unqueuing the page.
819                  */
820                 if (m->wire_count) {
821                         vm_page_unqueue_nowakeup(m);
822                         vm_page_wakeup(m);
823                         kprintf("WARNING: pagedaemon: wired page on "
824                                 "inactive queue %p\n", m);
825                         goto next;
826                 }
827
828                 /*
829                  * A held page may be undergoing I/O, so skip it.
830                  */
831                 if (m->hold_count) {
832                         vm_page_and_queue_spin_lock(m);
833                         if (m->queue - m->pc == PQ_INACTIVE) {
834                                 TAILQ_REMOVE(
835                                         &vm_page_queues[PQ_INACTIVE + q].pl,
836                                         m, pageq);
837                                 TAILQ_INSERT_TAIL(
838                                         &vm_page_queues[PQ_INACTIVE + q].pl,
839                                         m, pageq);
840                                 ++vm_swapcache_inactive_heuristic;
841                         }
842                         vm_page_and_queue_spin_unlock(m);
843                         vm_page_wakeup(m);
844                         goto next;
845                 }
846
847                 if (m->object == NULL || m->object->ref_count == 0) {
848                         /*
849                          * If the object is not being used, we ignore previous 
850                          * references.
851                          */
852                         vm_page_flag_clear(m, PG_REFERENCED);
853                         pmap_clear_reference(m);
854                         /* fall through to end */
855                 } else if (((m->flags & PG_REFERENCED) == 0) &&
856                             (actcount = pmap_ts_referenced(m))) {
857                         /*
858                          * Otherwise, if the page has been referenced while 
859                          * in the inactive queue, we bump the "activation
860                          * count" upwards, making it less likely that the
861                          * page will be added back to the inactive queue
862                          * prematurely again.  Here we check the page tables
863                          * (or emulated bits, if any), given the upper level
864                          * VM system not knowing anything about existing 
865                          * references.
866                          */
867                         vm_page_activate(m);
868                         m->act_count += (actcount + ACT_ADVANCE);
869                         vm_page_wakeup(m);
870                         goto next;
871                 }
872
873                 /*
874                  * (m) is still busied.
875                  *
876                  * If the upper level VM system knows about any page 
877                  * references, we activate the page.  We also set the 
878                  * "activation count" higher than normal so that we will less 
879                  * likely place pages back onto the inactive queue again.
880                  */
881                 if ((m->flags & PG_REFERENCED) != 0) {
882                         vm_page_flag_clear(m, PG_REFERENCED);
883                         actcount = pmap_ts_referenced(m);
884                         vm_page_activate(m);
885                         m->act_count += (actcount + ACT_ADVANCE + 1);
886                         vm_page_wakeup(m);
887                         goto next;
888                 }
889
890                 /*
891                  * If the upper level VM system doesn't know anything about 
892                  * the page being dirty, we have to check for it again.  As 
893                  * far as the VM code knows, any partially dirty pages are 
894                  * fully dirty.
895                  *
896                  * Pages marked PG_WRITEABLE may be mapped into the user
897                  * address space of a process running on another cpu.  A
898                  * user process (without holding the MP lock) running on
899                  * another cpu may be able to touch the page while we are
900                  * trying to remove it.  vm_page_cache() will handle this
901                  * case for us.
902                  */
903                 if (m->dirty == 0) {
904                         vm_page_test_dirty(m);
905                 } else {
906                         vm_page_dirty(m);
907                 }
908
909                 if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
910                         /*
911                          * Invalid pages can be easily freed
912                          */
913                         vm_pageout_page_free(m);
914                         mycpu->gd_cnt.v_dfree++;
915                         ++delta;
916                 } else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
917                         /*
918                          * Clean pages can be placed onto the cache queue.
919                          * This effectively frees them.
920                          */
921                         vm_page_cache(m);
922                         ++delta;
923                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
924                         /*
925                          * Dirty pages need to be paged out, but flushing
926                          * a page is extremely expensive verses freeing
927                          * a clean page.  Rather then artificially limiting
928                          * the number of pages we can flush, we instead give
929                          * dirty pages extra priority on the inactive queue
930                          * by forcing them to be cycled through the queue
931                          * twice before being flushed, after which the 
932                          * (now clean) page will cycle through once more
933                          * before being freed.  This significantly extends
934                          * the thrash point for a heavily loaded machine.
935                          */
936                         vm_page_flag_set(m, PG_WINATCFLS);
937                         vm_page_and_queue_spin_lock(m);
938                         if (m->queue - m->pc == PQ_INACTIVE) {
939                                 TAILQ_REMOVE(
940                                         &vm_page_queues[PQ_INACTIVE + q].pl,
941                                         m, pageq);
942                                 TAILQ_INSERT_TAIL(
943                                         &vm_page_queues[PQ_INACTIVE + q].pl,
944                                         m, pageq);
945                                 ++vm_swapcache_inactive_heuristic;
946                         }
947                         vm_page_and_queue_spin_unlock(m);
948                         vm_page_wakeup(m);
949                 } else if (maxlaunder > 0) {
950                         /*
951                          * We always want to try to flush some dirty pages if
952                          * we encounter them, to keep the system stable.
953                          * Normally this number is small, but under extreme
954                          * pressure where there are insufficient clean pages
955                          * on the inactive queue, we may have to go all out.
956                          */
957                         int swap_pageouts_ok;
958                         struct vnode *vp = NULL;
959
960                         swap_pageouts_ok = 0;
961                         object = m->object;
962                         if (object &&
963                             (object->type != OBJT_SWAP) && 
964                             (object->type != OBJT_DEFAULT)) {
965                                 swap_pageouts_ok = 1;
966                         } else {
967                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
968                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
969                                 vm_page_count_min(0));
970                                                                                 
971                         }
972
973                         /*
974                          * We don't bother paging objects that are "dead".  
975                          * Those objects are in a "rundown" state.
