Merge from vendor branch NCURSES:
[dragonfly.git] / sys / vm / vm_page.h
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_page.h     8.2 (Berkeley) 12/13/93
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_page.h,v 1.75.2.8 2002/03/06 01:07:09 dillon Exp $
65  * $DragonFly: src/sys/vm/vm_page.h,v 1.22 2005/08/27 00:56:57 dillon Exp $
66  */
67
68 /*
69  *      Resident memory system definitions.
70  */
71
72 #ifndef _VM_PAGE_H_
73 #define _VM_PAGE_H_
74
75 #if !defined(KLD_MODULE) && defined(_KERNEL)
76 #include "opt_vmpage.h"
77 #endif
78
79 #include <vm/pmap.h>
80 #include <machine/atomic.h>
81 #ifdef _KERNEL
82 #include <sys/thread2.h>
83 #endif
84
85 /*
86  *      Management of resident (logical) pages.
87  *
88  *      A small structure is kept for each resident
89  *      page, indexed by page number.  Each structure
90  *      is an element of several lists:
91  *
92  *              A hash table bucket used to quickly
93  *              perform object/offset lookups
94  *
95  *              A list of all pages for a given object,
96  *              so they can be quickly deactivated at
97  *              time of deallocation.
98  *
99  *              An ordered list of pages due for pageout.
100  *
101  *      In addition, the structure contains the object
102  *      and offset to which this page belongs (for pageout),
103  *      and sundry status bits.
104  *
105  *      Fields in this structure are locked either by the lock on the
106  *      object that the page belongs to (O) or by the lock on the page
107  *      queues (P).
108  *
109  *      The 'valid' and 'dirty' fields are distinct.  A page may have dirty
110  *      bits set without having associated valid bits set.  This is used by
111  *      NFS to implement piecemeal writes.
112  */
113
114 TAILQ_HEAD(pglist, vm_page);
115
116 struct msf_buf;
117 struct vm_page {
118         TAILQ_ENTRY(vm_page) pageq;     /* vm_page_queues[] list (P)    */
119         struct vm_page  *hnext;         /* hash table link (O,P)        */
120         TAILQ_ENTRY(vm_page) listq;     /* pages in same object (O)     */
121
122         vm_object_t object;             /* which object am I in (O,P)*/
123         vm_pindex_t pindex;             /* offset into object (O,P) */
124         vm_paddr_t phys_addr;           /* physical address of page */
125         struct md_page md;              /* machine dependant stuff */
126         u_short queue;                  /* page queue index */
127         u_short flags;                  /* see below */
128         u_short pc;                     /* page color */
129         u_short wire_count;             /* wired down maps refs (P) */
130         short hold_count;               /* page hold count */
131         u_char  act_count;              /* page usage count */
132         u_char  busy;                   /* page busy count */
133
134         /*
135          * NOTE that these must support one bit per DEV_BSIZE in a page!!!
136          * so, on normal X86 kernels, they must be at least 8 bits wide.
137          */
138 #if PAGE_SIZE == 4096
139         u_char  valid;                  /* map of valid DEV_BSIZE chunks */
140         u_char  dirty;                  /* map of dirty DEV_BSIZE chunks */
141         u_char  unused1;
142         u_char  unused2;
143 #elif PAGE_SIZE == 8192
144         u_short valid;                  /* map of valid DEV_BSIZE chunks */
145         u_short dirty;                  /* map of dirty DEV_BSIZE chunks */
146 #endif
147         struct msf_buf *msf_hint;       /* first page of an msfbuf map */
148 };
149
150 /*
151  * note: currently use SWAPBLK_NONE as an absolute value rather then 
152  * a flag bit.
153  */
154 #define SWAPBLK_MASK    ((daddr_t)((u_daddr_t)-1 >> 1))         /* mask */
155 #define SWAPBLK_NONE    ((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
156
157 /*
158  * Page coloring parameters.  We default to a middle of the road optimization.
159  * Larger selections would not really hurt us but if a machine does not have
160  * a lot of memory it could cause vm_page_alloc() to eat more cpu cycles 
161  * looking for free pages.
