Merge from vendor branch TNFTP:
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.31 2007/06/08 02:00:47 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 static void     vm_object_qcollapse(vm_object_t object);
98 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99                                              int pagerflags);
100
101 /*
102  *      Virtual memory objects maintain the actual data
103  *      associated with allocated virtual memory.  A given
104  *      page of memory exists within exactly one object.
105  *
106  *      An object is only deallocated when all "references"
107  *      are given up.  Only one "reference" to a given
108  *      region of an object should be writeable.
109  *
110  *      Associated with each object is a list of all resident
111  *      memory pages belonging to that object; this list is
112  *      maintained by the "vm_page" module, and locked by the object's
113  *      lock.
114  *
115  *      Each object also records a "pager" routine which is
116  *      used to retrieve (and store) pages to the proper backing
117  *      storage.  In addition, objects may be backed by other
118  *      objects from which they were virtual-copied.
119  *
120  *      The only items within the object structure which are
121  *      modified after time of creation are:
122  *              reference count         locked by object's lock
123  *              pager routine           locked by object's lock
124  *
125  */
126
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
129
130 static long vm_object_count;            /* count of all objects */
131 extern int vm_pageout_page_count;
132
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141
142 void
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
144 {
145         int incr;
146         RB_INIT(&object->rb_memq);
147         LIST_INIT(&object->shadow_head);
148
149         object->type = type;
150         object->size = size;
151         object->ref_count = 1;
152         object->flags = 0;
153         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154                 vm_object_set_flag(object, OBJ_ONEMAPPING);
155         object->paging_in_progress = 0;
156         object->resident_page_count = 0;
157         object->shadow_count = 0;
158         object->pg_color = next_index;
159         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161         else
162                 incr = size;
163         next_index = (next_index + incr) & PQ_L2_MASK;
164         object->handle = NULL;
165         object->backing_object = NULL;
166         object->backing_object_offset = (vm_ooffset_t) 0;
167         /*
168          * Try to generate a number that will spread objects out in the
169          * hash table.  We 'wipe' new objects across the hash in 128 page
170          * increments plus 1 more to offset it a little more by the time
171          * it wraps around.
172          */
173         object->hash_rand = object_hash_rand - 129;
174
175         object->generation++;
176
177         crit_enter();
178         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
179         vm_object_count++;
180         object_hash_rand = object->hash_rand;
181         crit_exit();
182 }
183
184 /*
185  *      vm_object_init:
186  *
187  *      Initialize the VM objects module.
188  */
189 void
190 vm_object_init(void)
191 {
192         TAILQ_INIT(&vm_object_list);
193         
194         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
195                             &kernel_object);
196
197         obj_zone = &obj_zone_store;
198         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
199                 vm_objects_init, VM_OBJECTS_INIT);
200 }
201
202 void
203 vm_object_init2(void)
204 {
205         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
206 }
207
208 /*
209  *      vm_object_allocate:
210  *
211  *      Returns a new object with the given size.
212  */
213
214 vm_object_t
215 vm_object_allocate(objtype_t type, vm_size_t size)
216 {
217         vm_object_t result;
218
219         result = (vm_object_t) zalloc(obj_zone);
220
221         _vm_object_allocate(type, size, result);
222
223         return (result);
224 }
225
226
227 /*
228  *      vm_object_reference:
229  *
230  *      Gets another reference to the given object.
231  */
232 void
233 vm_object_reference(vm_object_t object)
234 {
235         if (object == NULL)
236                 return;
237
238         object->ref_count++;
239         if (object->type == OBJT_VNODE) {
240                 vref(object->handle);
241                 /* XXX what if the vnode is being destroyed? */
242         }
243 }
244
245 static void
246 vm_object_vndeallocate(vm_object_t object)
247 {
248         struct vnode *vp = (struct vnode *) object->handle;
249
250         KASSERT(object->type == OBJT_VNODE,
251             ("vm_object_vndeallocate: not a vnode object"));
252         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
253 #ifdef INVARIANTS
254         if (object->ref_count == 0) {
255                 vprint("vm_object_vndeallocate", vp);
256                 panic("vm_object_vndeallocate: bad object reference count");
257         }
258 #endif
259
260         object->ref_count--;
261         if (object->ref_count == 0)
262                 vp->v_flag &= ~VTEXT;
263         vrele(vp);
264 }
265
266 /*
267  *      vm_object_deallocate:
268  *
269  *      Release a reference to the specified object,
270  *      gained either through a vm_object_allocate
271  *      or a vm_object_reference call.  When all references
272  *      are gone, storage associated with this object
273  *      may be relinquished.
274  *
275  *      No object may be locked.
276  */
277 void
278 vm_object_deallocate(vm_object_t object)
279 {
280         vm_object_t temp;
281
282         while (object != NULL) {
283                 if (object->type == OBJT_VNODE) {
284                         vm_object_vndeallocate(object);
285                         return;
286                 }
287
288                 if (object->ref_count == 0) {
289                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
290                 } else if (object->ref_count > 2) {
291                         object->ref_count--;
292                         return;
293                 }
294
295                 /*
296                  * Here on ref_count of one or two, which are special cases for
297                  * objects.
298                  */
299                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
300                         vm_object_set_flag(object, OBJ_ONEMAPPING);
301                         object->ref_count--;
302                         return;
303                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
304                         object->ref_count--;
305                         if ((object->handle == NULL) &&
306                             (object->type == OBJT_DEFAULT ||
307                              object->type == OBJT_SWAP)) {
308                                 vm_object_t robject;
309
310                                 robject = LIST_FIRST(&object->shadow_head);
311                                 KASSERT(robject != NULL,
312                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
313                                          object->ref_count,
314                                          object->shadow_count));
315                                 if ((robject->handle == NULL) &&
316                                     (robject->type == OBJT_DEFAULT ||
317                                      robject->type == OBJT_SWAP)) {
318
319                                         robject->ref_count++;
320
321                                         while (
322                                                 robject->paging_in_progress ||
323                                                 object->paging_in_progress
324                                         ) {
325                                                 vm_object_pip_sleep(robject, "objde1");
326                                                 vm_object_pip_sleep(object, "objde2");
327                                         }
328
329                                         if (robject->ref_count == 1) {
330                                                 robject->ref_count--;
331                                                 object = robject;
332                                                 goto doterm;
333                                         }
334
335                                         object = robject;
336                                         vm_object_collapse(object);
337                                         continue;
338                                 }
339                         }
340
341                         return;
342
343                 } else {
344                         object->ref_count--;
345                         if (object->ref_count != 0)
346                                 return;
347                 }
348
349 doterm:
350
351                 temp = object->backing_object;
352                 if (temp) {
353                         LIST_REMOVE(object, shadow_list);
354                         temp->shadow_count--;
355                         temp->generation++;
356                         object->backing_object = NULL;
357                 }
358
359                 /*
360                  * Don't double-terminate, we could be in a termination
361                  * recursion due to the terminate having to sync data
362                  * to disk.