976                          */
977                         if (!swap_pageouts_ok || 
978                             (object == NULL) ||
979                             (object->flags & OBJ_DEAD)) {
980                                 vm_page_and_queue_spin_lock(m);
981                                 if (m->queue - m->pc == PQ_INACTIVE) {
982                                         TAILQ_REMOVE(
983                                             &vm_page_queues[PQ_INACTIVE + q].pl,
984                                             m, pageq);
985                                         TAILQ_INSERT_TAIL(
986                                             &vm_page_queues[PQ_INACTIVE + q].pl,
987                                             m, pageq);
988                                         ++vm_swapcache_inactive_heuristic;
989                                 }
990                                 vm_page_and_queue_spin_unlock(m);
991                                 vm_page_wakeup(m);
992                                 goto next;
993                         }
994
995                         /*
996                          * (m) is still busied.
997                          *
998                          * The object is already known NOT to be dead.   It
999                          * is possible for the vget() to block the whole
1000                          * pageout daemon, but the new low-memory handling
1001                          * code should prevent it.
1002                          *
1003                          * The previous code skipped locked vnodes and, worse,
1004                          * reordered pages in the queue.  This results in
1005                          * completely non-deterministic operation because,
1006                          * quite often, a vm_fault has initiated an I/O and
1007                          * is holding a locked vnode at just the point where
1008                          * the pageout daemon is woken up.
1009                          *
1010                          * We can't wait forever for the vnode lock, we might
1011                          * deadlock due to a vn_read() getting stuck in
1012                          * vm_wait while holding this vnode.  We skip the 
1013                          * vnode if we can't get it in a reasonable amount
1014                          * of time.
1015                          *
1016                          * vpfailed is used to (try to) avoid the case where
1017                          * a large number of pages are associated with a
1018                          * locked vnode, which could cause the pageout daemon
1019                          * to stall for an excessive amount of time.
1020                          */
1021                         if (object->type == OBJT_VNODE) {
1022                                 int flags;
1023
1024                                 vp = object->handle;
1025                                 flags = LK_EXCLUSIVE;
1026                                 if (vp == vpfailed)
1027                                         flags |= LK_NOWAIT;
1028                                 else
1029                                         flags |= LK_TIMELOCK;
1030                                 vm_page_hold(m);
1031                                 vm_page_wakeup(m);
1032
1033                                 /*
1034                                  * We have unbusied (m) temporarily so we can
1035                                  * acquire the vp lock without deadlocking.
1036                                  * (m) is held to prevent destruction.
1037                                  */
1038                                 if (vget(vp, flags) != 0) {
1039                                         vpfailed = vp;
1040                                         ++pageout_lock_miss;
1041                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1042                                                     ++*vnodes_skippedp;
1043                                         vm_page_unhold(m);
1044                                         goto next;
1045                                 }
1046
1047                                 /*
1048                                  * The page might have been moved to another
1049                                  * queue during potential blocking in vget()
1050                                  * above.  The page might have been freed and
1051                                  * reused for another vnode.  The object might
1052                                  * have been reused for another vnode.
1053                                  */
1054                                 if (m->queue - m->pc != PQ_INACTIVE ||
1055                                     m->object != object ||
1056                                     object->handle != vp) {
1057                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1058                                                 ++*vnodes_skippedp;
1059                                         vput(vp);
1060                                         vm_page_unhold(m);
1061                                         goto next;
1062                                 }
1063         
1064                                 /*
1065                                  * The page may have been busied during the
1066                                  * blocking in vput();  We don't move the
1067                                  * page back onto the end of the queue so that
1068                                  * statistics are more correct if we don't.
1069                                  */
1070                                 if (vm_page_busy_try(m, TRUE)) {
1071                                         vput(vp);
1072                                         vm_page_unhold(m);
1073                                         goto next;
1074                                 }
1075                                 vm_page_unhold(m);
1076
1077                                 /*
1078                                  * (m) is busied again
1079                                  *
1080                                  * We own the busy bit and remove our hold
1081                                  * bit.  If the page is still held it
1082                                  * might be undergoing I/O, so skip it.
1083                                  */
1084                                 if (m->hold_count) {
1085                                         vm_page_and_queue_spin_lock(m);
1086                                         if (m->queue - m->pc == PQ_INACTIVE) {
1087                                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1088                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1089                                                 ++vm_swapcache_inactive_heuristic;
1090                                         }
1091                                         vm_page_and_queue_spin_unlock(m);
1092                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1093                                                 ++*vnodes_skippedp;
1094                                         vm_page_wakeup(m);
1095                                         vput(vp);
1096                                         goto next;
1097                                 }
1098                                 /* (m) is left busied as we fall through */
1099                         }
1100
1101                         /*
1102                          * page is busy and not held here.
1103                          *
1104                          * If a page is dirty, then it is either being washed
1105                          * (but not yet cleaned) or it is still in the
1106                          * laundry.  If it is still in the laundry, then we
1107                          * start the cleaning operation. 
1108                          *
1109                          * decrement inactive_shortage on success to account
1110                          * for the (future) cleaned page.  Otherwise we
1111                          * could wind up laundering or cleaning too many
1112                          * pages.
1113                          */
1114                         count = vm_pageout_clean(m);
1115                         delta += count;
1116                         maxlaunder -= count;
1117
1118                         /*
1119                          * Clean ate busy, page no longer accessible
1120                          */
1121                         if (vp != NULL)
1122                                 vput(vp);
1123                 } else {
1124                         vm_page_wakeup(m);
1125                 }
1126
1127 next:
1128                 /*
1129                  * Systems with a ton of memory can wind up with huge
1130                  * deactivation counts.  Because the inactive scan is
1131                  * doing a lot of flushing, the combination can result
1132                  * in excessive paging even in situations where other
1133                  * unrelated threads free up sufficient VM.