162  *
163  * Page coloring cannot be disabled.  Modules do not have access to most PQ
164  * constants because they can change between builds.
165  */
166 #if defined(_KERNEL) && !defined(KLD_MODULE)
167
168 #if !defined(PQ_CACHESIZE)
169 #define PQ_CACHESIZE 256        /* max is 1024 (MB) */
170 #endif
171
172 #if PQ_CACHESIZE >= 1024
173 #define PQ_PRIME1 31    /* Prime number somewhat less than PQ_HASH_SIZE */
174 #define PQ_PRIME2 23    /* Prime number somewhat less than PQ_HASH_SIZE */
175 #define PQ_L2_SIZE 256  /* A number of colors opt for 1M cache */
176
177 #elif PQ_CACHESIZE >= 512
178 #define PQ_PRIME1 31    /* Prime number somewhat less than PQ_HASH_SIZE */
179 #define PQ_PRIME2 23    /* Prime number somewhat less than PQ_HASH_SIZE */
180 #define PQ_L2_SIZE 128  /* A number of colors opt for 512K cache */
181
182 #elif PQ_CACHESIZE >= 256
183 #define PQ_PRIME1 13    /* Prime number somewhat less than PQ_HASH_SIZE */
184 #define PQ_PRIME2 7     /* Prime number somewhat less than PQ_HASH_SIZE */
185 #define PQ_L2_SIZE 64   /* A number of colors opt for 256K cache */
186
187 #elif PQ_CACHESIZE >= 128
188 #define PQ_PRIME1 9     /* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
189 #define PQ_PRIME2 5     /* Prime number somewhat less than PQ_HASH_SIZE */
190 #define PQ_L2_SIZE 32   /* A number of colors opt for 128k cache */
191
192 #else
193 #define PQ_PRIME1 5     /* Prime number somewhat less than PQ_HASH_SIZE */
194 #define PQ_PRIME2 3     /* Prime number somewhat less than PQ_HASH_SIZE */
195 #define PQ_L2_SIZE 16   /* A reasonable number of colors (opt for 64K cache) */
196
197 #endif
198
199 #define PQ_L2_MASK      (PQ_L2_SIZE - 1)
200
201 #endif /* KERNEL && !KLD_MODULE */
202
203 /*
204  *
205  * The queue array is always based on PQ_MAXL2_SIZE regardless of the actual
206  * cache size chosen in order to present a uniform interface for modules.
207  */
208 #define PQ_MAXL2_SIZE   256     /* fixed maximum (in pages) / module compat */
209
210 #if PQ_L2_SIZE > PQ_MAXL2_SIZE
211 #error "Illegal PQ_L2_SIZE"
212 #endif
213
214 #define PQ_NONE         0
215 #define PQ_FREE         1
216 #define PQ_INACTIVE     (1 + 1*PQ_MAXL2_SIZE)
217 #define PQ_ACTIVE       (2 + 1*PQ_MAXL2_SIZE)
218 #define PQ_CACHE        (3 + 1*PQ_MAXL2_SIZE)
219 #define PQ_HOLD         (3 + 2*PQ_MAXL2_SIZE)
220 #define PQ_COUNT        (4 + 2*PQ_MAXL2_SIZE)
221
222 struct vpgqueues {
223         struct pglist pl;
224         int     *cnt;
225         int     lcnt;
226         int     flipflop;       /* probably not the best place */
227 };
228
229 extern struct vpgqueues vm_page_queues[PQ_COUNT];
230
231 /*
232  * These are the flags defined for vm_page.
233  *
234  * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
235  *       not under PV management but otherwise should be treated as a
236  *       normal page.  Pages not under PV management cannot be paged out
237  *       via the object/vm_page_t because there is no knowledge of their
238  *       pte mappings, nor can they be removed from their objects via 
239  *       the object, and such pages are also not on any PQ queue.
