Merge branch 'vendor/GDB'
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * A chain is topologically stable once it has been inserted into the
44  * in-memory topology.  Modifications which copy, move, or resize the chain
45  * are handled via the DELETE-DUPLICATE mechanic where the original chain
46  * stays intact but is marked deleted and a new chain is allocated which
47  * shares the old chain's children.
48  *
49  * This sharing is handled via the hammer2_chain_core structure.
50  *
51  * The DELETE-DUPLICATE mechanism allows the same topological level to contain
52  * many overloadings.  However, our RBTREE mechanics require that there be
53  * no overlaps so we accomplish the overloading by moving conflicting chains
54  * with smaller or equal radii into a sub-RBTREE under the chain being
55  * overloaded.
56  *
57  * DELETE-DUPLICATE is also used when a modification to a chain crosses a
58  * flush synchronization boundary, allowing the flush code to continue flushing
59  * the older version of the topology and not be disrupted by new frontend
60  * operations.
61  */
62 #include <sys/cdefs.h>
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/types.h>
66 #include <sys/lock.h>
67 #include <sys/kern_syscall.h>
68 #include <sys/uuid.h>
69
70 #include "hammer2.h"
71
72 static int hammer2_indirect_optimize;   /* XXX SYSCTL */
73
74 static hammer2_chain_t *hammer2_chain_create_indirect(
75                 hammer2_trans_t *trans, hammer2_chain_t *parent,
76                 hammer2_key_t key, int keybits, int for_type, int *errorp);
77 static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
78 static void adjreadcounter(hammer2_blockref_t *bref, size_t bytes);
79 static hammer2_chain_t *hammer2_combined_find(
80                 hammer2_chain_t *parent,
81                 hammer2_blockref_t *base, int count,
82                 int *cache_indexp, hammer2_key_t *key_nextp,
83                 hammer2_key_t key_beg, hammer2_key_t key_end,
84                 hammer2_blockref_t **bresp);
85
86 /*
87  * Basic RBTree for chains.  Chains cannot overlap within any given
88  * core->rbtree without recursing through chain->rbtree.  We effectively
89  * guarantee this by checking the full range rather than just the first
90  * key element.  By matching on the full range callers can detect when
91  * recursrion through chain->rbtree is needed.
92  *
93  * NOTE: This also means the a delete-duplicate on the same key will
94  *       overload by placing the deleted element in the new element's
95  *       chain->rbtree (when doing a direct replacement).
96  */
97 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
98
99 int
100 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
101 {
102         hammer2_key_t c1_beg;
103         hammer2_key_t c1_end;
104         hammer2_key_t c2_beg;
105         hammer2_key_t c2_end;
106
107         c1_beg = chain1->bref.key;
108         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
109         c2_beg = chain2->bref.key;
110         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
111
112         if (c1_end < c2_beg)    /* fully to the left */
113                 return(-1);
114         if (c1_beg > c2_end)    /* fully to the right */
115                 return(1);
116         return(0);              /* overlap (must not cross edge boundary) */
117 }
118
119 static __inline
120 int
121 hammer2_isclusterable(hammer2_chain_t *chain)
122 {
123         if (hammer2_cluster_enable) {
124                 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
125                     chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
126                     chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
127                         return(1);
128                 }
129         }
130         return(0);
131 }
132
133 /*
134  * Recursively set the SUBMODIFIED flag up to the root starting at chain's
135  * parent.  SUBMODIFIED is not set in chain itself.
136  *
137  * This function always runs up the live tree.  The flush code can cause
138  * modifications under dead parents which are being flush synchronized
139  * and will handle this flag itself.
140  */
141 void
142 hammer2_chain_setsubmod(hammer2_trans_t *trans, hammer2_chain_t *chain)
143 {
144         hammer2_chain_core_t *above;
145
146         if (trans->flags & HAMMER2_TRANS_ISFLUSH)
147                 return;
148         while ((above = chain->above) != NULL) {
149                 spin_lock(&above->cst.spin);
150                 chain = TAILQ_FIRST(&above->ownerq);
151                 while (chain->flags & HAMMER2_CHAIN_DUPLICATED)
152                         chain = TAILQ_NEXT(chain, core_entry);
153                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_SUBMODIFIED);
154                 spin_unlock(&above->cst.spin);
155         }
156 }
157
158 /*
159  * Allocate a new disconnected chain element representing the specified
160  * bref.  chain->refs is set to 1 and the passed bref is copied to
161  * chain->bref.  chain->bytes is derived from the bref.
162  *
163  * chain->core is NOT allocated and the media data and bp pointers are left
164  * NULL.  The caller must call chain_core_alloc() to allocate or associate
165  * a core with the chain.
166  *
167  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
168  */
169 hammer2_chain_t *
170 hammer2_chain_alloc(hammer2_mount_t *hmp, hammer2_pfsmount_t *pmp,
171                     hammer2_trans_t *trans, hammer2_blockref_t *bref)
172 {
173         hammer2_chain_t *chain;
174         u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
175
176         /*
177          * Construct the appropriate system structure.
178          */
179         switch(bref->type) {
180         case HAMMER2_BREF_TYPE_INODE:
181         case HAMMER2_BREF_TYPE_INDIRECT:
182         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
183         case HAMMER2_BREF_TYPE_DATA:
184         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
185                 /*
186                  * Chain's are really only associated with the hmp but we
187                  * maintain a pmp association for per-mount memory tracking
188                  * purposes.  The pmp can be NULL.
189                  */
190                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
191                 if (pmp) {
192                         chain->pmp = pmp;
193                         atomic_add_long(&pmp->inmem_chains, 1);
194                 }
195                 break;
196         case HAMMER2_BREF_TYPE_VOLUME:
197         case HAMMER2_BREF_TYPE_FREEMAP:
198                 chain = NULL;
199                 panic("hammer2_chain_alloc volume type illegal for op");
200         default:
201                 chain = NULL;
202                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
203                       bref->type);
204         }
205
206         chain->hmp = hmp;
207         chain->bref = *bref;
208         chain->bytes = bytes;
209         chain->refs = 1;
210         chain->flags = HAMMER2_CHAIN_ALLOCATED;
211         chain->delete_tid = HAMMER2_MAX_TID;
212         if (trans)
213                 chain->modify_tid = trans->sync_tid;
214
215         return (chain);
216 }
217
218 /*
219  * Associate an existing core with the chain or allocate a new core.
220  *
221  * The core is not locked.  No additional refs on the chain are made.
222  * (trans) must not be NULL if (core) is not NULL.
223  *
224  * When chains are delete-duplicated during flushes we insert nchain on
225  * the ownerq after ochain instead of at the end in order to give the
226  * drop code visibility in the correct order, otherwise drops can be missed.
227  */
228 void
229 hammer2_chain_core_alloc(hammer2_trans_t *trans,
230                          hammer2_chain_t *nchain, hammer2_chain_t *ochain)
231 {
232         hammer2_chain_core_t *core;
233
234         KKASSERT(nchain->core == NULL);
235
236         if (ochain == NULL) {
237                 /*
238                  * Fresh core under nchain (no multi-homing of ochain's
239                  * sub-tree).
240                  */
241                 core = kmalloc(sizeof(*core), nchain->hmp->mchain,
242                                M_WAITOK | M_ZERO);
243                 TAILQ_INIT(&core->layerq);
244                 TAILQ_INIT(&core->ownerq);
245                 core->sharecnt = 1;
246                 core->good = 0x1234;
247                 nchain->core = core;
248                 ccms_cst_init(&core->cst, nchain);
249                 TAILQ_INSERT_TAIL(&core->ownerq, nchain, core_entry);
250         } else {
251                 /*
252                  * Propagate the PFSROOT flag which we set on all subdirs
253                  * under the super-root.
254                  */
255                 atomic_set_int(&nchain->flags,
256                                ochain->flags & HAMMER2_CHAIN_PFSROOT);
257
258                 /*
259                  * Multi-homing (delete-duplicate) sub-tree under ochain.
260                  * Set the DUPLICATED flag on ochain but only if this is
261                  * not a snapshot.  This flag governs forward iterations
262                  * for any refactor tests.
263                  *
264                  * It is not legal for the DUPLICATED flag to already be
265                  * set.  This indicates that the caller is trying to
266                  * delete-duplicate a stale chain.  The flusher can modify
267                  * a stale chain as part of its synchronization point handling
268                  * in order to update the block table (and it will
269                  * carry-forward such modifications automatically), but it
270                  * has no business delete-duplicating it.
271                  */
272                 KKASSERT((ochain->flags & HAMMER2_CHAIN_DUPLICATED) == 0);
273                 if ((nchain->flags & HAMMER2_CHAIN_SNAPSHOT) == 0) {
274                         atomic_set_int(&ochain->flags,
275                                        HAMMER2_CHAIN_DUPLICATED);
276                 }
277                 core = ochain->core;
278                 atomic_add_int(&core->sharecnt, 1);
279
280                 spin_lock(&core->cst.spin);
281                 nchain->core = core;
282
283                 /*
284                  * Maintain ordering for refactor test so we don't skip over
285                  * a snapshot.
286                  */
287 #if 1
288                 TAILQ_INSERT_AFTER(&core->ownerq, ochain, nchain, core_entry);
289 #else
290                 if (trans->flags & HAMMER2_TRANS_ISFLUSH) {
291                         TAILQ_INSERT_AFTER(&core->ownerq, ochain, nchain,
292                                            core_entry);
293                 } else {
294                         TAILQ_INSERT_TAIL(&core->ownerq, nchain, core_entry);
295                 }
296 #endif
297                 spin_unlock(&core->cst.spin);
298         }
299 }
300
301 /*
302  * Add a reference to a chain element, preventing its destruction.
303  */
304 void
305 hammer2_chain_ref(hammer2_chain_t *chain)
306 {
307         atomic_add_int(&chain->refs, 1);
308 }
309
310 /*
311  * Insert the chain in the core rbtree at the first layer
312  * which accepts it (for now we don't sort layers by the transaction tid)
313  */
314 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
315 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
316 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
317
318 static
319 void
320 hammer2_chain_insert(hammer2_chain_core_t *above, hammer2_chain_t *chain,
321                      int flags)
322 {
323         hammer2_chain_layer_t *layer;
324         hammer2_chain_t *xchain;
325
326         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
327                 spin_lock(&above->cst.spin);
328         chain->above = above;
329         layer = TAILQ_FIRST(&above->layerq);
330         xchain = NULL;
331
332         /*
333          * Try to insert
334          */
335         if (layer == NULL ||
336             (xchain = RB_INSERT(hammer2_chain_tree,
337                                 &layer->rbtree, chain)) != NULL) {
338                 /*
339                  * Either no layers have been allocated or the insertion
340                  * failed.  This is fatal if the conflicted xchain is not
341                  * flagged as deleted.  Caller may or may allow the failure.
342                  */
343                 if (xchain && (xchain->flags & HAMMER2_CHAIN_DELETED) == 0) {
344                         if (flags & HAMMER2_CHAIN_INSERT_RACE) {
345                                 chain->above = NULL;
346                                 chain->inlayer = NULL;
347                                 kprintf("insertion race against %p\n", xchain);
348                                 goto failed;
349                         }
350                         panic("hammer2_chain_insert: collision2 %p", xchain);
351                 }
352
353                 /*
354                  * Allocate a new layer to resolve the issue.
355                  */
356                 spin_unlock(&above->cst.spin);
357                 layer = kmalloc(sizeof(*layer), chain->hmp->mchain,
358                                 M_WAITOK | M_ZERO);
359                 RB_INIT(&layer->rbtree);
360                 layer->good = 0xABCD;
361                 spin_lock(&above->cst.spin);
362                 TAILQ_INSERT_HEAD(&above->layerq, layer, entry);
363                 RB_INSERT(hammer2_chain_tree, &layer->rbtree, chain);
364         }
365         chain->inlayer = layer;
366         ++above->chain_count;
367
368         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
369                 atomic_add_int(&above->live_count, 1);
370         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
371 failed:
372         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
373                 spin_unlock(&above->cst.spin);
374 }
375
376 /*
377  * Drop the caller's reference to the chain.  When the ref count drops to
378  * zero this function will disassociate the chain from its parent and
379  * deallocate it, then recursely drop the parent using the implied ref
380  * from the chain's chain->parent.
381  *
382  * WARNING! Just because we are able to deallocate a chain doesn't mean
383  *          that chain->core->rbtree is empty.  There can still be a sharecnt
384  *          on chain->core and RBTREE entries that refer to different parents.