1134                  *
1135                  * To deal with this we abort the nominal active->inactive
1136                  * scan before we hit the inactive target when free+cache
1137                  * levels have already reached their target.
1138                  *
1139                  * Note that nominally the inactive scan is not freeing or
1140                  * caching pages, it is deactivating active pages, so it
1141                  * will not by itself cause the abort condition.
1142                  */
1143                 vm_page_queues_spin_lock(PQ_INACTIVE + q);
1144                 if (vm_paging_target() < 0)
1145                         break;
1146         }
1147
1148         /* page queue still spin-locked */
1149         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
1150         vm_page_queues_spin_unlock(PQ_INACTIVE + q);
1151
1152         return (delta);
1153 }
1154
1155 static int
1156 vm_pageout_scan_active(int pass, int q,
1157                        int avail_shortage, int inactive_shortage,
1158                        int *recycle_countp)
1159 {
1160         struct vm_page marker;
1161         vm_page_t m;
1162         int actcount;
1163         int delta = 0;
1164         int maxscan;
1165
1166         /*
1167          * We want to move pages from the active queue to the inactive
1168          * queue to get the inactive queue to the inactive target.  If
1169          * we still have a page shortage from above we try to directly free
1170          * clean pages instead of moving them.
1171          *
1172          * If we do still have a shortage we keep track of the number of
1173          * pages we free or cache (recycle_count) as a measure of thrashing
1174          * between the active and inactive queues.
1175          *
1176          * If we were able to completely satisfy the free+cache targets
1177          * from the inactive pool we limit the number of pages we move
1178          * from the active pool to the inactive pool to 2x the pages we
1179          * had removed from the inactive pool (with a minimum of 1/5 the
1180          * inactive target).  If we were not able to completely satisfy
1181          * the free+cache targets we go for the whole target aggressively.
1182          *
1183          * NOTE: Both variables can end up negative.
1184          * NOTE: We are still in a critical section.
1185          */
1186
1187         bzero(&marker, sizeof(marker));
1188         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1189         marker.queue = PQ_ACTIVE + q;
1190         marker.pc = q;
1191         marker.wire_count = 1;
1192
1193         vm_page_queues_spin_lock(PQ_ACTIVE + q);
1194         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1195         maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1196
1197         /*
1198          * Queue locked at top of loop to avoid stack marker issues.
1199          */
1200         while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1201                maxscan-- > 0 && (avail_shortage - delta > 0 ||
1202                                 inactive_shortage > 0))
1203         {
1204                 KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1205                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1206                              &marker, pageq);
1207                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1208                                    &marker, pageq);
1209
1210                 /*
1211                  * Skip marker pages (atomic against other markers to avoid
1212                  * infinite hop-over scans).
1213                  */
1214                 if (m->flags & PG_MARKER)
1215                         continue;
1216
1217                 /*
1218                  * Try to busy the page.  Don't mess with pages which are
1219                  * already busy or reorder them in the queue.
1220                  */
1221                 if (vm_page_busy_try(m, TRUE))
1222                         continue;
1223
1224                 /*
1225                  * Remaining operations run with the page busy and neither
1226                  * the page or the queue will be spin-locked.
1227                  */
1228                 vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1229                 KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1230                 lwkt_yield();
1231
1232                 /*
1233                  * Don't deactivate pages that are held, even if we can
1234                  * busy them.  (XXX why not?)
1235                  */
1236                 if (m->hold_count != 0) {
1237                         vm_page_and_queue_spin_lock(m);
1238                         if (m->queue - m->pc == PQ_ACTIVE) {
1239                                 TAILQ_REMOVE(
1240                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1241                                         m, pageq);
1242                                 TAILQ_INSERT_TAIL(
1243                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1244                                         m, pageq);
1245                         }
1246                         vm_page_and_queue_spin_unlock(m);
1247                         vm_page_wakeup(m);
1248                         goto next;
1249                 }
1250
1251                 /*
1252                  * The count for pagedaemon pages is done after checking the
1253                  * page for eligibility...
1254                  */
1255                 mycpu->gd_cnt.v_pdpages++;
1256
1257                 /*
1258                  * Check to see "how much" the page has been used and clear
1259                  * the tracking access bits.  If the object has no references
1260                  * don't bother paying the expense.
1261                  */
1262                 actcount = 0;
1263                 if (m->object && m->object->ref_count != 0) {
1264                         if (m->flags & PG_REFERENCED)
1265                                 ++actcount;
1266                         actcount += pmap_ts_referenced(m);
1267                         if (actcount) {
1268                                 m->act_count += ACT_ADVANCE + actcount;
1269                                 if (m->act_count > ACT_MAX)
1270                                         m->act_count = ACT_MAX;
1271                         }
1272                 }
1273                 vm_page_flag_clear(m, PG_REFERENCED);
1274
1275                 /*
1276                  * actcount is only valid if the object ref_count is non-zero.
1277                  * If the page does not have an object, actcount will be zero.
1278                  */
1279                 if (actcount && m->object->ref_count != 0) {
1280                         vm_page_and_queue_spin_lock(m);
1281                         if (m->queue - m->pc == PQ_ACTIVE) {
1282                                 TAILQ_REMOVE(
1283                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1284                                         m, pageq);
1285                                 TAILQ_INSERT_TAIL(
1286                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1287                                         m, pageq);
1288                         }
1289                         vm_page_and_queue_spin_unlock(m);
1290                         vm_page_wakeup(m);
1291                 } else {
1292                         switch(m->object->type) {
1293                         case OBJT_DEFAULT:
1294                         case OBJT_SWAP:
1295                                 m->act_count -= min(m->act_count,
1296                                                     vm_anonmem_decline);
1297                                 break;
1298                         default:
1299                                 m->act_count -= min(m->act_count,
1300                                                     vm_filemem_decline);
1301                                 break;
1302                         }
1303                         if (vm_pageout_algorithm ||
1304                             (m->object == NULL) ||
1305                             (m->object && (m->object->ref_count == 0)) ||
1306                             m->act_count < pass + 1
1307                         ) {
1308                                 /*
1309                                  * Deactivate the page.  If we had a
1310                                  * shortage from our inactive scan try to
1311                                  * free (cache) the page instead.