363                  */
364                 if ((object->flags & OBJ_DEAD) == 0)
365                         vm_object_terminate(object);
366                 object = temp;
367         }
368 }
369
370 /*
371  *      vm_object_terminate actually destroys the specified object, freeing
372  *      up all previously used resources.
373  *
374  *      The object must be locked.
375  *      This routine may block.
376  */
377 static int vm_object_terminate_callback(vm_page_t p, void *data);
378
379 void
380 vm_object_terminate(vm_object_t object)
381 {
382         /*
383          * Make sure no one uses us.
384          */
385         vm_object_set_flag(object, OBJ_DEAD);
386
387         /*
388          * wait for the pageout daemon to be done with the object
389          */
390         vm_object_pip_wait(object, "objtrm");
391
392         KASSERT(!object->paging_in_progress,
393                 ("vm_object_terminate: pageout in progress"));
394
395         /*
396          * Clean and free the pages, as appropriate. All references to the
397          * object are gone, so we don't need to lock it.
398          */
399         if (object->type == OBJT_VNODE) {
400                 struct vnode *vp;
401
402                 /*
403                  * Clean pages and flush buffers.
404                  */
405                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
406
407                 vp = (struct vnode *) object->handle;
408                 vinvalbuf(vp, V_SAVE, 0, 0);
409         }
410
411         /*
412          * Wait for any I/O to complete, after which there had better not
413          * be any references left on the object.
414          */
415         vm_object_pip_wait(object, "objtrm");
416
417         if (object->ref_count != 0)
418                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
419
420         /*
421          * Now free any remaining pages. For internal objects, this also
422          * removes them from paging queues. Don't free wired pages, just
423          * remove them from the object. 
424          */
425         crit_enter();
426         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
427                                 vm_object_terminate_callback, NULL);
428         crit_exit();
429
430         /*
431          * Let the pager know object is dead.
432          */
433         vm_pager_deallocate(object);
434
435         /*
436          * Remove the object from the global object list.
437          */
438         crit_enter();
439         TAILQ_REMOVE(&vm_object_list, object, object_list);
440         vm_object_count--;
441         crit_exit();
442
443         vm_object_dead_wakeup(object);
444         if (object->ref_count != 0)
445                 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
446
447         /*
448          * Free the space for the object.
449          */
450         zfree(obj_zone, object);
451 }
452
453 static int
454 vm_object_terminate_callback(vm_page_t p, void *data __unused)
455 {
456         if (p->busy || (p->flags & PG_BUSY))
457                 panic("vm_object_terminate: freeing busy page %p", p);
458         if (p->wire_count == 0) {
459                 vm_page_busy(p);
460                 vm_page_free(p);
461                 mycpu->gd_cnt.v_pfree++;
462         } else {
463                 if (p->queue != PQ_NONE)
464                         kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
465                 vm_page_busy(p);
466                 vm_page_remove(p);
467                 vm_page_wakeup(p);
468         }
469         return(0);
470 }
471
472 /*
473  * The object is dead but still has an object<->pager association.  Sleep
474  * and return.  The caller typically retests the association in a loop.
475  */
476 void
477 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
478 {
479         crit_enter();
480         if (object->handle) {
481                 vm_object_set_flag(object, OBJ_DEADWNT);
482                 tsleep(object, 0, wmesg, 0);
483         }
484         crit_exit();
485 }
486
487 /*
488  * Wakeup anyone waiting for the object<->pager disassociation on
489  * a dead object.
490  */
491 void
492 vm_object_dead_wakeup(vm_object_t object)
493 {
494         if (object->flags & OBJ_DEADWNT) {
495                 vm_object_clear_flag(object, OBJ_DEADWNT);
496                 wakeup(object);
497         }
498 }
499
500 /*
501  *      vm_object_page_clean
502  *
503  *      Clean all dirty pages in the specified range of object.  Leaves page 
504  *      on whatever queue it is currently on.   If NOSYNC is set then do not
505  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
506  *      leaving the object dirty.
507  *
508  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
509  *      synchronous clustering mode implementation.
510  *
511  *      Odd semantics: if start == end, we clean everything.
512  */
513 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
514 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
515
516 void
517 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
518                      int flags)
519 {
520         struct rb_vm_page_scan_info info;
521         struct vnode *vp;
522         int wholescan;
523         int pagerflags;
524         int curgeneration;
525
526         if (object->type != OBJT_VNODE ||
527                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
528                 return;
529
530         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
531                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
532         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
533
534         vp = object->handle;
535
536         /*
537          * Interlock other major object operations.  This allows us to 
538          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
539          */
540         crit_enter();
541         vm_object_set_flag(object, OBJ_CLEANING);
542
543         /*
544          * Handle 'entire object' case
545          */
546         info.start_pindex = start;
547         if (end == 0) {
548                 info.end_pindex = object->size - 1;
549         } else {
550                 info.end_pindex = end - 1;
551         }
552         wholescan = (start == 0 && info.end_pindex == object->size - 1);
553         info.limit = flags;
554         info.pagerflags = pagerflags;
555         info.object = object;
556
557         /*
558          * If cleaning the entire object do a pass to mark the pages read-only.
559          * If everything worked out ok, clear OBJ_WRITEABLE and
560          * OBJ_MIGHTBEDIRTY.
561          */
562         if (wholescan) {
563                 info.error = 0;
564                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
565                                         vm_object_page_clean_pass1, &info);
566                 if (info.error == 0) {
567                         vm_object_clear_flag(object,
568                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
569                         if (object->type == OBJT_VNODE &&
570                             (vp = (struct vnode *)object->handle) != NULL) {
571                                 if (vp->v_flag & VOBJDIRTY) 
572                                         vclrflags(vp, VOBJDIRTY);
573                         }
574                 }
575         }
576
577         /*
578          * Do a pass to clean all the dirty pages we find.
579          */
580         do {
581                 info.error = 0;
582                 curgeneration = object->generation;
583                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
584                                         vm_object_page_clean_pass2, &info);
585         } while (info.error || curgeneration != object->generation);
586
587         vm_object_clear_flag(object, OBJ_CLEANING);
588         crit_exit();
589 }
590
591 static 
592 int
593 vm_object_page_clean_pass1(struct vm_page *p, void *data)
594 {
595         struct rb_vm_page_scan_info *info = data;
596
597         vm_page_flag_set(p, PG_CLEANCHK);
598         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
599                 info->error = 1;
600         else
601                 vm_page_protect(p, VM_PROT_READ);
602         return(0);
603 }
604
605 static 
606 int
607 vm_object_page_clean_pass2(struct vm_page *p, void *data)
608 {
609         struct rb_vm_page_scan_info *info = data;
610         int n;
611
612         /*
613          * Do not mess with pages that were inserted after we started
614          * the cleaning pass.