385  */
386 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
387
388 void
389 hammer2_chain_drop(hammer2_chain_t *chain)
390 {
391         u_int refs;
392         u_int need = 0;
393
394 #if 1
395         if (chain->flags & HAMMER2_CHAIN_MOVED)
396                 ++need;
397         if (chain->flags & HAMMER2_CHAIN_MODIFIED)
398                 ++need;
399         KKASSERT(chain->refs > need);
400 #endif
401         while (chain) {
402                 refs = chain->refs;
403                 cpu_ccfence();
404                 KKASSERT(refs > 0);
405
406                 if (refs == 1) {
407                         chain = hammer2_chain_lastdrop(chain);
408                 } else {
409                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
410                                 break;
411                         /* retry the same chain */
412                 }
413         }
414 }
415
416 /*
417  * Safe handling of the 1->0 transition on chain.  Returns a chain for
418  * recursive drop or NULL, possibly returning the same chain if the atomic
419  * op fails.
420  *
421  * The cst spinlock is allowed nest child-to-parent (not parent-to-child).
422  */
423 static
424 hammer2_chain_t *
425 hammer2_chain_lastdrop(hammer2_chain_t *chain)
426 {
427         hammer2_pfsmount_t *pmp;
428         hammer2_mount_t *hmp;
429         hammer2_chain_core_t *above;
430         hammer2_chain_core_t *core;
431         hammer2_chain_layer_t *layer;
432         hammer2_chain_t *rdrop1;
433         hammer2_chain_t *rdrop2;
434
435         /*
436          * Spinlock the core and check to see if it is empty.  If it is
437          * not empty we leave chain intact with refs == 0.  The elements
438          * in core->rbtree are associated with other chains contemporary
439          * with ours but not with our chain directly.
440          */
441         if ((core = chain->core) != NULL) {
442                 spin_lock(&core->cst.spin);
443
444                 /*
445                  * We can't drop any chains if they have children because
446                  * there might be a flush dependency.
447                  *
448                  * NOTE: We return (chain) on failure to retry.
449                  */
450                 if (core->chain_count) {
451                         if (atomic_cmpset_int(&chain->refs, 1, 0))
452                                 chain = NULL;   /* success */
453                         spin_unlock(&core->cst.spin);
454                         return(chain);
455                 }
456                 /* no chains left under us */
457
458                 /*
459                  * We can't drop a live chain unless it is a the head
460                  * of its ownerq.  If we were to then the go-to chain
461                  * would revert to the prior deleted chain.
462                  */
463                 if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
464                     (chain->flags & HAMMER2_CHAIN_SNAPSHOT) == 0 &&
465                     TAILQ_FIRST(&core->ownerq) != chain) {
466                         if (atomic_cmpset_int(&chain->refs, 1, 0))
467                                 chain = NULL;   /* success */
468                         spin_unlock(&core->cst.spin);
469                         return(chain);
470                 }
471         }
472
473
474         hmp = chain->hmp;
475         pmp = chain->pmp;       /* can be NULL */
476         rdrop1 = NULL;
477         rdrop2 = NULL;
478         layer = NULL;
479
480         /*
481          * Spinlock the parent and try to drop the last ref.  On success
482          * remove chain from its parent, otherwise return NULL.
483          *
484          * (multiple spinlocks on core's are allowed in a bottom-up fashion).
485          */
486         if ((above = chain->above) != NULL) {
487                 spin_lock(&above->cst.spin);
488                 if (!atomic_cmpset_int(&chain->refs, 1, 0)) {
489                         /* 1->0 transition failed */
490                         spin_unlock(&above->cst.spin);
491                         if (core)
492                                 spin_unlock(&core->cst.spin);
493                         return(chain);  /* retry */
494                 }
495
496                 /*
497                  * 1->0 transition successful, remove chain from its
498                  * above core.  Track layer for removal/freeing.
499                  */
500                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
501                 layer = chain->inlayer;
502                 RB_REMOVE(hammer2_chain_tree, &layer->rbtree, chain);
503                 --above->chain_count;
504                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
505                 chain->above = NULL;
506                 chain->inlayer = NULL;
507
508                 if (RB_EMPTY(&layer->rbtree) && layer->refs == 0) {
509                         TAILQ_REMOVE(&above->layerq, layer, entry);
510                 } else {
511                         layer = NULL;
512                 }
513
514 #if 1
515                 /*
516                  * If our chain was the last chain in the parent's core the
517                  * core is now empty.  Try to drop the first multi-homed
518                  * parent.
519                  */
520                 if (above->chain_count == 0) {
521                         rdrop1 = TAILQ_FIRST(&above->ownerq);
522                         if (rdrop1 &&
523                             atomic_cmpset_int(&rdrop1->refs, 0, 1) == 0) {
524                                 rdrop1 = NULL;
525                         }
526                 }
527 #endif
528                 spin_unlock(&above->cst.spin);
529                 above = NULL;   /* safety */
530         }
531
532         /*
533          * We still have the core spinlock (if core is non-NULL).  The
534          * above spinlock is gone.
535          *
536          * Remove chain from ownerq.  This may change the first element of
537          * ownerq to something we can remove.
538          */
539         if (core) {
540                 chain->core = NULL;
541
542                 TAILQ_REMOVE(&core->ownerq, chain, core_entry);
543                 rdrop2 = TAILQ_FIRST(&core->ownerq);
544                 if (rdrop2 &&
545                     atomic_cmpset_int(&rdrop2->refs, 0, 1) == 0) {
546                         rdrop2 = NULL;
547                 }
548                 spin_unlock(&core->cst.spin);
549
550                 /*
551                  * We can do the final 1->0 transition with an atomic op
552                  * after releasing core's spinlock.
553                  */
554                 if (atomic_fetchadd_int(&core->sharecnt, -1) == 1) {
555                         /*
556                          * On the 1->0 transition of core we can destroy
557                          * it.  Any remaining layers should no longer be
558                          * referenced or visibile to other threads.
559                          */
560                         KKASSERT(TAILQ_EMPTY(&core->ownerq));
561                         if (layer) {
562                                 layer->good = 0xEF00;
563                                 kfree(layer, hmp->mchain);
564                         }
565                         while ((layer = TAILQ_FIRST(&core->layerq)) != NULL) {
566                                 KKASSERT(layer->refs == 0 &&
567                                          RB_EMPTY(&layer->rbtree));
568                                 TAILQ_REMOVE(&core->layerq, layer, entry);
569                                 layer->good = 0xEF01;
570                                 kfree(layer, hmp->mchain);
571                         }
572                         /* layer now NULL */
573                         KKASSERT(core->cst.count == 0);
574                         KKASSERT(core->cst.upgrade == 0);
575                         core->good = 0x5678;
576                         kfree(core, hmp->mchain);
577                 }
578                 core = NULL;    /* safety */
579         }
580
581         /*
582          * All spin locks are gone, finish freeing stuff.
583          */
584         KKASSERT((chain->flags & (HAMMER2_CHAIN_MOVED |
585                                   HAMMER2_CHAIN_MODIFIED)) == 0);
586         hammer2_chain_drop_data(chain, 1);
587
588         KKASSERT(chain->bp == NULL);
589         chain->hmp = NULL;
590
591         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
592                 chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
593                 kfree(chain, hmp->mchain);
594                 if (pmp) {
595                         atomic_add_long(&pmp->inmem_chains, -1);
596                         hammer2_chain_memory_wakeup(pmp);
597                 }
598         }
599
600         /*
601          * Free saved empty layer and return chained drop.
602          */
603         if (layer) {
604                 layer->good = 0xEF02;
605                 kfree(layer, hmp->mchain);
606         }
607         if (rdrop2)
608                 hammer2_chain_drop(rdrop2);
609         return (rdrop1);
610 }
611
612 /*
613  * On either last lock release or last drop
614  */
615 static void
616 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
617 {
618         hammer2_mount_t *hmp = chain->hmp;
619
620         switch(chain->bref.type) {
621         case HAMMER2_BREF_TYPE_VOLUME:
622         case HAMMER2_BREF_TYPE_FREEMAP:
623                 if (lastdrop)
624                         chain->data = NULL;
625                 break;
626         case HAMMER2_BREF_TYPE_INODE:
627                 if (chain->data) {
628                         kfree(chain->data, hmp->mchain);
629                         chain->data = NULL;
630                 }
631                 break;
632         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
633                 if (chain->data) {
634                         kfree(chain->data, hmp->mchain);
635                         chain->data = NULL;
636                 }
637                 break;
638         default:
639                 KKASSERT(chain->data == NULL);
640                 break;
641         }
642 }
643
644 /*
645  * Ref and lock a chain element, acquiring its data with I/O if necessary,
646  * and specify how you would like the data to be resolved.
647  *
648  * Returns 0 on success or an error code if the data could not be acquired.
649  * The chain element is locked on return regardless of whether an error
650  * occurred or not.
651  *
652  * The lock is allowed to recurse, multiple locking ops will aggregate
653  * the requested resolve types.  Once data is assigned it will not be
654  * removed until the last unlock.
655  *
656  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
657  *                         (typically used to avoid device/logical buffer
658  *                          aliasing for data)
659  *
660  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
661  *                         the INITIAL-create state (indirect blocks only).
662  *
663  *                         Do not resolve data elements for DATA chains.
664  *                         (typically used to avoid device/logical buffer
665  *                          aliasing for data)
666  *
667  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
668  *
669  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
670  *                         it will be locked exclusive.
671  *
672  * NOTE: Embedded elements (volume header, inodes) are always resolved
673  *       regardless.
674  *
675  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
676  *       element will instantiate and zero its buffer, and flush it on
677  *       release.
678  *
679  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
680  *       so as not to instantiate a device buffer, which could alias against
681  *       a logical file buffer.  However, if ALWAYS is specified the
682  *       device buffer will be instantiated anyway.
683  *
684  * WARNING! If data must be fetched a shared lock will temporarily be
685  *          upgraded to exclusive.  However, a deadlock can occur if
686  *          the caller owns more than one shared lock.
687  */
688 int
689 hammer2_chain_lock(hammer2_chain_t *chain, int how)
690 {
691         hammer2_mount_t *hmp;
692         hammer2_chain_core_t *core;
693         hammer2_blockref_t *bref;
694         hammer2_off_t pbase;
695         hammer2_off_t pmask;
696         hammer2_off_t peof;
697         ccms_state_t ostate;
698         size_t boff;
699         size_t psize;
700         int error;
701         char *bdata;
702
703         /*
704          * Ref and lock the element.  Recursive locks are allowed.
705          */
706         if ((how & HAMMER2_RESOLVE_NOREF) == 0)
707                 hammer2_chain_ref(chain);
708         atomic_add_int(&chain->lockcnt, 1);
709
710         hmp = chain->hmp;
711         KKASSERT(hmp != NULL);
712
713         /*
714          * Get the appropriate lock.
715          */
716         core = chain->core;
717         if (how & HAMMER2_RESOLVE_SHARED)
718                 ccms_thread_lock(&core->cst, CCMS_STATE_SHARED);
719         else
720                 ccms_thread_lock(&core->cst, CCMS_STATE_EXCLUSIVE);
721
722         /*
723          * If we already have a valid data pointer no further action is
724          * necessary.
725          */
726         if (chain->data)
727                 return (0);
728
729         /*
730          * Do we have to resolve the data?
731          */
732         switch(how & HAMMER2_RESOLVE_MASK) {
733         case HAMMER2_RESOLVE_NEVER:
734                 return(0);
735         case HAMMER2_RESOLVE_MAYBE:
736                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
737                         return(0);
738                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
739                         return(0);
740 #if 0
741                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
742                         return(0);
743 #endif
744                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
745                         return(0);
746                 /* fall through */
747         case HAMMER2_RESOLVE_ALWAYS:
748                 break;
749         }
750
751         /*
752          * Upgrade to an exclusive lock so we can safely manipulate the
753          * buffer cache.  If another thread got to it before us we
754          * can just return.
755          */
756         ostate = ccms_thread_lock_upgrade(&core->cst);
757         if (chain->data) {
758                 ccms_thread_lock_downgrade(&core->cst, ostate);
759                 return (0);
760         }
761
762         /*
763          * We must resolve to a device buffer, either by issuing I/O or
764          * by creating a zero-fill element.  We do not mark the buffer
765          * dirty when creating a zero-fill element (the hammer2_chain_modify()
766          * API must still be used to do that).
767          *
768          * The device buffer is variable-sized in powers of 2 down
769          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
770          * chunk always contains buffers of the same size. (XXX)
771          *
772          * The minimum physical IO size may be larger than the variable
773          * block size.
774          */
775         bref = &chain->bref;
776
777         psize = hammer2_devblksize(chain->bytes);
778         pmask = (hammer2_off_t)psize - 1;
779         pbase = bref->data_off & ~pmask;
780         boff = bref->data_off & (HAMMER2_OFF_MASK & pmask);
781         KKASSERT(pbase != 0);
782         peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
783
784         /*
785          * The getblk() optimization can only be used on newly created
786          * elements if the physical block size matches the request.