1312                                  *
1313                                  * Don't just blindly cache the page if
1314                                  * we do not have a shortage from the
1315                                  * inactive scan, that could lead to
1316                                  * gigabytes being moved.
1317                                  */
1318                                 --inactive_shortage;
1319                                 if (avail_shortage - delta > 0 ||
1320                                     (m->object && (m->object->ref_count == 0)))
1321                                 {
1322                                         if (avail_shortage - delta > 0)
1323                                                 ++*recycle_countp;
1324                                         vm_page_protect(m, VM_PROT_NONE);
1325                                         if (m->dirty == 0 &&
1326                                             (m->flags & PG_NEED_COMMIT) == 0 &&
1327                                             avail_shortage - delta > 0) {
1328                                                 vm_page_cache(m);
1329                                         } else {
1330                                                 vm_page_deactivate(m);
1331                                                 vm_page_wakeup(m);
1332                                         }
1333                                 } else {
1334                                         vm_page_deactivate(m);
1335                                         vm_page_wakeup(m);
1336                                 }
1337                                 ++delta;
1338                         } else {
1339                                 vm_page_and_queue_spin_lock(m);
1340                                 if (m->queue - m->pc == PQ_ACTIVE) {
1341                                         TAILQ_REMOVE(
1342                                             &vm_page_queues[PQ_ACTIVE + q].pl,
1343                                             m, pageq);
1344                                         TAILQ_INSERT_TAIL(
1345                                             &vm_page_queues[PQ_ACTIVE + q].pl,
1346                                             m, pageq);
1347                                 }
1348                                 vm_page_and_queue_spin_unlock(m);
1349                                 vm_page_wakeup(m);
1350                         }
1351                 }
1352 next:
1353                 vm_page_queues_spin_lock(PQ_ACTIVE + q);
1354         }
1355
1356         /*
1357          * Clean out our local marker.
1358          *
1359          * Page queue still spin-locked.
1360          */
1361         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1362         vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1363
1364         return (delta);
1365 }
1366
1367 /*
1368  * The number of actually free pages can drop down to v_free_reserved,
1369  * we try to build the free count back above v_free_min.  Note that
1370  * vm_paging_needed() also returns TRUE if v_free_count is not at
1371  * least v_free_min so that is the minimum we must build the free
1372  * count to.
1373  *
1374  * We use a slightly higher target to improve hysteresis,
1375  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1376  * is usually the same as v_cache_min this maintains about
1377  * half the pages in the free queue as are in the cache queue,
1378  * providing pretty good pipelining for pageout operation.
1379  *
1380  * The system operator can manipulate vm.v_cache_min and
1381  * vm.v_free_target to tune the pageout demon.  Be sure
1382  * to keep vm.v_free_min < vm.v_free_target.
1383  *
1384  * Note that the original paging target is to get at least
1385  * (free_min + cache_min) into (free + cache).  The slightly
1386  * higher target will shift additional pages from cache to free
1387  * without effecting the original paging target in order to
1388  * maintain better hysteresis and not have the free count always
1389  * be dead-on v_free_min.
1390  *
1391  * NOTE: we are still in a critical section.
1392  *
1393  * Pages moved from PQ_CACHE to totally free are not counted in the
1394  * pages_freed counter.
1395  */
1396 static void
1397 vm_pageout_scan_cache(int avail_shortage, int pass,
1398                       int vnodes_skipped, int recycle_count)
1399 {
1400         struct vm_pageout_scan_info info;
1401         vm_page_t m;
1402
1403         while (vmstats.v_free_count <
1404                (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1405                 /*
1406                  * This steals some code from vm/vm_page.c
1407                  */
1408                 static int cache_rover = 0;
1409
1410                 m = vm_page_list_find(PQ_CACHE,
1411                                       cache_rover & PQ_L2_MASK, FALSE);
1412                 if (m == NULL)
1413                         break;
1414                 /* page is returned removed from its queue and spinlocked */
1415                 if (vm_page_busy_try(m, TRUE)) {
1416                         vm_page_deactivate_locked(m);
1417                         vm_page_spin_unlock(m);
1418                         continue;
1419                 }
1420                 vm_page_spin_unlock(m);
1421                 pagedaemon_wakeup();
1422                 lwkt_yield();
1423
1424                 /*
1425                  * Remaining operations run with the page busy and neither
1426                  * the page or the queue will be spin-locked.
1427                  */
1428                 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1429                     m->hold_count ||
1430                     m->wire_count) {
1431                         vm_page_deactivate(m);
1432                         vm_page_wakeup(m);
1433                         continue;
1434                 }
1435                 KKASSERT((m->flags & PG_MAPPED) == 0);
1436                 KKASSERT(m->dirty == 0);
1437                 cache_rover += PQ_PRIME2;
1438                 vm_pageout_page_free(m);
1439                 mycpu->gd_cnt.v_dfree++;
1440         }
1441
1442 #if !defined(NO_SWAPPING)
1443         /*
1444          * Idle process swapout -- run once per second.
1445          */
1446         if (vm_swap_idle_enabled) {
1447                 static time_t lsec;
1448                 if (time_uptime != lsec) {
1449                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1450                         vm_req_vmdaemon();
1451                         lsec = time_uptime;
1452                 }
1453         }
1454 #endif
1455                 
1456         /*
1457          * If we didn't get enough free pages, and we have skipped a vnode
1458          * in a writeable object, wakeup the sync daemon.  And kick swapout
1459          * if we did not get enough free pages.