615          */
616         if ((p->flags & PG_CLEANCHK) == 0)
617                 return(0);
618
619         /*
620          * Before wasting time traversing the pmaps, check for trivial
621          * cases where the page cannot be dirty.
622          */
623         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
624                 KKASSERT((p->dirty & p->valid) == 0);
625                 return(0);
626         }
627
628         /*
629          * Check whether the page is dirty or not.  The page has been set
630          * to be read-only so the check will not race a user dirtying the
631          * page.
632          */
633         vm_page_test_dirty(p);
634         if ((p->dirty & p->valid) == 0) {
635                 vm_page_flag_clear(p, PG_CLEANCHK);
636                 return(0);
637         }
638
639         /*
640          * If we have been asked to skip nosync pages and this is a
641          * nosync page, skip it.  Note that the object flags were
642          * not cleared in this case (because pass1 will have returned an
643          * error), so we do not have to set them.
644          */
645         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
646                 vm_page_flag_clear(p, PG_CLEANCHK);
647                 return(0);
648         }
649
650         /*
651          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
652          * the pages that get successfully flushed.  Set info->error if
653          * we raced an object modification.
654          */
655         n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
656         if (n == 0)
657                 info->error = 1;
658         return(0);
659 }
660
661 /*
662  * This routine must be called within a critical section to properly avoid
663  * an interrupt unbusy/free race that can occur prior to the busy check.
664  *
665  * Using the object generation number here to detect page ripout is not
666  * the best idea in the world. XXX
667  *
668  * NOTE: we operate under the assumption that a page found to not be busy
669  * will not be ripped out from under us by an interrupt.  XXX we should
670  * recode this to explicitly busy the pages.
671  */
672 static int
673 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
674 {
675         int runlen;
676         int maxf;
677         int chkb;
678         int maxb;
679         int i;
680         int curgeneration;
681         vm_pindex_t pi;
682         vm_page_t maf[vm_pageout_page_count];
683         vm_page_t mab[vm_pageout_page_count];
684         vm_page_t ma[vm_pageout_page_count];
685
686         curgeneration = object->generation;
687
688         pi = p->pindex;
689         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
690                 if (object->generation != curgeneration) {
691                         return(0);
692                 }
693         }
694         KKASSERT(p->object == object && p->pindex == pi);
695
696         maxf = 0;
697         for(i = 1; i < vm_pageout_page_count; i++) {
698                 vm_page_t tp;
699
700                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
701                         if ((tp->flags & PG_BUSY) ||
702                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
703                                  (tp->flags & PG_CLEANCHK) == 0) ||
704                                 (tp->busy != 0))
705                                 break;
706                         if((tp->queue - tp->pc) == PQ_CACHE) {
707                                 vm_page_flag_clear(tp, PG_CLEANCHK);
708                                 break;
709                         }
710                         vm_page_test_dirty(tp);
711                         if ((tp->dirty & tp->valid) == 0) {
712                                 vm_page_flag_clear(tp, PG_CLEANCHK);
713                                 break;
714                         }
715                         maf[ i - 1 ] = tp;
716                         maxf++;
717                         continue;
718                 }
719                 break;
720         }
721
722         maxb = 0;
723         chkb = vm_pageout_page_count -  maxf;
724         if (chkb) {
725                 for(i = 1; i < chkb;i++) {
726                         vm_page_t tp;
727
728                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
729                                 if ((tp->flags & PG_BUSY) ||
730                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
731                                          (tp->flags & PG_CLEANCHK) == 0) ||
732                                         (tp->busy != 0))
733                                         break;
734                                 if((tp->queue - tp->pc) == PQ_CACHE) {
735                                         vm_page_flag_clear(tp, PG_CLEANCHK);
736                                         break;
737                                 }
738                                 vm_page_test_dirty(tp);
739                                 if ((tp->dirty & tp->valid) == 0) {
740                                         vm_page_flag_clear(tp, PG_CLEANCHK);
741                                         break;
742                                 }
743                                 mab[ i - 1 ] = tp;
744                                 maxb++;
745                                 continue;
746                         }
747                         break;
748                 }
749         }
750
751         for(i = 0; i < maxb; i++) {
752                 int index = (maxb - i) - 1;
753                 ma[index] = mab[i];
754                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
755         }
756         vm_page_flag_clear(p, PG_CLEANCHK);
757         ma[maxb] = p;
758         for(i = 0; i < maxf; i++) {
759                 int index = (maxb + i) + 1;
760                 ma[index] = maf[i];
761                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
762         }
763         runlen = maxb + maxf + 1;
764
765         vm_pageout_flush(ma, runlen, pagerflags);
766         for (i = 0; i < runlen; i++) {
767                 if (ma[i]->valid & ma[i]->dirty) {
768                         vm_page_protect(ma[i], VM_PROT_READ);
769                         vm_page_flag_set(ma[i], PG_CLEANCHK);
770
771                         /*
772                          * maxf will end up being the actual number of pages
773                          * we wrote out contiguously, non-inclusive of the
774                          * first page.  We do not count look-behind pages.
775                          */
776                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
777                                 maxf = i - maxb - 1;
778                 }
779         }
780         return(maxf + 1);
781 }
782
783 #ifdef not_used
784 /* XXX I cannot tell if this should be an exported symbol */
785 /*
786  *      vm_object_deactivate_pages
787  *
788  *      Deactivate all pages in the specified object.  (Keep its pages
789  *      in memory even though it is no longer referenced.)
790  *
791  *      The object must be locked.
792  */
793 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
794
795 static void
796 vm_object_deactivate_pages(vm_object_t object)
797 {
798         crit_enter();
799         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
800                                 vm_object_deactivate_pages_callback, NULL);
801         crit_exit();
802 }
803
804 static int
805 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
806 {
807         vm_page_deactivate(p);
808         return(0);
809 }
810
811 #endif
812
813 /*
814  * Same as vm_object_pmap_copy, except range checking really
815  * works, and is meant for small sections of an object.
816  *
817  * This code protects resident pages by making them read-only
818  * and is typically called on a fork or split when a page
819  * is converted to copy-on-write.  
820  *
821  * NOTE: If the page is already at VM_PROT_NONE, calling
822  * vm_page_protect will have no effect.
823  */
824 void
825 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
826 {
827         vm_pindex_t idx;
828         vm_page_t p;
829
830         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
831                 return;
832
833         /*
834          * spl protection needed to prevent races between the lookup,
835          * an interrupt unbusy/free, and our protect call.
836          */
837         crit_enter();
838         for (idx = start; idx < end; idx++) {
839                 p = vm_page_lookup(object, idx);
840                 if (p == NULL)
841                         continue;
842                 vm_page_protect(p, VM_PROT_READ);
843         }
844         crit_exit();
845 }
846
847 /*
848  *      vm_object_pmap_remove:
849  *
850  *      Removes all physical pages in the specified
851  *      object range from all physical maps.