787          */
788         if ((chain->flags & HAMMER2_CHAIN_INITIAL) &&
789             chain->bytes == psize) {
790                 chain->bp = getblk(hmp->devvp, pbase, psize, 0, 0);
791                 error = 0;
792         } else if (hammer2_isclusterable(chain)) {
793                 error = cluster_read(hmp->devvp, peof, pbase, psize,
794                                      psize, HAMMER2_PBUFSIZE*4,
795                                      &chain->bp);
796                 adjreadcounter(&chain->bref, chain->bytes);
797         } else {
798                 error = bread(hmp->devvp, pbase, psize, &chain->bp);
799                 adjreadcounter(&chain->bref, chain->bytes);
800         }
801
802         if (error) {
803                 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
804                         (intmax_t)pbase, error);
805                 bqrelse(chain->bp);
806                 chain->bp = NULL;
807                 ccms_thread_lock_downgrade(&core->cst, ostate);
808                 return (error);
809         }
810
811         /*
812          * Zero the data area if the chain is in the INITIAL-create state.
813          * Mark the buffer for bdwrite().  This clears the INITIAL state
814          * but does not mark the chain modified.
815          */
816         bdata = (char *)chain->bp->b_data + boff;
817         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
818                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
819                 bzero(bdata, chain->bytes);
820                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
821         }
822
823         /*
824          * Setup the data pointer, either pointing it to an embedded data
825          * structure and copying the data from the buffer, or pointing it
826          * into the buffer.
827          *
828          * The buffer is not retained when copying to an embedded data
829          * structure in order to avoid potential deadlocks or recursions
830          * on the same physical buffer.
831          */
832         switch (bref->type) {
833         case HAMMER2_BREF_TYPE_VOLUME:
834         case HAMMER2_BREF_TYPE_FREEMAP:
835                 /*
836                  * Copy data from bp to embedded buffer
837                  */
838                 panic("hammer2_chain_lock: called on unresolved volume header");
839 #if 0
840                 /* NOT YET */
841                 KKASSERT(pbase == 0);
842                 KKASSERT(chain->bytes == HAMMER2_PBUFSIZE);
843                 bcopy(bdata, &hmp->voldata, chain->bytes);
844                 chain->data = (void *)&hmp->voldata;
845                 bqrelse(chain->bp);
846                 chain->bp = NULL;
847 #endif
848                 break;
849         case HAMMER2_BREF_TYPE_INODE:
850                 /*
851                  * Copy data from bp to embedded buffer, do not retain the
852                  * device buffer.
853                  */
854                 KKASSERT(chain->bytes == sizeof(chain->data->ipdata));
855                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
856                 chain->data = kmalloc(sizeof(chain->data->ipdata),
857                                       hmp->mchain, M_WAITOK | M_ZERO);
858                 bcopy(bdata, &chain->data->ipdata, chain->bytes);
859                 bqrelse(chain->bp);
860                 chain->bp = NULL;
861                 break;
862         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
863                 KKASSERT(chain->bytes == sizeof(chain->data->bmdata));
864                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
865                 chain->data = kmalloc(sizeof(chain->data->bmdata),
866                                       hmp->mchain, M_WAITOK | M_ZERO);
867                 bcopy(bdata, &chain->data->bmdata, chain->bytes);
868                 bqrelse(chain->bp);
869                 chain->bp = NULL;
870                 break;
871         case HAMMER2_BREF_TYPE_INDIRECT:
872         case HAMMER2_BREF_TYPE_DATA:
873         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
874         default:
875                 /*
876                  * Point data at the device buffer and leave bp intact.
877                  */
878                 chain->data = (void *)bdata;
879                 break;
880         }
881
882         /*
883          * Make sure the bp is not specifically owned by this thread before
884          * restoring to a possibly shared lock, so another hammer2 thread
885          * can release it.
886          */
887         if (chain->bp)
888                 BUF_KERNPROC(chain->bp);
889         ccms_thread_lock_downgrade(&core->cst, ostate);
890         return (0);
891 }
892
893 /*
894  * Asynchronously read the device buffer (dbp) and execute the specified
895  * callback.  The caller should pass-in a locked chain (shared lock is ok).
896  * The function is responsible for unlocking the chain and for disposing
897  * of dbp.
898  *
899  * NOTE!  A NULL dbp (but non-NULL data) will be passed to the function
900  *        if the dbp is integrated into the chain, because we do not want
901  *        the caller to dispose of dbp in that situation.
902  */
903 static void hammer2_chain_load_async_callback(struct bio *bio);
904
905 void
906 hammer2_chain_load_async(hammer2_chain_t *chain,
907         void (*func)(hammer2_chain_t *, struct buf *, char *, void *),
908         void *arg)
909 {
910         hammer2_cbinfo_t *cbinfo;
911         hammer2_mount_t *hmp;
912         hammer2_blockref_t *bref;
913         hammer2_off_t pbase;
914         hammer2_off_t pmask;
915         hammer2_off_t peof;
916         struct buf *dbp;
917         size_t boff;
918         size_t psize;
919         char *bdata;
920
921         if (chain->data) {
922                 func(chain, NULL, (char *)chain->data, arg);
923                 return;
924         }
925
926         /*
927          * We must resolve to a device buffer, either by issuing I/O or
928          * by creating a zero-fill element.  We do not mark the buffer
929          * dirty when creating a zero-fill element (the hammer2_chain_modify()
930          * API must still be used to do that).
931          *
932          * The device buffer is variable-sized in powers of 2 down
933          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
934          * chunk always contains buffers of the same size. (XXX)
935          *
936          * The minimum physical IO size may be larger than the variable
937          * block size.
938          */
939         bref = &chain->bref;
940
941         psize = hammer2_devblksize(chain->bytes);
942         pmask = (hammer2_off_t)psize - 1;
943         pbase = bref->data_off & ~pmask;
944         boff = bref->data_off & (HAMMER2_OFF_MASK & pmask);
945         KKASSERT(pbase != 0);
946         peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
947
948         hmp = chain->hmp;
949
950         /*
951          * The getblk() optimization can only be used on newly created
952          * elements if the physical block size matches the request.
953          */
954         if ((chain->flags & HAMMER2_CHAIN_INITIAL) &&
955             chain->bytes == psize) {
956                 dbp = getblk(hmp->devvp, pbase, psize, 0, 0);
957                 /*atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);*/
958                 bdata = (char *)dbp->b_data + boff;
959                 bzero(bdata, chain->bytes);
960                 /*atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);*/
961                 func(chain, dbp, bdata, arg);
962                 bqrelse(dbp);
963                 return;
964         }
965
966         adjreadcounter(&chain->bref, chain->bytes);
967         cbinfo = kmalloc(sizeof(*cbinfo), hmp->mchain, M_INTWAIT | M_ZERO);
968         cbinfo->chain = chain;
969         cbinfo->func = func;
970         cbinfo->arg = arg;
971         cbinfo->boff = boff;
972
973         cluster_readcb(hmp->devvp, peof, pbase, psize,
974                 HAMMER2_PBUFSIZE*4, HAMMER2_PBUFSIZE*4,
975                 hammer2_chain_load_async_callback, cbinfo);
976 }
977
978 static void
979 hammer2_chain_load_async_callback(struct bio *bio)
980 {
981         hammer2_cbinfo_t *cbinfo;
982         hammer2_mount_t *hmp;
983         struct buf *dbp;
984         char *data;
985
986         /*
987          * Nobody is waiting for bio/dbp to complete, we are
988          * responsible for handling the biowait() equivalent
989          * on dbp which means clearing BIO_DONE and BIO_SYNC
990          * and calling bpdone() if it hasn't already been called
991          * to restore any covered holes in the buffer's backing
992          * store.
993          */
994         dbp = bio->bio_buf;
995         if ((bio->bio_flags & BIO_DONE) == 0)
996                 bpdone(dbp, 0);
997         bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
998
999         /*
1000          * Extract the auxillary info and issue the callback.
1001          * Finish up with the dbp after it returns.
1002          */
1003         cbinfo = bio->bio_caller_info1.ptr;
1004         /*ccms_thread_lock_setown(cbinfo->chain->core);*/
1005         data = dbp->b_data + cbinfo->boff;
1006         hmp = cbinfo->chain->hmp;
1007
1008         cbinfo = bio->bio_caller_info1.ptr;
1009         if (cbinfo->chain->flags & HAMMER2_CHAIN_INITIAL)
1010                 bzero(data, cbinfo->chain->bytes);
1011         cbinfo->func(cbinfo->chain, dbp, data, cbinfo->arg);
1012         /* cbinfo->chain is stale now */
1013         bqrelse(dbp);
1014         kfree(cbinfo, hmp->mchain);
1015 }
1016
1017 /*
1018  * Unlock and deref a chain element.
1019  *
1020  * On the last lock release any non-embedded data (chain->bp) will be
1021  * retired.
1022  */
1023 void
1024 hammer2_chain_unlock(hammer2_chain_t *chain)
1025 {
1026         hammer2_chain_core_t *core = chain->core;
1027         ccms_state_t ostate;
1028         long *counterp;
1029         u_int lockcnt;
1030
1031         /*
1032          * The core->cst lock can be shared across several chains so we
1033          * need to track the per-chain lockcnt separately.
1034          *
1035          * If multiple locks are present (or being attempted) on this
1036          * particular chain we can just unlock, drop refs, and return.
1037          *
1038          * Otherwise fall-through on the 1->0 transition.
1039          */
1040         for (;;) {
1041                 lockcnt = chain->lockcnt;
1042                 KKASSERT(lockcnt > 0);
1043                 cpu_ccfence();
1044                 if (lockcnt > 1) {
1045                         if (atomic_cmpset_int(&chain->lockcnt,
1046                                               lockcnt, lockcnt - 1)) {
1047                                 ccms_thread_unlock(&core->cst);
1048                                 hammer2_chain_drop(chain);
1049                                 return;
1050                         }
1051                 } else {
1052                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1053                                 break;
1054                 }
1055                 /* retry */
1056         }
1057
1058         /*
1059          * On the 1->0 transition we upgrade the core lock (if necessary)
1060          * to exclusive for terminal processing.  If after upgrading we find
1061          * that lockcnt is non-zero, another thread is racing us and will
1062          * handle the unload for us later on, so just cleanup and return
1063          * leaving the data/bp intact
1064          *
1065          * Otherwise if lockcnt is still 0 it is possible for it to become
1066          * non-zero and race, but since we hold the core->cst lock
1067          * exclusively all that will happen is that the chain will be
1068          * reloaded after we unload it.
1069          */
1070         ostate = ccms_thread_lock_upgrade(&core->cst);
1071         if (chain->lockcnt) {
1072                 ccms_thread_unlock_upgraded(&core->cst, ostate);
1073                 hammer2_chain_drop(chain);
1074                 return;
1075         }
1076
1077         /*
1078          * Shortcut the case if the data is embedded or not resolved.
1079          *
1080          * Do NOT NULL out chain->data (e.g. inode data), it might be
1081          * dirty.
1082          *
1083          * The DIRTYBP flag is non-applicable in this situation and can
1084          * be cleared to keep the flags state clean.
1085          */
1086         if (chain->bp == NULL) {
1087                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1088                 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
1089                         hammer2_chain_drop_data(chain, 0);
1090                 ccms_thread_unlock_upgraded(&core->cst, ostate);
1091                 hammer2_chain_drop(chain);
1092                 return;
1093         }
1094
1095         /*
1096          * Statistics
1097          */
1098         if ((chain->flags & HAMMER2_CHAIN_DIRTYBP) == 0) {
1099                 ;
1100         } else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
1101                 switch(chain->bref.type) {
1102                 case HAMMER2_BREF_TYPE_DATA:
1103                         counterp = &hammer2_ioa_file_write;
1104                         break;
1105                 case HAMMER2_BREF_TYPE_INODE:
1106                         counterp = &hammer2_ioa_meta_write;
1107                         break;
1108                 case HAMMER2_BREF_TYPE_INDIRECT:
1109                         counterp = &hammer2_ioa_indr_write;
1110                         break;
1111                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1112                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1113                         counterp = &hammer2_ioa_fmap_write;
1114                         break;
1115                 default:
1116                         counterp = &hammer2_ioa_volu_write;
1117                         break;
1118                 }
1119                 *counterp += chain->bytes;
1120         } else {
1121                 switch(chain->bref.type) {
1122                 case HAMMER2_BREF_TYPE_DATA:
1123                         counterp = &hammer2_iod_file_write;
1124                         break;
1125                 case HAMMER2_BREF_TYPE_INODE:
1126                         counterp = &hammer2_iod_meta_write;
1127                         break;
1128                 case HAMMER2_BREF_TYPE_INDIRECT:
1129                         counterp = &hammer2_iod_indr_write;
1130                         break;
1131                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1132                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1133                         counterp = &hammer2_iod_fmap_write;
1134                         break;
1135                 default:
1136                         counterp = &hammer2_iod_volu_write;
1137                         break;
1138                 }
1139                 *counterp += chain->bytes;
1140         }
1141
1142         /*
1143          * Clean out the bp.