1460          */
1461         if (vm_paging_target() > 0) {
1462                 if (vnodes_skipped && vm_page_count_min(0))
1463                         speedup_syncer(NULL);
1464 #if !defined(NO_SWAPPING)
1465                 if (vm_swap_enabled && vm_page_count_target()) {
1466                         vm_req_vmdaemon();
1467                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1468                 }
1469 #endif
1470         }
1471
1472         /*
1473          * Handle catastrophic conditions.  Under good conditions we should
1474          * be at the target, well beyond our minimum.  If we could not even
1475          * reach our minimum the system is under heavy stress.  But just being
1476          * under heavy stress does not trigger process killing.
1477          *
1478          * We consider ourselves to have run out of memory if the swap pager
1479          * is full and avail_shortage is still positive.  The secondary check
1480          * ensures that we do not kill processes if the instantanious
1481          * availability is good, even if the pageout demon pass says it
1482          * couldn't get to the target.
1483          */
1484         if (swap_pager_almost_full &&
1485             (vm_page_count_min(recycle_count) || avail_shortage > 0)) {
1486                 kprintf("Warning: system low on memory+swap "
1487                         "shortage %d for %d ticks!\n",
1488                         avail_shortage, ticks - swap_fail_ticks);
1489         }
1490         if (swap_pager_full &&
1491             avail_shortage > 0 &&
1492             vm_paging_target() > 0) {
1493                 /*
1494                  * Kill something.
1495                  */
1496                 info.bigproc = NULL;
1497                 info.bigsize = 0;
1498                 allproc_scan(vm_pageout_scan_callback, &info);
1499                 if (info.bigproc != NULL) {
1500                         killproc(info.bigproc, "out of swap space");
1501                         info.bigproc->p_nice = PRIO_MIN;
1502                         info.bigproc->p_usched->resetpriority(
1503                                 FIRST_LWP_IN_PROC(info.bigproc));
1504                         wakeup(&vmstats.v_free_count);
1505                         PRELE(info.bigproc);
1506                 }
1507         }
1508 }
1509
1510 static int
1511 vm_pageout_scan_callback(struct proc *p, void *data)
1512 {
1513         struct vm_pageout_scan_info *info = data;
1514         vm_offset_t size;
1515
1516         /*
1517          * Never kill system processes or init.  If we have configured swap
1518          * then try to avoid killing low-numbered pids.
1519          */
1520         if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1521             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1522                 return (0);
1523         }
1524
1525         lwkt_gettoken(&p->p_token);
1526
1527         /*
1528          * if the process is in a non-running type state,
1529          * don't touch it.
1530          */
1531         if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1532                 lwkt_reltoken(&p->p_token);
1533                 return (0);
1534         }
1535
1536         /*
1537          * Get the approximate process size.  Note that anonymous pages
1538          * with backing swap will be counted twice, but there should not
1539          * be too many such pages due to the stress the VM system is
1540          * under at this point.
1541          */
1542         size = vmspace_anonymous_count(p->p_vmspace) +
1543                 vmspace_swap_count(p->p_vmspace);
1544
1545         /*
1546          * If the this process is bigger than the biggest one
1547          * remember it.
1548          */
1549         if (info->bigsize < size) {
1550                 if (info->bigproc)
1551                         PRELE(info->bigproc);
1552                 PHOLD(p);
1553                 info->bigproc = p;
1554                 info->bigsize = size;
1555         }
1556         lwkt_reltoken(&p->p_token);
1557         lwkt_yield();
1558
1559         return(0);
1560 }
1561
1562 /*
1563  * This routine tries to maintain the pseudo LRU active queue,
1564  * so that during long periods of time where there is no paging,
1565  * that some statistic accumulation still occurs.  This code
1566  * helps the situation where paging just starts to occur.
1567  */
1568 static void
1569 vm_pageout_page_stats(int q)
1570 {
1571         static int fullintervalcount = 0;
1572         struct vm_page marker;
1573         vm_page_t m;
1574         int pcount, tpcount;            /* Number of pages to check */
1575         int page_shortage;
1576
1577         page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1578                          vmstats.v_free_min) -
1579                         (vmstats.v_free_count + vmstats.v_inactive_count +
1580                          vmstats.v_cache_count);
1581
1582         if (page_shortage <= 0)
1583                 return;
1584
1585         pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1586         fullintervalcount += vm_pageout_stats_interval;
1587         if (fullintervalcount < vm_pageout_full_stats_interval) {
1588                 tpcount = (vm_pageout_stats_max * pcount) /
1589                           vmstats.v_page_count + 1;
1590                 if (pcount > tpcount)
1591                         pcount = tpcount;
1592         } else {
1593                 fullintervalcount = 0;
1594         }
1595
1596         bzero(&marker, sizeof(marker));
1597         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1598         marker.queue = PQ_ACTIVE + q;
1599         marker.pc = q;
1600         marker.wire_count = 1;
1601
1602         vm_page_queues_spin_lock(PQ_ACTIVE + q);
1603         TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1604
1605         /*
1606          * Queue locked at top of loop to avoid stack marker issues.
1607          */
1608         while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1609                pcount-- > 0)
1610         {
1611                 int actcount;
1612
1613                 KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1614                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1615                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1616                                    &marker, pageq);
1617
1618                 /*
1619                  * Skip marker pages (atomic against other markers to avoid
1620                  * infinite hop-over scans).
1621                  */
1622                 if (m->flags & PG_MARKER)
1623                         continue;
1624
1625                 /*
1626                  * Ignore pages we can't busy
1627                  */
1628                 if (vm_page_busy_try(m, TRUE))
1629                         continue;
1630
1631                 /*
1632                  * Remaining operations run with the page busy and neither
1633                  * the page or the queue will be spin-locked.
1634                  */
1635                 vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1636                 KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1637
1638                 /*
1639                  * We now have a safely busied page, the page and queue
1640                  * spinlocks have been released.