852  *
853  *      The object must *not* be locked.
854  */
855
856 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
857
858 void
859 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
860 {
861         struct rb_vm_page_scan_info info;
862
863         if (object == NULL)
864                 return;
865         info.start_pindex = start;
866         info.end_pindex = end - 1;
867         crit_enter();
868         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
869                                 vm_object_pmap_remove_callback, &info);
870         if (start == 0 && end == object->size)
871                 vm_object_clear_flag(object, OBJ_WRITEABLE);
872         crit_exit();
873 }
874
875 static int
876 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
877 {
878         vm_page_protect(p, VM_PROT_NONE);
879         return(0);
880 }
881
882 /*
883  *      vm_object_madvise:
884  *
885  *      Implements the madvise function at the object/page level.
886  *
887  *      MADV_WILLNEED   (any object)
888  *
889  *          Activate the specified pages if they are resident.
890  *
891  *      MADV_DONTNEED   (any object)
892  *
893  *          Deactivate the specified pages if they are resident.
894  *
895  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
896  *                       OBJ_ONEMAPPING only)
897  *
898  *          Deactivate and clean the specified pages if they are
899  *          resident.  This permits the process to reuse the pages
900  *          without faulting or the kernel to reclaim the pages
901  *          without I/O.
902  */
903 void
904 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
905 {
906         vm_pindex_t end, tpindex;
907         vm_object_t tobject;
908         vm_page_t m;
909
910         if (object == NULL)
911                 return;
912
913         end = pindex + count;
914
915         /*
916          * Locate and adjust resident pages
917          */
918
919         for (; pindex < end; pindex += 1) {
920 relookup:
921                 tobject = object;
922                 tpindex = pindex;
923 shadowlookup:
924                 /*
925                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
926                  * and those pages must be OBJ_ONEMAPPING.
927                  */
928                 if (advise == MADV_FREE) {
929                         if ((tobject->type != OBJT_DEFAULT &&
930                              tobject->type != OBJT_SWAP) ||
931                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
932                                 continue;
933                         }
934                 }
935
936                 /*
937                  * spl protection is required to avoid a race between the
938                  * lookup, an interrupt unbusy/free, and our busy check.
939                  */
940
941                 crit_enter();
942                 m = vm_page_lookup(tobject, tpindex);
943
944                 if (m == NULL) {
945                         /*
946                          * There may be swap even if there is no backing page
947                          */
948                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
949                                 swap_pager_freespace(tobject, tpindex, 1);
950
951                         /*
952                          * next object
953                          */
954                         crit_exit();
955                         if (tobject->backing_object == NULL)
956                                 continue;
957                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
958                         tobject = tobject->backing_object;
959                         goto shadowlookup;
960                 }
961
962                 /*
963                  * If the page is busy or not in a normal active state,
964                  * we skip it.  If the page is not managed there are no
965                  * page queues to mess with.  Things can break if we mess
966                  * with pages in any of the below states.
967                  */
968                 if (
969                     m->hold_count ||
970                     m->wire_count ||
971                     (m->flags & PG_UNMANAGED) ||
972                     m->valid != VM_PAGE_BITS_ALL
973                 ) {
974                         crit_exit();
975                         continue;
976                 }
977
978                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
979                         crit_exit();
980                         goto relookup;
981                 }
982                 crit_exit();
983
984                 /*
985                  * Theoretically once a page is known not to be busy, an
986                  * interrupt cannot come along and rip it out from under us.
987                  */
988
989                 if (advise == MADV_WILLNEED) {
990                         vm_page_activate(m);
991                 } else if (advise == MADV_DONTNEED) {
992                         vm_page_dontneed(m);
993                 } else if (advise == MADV_FREE) {
994                         /*
995                          * Mark the page clean.  This will allow the page
996                          * to be freed up by the system.  However, such pages
997                          * are often reused quickly by malloc()/free()
998                          * so we do not do anything that would cause
999                          * a page fault if we can help it.
1000                          *
1001                          * Specifically, we do not try to actually free
1002                          * the page now nor do we try to put it in the
1003                          * cache (which would cause a page fault on reuse).
1004                          *
1005                          * But we do make the page is freeable as we
1006                          * can without actually taking the step of unmapping
1007                          * it.
1008                          */
1009                         pmap_clear_modify(m);
1010                         m->dirty = 0;
1011                         m->act_count = 0;
1012                         vm_page_dontneed(m);
1013                         if (tobject->type == OBJT_SWAP)
1014                                 swap_pager_freespace(tobject, tpindex, 1);
1015                 }
1016         }       
1017 }
1018
1019 /*
1020  *      vm_object_shadow:
1021  *
1022  *      Create a new object which is backed by the
1023  *      specified existing object range.  The source
1024  *      object reference is deallocated.
1025  *
1026  *      The new object and offset into that object
1027  *      are returned in the source parameters.
1028  */
1029
1030 void
1031 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1032                  vm_ooffset_t *offset,  /* IN/OUT */
1033                  vm_size_t length)
1034 {
1035         vm_object_t source;
1036         vm_object_t result;
1037
1038         source = *object;
1039
1040         /*
1041          * Don't create the new object if the old object isn't shared.
1042          */
1043
1044         if (source != NULL &&
1045             source->ref_count == 1 &&
1046             source->handle == NULL &&
1047             (source->type == OBJT_DEFAULT ||
1048              source->type == OBJT_SWAP))
1049                 return;
1050
1051         /*
1052          * Allocate a new object with the given length
1053          */
1054
1055         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1056                 panic("vm_object_shadow: no object for shadowing");
1057
1058         /*
1059          * The new object shadows the source object, adding a reference to it.
1060          * Our caller changes his reference to point to the new object,
1061          * removing a reference to the source object.  Net result: no change
1062          * of reference count.
1063          *
1064          * Try to optimize the result object's page color when shadowing
1065          * in order to maintain page coloring consistency in the combined 
1066          * shadowed object.
1067          */
1068         result->backing_object = source;
1069         if (source) {
1070                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1071                 source->shadow_count++;
1072                 source->generation++;
1073                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1074         }
1075
1076         /*
1077          * Store the offset into the source object, and fix up the offset into
1078          * the new object.
1079          */
1080
1081         result->backing_object_offset = *offset;
1082
1083         /*
1084          * Return the new things
1085          */
1086
1087         *offset = 0;
1088         *object = result;
1089 }
1090
1091 #define OBSC_TEST_ALL_SHADOWED  0x0001
1092 #define OBSC_COLLAPSE_NOWAIT    0x0002
1093 #define OBSC_COLLAPSE_WAIT      0x0004
1094
1095 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1096
1097 static __inline int
1098 vm_object_backing_scan(vm_object_t object, int op)
1099 {
1100         struct rb_vm_page_scan_info info;
1101         vm_object_t backing_object;
1102
1103         /*
1104          * spl protection is required to avoid races between the memq/lookup,
1105          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1106          * other things.