1144          *
1145          * If a device buffer was used for data be sure to destroy the
1146          * buffer when we are done to avoid aliases (XXX what about the
1147          * underlying VM pages?).
1148          *
1149          * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
1150          *       is possible.
1151          */
1152 #if 0
1153         /*
1154          * XXX our primary cache is now the block device, not
1155          * the logical file. don't release the buffer.
1156          */
1157         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1158                 chain->bp->b_flags |= B_RELBUF;
1159 #endif
1160
1161         /*
1162          * The DIRTYBP flag tracks whether we have to bdwrite() the buffer
1163          * or not.  The flag will get re-set when chain_modify() is called,
1164          * even if MODIFIED is already set, allowing the OS to retire the
1165          * buffer independent of a hammer2 flus.
1166          */
1167         chain->data = NULL;
1168         if (chain->flags & HAMMER2_CHAIN_DIRTYBP) {
1169                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1170                 if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
1171                         atomic_clear_int(&chain->flags,
1172                                          HAMMER2_CHAIN_IOFLUSH);
1173                         chain->bp->b_flags |= B_RELBUF;
1174                         cluster_awrite(chain->bp);
1175                 } else {
1176                         chain->bp->b_flags |= B_CLUSTEROK;
1177                         bdwrite(chain->bp);
1178                 }
1179         } else {
1180                 if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
1181                         atomic_clear_int(&chain->flags,
1182                                          HAMMER2_CHAIN_IOFLUSH);
1183                         chain->bp->b_flags |= B_RELBUF;
1184                         brelse(chain->bp);
1185                 } else {
1186                         /* bp might still be dirty */
1187                         bqrelse(chain->bp);
1188                 }
1189         }
1190         chain->bp = NULL;
1191         ccms_thread_unlock_upgraded(&core->cst, ostate);
1192         hammer2_chain_drop(chain);
1193 }
1194
1195 /*
1196  * This counts the number of live blockrefs in a block array and
1197  * also calculates the point at which all remaining blockrefs are empty.
1198  *
1199  * NOTE: Flag is not set until after the count is complete, allowing
1200  *       callers to test the flag without holding the spinlock.
1201  *
1202  * NOTE: If base is NULL the related chain is still in the INITIAL
1203  *       state and there are no blockrefs to count.
1204  *
1205  * NOTE: live_count may already have some counts accumulated due to
1206  *       creation and deletion and could even be initially negative.
1207  */
1208 void
1209 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1210                          hammer2_blockref_t *base, int count)
1211 {
1212         hammer2_chain_core_t *core = chain->core;
1213
1214         spin_lock(&core->cst.spin);
1215         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1216                 if (base) {
1217                         while (--count >= 0) {
1218                                 if (base[count].type)
1219                                         break;
1220                         }
1221                         chain->live_zero = count + 1;
1222                         while (count >= 0) {
1223                                 if (base[count].type)
1224                                         atomic_add_int(&core->live_count, 1);
1225                                 --count;
1226                         }
1227                 } else {
1228                         chain->live_zero = 0;
1229                 }
1230                 /* else do not modify live_count */
1231                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1232         }
1233         spin_unlock(&core->cst.spin);
1234 }
1235
1236 /*
1237  * Resize the chain's physical storage allocation in-place.  This may
1238  * replace the passed-in chain with a new chain.
1239  *
1240  * Chains can be resized smaller without reallocating the storage.
1241  * Resizing larger will reallocate the storage.
1242  *
1243  * Must be passed an exclusively locked parent and chain, returns a new
1244  * exclusively locked chain at the same index and unlocks the old chain.
1245  * Flushes the buffer if necessary.
1246  *
1247  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1248  * to avoid instantiating a device buffer that conflicts with the vnode
1249  * data buffer.  That is, the passed-in bp is a logical buffer, whereas
1250  * any chain-oriented bp would be a device buffer.
1251  *
1252  * XXX flags currently ignored, uses chain->bp to detect data/no-data.
1253  * XXX return error if cannot resize.
1254  */
1255 void
1256 hammer2_chain_resize(hammer2_trans_t *trans, hammer2_inode_t *ip,
1257                      hammer2_chain_t *parent, hammer2_chain_t **chainp,
1258                      int nradix, int flags)
1259 {
1260         hammer2_mount_t *hmp;
1261         hammer2_chain_t *chain;
1262         hammer2_off_t pbase;
1263         size_t obytes;
1264         size_t nbytes;
1265         size_t bbytes;
1266         int boff;
1267
1268         chain = *chainp;
1269         hmp = chain->hmp;
1270
1271         /*
1272          * Only data and indirect blocks can be resized for now.
1273          * (The volu root, inodes, and freemap elements use a fixed size).
1274          */
1275         KKASSERT(chain != &hmp->vchain);
1276         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1277                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
1278
1279         /*
1280          * Nothing to do if the element is already the proper size
1281          */
1282         obytes = chain->bytes;
1283         nbytes = 1U << nradix;
1284         if (obytes == nbytes)
1285                 return;
1286
1287         /*
1288          * Delete the old chain and duplicate it at the same (parent, index),
1289          * returning a new chain.  This allows the old chain to still be
1290          * used by the flush code.  Duplication occurs in-place.
1291          *
1292          * The parent does not have to be locked for the delete/duplicate call,
1293          * but is in this particular code path.
1294          *
1295          * NOTE: If we are not crossing a synchronization point the
1296          *       duplication code will simply reuse the existing chain
1297          *       structure.
1298          */
1299         hammer2_chain_delete_duplicate(trans, &chain, 0);
1300
1301         /*
1302          * Set MODIFIED and add a chain ref to prevent destruction.  Both
1303          * modified flags share the same ref.  (duplicated chains do not
1304          * start out MODIFIED unless possibly if the duplication code
1305          * decided to reuse the existing chain as-is).
1306          *
1307          * If the chain is already marked MODIFIED then we can safely
1308          * return the previous allocation to the pool without having to
1309          * worry about snapshots.  XXX check flush synchronization.
1310          */
1311         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1312                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1313                 hammer2_chain_ref(chain);
1314         }
1315
1316         /*
1317          * Relocate the block, even if making it smaller (because different
1318          * block sizes may be in different regions).
1319          */
1320         hammer2_freemap_alloc(trans, chain->hmp, &chain->bref, nbytes);
1321         chain->bytes = nbytes;
1322         /*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1323
1324         /*
1325          * The device buffer may be larger than the allocation size.
1326          */
1327         bbytes = hammer2_devblksize(chain->bytes);
1328         pbase = chain->bref.data_off & ~(hammer2_off_t)(bbytes - 1);
1329         boff = chain->bref.data_off & HAMMER2_OFF_MASK & (bbytes - 1);
1330
1331         /*
1332          * For now just support it on DATA chains (and not on indirect
1333          * blocks).
1334          */
1335         KKASSERT(chain->bp == NULL);
1336
1337         /*
1338          * Make sure the chain is marked MOVED and SUBMOD is set in the
1339          * parent(s) so the adjustments are picked up by flush.
1340          */
1341         if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
1342                 hammer2_chain_ref(chain);
1343                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
1344         }
1345         hammer2_chain_setsubmod(trans, chain);
1346         *chainp = chain;
1347 }
1348
1349 /*
1350  * Set a chain modified, making it read-write and duplicating it if necessary.
1351  * This function will assign a new physical block to the chain if necessary
1352  *
1353  * Duplication of already-modified chains is possible when the modification
1354  * crosses a flush synchronization boundary.
1355  *
1356  * Non-data blocks - The chain should be locked to at least the RESOLVE_MAYBE
1357  *                   level or the COW operation will not work.
1358  *
1359  * Data blocks     - The chain is usually locked RESOLVE_NEVER so as not to
1360  *                   run the data through the device buffers.
1361  *
1362  * This function may return a different chain than was passed, in which case
1363  * the old chain will be unlocked and the new chain will be locked.
1364  *
1365  * ip->chain may be adjusted by hammer2_chain_modify_ip().
1366  */
1367 hammer2_inode_data_t *
1368 hammer2_chain_modify_ip(hammer2_trans_t *trans, hammer2_inode_t *ip,
1369                         hammer2_chain_t **chainp, int flags)
1370 {
1371         atomic_set_int(&ip->flags, HAMMER2_INODE_MODIFIED);
1372         hammer2_chain_modify(trans, chainp, flags);
1373         if (ip->chain != *chainp)
1374                 hammer2_inode_repoint(ip, NULL, *chainp);
1375         return(&ip->chain->data->ipdata);
1376 }
1377
1378 void
1379 hammer2_chain_modify(hammer2_trans_t *trans, hammer2_chain_t **chainp,
1380                      int flags)
1381 {
1382         hammer2_mount_t *hmp;
1383         hammer2_chain_t *chain;
1384         hammer2_off_t pbase;
1385         hammer2_off_t pmask;
1386         hammer2_off_t peof;
1387         hammer2_tid_t flush_tid;
1388         struct buf *nbp;
1389         int error;
1390         int wasinitial;
1391         size_t psize;
1392         size_t boff;
1393         void *bdata;
1394
1395         chain = *chainp;
1396         hmp = chain->hmp;
1397
1398         /*
1399          * Data must be resolved if already assigned unless explicitly
1400          * flagged otherwise.
1401          */
1402         if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1403             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1404                 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
1405                 hammer2_chain_unlock(chain);
1406         }
1407
1408         /*
1409          * data is not optional for freemap chains (we must always be sure
1410          * to copy the data on COW storage allocations).
1411          */
1412         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1413             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1414                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1415                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1416         }
1417
1418         /*
1419          * If the chain is already marked MODIFIED we can usually just
1420          * return.  However, if a modified chain is modified again in
1421          * a synchronization-point-crossing manner we have to issue a
1422          * delete/duplicate on the chain to avoid flush interference.
1423          */
1424         if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1425                 /*
1426                  * Which flush_tid do we need to check?  If the chain is
1427                  * related to the freemap we have to use the freemap flush
1428                  * tid (free_flush_tid), otherwise we use the normal filesystem
1429                  * flush tid (topo_flush_tid).  The two flush domains are
1430                  * almost completely independent of each other.
1431                  */
1432                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1433                     chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1434                         flush_tid = hmp->topo_flush_tid; /* XXX */
1435                         goto skipxx;    /* XXX */
1436                 } else {
1437                         flush_tid = hmp->topo_flush_tid;
1438                 }
1439
1440                 /*
1441                  * Main tests
1442                  */
1443                 if (chain->modify_tid <= flush_tid &&
1444                     trans->sync_tid > flush_tid) {
1445                         /*
1446                          * Modifications cross synchronization point,
1447                          * requires delete-duplicate.
1448                          */
1449                         KKASSERT((flags & HAMMER2_MODIFY_ASSERTNOCOPY) == 0);
1450                         hammer2_chain_delete_duplicate(trans, chainp, 0);
1451                         chain = *chainp;
1452                         /* fall through using duplicate */
1453                 }
1454 skipxx: /* XXX */
1455                 /*
1456                  * Quick return path, set DIRTYBP to ensure that
1457                  * the later retirement of bp will write it out.
1458                  *
1459                  * quick return path also needs the modify_tid
1460                  * logic.
1461                  */
1462                 if (chain->bp)
1463                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1464                 if ((flags & HAMMER2_MODIFY_NO_MODIFY_TID) == 0)
1465                         chain->bref.modify_tid = trans->sync_tid;
1466                 chain->modify_tid = trans->sync_tid;
1467                 return;
1468         }
1469
1470         /*
1471          * modify_tid is only update for primary modifications, not for
1472          * propagated brefs.  mirror_tid will be updated regardless during
1473          * the flush, no need to set it here.
1474          */
1475         if ((flags & HAMMER2_MODIFY_NO_MODIFY_TID) == 0)
1476                 chain->bref.modify_tid = trans->sync_tid;
1477
1478         /*
1479          * Set MODIFIED and add a chain ref to prevent destruction.  Both
1480          * modified flags share the same ref.
1481          */
1482         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1483                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1484                 hammer2_chain_ref(chain);
1485         }
1486
1487         /*
1488          * Adjust chain->modify_tid so the flusher knows when the
1489          * modification occurred.
1490          */
1491         chain->modify_tid = trans->sync_tid;
1492
1493         /*
1494          * The modification or re-modification requires an allocation and
1495          * possible COW.
1496          *
1497          * We normally always allocate new storage here.  If storage exists
1498          * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1499          */
1500         if (chain != &hmp->vchain &&
1501             chain != &hmp->fchain &&
1502             ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1503              (flags & HAMMER2_MODIFY_NOREALLOC) == 0)
1504         ) {
1505                 hammer2_freemap_alloc(trans, chain->hmp,
1506                                       &chain->bref, chain->bytes);
1507                 /* XXX failed allocation */
1508         }
1509
1510         /*
1511          * Do not COW if OPTDATA is set.  INITIAL flag remains unchanged.
1512          * (OPTDATA does not prevent [re]allocation of storage, only the
1513          * related copy-on-write op).
