Fix inquiry length detection for the ses(4) driver.
[dragonfly.git] / sys / kern / lwkt_ipiq.c
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/kern/lwkt_ipiq.c,v 1.22 2007/06/07 20:35:54 dillon Exp $
35  */
36
37 /*
38  * This module implements IPI message queueing and the MI portion of IPI
39  * message processing.
40  */
41
42 #ifdef _KERNEL
43
44 #include "opt_ddb.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/ktr.h>
55 #include <sys/kthread.h>
56 #include <machine/cpu.h>
57 #include <sys/lock.h>
58 #include <sys/caps.h>
59
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_pager.h>
67 #include <vm/vm_extern.h>
68 #include <vm/vm_zone.h>
69
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 #include <machine/atomic.h>
73
74 #else
75
76 #include <sys/stdint.h>
77 #include <libcaps/thread.h>
78 #include <sys/thread.h>
79 #include <sys/msgport.h>
80 #include <sys/errno.h>
81 #include <libcaps/globaldata.h>
82 #include <machine/cpufunc.h>
83 #include <sys/thread2.h>
84 #include <sys/msgport2.h>
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <machine/lock.h>
89 #include <machine/cpu.h>
90 #include <machine/atomic.h>
91
92 #endif
93
94 #ifdef SMP
95 static __int64_t ipiq_count;    /* total calls to lwkt_send_ipiq*() */
96 static __int64_t ipiq_fifofull; /* number of fifo full conditions detected */
97 static __int64_t ipiq_avoided;  /* interlock with target avoids cpu ipi */
98 static __int64_t ipiq_passive;  /* passive IPI messages */
99 static __int64_t ipiq_cscount;  /* number of cpu synchronizations */
100 static int ipiq_optimized = 1;  /* XXX temporary sysctl */
101 #ifdef PANIC_DEBUG
102 static int      panic_ipiq_cpu = -1;
103 static int      panic_ipiq_count = 100;
104 #endif
105 #endif
106
107 #ifdef _KERNEL
108
109 #ifdef SMP
110 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0, "");
112 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_avoided, CTLFLAG_RW, &ipiq_avoided, 0, "");
113 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_passive, CTLFLAG_RW, &ipiq_passive, 0, "");
114 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_cscount, CTLFLAG_RW, &ipiq_cscount, 0, "");
115 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_optimized, CTLFLAG_RW, &ipiq_optimized, 0, "");
116 #ifdef PANIC_DEBUG
117 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
118 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
119 #endif
120
121 #define IPIQ_STRING     "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
122 #define IPIQ_ARG_SIZE   (sizeof(void *) * 2 + sizeof(int) * 2)
123
124 #if !defined(KTR_IPIQ)
125 #define KTR_IPIQ        KTR_ALL
126 #endif
127 KTR_INFO_MASTER(ipiq);
128 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARG_SIZE);
129 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARG_SIZE);
130 KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARG_SIZE);
131 KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARG_SIZE);
132 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARG_SIZE);
133 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08x", sizeof(cpumask_t));
134 KTR_INFO(KTR_IPIQ, ipiq, sync_add, 6, "cpumask=%08x", sizeof(cpumask_t));
135
136 #define logipiq(name, func, arg1, arg2, sgd, dgd)       \
137         KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
138 #define logipiq2(name, arg)     \
139         KTR_LOG(ipiq_ ## name, arg)
140
141 #endif  /* SMP */
142 #endif  /* KERNEL */
143
144 #ifdef SMP
145
146 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip, 
147                                   struct intrframe *frame);
148 static void lwkt_cpusync_remote1(lwkt_cpusync_t poll);
149 static void lwkt_cpusync_remote2(lwkt_cpusync_t poll);
150
151 /*
152  * Send a function execution request to another cpu.  The request is queued
153  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
154  * possible target cpu.  The FIFO can be written.
155  *
156  * If the FIFO fills up we have to enable interrupts to avoid an APIC
157  * deadlock and process pending IPIQs while waiting for it to empty.   
158  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
159  *
160  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
161  * end will take care of any pending interrupts.