1107          */
1108         crit_enter();
1109
1110         backing_object = object->backing_object;
1111         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1112
1113         /*
1114          * Initial conditions
1115          */
1116
1117         if (op & OBSC_TEST_ALL_SHADOWED) {
1118                 /*
1119                  * We do not want to have to test for the existence of
1120                  * swap pages in the backing object.  XXX but with the
1121                  * new swapper this would be pretty easy to do.
1122                  *
1123                  * XXX what about anonymous MAP_SHARED memory that hasn't
1124                  * been ZFOD faulted yet?  If we do not test for this, the
1125                  * shadow test may succeed! XXX
1126                  */
1127                 if (backing_object->type != OBJT_DEFAULT) {
1128                         crit_exit();
1129                         return(0);
1130                 }
1131         }
1132         if (op & OBSC_COLLAPSE_WAIT) {
1133                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1134                 vm_object_set_flag(backing_object, OBJ_DEAD);
1135         }
1136
1137         /*
1138          * Our scan.   We have to retry if a negative error code is returned,
1139          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1140          * the scan had to be stopped because the parent does not completely
1141          * shadow the child.
1142          */
1143         info.object = object;
1144         info.backing_object = backing_object;
1145         info.limit = op;
1146         do {
1147                 info.error = 1;
1148                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1149                                         vm_object_backing_scan_callback,
1150                                         &info);
1151         } while (info.error < 0);
1152         crit_exit();
1153         return(info.error);
1154 }
1155
1156 static int
1157 vm_object_backing_scan_callback(vm_page_t p, void *data)
1158 {
1159         struct rb_vm_page_scan_info *info = data;
1160         vm_object_t backing_object;
1161         vm_object_t object;
1162         vm_pindex_t new_pindex;
1163         vm_pindex_t backing_offset_index;
1164         int op;
1165
1166         new_pindex = p->pindex - info->backing_offset_index;
1167         op = info->limit;
1168         object = info->object;
1169         backing_object = info->backing_object;
1170         backing_offset_index = info->backing_offset_index;
1171
1172         if (op & OBSC_TEST_ALL_SHADOWED) {
1173                 vm_page_t pp;
1174
1175                 /*
1176                  * Ignore pages outside the parent object's range
1177                  * and outside the parent object's mapping of the 
1178                  * backing object.
1179                  *
1180                  * note that we do not busy the backing object's
1181                  * page.
1182                  */
1183                 if (
1184                     p->pindex < backing_offset_index ||
1185                     new_pindex >= object->size
1186                 ) {
1187                         return(0);
1188                 }
1189
1190                 /*
1191                  * See if the parent has the page or if the parent's
1192                  * object pager has the page.  If the parent has the
1193                  * page but the page is not valid, the parent's
1194                  * object pager must have the page.
1195                  *
1196                  * If this fails, the parent does not completely shadow
1197                  * the object and we might as well give up now.
1198                  */
1199
1200                 pp = vm_page_lookup(object, new_pindex);
1201                 if (
1202                     (pp == NULL || pp->valid == 0) &&
1203                     !vm_pager_has_page(object, new_pindex, NULL, NULL)
1204                 ) {
1205                         info->error = 0;        /* problemo */
1206                         return(-1);             /* stop the scan */
1207                 }
1208         }
1209
1210         /*
1211          * Check for busy page
1212          */
1213
1214         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1215                 vm_page_t pp;
1216
1217                 if (op & OBSC_COLLAPSE_NOWAIT) {
1218                         if (
1219                             (p->flags & PG_BUSY) ||
1220                             !p->valid || 
1221                             p->hold_count || 
1222                             p->wire_count ||
1223                             p->busy
1224                         ) {
1225                                 return(0);
1226                         }
1227                 } else if (op & OBSC_COLLAPSE_WAIT) {
1228                         if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1229                                 /*
1230                                  * If we slept, anything could have
1231                                  * happened.   Ask that the scan be restarted.
1232                                  *
1233                                  * Since the object is marked dead, the
1234                                  * backing offset should not have changed.  
1235                                  */
1236                                 info->error = -1;
1237                                 return(-1);
1238                         }
1239                 }
1240
1241                 /* 
1242                  * Busy the page
1243                  */
1244                 vm_page_busy(p);
1245
1246                 KASSERT(
1247                     p->object == backing_object,
1248                     ("vm_object_qcollapse(): object mismatch")
1249                 );
1250
1251                 /*
1252                  * Destroy any associated swap
1253                  */
1254                 if (backing_object->type == OBJT_SWAP) {
1255                         swap_pager_freespace(
1256                             backing_object, 
1257                             p->pindex,
1258                             1
1259                         );
1260                 }
1261
1262                 if (
1263                     p->pindex < backing_offset_index ||
1264                     new_pindex >= object->size
1265                 ) {
1266                         /*
1267                          * Page is out of the parent object's range, we 
1268                          * can simply destroy it. 
1269                          */
1270                         vm_page_protect(p, VM_PROT_NONE);
1271                         vm_page_free(p);
1272                         return(0);
1273                 }
1274
1275                 pp = vm_page_lookup(object, new_pindex);
1276                 if (
1277                     pp != NULL ||
1278                     vm_pager_has_page(object, new_pindex, NULL, NULL)
1279                 ) {
1280                         /*
1281                          * page already exists in parent OR swap exists
1282                          * for this location in the parent.  Destroy 
1283                          * the original page from the backing object.
1284                          *
1285                          * Leave the parent's page alone
1286                          */
1287                         vm_page_protect(p, VM_PROT_NONE);
1288                         vm_page_free(p);
1289                         return(0);
1290                 }
1291
1292                 /*
1293                  * Page does not exist in parent, rename the
1294                  * page from the backing object to the main object. 
1295                  *
1296                  * If the page was mapped to a process, it can remain 
1297                  * mapped through the rename.
1298                  */
1299                 if ((p->queue - p->pc) == PQ_CACHE)
1300                         vm_page_deactivate(p);
1301
1302                 vm_page_rename(p, object, new_pindex);
1303                 /* page automatically made dirty by rename */
1304         }
1305         return(0);
1306 }
1307
1308 /*
1309  * this version of collapse allows the operation to occur earlier and
1310  * when paging_in_progress is true for an object...  This is not a complete
1311  * operation, but should plug 99.9% of the rest of the leaks.
1312  */
1313 static void
1314 vm_object_qcollapse(vm_object_t object)
1315 {
1316         vm_object_t backing_object = object->backing_object;
1317
1318         if (backing_object->ref_count != 1)
1319                 return;
1320
1321         backing_object->ref_count += 2;
1322
1323         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1324
1325         backing_object->ref_count -= 2;
1326 }
1327
1328 /*
1329  *      vm_object_collapse:
1330  *
1331  *      Collapse an object with the object backing it.