1514          */
1515         if (flags & HAMMER2_MODIFY_OPTDATA)
1516                 goto skip2;
1517
1518         /*
1519          * Clearing the INITIAL flag (for indirect blocks) indicates that
1520          * we've processed the uninitialized storage allocation.
1521          *
1522          * If this flag is already clear we are likely in a copy-on-write
1523          * situation but we have to be sure NOT to bzero the storage if
1524          * no data is present.
1525          */
1526         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1527                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1528                 wasinitial = 1;
1529         } else {
1530                 wasinitial = 0;
1531         }
1532
1533 #if 0
1534         /*
1535          * We currently should never instantiate a device buffer for a
1536          * file data chain.  (We definitely can for a freemap chain).
1537          *
1538          * XXX we can now do this
1539          */
1540         KKASSERT(chain->bref.type != HAMMER2_BREF_TYPE_DATA);
1541 #endif
1542
1543         /*
1544          * Instantiate data buffer and possibly execute COW operation
1545          */
1546         switch(chain->bref.type) {
1547         case HAMMER2_BREF_TYPE_VOLUME:
1548         case HAMMER2_BREF_TYPE_FREEMAP:
1549         case HAMMER2_BREF_TYPE_INODE:
1550         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1551                 /*
1552                  * The data is embedded, no copy-on-write operation is
1553                  * needed.
1554                  */
1555                 KKASSERT(chain->bp == NULL);
1556                 break;
1557         case HAMMER2_BREF_TYPE_DATA:
1558         case HAMMER2_BREF_TYPE_INDIRECT:
1559         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1560                 /*
1561                  * Perform the copy-on-write operation
1562                  */
1563                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1564
1565                 psize = hammer2_devblksize(chain->bytes);
1566                 pmask = (hammer2_off_t)psize - 1;
1567                 pbase = chain->bref.data_off & ~pmask;
1568                 boff = chain->bref.data_off & (HAMMER2_OFF_MASK & pmask);
1569                 KKASSERT(pbase != 0);
1570                 peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
1571
1572                 /*
1573                  * The getblk() optimization can only be used if the
1574                  * chain element size matches the physical block size.
1575                  */
1576                 if (chain->bp && chain->bp->b_loffset == pbase) {
1577                         nbp = chain->bp;
1578                         error = 0;
1579                 } else if (chain->bytes == psize) {
1580                         nbp = getblk(hmp->devvp, pbase, psize, 0, 0);
1581                         error = 0;
1582                 } else if (hammer2_isclusterable(chain)) {
1583                         error = cluster_read(hmp->devvp, peof, pbase, psize,
1584                                              psize, HAMMER2_PBUFSIZE*4,
1585                                              &nbp);
1586                         adjreadcounter(&chain->bref, chain->bytes);
1587                 } else {
1588                         error = bread(hmp->devvp, pbase, psize, &nbp);
1589                         adjreadcounter(&chain->bref, chain->bytes);
1590                 }
1591                 KKASSERT(error == 0);
1592                 bdata = (char *)nbp->b_data + boff;
1593
1594                 /*
1595                  * Copy or zero-fill on write depending on whether
1596                  * chain->data exists or not.  Retire the existing bp
1597                  * based on the DIRTYBP flag.  Set the DIRTYBP flag to
1598                  * indicate that retirement of nbp should use bdwrite().
1599                  */
1600                 if (chain->data) {
1601                         KKASSERT(chain->bp != NULL);
1602                         if (chain->data != bdata) {
1603                                 bcopy(chain->data, bdata, chain->bytes);
1604                         }
1605                 } else if (wasinitial) {
1606                         bzero(bdata, chain->bytes);
1607                 } else {
1608                         /*
1609                          * We have a problem.  We were asked to COW but
1610                          * we don't have any data to COW with!
1611                          */
1612                         panic("hammer2_chain_modify: having a COW %p\n",
1613                               chain);
1614                 }
1615                 if (chain->bp != nbp) {
1616                         if (chain->bp) {
1617                                 if (chain->flags & HAMMER2_CHAIN_DIRTYBP) {
1618                                         chain->bp->b_flags |= B_CLUSTEROK;
1619                                         bdwrite(chain->bp);
1620                                 } else {
1621                                         chain->bp->b_flags |= B_RELBUF;
1622                                         brelse(chain->bp);
1623                                 }
1624                         }
1625                         chain->bp = nbp;
1626                         BUF_KERNPROC(chain->bp);
1627                 }
1628                 chain->data = bdata;
1629                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1630                 break;
1631         default:
1632                 panic("hammer2_chain_modify: illegal non-embedded type %d",
1633                       chain->bref.type);
1634                 break;
1635
1636         }
1637 skip2:
1638         hammer2_chain_setsubmod(trans, chain);
1639 }
1640
1641 /*
1642  * Mark the volume as having been modified.  This short-cut version
1643  * does not have to lock the volume's chain, which allows the ioctl
1644  * code to make adjustments to connections without deadlocking.  XXX
1645  *
1646  * No ref is made on vchain when flagging it MODIFIED.
1647  */
1648 void
1649 hammer2_modify_volume(hammer2_mount_t *hmp)
1650 {
1651         hammer2_voldata_lock(hmp);
1652         hammer2_voldata_unlock(hmp, 1);
1653 }
1654
1655 /*
1656  * This function returns the chain at the nearest key within the specified
1657  * range with the highest delete_tid.  The core spinlock must be held on
1658  * call and the returned chain will be referenced but not locked.
1659  *
1660  * The returned chain may or may not be in a deleted state.  Note that
1661  * live chains have a delete_tid = MAX_TID.
1662  *
1663  * This function will recurse through chain->rbtree as necessary and will
1664  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1665  * the iteration value is less than the current value of *key_nextp.
1666  *
1667  * The caller should use (*key_nextp) to calculate the actual range of
1668  * the returned element, which will be (key_beg to *key_nextp - 1).
1669  *
1670  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1671  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1672  * it will wind up being (key_end + 1).
1673  */
1674 struct hammer2_chain_find_info {
1675         hammer2_chain_t         *best;
1676         hammer2_key_t           key_beg;
1677         hammer2_key_t           key_end;
1678         hammer2_key_t           key_next;
1679 };
1680
1681 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1682 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1683
1684 static
1685 hammer2_chain_t *
1686 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1687                           hammer2_key_t key_beg, hammer2_key_t key_end)
1688 {
1689         struct hammer2_chain_find_info info;
1690         hammer2_chain_layer_t *layer;
1691
1692         info.best = NULL;
1693         info.key_beg = key_beg;
1694         info.key_end = key_end;
1695         info.key_next = *key_nextp;
1696
1697         KKASSERT(parent->core->good == 0x1234);
1698         TAILQ_FOREACH(layer, &parent->core->layerq, entry) {
1699                 KKASSERT(layer->good == 0xABCD);
1700                 RB_SCAN(hammer2_chain_tree, &layer->rbtree,
1701                         hammer2_chain_find_cmp, hammer2_chain_find_callback,
1702                         &info);
1703         }
1704         *key_nextp = info.key_next;
1705 #if 0
1706         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1707                 parent, key_beg, key_end, *key_nextp);
1708 #endif
1709
1710         return (info.best);
1711 }
1712
1713 static
1714 int
1715 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1716 {
1717         struct hammer2_chain_find_info *info = data;
1718         hammer2_key_t child_beg;
1719         hammer2_key_t child_end;
1720
1721         child_beg = child->bref.key;
1722         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1723
1724         if (child_end < info->key_beg)
1725                 return(-1);
1726         if (child_beg > info->key_end)
1727                 return(1);
1728         return(0);
1729 }
1730
1731 static
1732 int
1733 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1734 {
1735         struct hammer2_chain_find_info *info = data;
1736         hammer2_chain_t *best;
1737         hammer2_key_t child_end;
1738
1739 #if 0
1740         /*
1741          * Skip deleted chains which have been flushed (MOVED no longer set),
1742          * causes caller to check blockref array.
1743          */
1744         if ((child->flags & (HAMMER2_CHAIN_DELETED | HAMMER2_CHAIN_MOVED)) ==
1745             HAMMER2_CHAIN_DELETED) {
1746                 /* continue scan */
1747                 return(0);
1748         }
1749 #endif
1750
1751         /*
1752          * General cases
1753          */
1754         if ((best = info->best) == NULL) {
1755                 /*
1756                  * No previous best.  Assign best
1757                  */
1758                 info->best = child;
1759         } else if (best->bref.key <= info->key_beg &&
1760                    child->bref.key <= info->key_beg) {
1761                 /*
1762                  * If our current best is flush with key_beg and child is
1763                  * also flush with key_beg choose based on delete_tid.
1764                  */
1765                 if (child->delete_tid > best->delete_tid) {
1766                         info->best = child;
1767                 }
1768         } else if (child->bref.key < best->bref.key) {
1769                 /*
1770                  * Child has a nearer key and best is not flush with key_beg.
1771                  * Truncate key_next to the old best key.
1772                  */
1773                 info->best = child;
1774                 if (info->key_next > best->bref.key || info->key_next == 0)
1775                         info->key_next = best->bref.key;
1776         } else {
1777                 /*
1778                  * Keep the current best but truncate key_next based on
1779                  * child (occurs automatically).
1780                  */
1781         }
1782
1783         /*
1784          * Always truncate key_next based on child's end-of-range.
1785          */
1786         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1787         if (child_end && (info->key_next > child_end || info->key_next == 0))
1788                 info->key_next = child_end;
1789
1790         return(0);
1791 }
1792
1793 /*
1794  * Retrieve the specified chain from a media blockref, creating the
1795  * in-memory chain structure and setting HAMMER2_CHAIN_REPLACE to
1796  * indicate that modifications must replace an existing bref in the
1797  * block table.
1798  *
1799  * NULL is returned if the insertion races.
1800  *
1801  * Caller must hold the parent locked shared or exclusive since we may
1802  * need the parent's bref array to find our block.
1803  */
1804 hammer2_chain_t *
1805 hammer2_chain_get(hammer2_chain_t *parent, hammer2_blockref_t *bref)
1806 {
1807         hammer2_mount_t *hmp = parent->hmp;
1808         hammer2_chain_core_t *above = parent->core;
1809         hammer2_chain_t *chain;
1810
1811         /*
1812          * Allocate a chain structure representing the existing media
1813          * entry.  Resulting chain has one ref and is not locked.
1814          */
1815         chain = hammer2_chain_alloc(hmp, parent->pmp, NULL, bref);
1816         hammer2_chain_core_alloc(NULL, chain, NULL);
1817         atomic_set_int(&chain->flags, HAMMER2_CHAIN_REPLACE);
1818         /* ref'd chain returned */
1819
1820         /*
1821          * Link the chain into its parent.  A spinlock is required to safely
1822          * access the RBTREE, and it is possible to collide with another
1823          * hammer2_chain_get() operation because the caller might only hold
1824          * a shared lock on the parent.
1825          */
1826         KKASSERT(parent->refs > 0);
1827         hammer2_chain_insert(above, chain, HAMMER2_CHAIN_INSERT_SPIN |
1828                                            HAMMER2_CHAIN_INSERT_RACE);
1829         if ((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0) {
1830                 kprintf("chain %p not on RBTREE\n", chain);
1831                 hammer2_chain_drop(chain);
1832                 chain = NULL;
1833         }
1834
1835         /*
1836          * Return our new chain referenced but not locked.
1837          */
1838         return (chain);
1839 }
1840
1841 /*
1842  * Lookup initialization/completion API
1843  */
1844 hammer2_chain_t *
1845 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1846 {
1847         if (flags & HAMMER2_LOOKUP_SHARED) {
1848                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1849                                            HAMMER2_RESOLVE_SHARED);
1850         } else {
1851                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1852         }
1853         return (parent);
1854 }
1855
1856 void
1857 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1858 {
1859         if (parent)
1860                 hammer2_chain_unlock(parent);
1861 }
1862
1863 static
1864 hammer2_chain_t *
1865 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1866 {
1867         hammer2_chain_t *oparent;
1868         hammer2_chain_t *bparent;
1869         hammer2_chain_t *nparent;
1870         hammer2_chain_core_t *above;
1871
1872         oparent = *parentp;
1873         above = oparent->above;
1874
1875         spin_lock(&above->cst.spin);
1876         bparent = TAILQ_FIRST(&above->ownerq);
1877         hammer2_chain_ref(bparent);
1878
1879         for (;;) {
1880                 nparent = bparent;
1881                 while (nparent->flags & HAMMER2_CHAIN_DUPLICATED)
1882                         nparent = TAILQ_NEXT(nparent, core_entry);
1883                 hammer2_chain_ref(nparent);
1884                 spin_unlock(&above->cst.spin);
1885
1886                 /*
1887                  * Be careful of order
1888                  */
1889                 hammer2_chain_unlock(oparent);
1890                 hammer2_chain_lock(nparent, how | HAMMER2_RESOLVE_NOREF);
1891                 hammer2_chain_drop(bparent);
1892
1893                 /*
1894                  * We might have raced a delete-duplicate.