162  *
163  * The actual hardware IPI is avoided if the target cpu is already processing
164  * the queue from a prior IPI.  It is possible to pipeline IPI messages
165  * very quickly between cpus due to the FIFO hysteresis.
166  *
167  * Need not be called from a critical section.
168  */
169 int
170 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
171 {
172     lwkt_ipiq_t ip;
173     int windex;
174     struct globaldata *gd = mycpu;
175
176     logipiq(send_norm, func, arg1, arg2, gd, target);
177
178     if (target == gd) {
179         func(arg1, arg2, NULL);
180         return(0);
181     } 
182     crit_enter();
183     ++gd->gd_intr_nesting_level;
184 #ifdef INVARIANTS
185     if (gd->gd_intr_nesting_level > 20)
186         panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
187 #endif
188     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
189     ++ipiq_count;
190     ip = &gd->gd_ipiq[target->gd_cpuid];
191
192     /*
193      * Do not allow the FIFO to become full.  Interrupts must be physically
194      * enabled while we liveloop to avoid deadlocking the APIC.
195      */
196     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
197         unsigned int eflags = read_eflags();
198
199         if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0)
200             cpu_send_ipiq(target->gd_cpuid);
201         cpu_enable_intr();
202         ++ipiq_fifofull;
203         while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
204             KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
205             lwkt_process_ipiq();
206         }
207         write_eflags(eflags);
208     }
209
210     /*
211      * Queue the new message
212      */
213     windex = ip->ip_windex & MAXCPUFIFO_MASK;
214     ip->ip_func[windex] = func;
215     ip->ip_arg1[windex] = arg1;
216     ip->ip_arg2[windex] = arg2;
217     cpu_sfence();
218     ++ip->ip_windex;
219     --gd->gd_intr_nesting_level;
220
221     /*
222      * signal the target cpu that there is work pending.
223      */
224     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
225         cpu_send_ipiq(target->gd_cpuid);
226     } else {
227         if (ipiq_optimized == 0)
228             cpu_send_ipiq(target->gd_cpuid);
229         ++ipiq_avoided;
230     }
231     crit_exit();
232     return(ip->ip_windex);
233 }
234
235 /*
236  * Similar to lwkt_send_ipiq() but this function does not actually initiate
237  * the IPI to the target cpu unless the FIFO has become too full, so it is
238  * very fast.
239  *
240  * This function is used for non-critical IPI messages, such as memory
241  * deallocations.  The queue will typically be flushed by the target cpu at
242  * the next clock interrupt.
243  *
244  * Need not be called from a critical section.
245  */
246 int
247 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
248                         void *arg1, int arg2)
249 {
250     lwkt_ipiq_t ip;
251     int windex;
252     struct globaldata *gd = mycpu;
253
254     KKASSERT(target != gd);
255     crit_enter();
256     logipiq(send_pasv, func, arg1, arg2, gd, target);
257     ++gd->gd_intr_nesting_level;
258 #ifdef INVARIANTS
259     if (gd->gd_intr_nesting_level > 20)
260         panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
261 #endif
262     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
263     ++ipiq_count;
264     ++ipiq_passive;
265     ip = &gd->gd_ipiq[target->gd_cpuid];
266
267     /*
268      * Do not allow the FIFO to become full.  Interrupts must be physically
269      * enabled while we liveloop to avoid deadlocking the APIC.
270      */
271     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
272         unsigned int eflags = read_eflags();
273
274         if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0)
275             cpu_send_ipiq(target->gd_cpuid);
276         cpu_enable_intr();
277         ++ipiq_fifofull;
278         while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
279             KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
280             lwkt_process_ipiq();
281         }
282         write_eflags(eflags);
283     }
284
285     /*
286      * Queue the new message
287      */
288     windex = ip->ip_windex & MAXCPUFIFO_MASK;
289     ip->ip_func[windex] = func;
290     ip->ip_arg1[windex] = arg1;
291     ip->ip_arg2[windex] = arg2;
292     cpu_sfence();
293     ++ip->ip_windex;
294     --gd->gd_intr_nesting_level;
295
296     /*
297      * Do not signal the target cpu, it will pick up the IPI when it next
298      * polls (typically on the next tick).