240  */
241 #define PG_BUSY         0x0001          /* page is in transit (O) */
242 #define PG_WANTED       0x0002          /* someone is waiting for page (O) */
243 #define PG_WINATCFLS    0x0004          /* flush dirty page on inactive q */
244 #define PG_FICTITIOUS   0x0008          /* physical page doesn't exist (O) */
245 #define PG_WRITEABLE    0x0010          /* page is mapped writeable */
246 #define PG_MAPPED       0x0020          /* page is mapped */
247 #define PG_ZERO         0x0040          /* page is zeroed */
248 #define PG_REFERENCED   0x0080          /* page has been referenced */
249 #define PG_CLEANCHK     0x0100          /* page will be checked for cleaning */
250 #define PG_SWAPINPROG   0x0200          /* swap I/O in progress on page      */
251 #define PG_NOSYNC       0x0400          /* do not collect for syncer */
252 #define PG_UNMANAGED    0x0800          /* No PV management for page */
253 #define PG_MARKER       0x1000          /* special queue marker page */
254
255 /*
256  * Misc constants.
257  */
258
259 #define ACT_DECLINE             1
260 #define ACT_ADVANCE             3
261 #define ACT_INIT                5
262 #define ACT_MAX                 64
263
264 #ifdef _KERNEL
265 /*
266  * Each pageable resident page falls into one of four lists:
267  *
268  *      free
269  *              Available for allocation now.
270  *
271  * The following are all LRU sorted:
272  *
273  *      cache
274  *              Almost available for allocation. Still in an
275  *              object, but clean and immediately freeable at
276  *              non-interrupt times.
277  *
278  *      inactive
279  *              Low activity, candidates for reclamation.
280  *              This is the list of pages that should be
281  *              paged out next.
282  *
283  *      active
284  *              Pages that are "active" i.e. they have been
285  *              recently referenced.
286  *
287  *      zero
288  *              Pages that are really free and have been pre-zeroed
289  *
290  */
291
292 extern int vm_page_zero_count;
293 extern vm_page_t vm_page_array;         /* First resident page in table */
294 extern int vm_page_array_size;          /* number of vm_page_t's */
295 extern long first_page;                 /* first physical page number */
296
297 #define VM_PAGE_TO_PHYS(entry)  \
298                 ((entry)->phys_addr)
299
300 #define PHYS_TO_VM_PAGE(pa)     \
301                 (&vm_page_array[atop(pa) - first_page])
302
303 /*
304  *      Functions implemented as macros
305  */
306
307 static __inline void
308 vm_page_flag_set(vm_page_t m, unsigned int bits)
309 {
310         atomic_set_short(&(m)->flags, bits);
311 }
312
313 static __inline void
314 vm_page_flag_clear(vm_page_t m, unsigned int bits)
315 {
316         atomic_clear_short(&(m)->flags, bits);
317 }
318
319 static __inline void
320 vm_page_busy(vm_page_t m)
321 {
322         KASSERT((m->flags & PG_BUSY) == 0, 
323                 ("vm_page_busy: page already busy!!!"));
324         vm_page_flag_set(m, PG_BUSY);
325 }
326
327 /*
328  *      vm_page_flash:
329  *
330  *      wakeup anyone waiting for the page.
331  */
332
333 static __inline void
334 vm_page_flash(vm_page_t m)
335 {
336         if (m->flags & PG_WANTED) {
337                 vm_page_flag_clear(m, PG_WANTED);
338                 wakeup(m);
339         }
340 }
341
342 /*
343  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
344  * is typically the last call you make on a page before moving onto
345  * other things.
346  */
347 static __inline void
348 vm_page_wakeup(vm_page_t m)
349 {
350         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
351         vm_page_flag_clear(m, PG_BUSY);
352         vm_page_flash(m);
353 }
354
355 /*
356  * These routines manipulate the 'soft busy' count for a page.  A soft busy
357  * is almost like PG_BUSY except that it allows certain compatible operations
358  * to occur on the page while it is busy.  For example, a page undergoing a
359  * write can still be mapped read-only.