1895                  */
1896                 if (nparent->flags & HAMMER2_CHAIN_DUPLICATED) {
1897                         spin_lock(&above->cst.spin);
1898                         if (nparent->flags & HAMMER2_CHAIN_DUPLICATED) {
1899                                 spin_unlock(&above->cst.spin);
1900                                 hammer2_chain_ref(nparent);
1901                                 hammer2_chain_unlock(nparent);
1902                                 bparent = nparent;
1903                                 spin_lock(&above->cst.spin);
1904                                 continue;       /* retry */
1905                         }
1906                         spin_unlock(&above->cst.spin);
1907                 }
1908                 break;
1909         }
1910         *parentp = nparent;
1911
1912         return (nparent);
1913 }
1914
1915 /*
1916  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1917  * (*parentp) typically points to an inode but can also point to a related
1918  * indirect block and this function will recurse upwards and find the inode
1919  * again.
1920  *
1921  * (*parentp) must be exclusively locked and referenced and can be an inode
1922  * or an existing indirect block within the inode.
1923  *
1924  * On return (*parentp) will be modified to point at the deepest parent chain
1925  * element encountered during the search, as a helper for an insertion or
1926  * deletion.   The new (*parentp) will be locked and referenced and the old
1927  * will be unlocked and dereferenced (no change if they are both the same).
1928  *
1929  * The matching chain will be returned exclusively locked.  If NOLOCK is
1930  * requested the chain will be returned only referenced.
1931  *
1932  * NULL is returned if no match was found, but (*parentp) will still
1933  * potentially be adjusted.
1934  *
1935  * On return (*key_nextp) will point to an iterative value for key_beg.
1936  * (If NULL is returned (*key_nextp) is set to key_end).
1937  *
1938  * This function will also recurse up the chain if the key is not within the
1939  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1940  * can simply allow (*parentp) to float inside the loop.
1941  *
1942  * NOTE!  chain->data is not always resolved.  By default it will not be
1943  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1944  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1945  *        BREF_TYPE_DATA as the device buffer can alias the logical file
1946  *        buffer).
1947  */
1948 hammer2_chain_t *
1949 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1950                      hammer2_key_t key_beg, hammer2_key_t key_end,
1951                      int *cache_indexp, int flags)
1952 {
1953         hammer2_mount_t *hmp;
1954         hammer2_chain_t *parent;
1955         hammer2_chain_t *chain;
1956         hammer2_blockref_t *base;
1957         hammer2_blockref_t *bref;
1958         hammer2_blockref_t bcopy;
1959         hammer2_key_t scan_beg;
1960         hammer2_key_t scan_end;
1961         hammer2_chain_core_t *above;
1962         int count = 0;
1963         int how_always = HAMMER2_RESOLVE_ALWAYS;
1964         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1965         int how;
1966
1967         if (flags & HAMMER2_LOOKUP_ALWAYS) {
1968                 how_maybe = how_always;
1969                 how = HAMMER2_RESOLVE_ALWAYS;
1970         } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1971                 how = HAMMER2_RESOLVE_NEVER;
1972         } else {
1973                 how = HAMMER2_RESOLVE_MAYBE;
1974         }
1975         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1976                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1977                 how_always |= HAMMER2_RESOLVE_SHARED;
1978                 how |= HAMMER2_RESOLVE_SHARED;
1979         }
1980
1981         /*
1982          * Recurse (*parentp) upward if necessary until the parent completely
1983          * encloses the key range or we hit the inode.
1984          *
1985          * This function handles races against the flusher doing a delete-
1986          * duplicate above us and re-homes the parent to the duplicate in
1987          * that case, otherwise we'd wind up recursing down a stale chain.
1988          */
1989         parent = *parentp;
1990         hmp = parent->hmp;
1991
1992         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1993                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1994                 scan_beg = parent->bref.key;
1995                 scan_end = scan_beg +
1996                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1997                 if (key_beg >= scan_beg && key_end <= scan_end)
1998                         break;
1999                 parent = hammer2_chain_getparent(parentp, how_maybe);
2000         }
2001
2002 again:
2003         /*
2004          * Locate the blockref array.  Currently we do a fully associative
2005          * search through the array.
2006          */
2007         switch(parent->bref.type) {
2008         case HAMMER2_BREF_TYPE_INODE:
2009                 /*
2010                  * Special shortcut for embedded data returns the inode
2011                  * itself.  Callers must detect this condition and access
2012                  * the embedded data (the strategy code does this for us).
2013                  *
2014                  * This is only applicable to regular files and softlinks.
2015                  */
2016                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2017                         if (flags & HAMMER2_LOOKUP_NOLOCK)
2018                                 hammer2_chain_ref(parent);
2019                         else
2020                                 hammer2_chain_lock(parent, how_always);
2021                         *key_nextp = key_end + 1;
2022                         return (parent);
2023                 }
2024                 base = &parent->data->ipdata.u.blockset.blockref[0];
2025                 count = HAMMER2_SET_COUNT;
2026                 break;
2027         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2028         case HAMMER2_BREF_TYPE_INDIRECT:
2029                 /*
2030                  * Handle MATCHIND on the parent
2031                  */
2032                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2033                         scan_beg = parent->bref.key;
2034                         scan_end = scan_beg +
2035                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2036                         if (key_beg == scan_beg && key_end == scan_end) {
2037                                 chain = parent;
2038                                 hammer2_chain_lock(chain, how_maybe);
2039                                 *key_nextp = scan_end + 1;
2040                                 goto done;
2041                         }
2042                 }
2043                 /*
2044                  * Optimize indirect blocks in the INITIAL state to avoid
2045                  * I/O.
2046                  */
2047                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2048                         base = NULL;
2049                 } else {
2050                         if (parent->data == NULL)
2051                                 panic("parent->data is NULL");
2052                         base = &parent->data->npdata[0];
2053                 }
2054                 count = parent->bytes / sizeof(hammer2_blockref_t);
2055                 break;
2056         case HAMMER2_BREF_TYPE_VOLUME:
2057                 base = &hmp->voldata.sroot_blockset.blockref[0];
2058                 count = HAMMER2_SET_COUNT;
2059                 break;
2060         case HAMMER2_BREF_TYPE_FREEMAP:
2061                 base = &hmp->voldata.freemap_blockset.blockref[0];
2062                 count = HAMMER2_SET_COUNT;
2063                 break;
2064         default:
2065                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
2066                       parent->bref.type);
2067                 base = NULL;    /* safety */
2068                 count = 0;      /* safety */
2069         }
2070
2071         /*
2072          * Merged scan to find next candidate.
2073          *
2074          * hammer2_base_*() functions require the above->live_* fields
2075          * to be synchronized.
2076          *
2077          * We need to hold the spinlock to access the block array and RB tree
2078          * and to interlock chain creation.
2079          */
2080         above = parent->core;
2081         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2082                 hammer2_chain_countbrefs(parent, base, count);
2083
2084         /*
2085          * Combined search
2086          */
2087         spin_lock(&above->cst.spin);
2088         chain = hammer2_combined_find(parent, base, count,
2089                                       cache_indexp, key_nextp,
2090                                       key_beg, key_end, &bref);
2091
2092         /*
2093          * Exhausted parent chain, iterate.
2094          */
2095         if (bref == NULL) {
2096                 spin_unlock(&above->cst.spin);
2097                 if (key_beg == key_end) /* short cut single-key case */
2098                         return (NULL);
2099                 return (hammer2_chain_next(parentp, NULL, key_nextp,
2100                                            key_beg, key_end,
2101                                            cache_indexp, flags));
2102         }
2103
2104         /*
2105          * Selected from blockref or in-memory chain.
2106          */
2107         if (chain == NULL) {
2108                 bcopy = *bref;
2109                 spin_unlock(&above->cst.spin);
2110                 chain = hammer2_chain_get(parent, &bcopy);
2111                 if (chain == NULL) {
2112                         kprintf("retry lookup parent %p keys %016jx:%016jx\n",
2113                                 parent, key_beg, key_end);
2114                         goto again;
2115                 }
2116                 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2117                         hammer2_chain_drop(chain);
2118                         goto again;
2119                 }
2120         } else {
2121                 hammer2_chain_ref(chain);
2122                 spin_unlock(&above->cst.spin);
2123         }
2124         /* chain is referenced but not locked */
2125
2126         /*
2127          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2128          *
2129          * NOTE: chain's key range is not relevant as there might be
2130          *       one-offs within the range that are not deleted.
2131          */
2132         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2133                 hammer2_chain_drop(chain);
2134                 key_beg = *key_nextp;
2135                 if (key_beg == 0 || key_beg > key_end)
2136                         return(NULL);
2137                 goto again;
2138         }
2139
2140         /*
2141          * If the chain element is an indirect block it becomes the new
2142          * parent and we loop on it.  We must maintain our top-down locks
2143          * to prevent the flusher from interfering (i.e. doing a
2144          * delete-duplicate and leaving us recursing down a deleted chain).
2145          *
2146          * The parent always has to be locked with at least RESOLVE_MAYBE
2147          * so we can access its data.  It might need a fixup if the caller
2148          * passed incompatible flags.  Be careful not to cause a deadlock
2149          * as a data-load requires an exclusive lock.
2150          *
2151          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2152          * range is within the requested key range we return the indirect
2153          * block and do NOT loop.  This is usually only used to acquire
2154          * freemap nodes.
2155          */
2156         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2157             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2158                 hammer2_chain_lock(chain, how_maybe | HAMMER2_RESOLVE_NOREF);
2159                 hammer2_chain_unlock(parent);
2160                 *parentp = parent = chain;
2161                 goto again;
2162         }
2163
2164         hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
2165 done:
2166         /*
2167          * All done, return the chain
2168          */
2169         return (chain);
2170 }
2171
2172 /*
2173  * After having issued a lookup we can iterate all matching keys.
2174  *
2175  * If chain is non-NULL we continue the iteration from just after it's index.
2176  *
2177  * If chain is NULL we assume the parent was exhausted and continue the
2178  * iteration at the next parent.
2179  *
2180  * parent must be locked on entry and remains locked throughout.  chain's
2181  * lock status must match flags.  Chain is always at least referenced.
2182  *
2183  * WARNING!  The MATCHIND flag does not apply to this function.
2184  */
2185 hammer2_chain_t *
2186 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2187                    hammer2_key_t *key_nextp,
2188                    hammer2_key_t key_beg, hammer2_key_t key_end,
2189                    int *cache_indexp, int flags)
2190 {
2191         hammer2_chain_t *parent;
2192         int how_maybe;
2193
2194         /*
2195          * Calculate locking flags for upward recursion.
2196          */
2197         how_maybe = HAMMER2_RESOLVE_MAYBE;
2198         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
2199                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2200
2201         parent = *parentp;
2202
2203         /*
2204          * Calculate the next index and recalculate the parent if necessary.
2205          */
2206         if (chain) {
2207                 key_beg = chain->bref.key +
2208                           ((hammer2_key_t)1 << chain->bref.keybits);
2209                 if (flags & HAMMER2_LOOKUP_NOLOCK)
2210                         hammer2_chain_drop(chain);
2211                 else
2212                         hammer2_chain_unlock(chain);
2213
2214                 /*
2215                  * Any scan where the lookup returned degenerate data embedded
2216                  * in the inode has an invalid index and must terminate.
2217                  */
2218                 if (chain == parent)
2219                         return(NULL);
2220                 if (key_beg == 0 || key_beg > key_end)
2221                         return(NULL);
2222                 chain = NULL;
2223         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2224                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2225                 /*
2226                  * We reached the end of the iteration.
2227                  */
2228                 return (NULL);
2229         } else {
2230                 /*
2231                  * Continue iteration with next parent unless the current
2232                  * parent covers the range.
2233                  */
2234                 key_beg = parent->bref.key +
2235                           ((hammer2_key_t)1 << parent->bref.keybits);
2236                 if (key_beg == 0 || key_beg > key_end)
2237                         return (NULL);
2238                 parent = hammer2_chain_getparent(parentp, how_maybe);
2239         }
2240
2241         /*
2242          * And execute
2243          */
2244         return (hammer2_chain_lookup(parentp, key_nextp,
2245                                      key_beg, key_end,
2246                                      cache_indexp, flags));
2247 }
2248
2249 /*
2250  * Create and return a new hammer2 system memory structure of the specified
2251  * key, type and size and insert it under (*parentp).  This is a full
2252  * insertion, based on the supplied key/keybits, and may involve creating
2253  * indirect blocks and moving other chains around via delete/duplicate.
2254  *
2255  * (*parentp) must be exclusive locked and may be replaced on return
2256  * depending on how much work the function had to do.