299      */
300     crit_exit();
301     return(ip->ip_windex);
302 }
303
304 /*
305  * Send an IPI request without blocking, return 0 on success, ENOENT on 
306  * failure.  The actual queueing of the hardware IPI may still force us
307  * to spin and process incoming IPIs but that will eventually go away
308  * when we've gotten rid of the other general IPIs.
309  */
310 int
311 lwkt_send_ipiq3_nowait(globaldata_t target, ipifunc3_t func, 
312                        void *arg1, int arg2)
313 {
314     lwkt_ipiq_t ip;
315     int windex;
316     struct globaldata *gd = mycpu;
317
318     logipiq(send_nbio, func, arg1, arg2, gd, target);
319     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
320     if (target == gd) {
321         func(arg1, arg2, NULL);
322         return(0);
323     } 
324     ++ipiq_count;
325     ip = &gd->gd_ipiq[target->gd_cpuid];
326
327     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
328         logipiq(send_fail, func, arg1, arg2, gd, target);
329         return(ENOENT);
330     }
331     windex = ip->ip_windex & MAXCPUFIFO_MASK;
332     ip->ip_func[windex] = func;
333     ip->ip_arg1[windex] = arg1;
334     ip->ip_arg2[windex] = arg2;
335     cpu_sfence();
336     ++ip->ip_windex;
337
338     /*
339      * This isn't a passive IPI, we still have to signal the target cpu.
340      */
341     if (atomic_poll_acquire_int(&ip->ip_npoll)) {
342         cpu_send_ipiq(target->gd_cpuid);
343     } else {
344         if (ipiq_optimized == 0)
345             cpu_send_ipiq(target->gd_cpuid);
346         else
347             ++ipiq_avoided;
348     }
349     return(0);
350 }
351
352 /*
353  * deprecated, used only by fast int forwarding.
354  */
355 int
356 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
357 {
358     return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
359 }
360
361 /*
362  * Send a message to several target cpus.  Typically used for scheduling.
363  * The message will not be sent to stopped cpus.
364  */
365 int
366 lwkt_send_ipiq3_mask(u_int32_t mask, ipifunc3_t func, void *arg1, int arg2)
367 {
368     int cpuid;
369     int count = 0;
370
371     mask &= ~stopped_cpus;
372     while (mask) {
373         cpuid = bsfl(mask);
374         lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
375         mask &= ~(1 << cpuid);
376         ++count;
377     }
378     return(count);
379 }
380
381 /*
382  * Wait for the remote cpu to finish processing a function.
383  *
384  * YYY we have to enable interrupts and process the IPIQ while waiting
385  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
386  * function to do this!  YYY we really should 'block' here.
387  *
388  * MUST be called from a critical section.  This routine may be called
389  * from an interrupt (for example, if an interrupt wakes a foreign thread
390  * up).
391  */
392 void
393 lwkt_wait_ipiq(globaldata_t target, int seq)
394 {
395     lwkt_ipiq_t ip;
396     int maxc = 100000000;
397
398     if (target != mycpu) {
399         ip = &mycpu->gd_ipiq[target->gd_cpuid];
400         if ((int)(ip->ip_xindex - seq) < 0) {
401             unsigned int eflags = read_eflags();
402             cpu_enable_intr();
403             while ((int)(ip->ip_xindex - seq) < 0) {
404                 crit_enter();
405                 lwkt_process_ipiq();
406                 crit_exit();
407                 if (--maxc == 0)
408                         kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, target->gd_cpuid, ip->ip_xindex - seq);
409                 if (maxc < -1000000)
410                         panic("LWKT_WAIT_IPIQ");
411                 /*
412                  * xindex may be modified by another cpu, use a load fence
413                  * to ensure that the loop does not use a speculative value
414                  * (which may improve performance).