1641                  *
1642                  * Ignore held pages
1643                  */
1644                 if (m->hold_count) {
1645                         vm_page_wakeup(m);
1646                         goto next;
1647                 }
1648
1649                 /*
1650                  * Calculate activity
1651                  */
1652                 actcount = 0;
1653                 if (m->flags & PG_REFERENCED) {
1654                         vm_page_flag_clear(m, PG_REFERENCED);
1655                         actcount += 1;
1656                 }
1657                 actcount += pmap_ts_referenced(m);
1658
1659                 /*
1660                  * Update act_count and move page to end of queue.
1661                  */
1662                 if (actcount) {
1663                         m->act_count += ACT_ADVANCE + actcount;
1664                         if (m->act_count > ACT_MAX)
1665                                 m->act_count = ACT_MAX;
1666                         vm_page_and_queue_spin_lock(m);
1667                         if (m->queue - m->pc == PQ_ACTIVE) {
1668                                 TAILQ_REMOVE(
1669                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1670                                         m, pageq);
1671                                 TAILQ_INSERT_TAIL(
1672                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1673                                         m, pageq);
1674                         }
1675                         vm_page_and_queue_spin_unlock(m);
1676                         vm_page_wakeup(m);
1677                         goto next;
1678                 }
1679
1680                 if (m->act_count == 0) {
1681                         /*
1682                          * We turn off page access, so that we have
1683                          * more accurate RSS stats.  We don't do this
1684                          * in the normal page deactivation when the
1685                          * system is loaded VM wise, because the
1686                          * cost of the large number of page protect
1687                          * operations would be higher than the value
1688                          * of doing the operation.
1689                          *
1690                          * We use the marker to save our place so
1691                          * we can release the spin lock.  both (m)
1692                          * and (next) will be invalid.
1693                          */
1694                         vm_page_protect(m, VM_PROT_NONE);
1695                         vm_page_deactivate(m);
1696                 } else {
1697                         m->act_count -= min(m->act_count, ACT_DECLINE);
1698                         vm_page_and_queue_spin_lock(m);
1699                         if (m->queue - m->pc == PQ_ACTIVE) {
1700                                 TAILQ_REMOVE(
1701                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1702                                         m, pageq);
1703                                 TAILQ_INSERT_TAIL(
1704                                         &vm_page_queues[PQ_ACTIVE + q].pl,
1705                                         m, pageq);
1706                         }
1707                         vm_page_and_queue_spin_unlock(m);
1708                 }
1709                 vm_page_wakeup(m);
1710 next:
1711                 vm_page_queues_spin_lock(PQ_ACTIVE + q);
1712         }
1713
1714         /*
1715          * Remove our local marker
1716          *
1717          * Page queue still spin-locked.
1718          */
1719         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1720         vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1721 }
1722
1723 static int
1724 vm_pageout_free_page_calc(vm_size_t count)
1725 {
1726         if (count < vmstats.v_page_count)
1727                  return 0;
1728         /*
1729          * free_reserved needs to include enough for the largest swap pager
1730          * structures plus enough for any pv_entry structs when paging.
1731          *
1732          * v_free_min           normal allocations
1733          * v_free_reserved      system allocations
1734          * v_pageout_free_min   allocations by pageout daemon
1735          * v_interrupt_free_min low level allocations (e.g swap structures)
1736          */
1737         if (vmstats.v_page_count > 1024)
1738                 vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1739         else
1740                 vmstats.v_free_min = 64;
1741         vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1742         vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1743         vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1744         vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1745
1746         return 1;
1747 }
1748
1749
1750 /*
1751  * vm_pageout is the high level pageout daemon.
1752  *
1753  * No requirements.
1754  */
1755 static void
1756 vm_pageout_thread(void)
1757 {
1758         int pass;
1759         int q;
1760         int q1iterator = 0;
1761         int q2iterator = 0;
1762
1763         /*
1764          * Initialize some paging parameters.
1765          */
1766         curthread->td_flags |= TDF_SYSTHREAD;
1767
1768         vm_pageout_free_page_calc(vmstats.v_page_count);
1769
1770         /*
1771          * v_free_target and v_cache_min control pageout hysteresis.  Note
1772          * that these are more a measure of the VM cache queue hysteresis
1773          * then the VM free queue.  Specifically, v_free_target is the
1774          * high water mark (free+cache pages).
1775          *
1776          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1777          * low water mark, while v_free_min is the stop.  v_cache_min must
1778          * be big enough to handle memory needs while the pageout daemon
1779          * is signalled and run to free more pages.
1780          */
1781         if (vmstats.v_free_count > 6144)
1782                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1783         else
1784                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1785
1786         /*
1787          * NOTE: With the new buffer cache b_act_count we want the default
1788          *       inactive target to be a percentage of available memory.
1789          *
1790          *       The inactive target essentially determines the minimum
1791          *       number of 'temporary' pages capable of caching one-time-use
1792          *       files when the VM system is otherwise full of pages
1793          *       belonging to multi-time-use files or active program data.
1794          *
1795          * NOTE: The inactive target is aggressively persued only if the
1796          *       inactive queue becomes too small.  If the inactive queue
1797          *       is large enough to satisfy page movement to free+cache
1798          *       then it is repopulated more slowly from the active queue.
1799          *       This allows a general inactive_target default to be set.
1800          *
1801          *       There is an issue here for processes which sit mostly idle
1802          *       'overnight', such as sshd, tcsh, and X.  Any movement from
1803          *       the active queue will eventually cause such pages to
1804          *       recycle eventually causing a lot of paging in the morning.
1805          *       To reduce the incidence of this pages cycled out of the
1806          *       buffer cache are moved directly to the inactive queue if
1807          *       they were only used once or twice.
1808          *
1809          *       The vfs.vm_cycle_point sysctl can be used to adjust this.