2257  *
2258  * (*chainp) usually starts out NULL and returns the newly created chain,
2259  * but if the caller desires the caller may allocate a disconnected chain
2260  * and pass it in instead.  (It is also possible for the caller to use
2261  * chain_duplicate() to create a disconnected chain, manipulate it, then
2262  * pass it into this function to insert it).
2263  *
2264  * This function should NOT be used to insert INDIRECT blocks.  It is
2265  * typically used to create/insert inodes and data blocks.
2266  *
2267  * Caller must pass-in an exclusively locked parent the new chain is to
2268  * be inserted under, and optionally pass-in a disconnected, exclusively
2269  * locked chain to insert (else we create a new chain).  The function will
2270  * adjust (*parentp) as necessary, create or connect the chain, and
2271  * return an exclusively locked chain in *chainp.
2272  */
2273 int
2274 hammer2_chain_create(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2275                      hammer2_chain_t **chainp,
2276                      hammer2_key_t key, int keybits, int type, size_t bytes)
2277 {
2278         hammer2_mount_t *hmp;
2279         hammer2_chain_t *chain;
2280         hammer2_chain_t *parent = *parentp;
2281         hammer2_chain_core_t *above;
2282         hammer2_blockref_t *base;
2283         hammer2_blockref_t dummy;
2284         int allocated = 0;
2285         int error = 0;
2286         int count;
2287
2288         above = parent->core;
2289         KKASSERT(ccms_thread_lock_owned(&above->cst));
2290         hmp = parent->hmp;
2291         chain = *chainp;
2292
2293         if (chain == NULL) {
2294                 /*
2295                  * First allocate media space and construct the dummy bref,
2296                  * then allocate the in-memory chain structure.  Set the
2297                  * INITIAL flag for fresh chains.
2298                  */
2299                 bzero(&dummy, sizeof(dummy));
2300                 dummy.type = type;
2301                 dummy.key = key;
2302                 dummy.keybits = keybits;
2303                 dummy.data_off = hammer2_getradix(bytes);
2304                 dummy.methods = parent->bref.methods;
2305                 chain = hammer2_chain_alloc(hmp, parent->pmp, trans, &dummy);
2306                 hammer2_chain_core_alloc(trans, chain, NULL);
2307
2308                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2309
2310                 /*
2311                  * Lock the chain manually, chain_lock will load the chain
2312                  * which we do NOT want to do.  (note: chain->refs is set
2313                  * to 1 by chain_alloc() for us, but lockcnt is not).
2314                  */
2315                 chain->lockcnt = 1;
2316                 ccms_thread_lock(&chain->core->cst, CCMS_STATE_EXCLUSIVE);
2317                 allocated = 1;
2318
2319                 /*
2320                  * We do NOT set INITIAL here (yet).  INITIAL is only
2321                  * used for indirect blocks.
2322                  *
2323                  * Recalculate bytes to reflect the actual media block
2324                  * allocation.
2325                  */
2326                 bytes = (hammer2_off_t)1 <<
2327                         (int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2328                 chain->bytes = bytes;
2329
2330                 switch(type) {
2331                 case HAMMER2_BREF_TYPE_VOLUME:
2332                 case HAMMER2_BREF_TYPE_FREEMAP:
2333                         panic("hammer2_chain_create: called with volume type");
2334                         break;
2335                 case HAMMER2_BREF_TYPE_INODE:
2336                         KKASSERT(bytes == HAMMER2_INODE_BYTES);
2337                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
2338                         chain->data = kmalloc(sizeof(chain->data->ipdata),
2339                                               hmp->mchain, M_WAITOK | M_ZERO);
2340                         break;
2341                 case HAMMER2_BREF_TYPE_INDIRECT:
2342                         panic("hammer2_chain_create: cannot be used to"
2343                               "create indirect block");
2344                         break;
2345                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2346                         panic("hammer2_chain_create: cannot be used to"
2347                               "create freemap root or node");
2348                         break;
2349                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2350                         KKASSERT(bytes == sizeof(chain->data->bmdata));
2351                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
2352                         chain->data = kmalloc(sizeof(chain->data->bmdata),
2353                                               hmp->mchain, M_WAITOK | M_ZERO);
2354                         break;
2355                 case HAMMER2_BREF_TYPE_DATA:
2356                 default:
2357                         /* leave chain->data NULL */
2358                         KKASSERT(chain->data == NULL);
2359                         break;
2360                 }
2361         } else {
2362                 /*
2363                  * Potentially update the existing chain's key/keybits.
2364                  *
2365                  * Do NOT mess with the current state of the INITIAL flag.
2366                  */
2367                 chain->bref.key = key;
2368                 chain->bref.keybits = keybits;
2369                 KKASSERT(chain->above == NULL);
2370         }
2371
2372         /*
2373          * Calculate how many entries we have in the blockref array and
2374          * determine if an indirect block is required.
2375          */
2376 again:
2377         above = parent->core;
2378
2379         switch(parent->bref.type) {
2380         case HAMMER2_BREF_TYPE_INODE:
2381                 KKASSERT((parent->data->ipdata.op_flags &
2382                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
2383                 KKASSERT(parent->data != NULL);
2384                 base = &parent->data->ipdata.u.blockset.blockref[0];
2385                 count = HAMMER2_SET_COUNT;
2386                 break;
2387         case HAMMER2_BREF_TYPE_INDIRECT:
2388         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2389                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
2390                         base = NULL;
2391                 else
2392                         base = &parent->data->npdata[0];
2393                 count = parent->bytes / sizeof(hammer2_blockref_t);
2394                 break;
2395         case HAMMER2_BREF_TYPE_VOLUME:
2396                 KKASSERT(parent->data != NULL);
2397                 base = &hmp->voldata.sroot_blockset.blockref[0];
2398                 count = HAMMER2_SET_COUNT;
2399                 break;
2400         case HAMMER2_BREF_TYPE_FREEMAP:
2401                 KKASSERT(parent->data != NULL);
2402                 base = &hmp->voldata.freemap_blockset.blockref[0];
2403                 count = HAMMER2_SET_COUNT;
2404                 break;
2405         default:
2406                 panic("hammer2_chain_create: unrecognized blockref type: %d",
2407                       parent->bref.type);
2408                 base = NULL;
2409                 count = 0;
2410                 break;
2411         }
2412
2413         /*
2414          * Make sure we've counted the brefs
2415          */
2416         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2417                 hammer2_chain_countbrefs(parent, base, count);
2418
2419         KKASSERT(above->live_count >= 0 && above->live_count <= count);
2420
2421         /*
2422          * If no free blockref could be found we must create an indirect
2423          * block and move a number of blockrefs into it.  With the parent
2424          * locked we can safely lock each child in order to delete+duplicate
2425          * it without causing a deadlock.
2426          *
2427          * This may return the new indirect block or the old parent depending
2428          * on where the key falls.  NULL is returned on error.
2429          */
2430         if (above->live_count == count) {
2431                 hammer2_chain_t *nparent;
2432
2433                 nparent = hammer2_chain_create_indirect(trans, parent,
2434                                                         key, keybits,
2435                                                         type, &error);
2436                 if (nparent == NULL) {
2437                         if (allocated)
2438                                 hammer2_chain_drop(chain);
2439                         chain = NULL;
2440                         goto done;
2441                 }
2442                 if (parent != nparent) {
2443                         hammer2_chain_unlock(parent);
2444                         parent = *parentp = nparent;
2445                 }
2446                 goto again;
2447         }
2448
2449         /*
2450          * Link the chain into its parent.  Later on we will have to set
2451          * the MOVED bit in situations where we don't mark the new chain
2452          * as being modified.
2453          */
2454         if (chain->above != NULL)
2455                 panic("hammer2: hammer2_chain_create: chain already connected");
2456         KKASSERT(chain->above == NULL);
2457         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
2458         hammer2_chain_insert(above, chain, HAMMER2_CHAIN_INSERT_SPIN |
2459                                            HAMMER2_CHAIN_INSERT_LIVE);
2460
2461         if (allocated) {
2462                 /*
2463                  * Mark the newly created chain modified.
2464                  *
2465                  * Device buffers are not instantiated for DATA elements
2466                  * as these are handled by logical buffers.
2467                  *
2468                  * Indirect and freemap node indirect blocks are handled
2469                  * by hammer2_chain_create_indirect() and not by this
2470                  * function.
2471                  *
2472                  * Data for all other bref types is expected to be
2473                  * instantiated (INODE, LEAF).
2474                  */
2475                 switch(chain->bref.type) {
2476                 case HAMMER2_BREF_TYPE_DATA:
2477                         hammer2_chain_modify(trans, &chain,
2478                                              HAMMER2_MODIFY_OPTDATA |
2479                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2480                         break;
2481                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2482                 case HAMMER2_BREF_TYPE_INODE:
2483                         hammer2_chain_modify(trans, &chain,
2484                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2485                         break;
2486                 default:
2487                         /*
2488                          * Remaining types are not supported by this function.
2489                          * In particular, INDIRECT and LEAF_NODE types are
2490                          * handled by create_indirect().
2491                          */
2492                         panic("hammer2_chain_create: bad type: %d",
2493                               chain->bref.type);
2494                         /* NOT REACHED */
2495                         break;
2496                 }
2497         } else {
2498                 /*
2499                  * When reconnecting a chain we must set MOVED and setsubmod
2500                  * so the flush recognizes that it must update the bref in
2501                  * the parent.
2502                  */
2503                 if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2504                         hammer2_chain_ref(chain);
2505                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
2506                 }
2507                 hammer2_chain_setsubmod(trans, chain);
2508         }
2509
2510 done:
2511         *chainp = chain;
2512
2513         return (error);
2514 }
2515
2516 /*
2517  * Replace (*chainp) with a duplicate.  The original *chainp is unlocked
2518  * and the replacement will be returned locked.  Both the original and the
2519  * new chain will share the same RBTREE (have the same chain->core), with
2520  * the new chain becoming the 'current' chain (meaning it is the first in
2521  * the linked list at core->chain_first).
2522  *
2523  * If (parent) is non-NULL then the new duplicated chain is inserted under
2524  * the parent.
2525  *
2526  * If (parent) is NULL then the new duplicated chain is not inserted anywhere,
2527  * similar to if it had just been chain_alloc()'d (suitable for passing into
2528  * hammer2_chain_create() after this function returns).
2529  *
2530  * NOTE! Duplication is used in order to retain the original topology to
2531  *       support flush synchronization points.  Both the original and the
2532  *       new chain will have the same transaction id and thus the operation
2533  *       appears atomic w/regards to media flushes.
2534  */
2535 static void hammer2_chain_dup_fixup(hammer2_chain_t *ochain,
2536                                     hammer2_chain_t *nchain);
2537
2538 void
2539 hammer2_chain_duplicate(hammer2_trans_t *trans, hammer2_chain_t *parent,
2540                         hammer2_chain_t **chainp, hammer2_blockref_t *bref,
2541                         int snapshot)
2542 {
2543         hammer2_mount_t *hmp;
2544         hammer2_blockref_t *base;
2545         hammer2_chain_t *ochain;
2546         hammer2_chain_t *nchain;
2547         hammer2_chain_core_t *above;
2548         size_t bytes;
2549         int count;
2550         int oflags;
2551         void *odata;
2552
2553         /*
2554          * First create a duplicate of the chain structure, associating
2555          * it with the same core, making it the same size, pointing it
2556          * to the same bref (the same media block).
2557          */
2558         ochain = *chainp;
2559         hmp = ochain->hmp;
2560         if (bref == NULL)
2561                 bref = &ochain->bref;
2562         if (snapshot) {
2563                 nchain = hammer2_chain_alloc(hmp, NULL, trans, bref);
2564                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SNAPSHOT);
2565         } else {
2566                 nchain = hammer2_chain_alloc(hmp, ochain->pmp, trans, bref);
2567         }
2568         hammer2_chain_core_alloc(trans, nchain, ochain);
2569         bytes = (hammer2_off_t)1 <<
2570                 (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2571         nchain->bytes = bytes;
2572         nchain->modify_tid = ochain->modify_tid;
2573
2574         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER |
2575                                    HAMMER2_RESOLVE_NOREF);
2576         hammer2_chain_dup_fixup(ochain, nchain);
2577         /* nchain has 1 ref */
2578
2579         /*
2580          * If parent is not NULL, insert the duplicated chain into the
2581          * parent.  The newly duplicated chain must be marked MOVED and
2582          * SUBMODIFIED set in its parent(s).
2583          *
2584          * Having both chains locked is extremely important for atomicy.