415                  */
416                 cpu_lfence();
417             }
418             write_eflags(eflags);
419         }
420     }
421 }
422
423 int
424 lwkt_seq_ipiq(globaldata_t target)
425 {
426     lwkt_ipiq_t ip;
427
428     ip = &mycpu->gd_ipiq[target->gd_cpuid];
429     return(ip->ip_windex);
430 }
431
432 /*
433  * Called from IPI interrupt (like a fast interrupt), which has placed
434  * us in a critical section.  The MP lock may or may not be held.
435  * May also be called from doreti or splz, or be reentrantly called
436  * indirectly through the ip_func[] we run.
437  *
438  * There are two versions, one where no interrupt frame is available (when
439  * called from the send code and from splz, and one where an interrupt
440  * frame is available.
441  */
442 void
443 lwkt_process_ipiq(void)
444 {
445     globaldata_t gd = mycpu;
446     globaldata_t sgd;
447     lwkt_ipiq_t ip;
448     int n;
449
450 again:
451     for (n = 0; n < ncpus; ++n) {
452         if (n != gd->gd_cpuid) {
453             sgd = globaldata_find(n);
454             ip = sgd->gd_ipiq;
455             if (ip != NULL) {
456                 while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], NULL))
457                     ;
458             }
459         }
460     }
461     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
462         if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL)) {
463             if (gd->gd_curthread->td_cscount == 0)
464                 goto again;
465             need_ipiq();
466         }
467     }
468 }
469
470 #ifdef _KERNEL
471 void
472 lwkt_process_ipiq_frame(struct intrframe *frame)
473 {
474     globaldata_t gd = mycpu;
475     globaldata_t sgd;
476     lwkt_ipiq_t ip;
477     int n;
478
479 again:
480     for (n = 0; n < ncpus; ++n) {
481         if (n != gd->gd_cpuid) {
482             sgd = globaldata_find(n);
483             ip = sgd->gd_ipiq;
484             if (ip != NULL) {
485                 while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], frame))
486                     ;
487             }
488         }
489     }
490     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
491         if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame)) {
492             if (gd->gd_curthread->td_cscount == 0)
493                 goto again;
494             need_ipiq();
495         }
496     }
497 }
498 #endif
499
500 static int
501 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip, 
502                        struct intrframe *frame)
503 {
504     int ri;
505     int wi;
506     ipifunc3_t copy_func;
507     void *copy_arg1;
508     int copy_arg2;
509
510     /*
511      * Obtain the current write index, which is modified by a remote cpu.
512      * Issue a load fence to prevent speculative reads of e.g. data written
513      * by the other cpu prior to it updating the index.
514      */
515     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
516     wi = ip->ip_windex;
517     cpu_lfence();
518
519     /*
520      * Note: xindex is only updated after we are sure the function has
521      * finished execution.  Beware lwkt_process_ipiq() reentrancy!  The
522      * function may send an IPI which may block/drain.
523      *
524      * Note: due to additional IPI operations that the callback function
525      * may make, it is possible for both rindex and windex to advance and
526      * thus for rindex to advance passed our cached windex.
527      */
528     while (wi - (ri = ip->ip_rindex) > 0) {
529         ri &= MAXCPUFIFO_MASK;
530         copy_func = ip->ip_func[ri];
531         copy_arg1 = ip->ip_arg1[ri];
532         copy_arg2 = ip->ip_arg2[ri];
533         cpu_mfence();
534         ++ip->ip_rindex;
535         KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) == ((ri + 1) & MAXCPUFIFO_MASK));
536         logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
537         copy_func(copy_arg1, copy_arg2, frame);
538         cpu_sfence();
539         ip->ip_xindex = ip->ip_rindex;
540
541 #ifdef PANIC_DEBUG
542         /*
543          * Simulate panics during the processing of an IPI
544          */
545         if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
546                 if (--panic_ipiq_count == 0) {
547 #ifdef DDB
548                         Debugger("PANIC_DEBUG");
549 #else
550                         panic("PANIC_DEBUG");
551 #endif
552                 }
553         }
554 #endif
555     }
556
557     /*
558      * Return non-zero if there are more IPI messages pending on this
559      * ipiq.  ip_npoll is left set as long as possible to reduce the
560      * number of IPIs queued by the originating cpu, but must be cleared
561      * *BEFORE* checking windex.