1332  *      Pages in the backing object are moved into the
1333  *      parent, and the backing object is deallocated.
1334  */
1335 void
1336 vm_object_collapse(vm_object_t object)
1337 {
1338         while (TRUE) {
1339                 vm_object_t backing_object;
1340
1341                 /*
1342                  * Verify that the conditions are right for collapse:
1343                  *
1344                  * The object exists and the backing object exists.
1345                  */
1346                 if (object == NULL)
1347                         break;
1348
1349                 if ((backing_object = object->backing_object) == NULL)
1350                         break;
1351
1352                 /*
1353                  * we check the backing object first, because it is most likely
1354                  * not collapsable.
1355                  */
1356                 if (backing_object->handle != NULL ||
1357                     (backing_object->type != OBJT_DEFAULT &&
1358                      backing_object->type != OBJT_SWAP) ||
1359                     (backing_object->flags & OBJ_DEAD) ||
1360                     object->handle != NULL ||
1361                     (object->type != OBJT_DEFAULT &&
1362                      object->type != OBJT_SWAP) ||
1363                     (object->flags & OBJ_DEAD)) {
1364                         break;
1365                 }
1366
1367                 if (
1368                     object->paging_in_progress != 0 ||
1369                     backing_object->paging_in_progress != 0
1370                 ) {
1371                         vm_object_qcollapse(object);
1372                         break;
1373                 }
1374
1375                 /*
1376                  * We know that we can either collapse the backing object (if
1377                  * the parent is the only reference to it) or (perhaps) have
1378                  * the parent bypass the object if the parent happens to shadow
1379                  * all the resident pages in the entire backing object.
1380                  *
1381                  * This is ignoring pager-backed pages such as swap pages.
1382                  * vm_object_backing_scan fails the shadowing test in this
1383                  * case.
1384                  */
1385
1386                 if (backing_object->ref_count == 1) {
1387                         /*
1388                          * If there is exactly one reference to the backing
1389                          * object, we can collapse it into the parent.  
1390                          */
1391                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1392
1393                         /*
1394                          * Move the pager from backing_object to object.
1395                          */
1396
1397                         if (backing_object->type == OBJT_SWAP) {
1398                                 vm_object_pip_add(backing_object, 1);
1399
1400                                 /*
1401                                  * scrap the paging_offset junk and do a 
1402                                  * discrete copy.  This also removes major 
1403                                  * assumptions about how the swap-pager 
1404                                  * works from where it doesn't belong.  The
1405                                  * new swapper is able to optimize the
1406                                  * destroy-source case.
1407                                  */
1408
1409                                 vm_object_pip_add(object, 1);
1410                                 swap_pager_copy(
1411                                     backing_object,
1412                                     object,
1413                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1414                                 vm_object_pip_wakeup(object);
1415
1416                                 vm_object_pip_wakeup(backing_object);
1417                         }
1418                         /*
1419                          * Object now shadows whatever backing_object did.
1420                          * Note that the reference to 
1421                          * backing_object->backing_object moves from within 
1422                          * backing_object to within object.
1423                          */
1424
1425                         LIST_REMOVE(object, shadow_list);
1426                         object->backing_object->shadow_count--;
1427                         object->backing_object->generation++;
1428                         if (backing_object->backing_object) {
1429                                 LIST_REMOVE(backing_object, shadow_list);
1430                                 backing_object->backing_object->shadow_count--;
1431                                 backing_object->backing_object->generation++;
1432                         }
1433                         object->backing_object = backing_object->backing_object;
1434                         if (object->backing_object) {
1435                                 LIST_INSERT_HEAD(
1436                                     &object->backing_object->shadow_head,
1437                                     object, 
1438                                     shadow_list
1439                                 );
1440                                 object->backing_object->shadow_count++;
1441                                 object->backing_object->generation++;
1442                         }
1443
1444                         object->backing_object_offset +=
1445                             backing_object->backing_object_offset;
1446
1447                         /*
1448                          * Discard backing_object.
1449                          *
1450                          * Since the backing object has no pages, no pager left,
1451                          * and no object references within it, all that is
1452                          * necessary is to dispose of it.
1453                          */
1454
1455                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1456                         KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1457                         crit_enter();
1458                         TAILQ_REMOVE(
1459                             &vm_object_list, 
1460                             backing_object,
1461                             object_list
1462                         );
1463                         vm_object_count--;
1464                         crit_exit();
1465
1466                         zfree(obj_zone, backing_object);
1467
1468                         object_collapses++;
1469                 } else {
1470                         vm_object_t new_backing_object;
1471
1472                         /*
1473                          * If we do not entirely shadow the backing object,
1474                          * there is nothing we can do so we give up.
1475                          */
1476
1477                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1478                                 break;
1479                         }
1480
1481                         /*
1482                          * Make the parent shadow the next object in the
1483                          * chain.  Deallocating backing_object will not remove
1484                          * it, since its reference count is at least 2.
1485                          */
1486
1487                         LIST_REMOVE(object, shadow_list);
1488                         backing_object->shadow_count--;
1489                         backing_object->generation++;
1490
1491                         new_backing_object = backing_object->backing_object;
1492                         if ((object->backing_object = new_backing_object) != NULL) {
1493                                 vm_object_reference(new_backing_object);
1494                                 LIST_INSERT_HEAD(
1495                                     &new_backing_object->shadow_head,
1496                                     object,
1497                                     shadow_list
1498                                 );
1499                                 new_backing_object->shadow_count++;
1500                                 new_backing_object->generation++;
1501                                 object->backing_object_offset +=
1502                                         backing_object->backing_object_offset;
1503                         }
1504
1505                         /*
1506                          * Drop the reference count on backing_object. Since
1507                          * its ref_count was at least 2, it will not vanish;
1508                          * so we don't need to call vm_object_deallocate, but
1509                          * we do anyway.
1510                          */
1511                         vm_object_deallocate(backing_object);
1512                         object_bypasses++;
1513                 }
1514
1515                 /*
1516                  * Try again with this object's new backing object.
1517                  */
1518         }
1519 }
1520
1521 /*
1522  *      vm_object_page_remove: [internal]
1523  *
1524  *      Removes all physical pages in the specified
1525  *      object range from the object's list of pages.
1526  */
1527 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1528
1529 void
1530 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1531                       boolean_t clean_only)
1532 {
1533         struct rb_vm_page_scan_info info;
1534         int all;
1535
1536         /*
1537          * Degenerate cases and assertions
1538          */
1539         if (object == NULL || object->resident_page_count == 0)
1540                 return;
1541         KASSERT(object->type != OBJT_PHYS, 
1542                 ("attempt to remove pages from a physical object"));
1543
1544         /*
1545          * Indicate that paging is occuring on the object
1546          */
1547         crit_enter();
1548         vm_object_pip_add(object, 1);
1549
1550         /*
1551          * Figure out the actual removal range and whether we are removing
1552          * the entire contents of the object or not.  If removing the entire
1553          * contents, be sure to get all pages, even those that might be 
1554          * beyond the end of the object.