1810          *       Increasing the value (up to 64) increases the number of
1811          *       buffer recyclements which go directly to the inactive queue.
1812          */
1813         if (vmstats.v_free_count > 2048) {
1814                 vmstats.v_cache_min = vmstats.v_free_target;
1815                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1816         } else {
1817                 vmstats.v_cache_min = 0;
1818                 vmstats.v_cache_max = 0;
1819         }
1820         vmstats.v_inactive_target = vmstats.v_free_count / 4;
1821
1822         /* XXX does not really belong here */
1823         if (vm_page_max_wired == 0)
1824                 vm_page_max_wired = vmstats.v_free_count / 3;
1825
1826         if (vm_pageout_stats_max == 0)
1827                 vm_pageout_stats_max = vmstats.v_free_target;
1828
1829         /*
1830          * Set interval in seconds for stats scan.
1831          */
1832         if (vm_pageout_stats_interval == 0)
1833                 vm_pageout_stats_interval = 5;
1834         if (vm_pageout_full_stats_interval == 0)
1835                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1836         
1837
1838         /*
1839          * Set maximum free per pass
1840          */
1841         if (vm_pageout_stats_free_max == 0)
1842                 vm_pageout_stats_free_max = 5;
1843
1844         swap_pager_swap_init();
1845         pass = 0;
1846
1847         /*
1848          * The pageout daemon is never done, so loop forever.
1849          */
1850         while (TRUE) {
1851                 int error;
1852                 int avail_shortage;
1853                 int inactive_shortage;
1854                 int vnodes_skipped = 0;
1855                 int recycle_count = 0;
1856                 int tmp;
1857
1858                 /*
1859                  * Wait for an action request.  If we timeout check to
1860                  * see if paging is needed (in case the normal wakeup
1861                  * code raced us).
1862                  */
1863                 if (vm_pages_needed == 0) {
1864                         error = tsleep(&vm_pages_needed,
1865                                        0, "psleep",
1866                                        vm_pageout_stats_interval * hz);
1867                         if (error &&
1868                             vm_paging_needed() == 0 &&
1869                             vm_pages_needed == 0) {
1870                                 for (q = 0; q < PQ_L2_SIZE; ++q)
1871                                         vm_pageout_page_stats(q);
1872                                 continue;
1873                         }
1874                         vm_pages_needed = 1;
1875                 }
1876
1877                 mycpu->gd_cnt.v_pdwakeups++;
1878
1879                 /*
1880                  * Do whatever cleanup that the pmap code can.
1881                  */
1882                 pmap_collect();
1883
1884                 /*
1885                  * Scan for pageout.  Try to avoid thrashing the system
1886                  * with activity.
1887                  *
1888                  * Calculate our target for the number of free+cache pages we
1889                  * want to get to.  This is higher then the number that causes
1890                  * allocations to stall (severe) in order to provide hysteresis,
1891                  * and if we don't make it all the way but get to the minimum
1892                  * we're happy.  Goose it a bit if there are multiple requests
1893                  * for memory.
1894                  *
1895                  * Don't reduce avail_shortage inside the loop or the
1896                  * PQAVERAGE() calculation will break.
1897                  */
1898                 avail_shortage = vm_paging_target() + vm_pageout_deficit;
1899                 vm_pageout_deficit = 0;
1900
1901                 if (avail_shortage > 0) {
1902                         int delta = 0;
1903
1904                         for (q = 0; q < PQ_L2_SIZE; ++q) {
1905                                 delta += vm_pageout_scan_inactive(
1906                                             pass,
1907                                             (q + q1iterator) & PQ_L2_MASK,
1908                                             PQAVERAGE(avail_shortage),
1909                                             &vnodes_skipped);
1910                                 if (avail_shortage - delta <= 0)
1911                                         break;
1912                         }
1913                         avail_shortage -= delta;
1914                         q1iterator = q + 1;
1915                 }
1916
1917                 /*
1918                  * Figure out how many active pages we must deactivate.  If
1919                  * we were able to reach our target with just the inactive
1920                  * scan above we limit the number of active pages we
1921                  * deactivate to reduce unnecessary work.
1922                  */
1923                 inactive_shortage = vmstats.v_inactive_target -
1924                                     vmstats.v_inactive_count;
1925
1926                 /*
1927                  * If we were unable to free sufficient inactive pages to
1928                  * satisfy the free/cache queue requirements then simply
1929                  * reaching the inactive target may not be good enough.
1930                  * Try to deactivate pages in excess of the target based
1931                  * on the shortfall.
1932                  *
1933                  * However to prevent thrashing the VM system do not
1934                  * deactivate more than an additional 1/10 the inactive
1935                  * target's worth of active pages.
1936                  */
1937                 if (avail_shortage > 0) {
1938                         tmp = avail_shortage * 2;
1939                         if (tmp > vmstats.v_inactive_target / 10)
1940                                 tmp = vmstats.v_inactive_target / 10;
1941                         inactive_shortage += tmp;
1942                 }
1943
1944                 /*
1945                  * Only trigger on inactive shortage.  Triggering on
1946                  * avail_shortage can starve the active queue with
1947                  * unnecessary active->inactive transitions and destroy
1948                  * performance.
1949                  */
1950                 if (/*avail_shortage > 0 ||*/ inactive_shortage > 0) {
1951                         int delta = 0;
1952
1953                         for (q = 0; q < PQ_L2_SIZE; ++q) {
1954                                 delta += vm_pageout_scan_active(
1955                                                 pass,
1956                                                 (q + q2iterator) & PQ_L2_MASK,
1957                                                 PQAVERAGE(avail_shortage),
1958                                                 PQAVERAGE(inactive_shortage),
1959                                                 &recycle_count);
1960                                 if (inactive_shortage - delta <= 0 &&
1961                                     avail_shortage - delta <= 0) {
1962                                         break;
1963                                 }
1964                         }
1965                         inactive_shortage -= delta;
1966                         avail_shortage -= delta;
1967                         q2iterator = q + 1;
1968                 }
1969
1970                 /*
1971                  * Finally free enough cache pages to meet our free page
1972                  * requirement and take more drastic measures if we are
1973                  * still in trouble.