562      */
563     atomic_poll_release_int(&ip->ip_npoll);
564     return(wi != ip->ip_windex);
565 }
566
567 #endif
568
569 /*
570  * CPU Synchronization Support
571  *
572  * lwkt_cpusync_simple()
573  *
574  *      The function is executed synchronously before return on remote cpus.
575  *      A lwkt_cpusync_t pointer is passed as an argument.  The data can
576  *      be accessed via arg->cs_data.
577  *
578  *      XXX should I just pass the data as an argument to be consistent?
579  */
580
581 void
582 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *data)
583 {
584     struct lwkt_cpusync cmd;
585
586     cmd.cs_run_func = NULL;
587     cmd.cs_fin1_func = func;
588     cmd.cs_fin2_func = NULL;
589     cmd.cs_data = data;
590     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
591     if (mask & (1 << mycpu->gd_cpuid))
592         func(&cmd);
593     lwkt_cpusync_finish(&cmd);
594 }
595
596 /*
597  * lwkt_cpusync_fastdata()
598  *
599  *      The function is executed in tandem with return on remote cpus.
600  *      The data is directly passed as an argument.  Do not pass pointers to
601  *      temporary storage as the storage might have
602  *      gone poof by the time the target cpu executes
603  *      the function.
604  *
605  *      At the moment lwkt_cpusync is declared on the stack and we must wait
606  *      for all remote cpus to ack in lwkt_cpusync_finish(), but as a future
607  *      optimization we should be able to put a counter in the globaldata
608  *      structure (if it is not otherwise being used) and just poke it and
609  *      return without waiting. XXX
610  */
611 void
612 lwkt_cpusync_fastdata(cpumask_t mask, cpusync_func2_t func, void *data)
613 {
614     struct lwkt_cpusync cmd;
615
616     cmd.cs_run_func = NULL;
617     cmd.cs_fin1_func = NULL;
618     cmd.cs_fin2_func = func;
619     cmd.cs_data = NULL;
620     lwkt_cpusync_start(mask & mycpu->gd_other_cpus, &cmd);
621     if (mask & (1 << mycpu->gd_cpuid))
622         func(data);
623     lwkt_cpusync_finish(&cmd);
624 }
625
626 /*
627  * lwkt_cpusync_start()
628  *
629  *      Start synchronization with a set of target cpus, return once they are
630  *      known to be in a synchronization loop.  The target cpus will execute
631  *      poll->cs_run_func() IN TANDEM WITH THE RETURN.
632  *
633  *      XXX future: add lwkt_cpusync_start_quick() and require a call to
634  *      lwkt_cpusync_add() or lwkt_cpusync_wait(), allowing the caller to
635  *      potentially absorb the IPI latency doing something useful.
636  */
637 void
638 lwkt_cpusync_start(cpumask_t mask, lwkt_cpusync_t poll)
639 {
640     globaldata_t gd = mycpu;
641
642     poll->cs_count = 0;
643     poll->cs_mask = mask;
644 #ifdef SMP
645     logipiq2(sync_start, mask & gd->gd_other_cpus);
646     poll->cs_maxcount = lwkt_send_ipiq_mask(
647                 mask & gd->gd_other_cpus & smp_active_mask,
648                 (ipifunc1_t)lwkt_cpusync_remote1, poll);
649 #endif
650     if (mask & gd->gd_cpumask) {
651         if (poll->cs_run_func)
652             poll->cs_run_func(poll);
653     }
654 #ifdef SMP
655     if (poll->cs_maxcount) {
656         ++ipiq_cscount;
657         ++gd->gd_curthread->td_cscount;
658         while (poll->cs_count != poll->cs_maxcount) {
659             crit_enter();
660             lwkt_process_ipiq();
661             crit_exit();
662         }
663     }
664 #endif
665 }
666
667 void
668 lwkt_cpusync_add(cpumask_t mask, lwkt_cpusync_t poll)
669 {
670     globaldata_t gd = mycpu;
671 #ifdef SMP
672     int count;
673 #endif
674
675     mask &= ~poll->cs_mask;
676     poll->cs_mask |= mask;
677 #ifdef SMP
678     logipiq2(sync_add, mask & gd->gd_other_cpus);
679     count = lwkt_send_ipiq_mask(
680                 mask & gd->gd_other_cpus & smp_active_mask,
681                 (ipifunc1_t)lwkt_cpusync_remote1, poll);
682 #endif
683     if (mask & gd->gd_cpumask) {
684         if (poll->cs_run_func)
685             poll->cs_run_func(poll);
686     }
687 #ifdef SMP
688     poll->cs_maxcount += count;
689     if (poll->cs_maxcount) {
690         if (poll->cs_maxcount == count)
691             ++gd->gd_curthread->td_cscount;
692         while (poll->cs_count != poll->cs_maxcount) {
693             crit_enter();
694             lwkt_process_ipiq();
695             crit_exit();
696         }
697     }
698 #endif
699 }
700
701 /*
702  * Finish synchronization with a set of target cpus.  The target cpus will
703  * execute cs_fin1_func(poll) prior to this function returning, and will
704  * execute cs_fin2_func(data) IN TANDEM WITH THIS FUNCTION'S RETURN.