1555          */
1556         info.start_pindex = start;
1557         if (end == 0)
1558                 info.end_pindex = (vm_pindex_t)-1;
1559         else
1560                 info.end_pindex = end - 1;
1561         info.limit = clean_only;
1562         all = (start == 0 && info.end_pindex >= object->size - 1);
1563
1564         /*
1565          * Loop until we are sure we have gotten them all.
1566          */
1567         do {
1568                 info.error = 0;
1569                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1570                                         vm_object_page_remove_callback, &info);
1571         } while (info.error);
1572
1573         /*
1574          * Cleanup
1575          */
1576         vm_object_pip_wakeup(object);
1577         crit_exit();
1578 }
1579
1580 static int
1581 vm_object_page_remove_callback(vm_page_t p, void *data)
1582 {
1583         struct rb_vm_page_scan_info *info = data;
1584
1585         /*
1586          * Wired pages cannot be destroyed, but they can be invalidated
1587          * and we do so if clean_only (limit) is not set.
1588          */
1589         if (p->wire_count != 0) {
1590                 vm_page_protect(p, VM_PROT_NONE);
1591                 if (info->limit == 0)
1592                         p->valid = 0;
1593                 return(0);
1594         }
1595
1596         /*
1597          * The busy flags are only cleared at
1598          * interrupt -- minimize the spl transitions
1599          */
1600
1601         if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1602                 info->error = 1;
1603                 return(0);
1604         }
1605
1606         /*
1607          * limit is our clean_only flag.  If set and the page is dirty, do
1608          * not free it.
1609          */
1610         if (info->limit && p->valid) {
1611                 vm_page_test_dirty(p);
1612                 if (p->valid & p->dirty)
1613                         return(0);
1614         }
1615
1616         /*
1617          * Destroy the page
1618          */
1619         vm_page_busy(p);
1620         vm_page_protect(p, VM_PROT_NONE);
1621         vm_page_free(p);
1622         return(0);
1623 }
1624
1625 /*
1626  *      Routine:        vm_object_coalesce
1627  *      Function:       Coalesces two objects backing up adjoining
1628  *                      regions of memory into a single object.
1629  *
1630  *      returns TRUE if objects were combined.
1631  *
1632  *      NOTE:   Only works at the moment if the second object is NULL -
1633  *              if it's not, which object do we lock first?
1634  *
1635  *      Parameters:
1636  *              prev_object     First object to coalesce
1637  *              prev_offset     Offset into prev_object
1638  *              next_object     Second object into coalesce
1639  *              next_offset     Offset into next_object
1640  *
1641  *              prev_size       Size of reference to prev_object
1642  *              next_size       Size of reference to next_object
1643  *
1644  *      Conditions:
1645  *      The object must *not* be locked.
1646  */
1647 boolean_t
1648 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1649     vm_size_t prev_size, vm_size_t next_size)
1650 {
1651         vm_pindex_t next_pindex;
1652
1653         if (prev_object == NULL) {
1654                 return (TRUE);
1655         }
1656
1657         if (prev_object->type != OBJT_DEFAULT &&
1658             prev_object->type != OBJT_SWAP) {
1659                 return (FALSE);
1660         }
1661
1662         /*
1663          * Try to collapse the object first
1664          */
1665         vm_object_collapse(prev_object);
1666
1667         /*
1668          * Can't coalesce if: . more than one reference . paged out . shadows
1669          * another object . has a copy elsewhere (any of which mean that the
1670          * pages not mapped to prev_entry may be in use anyway)
1671          */
1672
1673         if (prev_object->backing_object != NULL) {
1674                 return (FALSE);
1675         }
1676
1677         prev_size >>= PAGE_SHIFT;
1678         next_size >>= PAGE_SHIFT;
1679         next_pindex = prev_pindex + prev_size;
1680
1681         if ((prev_object->ref_count > 1) &&
1682             (prev_object->size != next_pindex)) {
1683                 return (FALSE);
1684         }
1685
1686         /*
1687          * Remove any pages that may still be in the object from a previous
1688          * deallocation.
1689          */
1690         if (next_pindex < prev_object->size) {
1691                 vm_object_page_remove(prev_object,
1692                                       next_pindex,
1693                                       next_pindex + next_size, FALSE);
1694                 if (prev_object->type == OBJT_SWAP)
1695                         swap_pager_freespace(prev_object,
1696                                              next_pindex, next_size);
1697         }
1698
1699         /*
1700          * Extend the object if necessary.
1701          */
1702         if (next_pindex + next_size > prev_object->size)
1703                 prev_object->size = next_pindex + next_size;
1704
1705         return (TRUE);
1706 }
1707
1708 void
1709 vm_object_set_writeable_dirty(vm_object_t object)
1710 {
1711         struct vnode *vp;
1712
1713         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1714         if (object->type == OBJT_VNODE &&
1715             (vp = (struct vnode *)object->handle) != NULL) {
1716                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1717                         vsetflags(vp, VOBJDIRTY);
1718                 }
1719         }
1720 }
1721
1722
1723
1724 #include "opt_ddb.h"
1725 #ifdef DDB
1726 #include <sys/kernel.h>
1727
1728 #include <sys/cons.h>
1729
1730 #include <ddb/ddb.h>
1731
1732 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1733                                        vm_map_entry_t entry);
1734 static int      vm_object_in_map (vm_object_t object);
1735
1736 static int
1737 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1738 {
1739         vm_map_t tmpm;
1740         vm_map_entry_t tmpe;
1741         vm_object_t obj;
1742         int entcount;
1743
1744         if (map == 0)
1745                 return 0;
1746         if (entry == 0) {
1747                 tmpe = map->header.next;
1748                 entcount = map->nentries;
1749                 while (entcount-- && (tmpe != &map->header)) {
1750                         if( _vm_object_in_map(map, object, tmpe)) {
1751                                 return 1;
1752                         }
1753                         tmpe = tmpe->next;
1754                 }
1755                 return (0);
1756         }
1757         switch(entry->maptype) {
1758         case VM_MAPTYPE_SUBMAP:
1759                 tmpm = entry->object.sub_map;
1760                 tmpe = tmpm->header.next;
1761                 entcount = tmpm->nentries;
1762                 while (entcount-- && tmpe != &tmpm->header) {
1763                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1764                                 return 1;
1765                         }
1766                         tmpe = tmpe->next;
1767                 }
1768                 break;
1769         case VM_MAPTYPE_NORMAL:
1770         case VM_MAPTYPE_VPAGETABLE:
1771                 obj = entry->object.vm_object;
1772                 while (obj) {
1773                         if (obj == object)
1774                                 return 1;
1775                         obj = obj->backing_object;
1776                 }
1777                 break;
1778         default:
1779                 break;
1780         }
1781         return 0;
1782 }
1783
1784 static int vm_object_in_map_callback(struct proc *p, void *data);
1785
1786 struct vm_object_in_map_info {
1787         vm_object_t object;
1788         int rv;
1789 };
1790
1791 static int
1792 vm_object_in_map(vm_object_t object)
1793 {
1794         struct vm_object_in_map_info info;
1795
1796         info.rv = 0;
1797         info.object = object;
1798
1799         allproc_scan(vm_object_in_map_callback, &info);
1800         if (info.rv)
1801                 return 1;
1802         if( _vm_object_in_map(&kernel_map, object, 0))
1803                 return 1;
1804         if( _vm_object_in_map(&pager_map, object, 0))
1805                 return 1;
1806         if( _vm_object_in_map(&buffer_map, object, 0))
1807                 return 1;
1808         return 0;
1809 }
1810
1811 static int
1812 vm_object_in_map_callback(struct proc *p, void *data)
1813 {
1814         struct vm_object_in_map_info *info = data;
1815
1816         if (p->p_vmspace) {
1817                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1818                         info->rv = 1;
1819                         return -1;
1820                 }
1821         }
1822         return (0);
1823 }
1824
1825 DB_SHOW_COMMAND(vmochk, vm_object_check)
1826 {
1827         vm_object_t object;
1828
1829         /*
1830          * make sure that internal objs are in a map somewhere
1831          * and none have zero ref counts.