1974                  */
1975                 vm_pageout_scan_cache(avail_shortage, pass,
1976                                       vnodes_skipped, recycle_count);
1977
1978                 /*
1979                  * Wait for more work.
1980                  */
1981                 if (avail_shortage > 0) {
1982                         ++pass;
1983                         if (swap_pager_full) {
1984                                 /*
1985                                  * Running out of memory, catastrophic back-off
1986                                  * to one-second intervals.
1987                                  */
1988                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1989                         } else if (pass < 10 && vm_pages_needed > 1) {
1990                                 /*
1991                                  * Normal operation, additional processes
1992                                  * have already kicked us.  Retry immediately.
1993                                  */
1994                         } else if (pass < 10) {
1995                                 /*
1996                                  * Normal operation, fewer processes.  Delay
1997                                  * a bit but allow wakeups.
1998                                  */
1999                                 vm_pages_needed = 0;
2000                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2001                                 vm_pages_needed = 1;
2002                         } else {
2003                                 /*
2004                                  * We've taken too many passes, forced delay.
2005                                  */
2006                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2007                         }
2008                 } else if (vm_pages_needed) {
2009                         /*
2010                          * Interlocked wakeup of waiters (non-optional).
2011                          *
2012                          * Similar to vm_page_free_wakeup() in vm_page.c,
2013                          * wake
2014                          */
2015                         pass = 0;
2016                         if (!vm_page_count_min(vm_page_free_hysteresis) ||
2017                             !vm_page_count_target()) {
2018                                 vm_pages_needed = 0;
2019                                 wakeup(&vmstats.v_free_count);
2020                         }
2021                 } else {
2022                         pass = 0;
2023                 }
2024         }
2025 }
2026
2027 static struct kproc_desc page_kp = {
2028         "pagedaemon",
2029         vm_pageout_thread,
2030         &pagethread
2031 };
2032 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp);
2033
2034
2035 /*
2036  * Called after allocating a page out of the cache or free queue
2037  * to possibly wake the pagedaemon up to replentish our supply.
2038  *
2039  * We try to generate some hysteresis by waking the pagedaemon up
2040  * when our free+cache pages go below the free_min+cache_min level.
2041  * The pagedaemon tries to get the count back up to at least the
2042  * minimum, and through to the target level if possible.
2043  *
2044  * If the pagedaemon is already active bump vm_pages_needed as a hint
2045  * that there are even more requests pending.
2046  *
2047  * SMP races ok?
2048  * No requirements.
2049  */
2050 void
2051 pagedaemon_wakeup(void)
2052 {
2053         if (vm_paging_needed() && curthread != pagethread) {
2054                 if (vm_pages_needed == 0) {
2055                         vm_pages_needed = 1;    /* SMP race ok */
2056                         wakeup(&vm_pages_needed);
2057                 } else if (vm_page_count_min(0)) {
2058                         ++vm_pages_needed;      /* SMP race ok */
2059                 }
2060         }
2061 }
2062
2063 #if !defined(NO_SWAPPING)
2064
2065 /*
2066  * SMP races ok?
2067  * No requirements.
2068  */
2069 static void
2070 vm_req_vmdaemon(void)
2071 {
2072         static int lastrun = 0;
2073
2074         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2075                 wakeup(&vm_daemon_needed);
2076                 lastrun = ticks;
2077         }
2078 }
2079
2080 static int vm_daemon_callback(struct proc *p, void *data __unused);
2081
2082 /*
2083  * No requirements.
2084  */
2085 static void
2086 vm_daemon(void)
2087 {
2088         /*
2089          * XXX vm_daemon_needed specific token?
2090          */
2091         while (TRUE) {
2092                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
2093                 if (vm_pageout_req_swapout) {
2094                         swapout_procs(vm_pageout_req_swapout);
2095                         vm_pageout_req_swapout = 0;
2096                 }
2097                 /*
2098                  * scan the processes for exceeding their rlimits or if
2099                  * process is swapped out -- deactivate pages
2100                  */
2101                 allproc_scan(vm_daemon_callback, NULL);
2102         }
2103 }
2104
2105 static int
2106 vm_daemon_callback(struct proc *p, void *data __unused)
2107 {
2108         struct vmspace *vm;
2109         vm_pindex_t limit, size;
2110
2111         /*
2112          * if this is a system process or if we have already
2113          * looked at this process, skip it.
2114          */
2115         lwkt_gettoken(&p->p_token);
2116
2117         if (p->p_flags & (P_SYSTEM | P_WEXIT)) {
2118                 lwkt_reltoken(&p->p_token);
2119                 return (0);
2120         }
2121
2122         /*
2123          * if the process is in a non-running type state,
2124          * don't touch it.
2125          */
2126         if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
2127                 lwkt_reltoken(&p->p_token);
2128                 return (0);
2129         }
2130
2131         /*
2132          * get a limit
2133          */
2134         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2135                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
2136
2137         /*
2138          * let processes that are swapped out really be
2139          * swapped out.  Set the limit to nothing to get as
2140          * many pages out to swap as possible.
2141          */
2142         if (p->p_flags & P_SWAPPEDOUT)
2143                 limit = 0;
2144
2145         vm = p->p_vmspace;
2146         vmspace_hold(vm);
2147         size = vmspace_resident_count(vm);
2148         if (limit >= 0 && size >= limit) {
2149                 vm_pageout_map_deactivate_pages(&vm->vm_map, limit);
2150         }
2151         vmspace_drop(vm);
2152
2153         lwkt_reltoken(&p->p_token);
2154
2155         return (0);
2156 }
2157
2158 #endif