705  *
706  * If cs_maxcount is non-zero then we are mastering a cpusync with one or
707  * more remote cpus and must account for it in our thread structure.
708  */
709 void
710 lwkt_cpusync_finish(lwkt_cpusync_t poll)
711 {
712     globaldata_t gd = mycpu;
713
714     poll->cs_count = -1;
715     if (poll->cs_mask & gd->gd_cpumask) {
716         if (poll->cs_fin1_func)
717             poll->cs_fin1_func(poll);
718         if (poll->cs_fin2_func)
719             poll->cs_fin2_func(poll->cs_data);
720     }
721 #ifdef SMP
722     if (poll->cs_maxcount) {
723         while (poll->cs_count != -(poll->cs_maxcount + 1)) {
724             crit_enter();
725             lwkt_process_ipiq();
726             crit_exit();
727         }
728         --gd->gd_curthread->td_cscount;
729     }
730 #endif
731 }
732
733 #ifdef SMP
734
735 /*
736  * helper IPI remote messaging function.
737  * 
738  * Called on remote cpu when a new cpu synchronization request has been
739  * sent to us.  Execute the run function and adjust cs_count, then requeue
740  * the request so we spin on it.
741  */
742 static void
743 lwkt_cpusync_remote1(lwkt_cpusync_t poll)
744 {
745     atomic_add_int(&poll->cs_count, 1);
746     if (poll->cs_run_func)
747         poll->cs_run_func(poll);
748     lwkt_cpusync_remote2(poll);
749 }
750
751 /*
752  * helper IPI remote messaging function.
753  *
754  * Poll for the originator telling us to finish.  If it hasn't, requeue
755  * our request so we spin on it.  When the originator requests that we
756  * finish we execute cs_fin1_func(poll) synchronously and cs_fin2_func(data)
757  * in tandem with the release.
758  */
759 static void
760 lwkt_cpusync_remote2(lwkt_cpusync_t poll)
761 {
762     if (poll->cs_count < 0) {
763         cpusync_func2_t savef;
764         void *saved;
765
766         if (poll->cs_fin1_func)
767             poll->cs_fin1_func(poll);
768         if (poll->cs_fin2_func) {
769             savef = poll->cs_fin2_func;
770             saved = poll->cs_data;
771             atomic_add_int(&poll->cs_count, -1);
772             savef(saved);
773         } else {
774             atomic_add_int(&poll->cs_count, -1);
775         }
776     } else {
777         globaldata_t gd = mycpu;
778         lwkt_ipiq_t ip;
779         int wi;
780
781         ip = &gd->gd_cpusyncq;
782         wi = ip->ip_windex & MAXCPUFIFO_MASK;
783         ip->ip_func[wi] = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
784         ip->ip_arg1[wi] = poll;
785         ip->ip_arg2[wi] = 0;
786         cpu_sfence();
787         ++ip->ip_windex;
788     }
789 }
790
791 #endif