360  */
361 static __inline void
362 vm_page_io_start(vm_page_t m)
363 {
364         atomic_add_char(&(m)->busy, 1);
365 }
366
367 static __inline void
368 vm_page_io_finish(vm_page_t m)
369 {
370         atomic_subtract_char(&m->busy, 1);
371         if (m->busy == 0)
372                 vm_page_flash(m);
373 }
374
375
376 #if PAGE_SIZE == 4096
377 #define VM_PAGE_BITS_ALL 0xff
378 #endif
379
380 #if PAGE_SIZE == 8192
381 #define VM_PAGE_BITS_ALL 0xffff
382 #endif
383
384 /*
385  * Note: the code will always use nominally free pages from the free list
386  * before trying other flag-specified sources. 
387  *
388  * At least one of VM_ALLOC_NORMAL|VM_ALLOC_SYSTEM|VM_ALLOC_INTERRUPT 
389  * must be specified.  VM_ALLOC_RETRY may only be specified if VM_ALLOC_NORMAL
390  * is also specified.
391  */
392 #define VM_ALLOC_NORMAL         0x01    /* ok to use cache pages */
393 #define VM_ALLOC_SYSTEM         0x02    /* ok to exhaust most of free list */
394 #define VM_ALLOC_INTERRUPT      0x04    /* ok to exhaust entire free list */
395 #define VM_ALLOC_ZERO           0x08    /* req pre-zero'd memory if avail */
396 #define VM_ALLOC_RETRY          0x80    /* indefinite block (vm_page_grab()) */
397
398 void vm_page_unhold(vm_page_t mem);
399 void vm_page_activate (vm_page_t);
400 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
401 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
402 void vm_page_cache (vm_page_t);
403 int vm_page_try_to_cache (vm_page_t);
404 int vm_page_try_to_free (vm_page_t);
405 void vm_page_dontneed (vm_page_t);
406 void vm_page_deactivate (vm_page_t);
407 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
408 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
409 void vm_page_remove (vm_page_t);
410 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
411 vm_offset_t vm_page_startup (vm_offset_t);
412 vm_page_t vm_add_new_page (vm_paddr_t pa);
413 void vm_page_unmanage (vm_page_t);
414 void vm_page_unwire (vm_page_t, int);
415 void vm_page_wire (vm_page_t);
416 void vm_page_unqueue (vm_page_t);
417 void vm_page_unqueue_nowakeup (vm_page_t);
418 void vm_page_set_validclean (vm_page_t, int, int);
419 void vm_page_set_dirty (vm_page_t, int, int);
420 void vm_page_clear_dirty (vm_page_t, int, int);
421 void vm_page_set_invalid (vm_page_t, int, int);
422 int vm_page_is_valid (vm_page_t, int, int);
423 void vm_page_test_dirty (vm_page_t);
424 int vm_page_bits (int, int);
425 vm_page_t vm_page_list_find(int basequeue, int index, boolean_t prefer_zero);
426 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
427 void vm_page_free_toq(vm_page_t m);
428 vm_offset_t vm_contig_pg_kmap(int, u_long, vm_map_t, int);
429 void vm_contig_pg_free(int, u_long);
430
431 /*
432  * Holding a page keeps it from being reused.  Other parts of the system
433  * can still disassociate the page from its current object and free it, or
434  * perform read or write I/O on it and/or otherwise manipulate the page,
435  * but if the page is held the VM system will leave the page and its data
436  * intact and not reuse the page for other purposes until the last hold
437  * reference is released.  (see vm_page_wire() if you want to prevent the
438  * page from being disassociated from its object too).
439  *
440  * This routine must be called while at splvm() or better.
441  *
442  * The caller must still validate the contents of the page and, if necessary,
443  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
444  * before manipulating the page.
445  */
446 static __inline void
447 vm_page_hold(vm_page_t mem)
448 {
449         mem->hold_count++;
450 }
451
452 /*
453  * Reduce the protection of a page.  This routine never raises the 
454  * protection and therefore can be safely called if the page is already
455  * at VM_PROT_NONE (it will be a NOP effectively ).