1832          */
1833         for (object = TAILQ_FIRST(&vm_object_list);
1834                         object != NULL;
1835                         object = TAILQ_NEXT(object, object_list)) {
1836                 if (object->handle == NULL &&
1837                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1838                         if (object->ref_count == 0) {
1839                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1840                                         (long)object->size);
1841                         }
1842                         if (!vm_object_in_map(object)) {
1843                                 db_printf(
1844                         "vmochk: internal obj is not in a map: "
1845                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1846                                     object->ref_count, (u_long)object->size, 
1847                                     (u_long)object->size,
1848                                     (void *)object->backing_object);
1849                         }
1850                 }
1851         }
1852 }
1853
1854 /*
1855  *      vm_object_print:        [ debug ]
1856  */
1857 DB_SHOW_COMMAND(object, vm_object_print_static)
1858 {
1859         /* XXX convert args. */
1860         vm_object_t object = (vm_object_t)addr;
1861         boolean_t full = have_addr;
1862
1863         vm_page_t p;
1864
1865         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1866 #define count   was_count
1867
1868         int count;
1869
1870         if (object == NULL)
1871                 return;
1872
1873         db_iprintf(
1874             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1875             object, (int)object->type, (u_long)object->size,
1876             object->resident_page_count, object->ref_count, object->flags);
1877         /*
1878          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1879          */
1880         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1881             object->shadow_count, 
1882             object->backing_object ? object->backing_object->ref_count : 0,
1883             object->backing_object, (long)object->backing_object_offset);
1884
1885         if (!full)
1886                 return;
1887
1888         db_indent += 2;
1889         count = 0;
1890         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1891                 if (count == 0)
1892                         db_iprintf("memory:=");
1893                 else if (count == 6) {
1894                         db_printf("\n");
1895                         db_iprintf(" ...");
1896                         count = 0;
1897                 } else
1898                         db_printf(",");
1899                 count++;
1900
1901                 db_printf("(off=0x%lx,page=0x%lx)",
1902                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1903         }
1904         if (count != 0)
1905                 db_printf("\n");
1906         db_indent -= 2;
1907 }
1908
1909 /* XXX. */
1910 #undef count
1911
1912 /* XXX need this non-static entry for calling from vm_map_print. */
1913 void
1914 vm_object_print(/* db_expr_t */ long addr,
1915                 boolean_t have_addr,
1916                 /* db_expr_t */ long count,
1917                 char *modif)
1918 {
1919         vm_object_print_static(addr, have_addr, count, modif);
1920 }
1921
1922 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1923 {
1924         vm_object_t object;
1925         int nl = 0;
1926         int c;
1927         for (object = TAILQ_FIRST(&vm_object_list);
1928                         object != NULL;
1929                         object = TAILQ_NEXT(object, object_list)) {
1930                 vm_pindex_t idx, fidx;
1931                 vm_pindex_t osize;
1932                 vm_paddr_t pa = -1, padiff;
1933                 int rcount;
1934                 vm_page_t m;
1935
1936                 db_printf("new object: %p\n", (void *)object);
1937                 if ( nl > 18) {
1938                         c = cngetc();
1939                         if (c != ' ')
1940                                 return;
1941                         nl = 0;
1942                 }
1943                 nl++;
1944                 rcount = 0;
1945                 fidx = 0;
1946                 osize = object->size;
1947                 if (osize > 128)
1948                         osize = 128;
1949                 for (idx = 0; idx < osize; idx++) {
1950                         m = vm_page_lookup(object, idx);
1951                         if (m == NULL) {
1952                                 if (rcount) {
1953                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1954                                                 (long)fidx, rcount, (long)pa);
1955                                         if ( nl > 18) {
1956                                                 c = cngetc();
1957                                                 if (c != ' ')
1958                                                         return;
1959                                                 nl = 0;
1960                                         }
1961                                         nl++;
1962                                         rcount = 0;
1963                                 }
1964                                 continue;
1965                         }
1966
1967                                 
1968                         if (rcount &&
1969                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1970                                 ++rcount;
1971                                 continue;
1972                         }
1973                         if (rcount) {
1974                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1975                                 padiff >>= PAGE_SHIFT;
1976                                 padiff &= PQ_L2_MASK;
1977                                 if (padiff == 0) {
1978                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1979                                         ++rcount;
1980                                         continue;
1981                                 }
1982                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1983                                         (long)fidx, rcount, (long)pa);
1984                                 db_printf("pd(%ld)\n", (long)padiff);
1985                                 if ( nl > 18) {
1986                                         c = cngetc();
1987                                         if (c != ' ')
1988                                                 return;
1989                                         nl = 0;
1990                                 }
1991                                 nl++;
1992                         }
1993                         fidx = idx;
1994                         pa = VM_PAGE_TO_PHYS(m);
1995                         rcount = 1;
1996                 }
1997                 if (rcount) {
1998                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1999                                 (long)fidx, rcount, (long)pa);
2000                         if ( nl > 18) {
2001                                 c = cngetc();
2002                                 if (c != ' ')
2003                                         return;
2004                                 nl = 0;
2005                         }
2006                         nl++;
2007                 }
2008         }
2009 }
2010 #endif /* DDB */