456  *
457  * VM_PROT_NONE will remove all user mappings of a page.  This is often
458  * necessary when a page changes state (for example, turns into a copy-on-write
459  * page or needs to be frozen for write I/O) in order to force a fault, or
460  * to force a page's dirty bits to be synchronized and avoid hardware
461  * (modified/accessed) bit update races with pmap changes.
462  *
463  * Since 'prot' is usually a constant, this inline usually winds up optimizing
464  * out the primary conditional.
465  */
466 static __inline void
467 vm_page_protect(vm_page_t mem, int prot)
468 {
469         if (prot == VM_PROT_NONE) {
470                 if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
471                         pmap_page_protect(mem, VM_PROT_NONE);
472                         vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
473                 }
474         } else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
475                 pmap_page_protect(mem, VM_PROT_READ);
476                 vm_page_flag_clear(mem, PG_WRITEABLE);
477         }
478 }
479
480 /*
481  * Zero-fill the specified page.  The entire contents of the page will be
482  * zero'd out.
483  */
484 static __inline boolean_t
485 vm_page_zero_fill(vm_page_t m)
486 {
487         pmap_zero_page(VM_PAGE_TO_PHYS(m));
488         return (TRUE);
489 }
490
491 /*
492  * Copy the contents of src_m to dest_m.  The pages must be stable but spl
493  * and other protections depend on context.
494  */
495 static __inline void
496 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
497 {
498         pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
499         dest_m->valid = VM_PAGE_BITS_ALL;
500 }
501
502 /*
503  * Free a page.  The page must be marked BUSY.
504  *
505  * The clearing of PG_ZERO is a temporary safety until the code can be
506  * reviewed to determine that PG_ZERO is being properly cleared on
507  * write faults or maps.  PG_ZERO was previously cleared in 
508  * vm_page_alloc().
509  */
510 static __inline void
511 vm_page_free(vm_page_t m)
512 {
513         vm_page_flag_clear(m, PG_ZERO);
514         vm_page_free_toq(m);
515 }
516
517 /*
518  * Free a page to the zerod-pages queue
519  */
520 static __inline void
521 vm_page_free_zero(vm_page_t m)
522 {
523         vm_page_flag_set(m, PG_ZERO);
524         vm_page_free_toq(m);
525 }
526
527 /*
528  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
529  * m->busy is zero.  Returns TRUE if it had to sleep ( including if 
530  * it almost had to sleep and made temporary spl*() mods), FALSE 
531  * otherwise.
532  *
533  * This routine assumes that interrupts can only remove the busy
534  * status from a page, not set the busy status or change it from
535  * PG_BUSY to m->busy or vise versa (which would create a timing
536  * window).
537  *
538  * Note: as an inline, 'also_m_busy' is usually a constant and well
539  * optimized.
540  */
541 static __inline int
542 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
543 {
544         if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
545                 crit_enter();
546                 if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
547                         /*
548                          * Page is busy. Wait and retry.
549                          */
550                         vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
551                         tsleep(m, 0, msg, 0);
552                 }
553                 crit_exit();
554                 return(TRUE);
555                 /* not reached */
556         }
557         return(FALSE);
558 }
559
560 /*
561  * Make page all dirty
562  */
563 static __inline void
564 _vm_page_dirty(vm_page_t m, const char *info)
565 {
566 #ifdef INVARIANTS
567         int pqtype = m->queue - m->pc;
568 #endif
569         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
570                 ("vm_page_dirty: page in free/cache queue!"));
571         m->dirty = VM_PAGE_BITS_ALL;
572 }
573
574 #define vm_page_dirty(m)        _vm_page_dirty(m, __FUNCTION__)
575
576 /*
577  * Set page to not be dirty.  Note: does not clear pmap modify bits .
578  */
579 static __inline void
580 vm_page_undirty(vm_page_t m)
581 {
582         m->dirty = 0;
583 }
584
585 #endif                          /* _KERNEL */
586 #endif                          /* !_VM_PAGE_ */