2585          */
2586         if (parent) {
2587                 /*
2588                  * Locate a free blockref in the parent's array
2589                  */
2590                 above = parent->core;
2591                 KKASSERT(ccms_thread_lock_owned(&above->cst));
2592
2593                 switch(parent->bref.type) {
2594                 case HAMMER2_BREF_TYPE_INODE:
2595                         KKASSERT((parent->data->ipdata.op_flags &
2596                                   HAMMER2_OPFLAG_DIRECTDATA) == 0);
2597                         KKASSERT(parent->data != NULL);
2598                         base = &parent->data->ipdata.u.blockset.blockref[0];
2599                         count = HAMMER2_SET_COUNT;
2600                         break;
2601                 case HAMMER2_BREF_TYPE_INDIRECT:
2602                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2603                         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2604                                 base = NULL;
2605                         } else {
2606                                 KKASSERT(parent->data != NULL);
2607                                 base = &parent->data->npdata[0];
2608                         }
2609                         count = parent->bytes / sizeof(hammer2_blockref_t);
2610                         break;
2611                 case HAMMER2_BREF_TYPE_VOLUME:
2612                         KKASSERT(parent->data != NULL);
2613                         base = &hmp->voldata.sroot_blockset.blockref[0];
2614                         count = HAMMER2_SET_COUNT;
2615                         break;
2616                 case HAMMER2_BREF_TYPE_FREEMAP:
2617                         KKASSERT(parent->data != NULL);
2618                         base = &hmp->voldata.freemap_blockset.blockref[0];
2619                         count = HAMMER2_SET_COUNT;
2620                         break;
2621                 default:
2622                         panic("hammer2_chain_create: unrecognized "
2623                               "blockref type: %d",
2624                               parent->bref.type);
2625                         count = 0;
2626                         break;
2627                 }
2628
2629                 KKASSERT((nchain->flags & HAMMER2_CHAIN_DELETED) == 0);
2630                 KKASSERT(parent->refs > 0);
2631                 hammer2_chain_insert(above, nchain, HAMMER2_CHAIN_INSERT_SPIN |
2632                                                     HAMMER2_CHAIN_INSERT_LIVE);
2633
2634                 if ((nchain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2635                         hammer2_chain_ref(nchain);
2636                         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_MOVED);
2637                 }
2638                 hammer2_chain_setsubmod(trans, nchain);
2639         }
2640
2641         /*
2642          * We have to unlock ochain to flush any dirty data, asserting the
2643          * case (data == NULL) to catch any extra locks that might have been
2644          * present, then transfer state to nchain.
2645          */
2646         oflags = ochain->flags;
2647         odata = ochain->data;
2648         hammer2_chain_unlock(ochain);
2649         KKASSERT((ochain->flags & HAMMER2_CHAIN_EMBEDDED) ||
2650                  ochain->data == NULL);
2651
2652         if (oflags & HAMMER2_CHAIN_INITIAL)
2653                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_INITIAL);
2654
2655         /*
2656          * WARNING!  We should never resolve DATA to device buffers
2657          *           (XXX allow it if the caller did?), and since
2658          *           we currently do not have the logical buffer cache
2659          *           buffer in-hand to fix its cached physical offset
2660          *           we also force the modify code to not COW it. XXX
2661          *
2662          * WARNING!  nchain should have only one manual ref plus additional
2663          *           refs related to flags or the hammer2_chain_modify()
2664          *           replacement could leave a ref hanging.
2665          */
2666         if (oflags & HAMMER2_CHAIN_MODIFIED) {
2667                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2668                         hammer2_chain_modify(trans, &nchain,
2669                                              HAMMER2_MODIFY_OPTDATA |
2670                                              HAMMER2_MODIFY_NOREALLOC |
2671                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2672                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2673                         hammer2_chain_modify(trans, &nchain,
2674                                              HAMMER2_MODIFY_OPTDATA |
2675                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2676                 } else {
2677                         hammer2_chain_modify(trans, &nchain,
2678                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2679                 }
2680         } else {
2681                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2682                         ;
2683                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2684                         ;
2685                 } else {
2686                         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_ALWAYS);
2687                         hammer2_chain_unlock(nchain);
2688                 }
2689         }
2690         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SUBMODIFIED);
2691         *chainp = nchain;
2692 }
2693
2694 /*
2695  * Special in-place delete-duplicate sequence which does not require a
2696  * locked parent.  (*chainp) is marked DELETED and atomically replaced
2697  * with a duplicate.  Atomicy is at the very-fine spin-lock level in
2698  * order to ensure that lookups do not race us.
2699  *
2700  * If the input chain is already marked deleted the duplicated chain will
2701  * also be marked deleted.  This case can occur when an inode is removed
2702  * from the filesystem but programs still have an open descriptor to it.
2703  */
2704 void
2705 hammer2_chain_delete_duplicate(hammer2_trans_t *trans, hammer2_chain_t **chainp,
2706                                int flags)
2707 {
2708         hammer2_mount_t *hmp;
2709         hammer2_chain_t *ochain;
2710         hammer2_chain_t *nchain;
2711         hammer2_chain_core_t *above;
2712         size_t bytes;
2713         int oflags;
2714         void *odata;
2715
2716         ochain = *chainp;
2717         oflags = ochain->flags;
2718         hmp = ochain->hmp;
2719
2720         /*
2721          * Shortcut DELETED case if possible (only if delete_tid already
2722          * matches the transaction id).
2723          */
2724         if ((oflags & HAMMER2_CHAIN_DELETED) &&
2725             ochain->delete_tid == trans->sync_tid) {
2726                 return;
2727         }
2728
2729         /*
2730          * First create a duplicate of the chain structure.
2731          * (nchain is allocated with one ref).
2732          */
2733         nchain = hammer2_chain_alloc(hmp, ochain->pmp, trans, &ochain->bref);
2734         if (flags & HAMMER2_DELDUP_RECORE)
2735                 hammer2_chain_core_alloc(trans, nchain, NULL);
2736         else
2737                 hammer2_chain_core_alloc(trans, nchain, ochain);
2738         above = ochain->above;
2739
2740         bytes = (hammer2_off_t)1 <<
2741                 (int)(ochain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2742         nchain->bytes = bytes;
2743         nchain->modify_tid = ochain->modify_tid;
2744         nchain->data_count += ochain->data_count;
2745         nchain->inode_count += ochain->inode_count;
2746
2747         /*
2748          * Lock nchain so both chains are now locked (extremely important
2749          * for atomicy).  Mark ochain deleted and reinsert into the topology
2750          * and insert nchain all in one go.
2751          *
2752          * If the ochain is already deleted it is left alone and nchain
2753          * is inserted into the topology as a deleted chain.  This is
2754          * important because it allows ongoing operations to be executed
2755          * on a deleted inode which still has open descriptors.
2756          */
2757         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER);
2758         hammer2_chain_dup_fixup(ochain, nchain);
2759         /* extra ref still present from original allocation */
2760
2761         KKASSERT(ochain->flags & HAMMER2_CHAIN_ONRBTREE);
2762         spin_lock(&above->cst.spin);
2763         KKASSERT(ochain->flags & HAMMER2_CHAIN_ONRBTREE);
2764
2765         if (oflags & HAMMER2_CHAIN_DELETED) {
2766                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_DELETED);
2767                 nchain->delete_tid = trans->sync_tid;
2768                 /*nchain->delete_gen = ++trans->delete_gen;*/
2769         } else {
2770                 ochain->delete_tid = trans->sync_tid;
2771                 /*ochain->delete_gen = ++trans->delete_gen;*/
2772                 atomic_set_int(&ochain->flags, HAMMER2_CHAIN_DELETED);
2773                 atomic_add_int(&above->live_count, -1);
2774         }
2775
2776         hammer2_chain_insert(above, nchain,
2777                              ((oflags & HAMMER2_CHAIN_DELETED) ?
2778                                 0: HAMMER2_CHAIN_INSERT_LIVE));
2779
2780         if ((ochain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2781                 hammer2_chain_ref(ochain);
2782                 atomic_set_int(&ochain->flags, HAMMER2_CHAIN_MOVED);
2783         }
2784         spin_unlock(&above->cst.spin);
2785
2786         /*
2787          * We have to unlock ochain to flush any dirty data, asserting the
2788          * case (data == NULL) to catch any extra locks that might have been
2789          * present, then transfer state to nchain.
2790          */
2791         odata = ochain->data;
2792         hammer2_chain_unlock(ochain);   /* replacing ochain */
2793         KKASSERT(ochain->bref.type == HAMMER2_BREF_TYPE_INODE ||
2794                  ochain->data == NULL);
2795
2796         if (oflags & HAMMER2_CHAIN_INITIAL)
2797                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_INITIAL);
2798
2799         /*
2800          * WARNING!  We should never resolve DATA to device buffers
2801          *           (XXX allow it if the caller did?), and since
2802          *           we currently do not have the logical buffer cache
2803          *           buffer in-hand to fix its cached physical offset
2804          *           we also force the modify code to not COW it. XXX
2805          */
2806         if (oflags & HAMMER2_CHAIN_MODIFIED) {
2807                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2808                         hammer2_chain_modify(trans, &nchain,
2809                                              HAMMER2_MODIFY_OPTDATA |
2810                                              HAMMER2_MODIFY_NOREALLOC |
2811                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2812                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2813                         hammer2_chain_modify(trans, &nchain,
2814                                              HAMMER2_MODIFY_OPTDATA |
2815                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2816                 } else {
2817                         hammer2_chain_modify(trans, &nchain,
2818                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2819                 }
2820                 hammer2_chain_drop(nchain);
2821         } else {
2822                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2823                         hammer2_chain_drop(nchain);
2824                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2825                         hammer2_chain_drop(nchain);
2826                 } else {
2827                         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_ALWAYS |
2828                                                    HAMMER2_RESOLVE_NOREF);
2829                         hammer2_chain_unlock(nchain);
2830                 }
2831         }
2832
2833         /*
2834          * Unconditionally set the MOVED and SUBMODIFIED bit to force
2835          * update of parent bref and indirect blockrefs during flush.
2836          */
2837         if ((nchain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2838                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_MOVED);
2839                 hammer2_chain_ref(nchain);
2840         }
2841         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SUBMODIFIED);
2842         hammer2_chain_setsubmod(trans, nchain);
2843         *chainp = nchain;
2844 }
2845
2846 /*
2847  * Helper function to fixup inodes.  The caller procedure stack may hold
2848  * multiple locks on ochain if it represents an inode, preventing our
2849  * unlock from retiring its state to the buffer cache.
2850  *
2851  * In this situation any attempt to access the buffer cache could result
2852  * either in stale data or a deadlock.  Work around the problem by copying
2853  * the embedded data directly.
2854  */
2855 static
2856 void
2857 hammer2_chain_dup_fixup(hammer2_chain_t *ochain, hammer2_chain_t *nchain)
2858 {
2859         if (ochain->data == NULL)
2860                 return;
2861         switch(ochain->bref.type) {
2862         case HAMMER2_BREF_TYPE_INODE:
2863                 KKASSERT(nchain->data == NULL);
2864                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_EMBEDDED);
2865                 nchain->data = kmalloc(sizeof(nchain->data->ipdata),
2866                                        ochain->hmp->mchain, M_WAITOK | M_ZERO);
2867                 nchain->data->ipdata = ochain->data->ipdata;
2868                 break;
2869         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2870                 KKASSERT(nchain->data == NULL);
2871                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_EMBEDDED);
2872                 nchain->data = kmalloc(sizeof(nchain->data->bmdata),
2873                                        ochain->hmp->mchain, M_WAITOK | M_ZERO);
2874                 bcopy(ochain->data->bmdata,
2875                       nchain->data->bmdata,
2876                       sizeof(nchain->data->bmdata));
2877                 break;
2878         default:
2879                 break;
2880         }
2881 }
2882
2883 /*
2884  * Create a snapshot of the specified {parent, chain} with the specified
2885  * label.  The originating hammer2_inode must be exclusively locked for
2886  * safety.
2887  */
2888 int
2889 hammer2_chain_snapshot(hammer2_trans_t *trans, hammer2_chain_t *ochain,
2890                        hammer2_ioc_pfs_t *pfs)
2891 {
2892         hammer2_mount_t *hmp;
2893         hammer2_chain_t *nchain;
2894         hammer2_inode_data_t *ipdata;
2895         hammer2_inode_t *nip;
2896         size_t name_len;
2897         hammer2_key_t lhc;
2898 #if 0
2899         hammer2_chain_t *chain;
2900         hammer2_chain_t *parent;
2901         hammer2_key_t key_dummy;
2902         int cache_index = -1;
2903 #endif
2904         struct vattr vat;
2905         uuid_t opfs_clid;
2906         int error;
2907
2908         name_len = strlen(pfs->name);
2909         lhc = hammer2_dirhash(pfs->name, name_len);
2910
2911         hmp = ochain->hmp;
2912         opfs_clid = ochain->data->ipdata.pfs_clid;
2913         KKASSERT((trans->flags & HAMMER2_TRANS_RESTRICTED) == 0);
2914
2915         /*
2916          * Issue a restricted flush of the original.  This is a synchronous
2917          * operation.  This will synchronize the blockrefs.
2918          */
2919         /* trans->flags |= HAMMER2_TRANS_RESTRICTED; */
2920         hammer2_chain_flush(trans, ochain);
2921         /* trans->flags &= ~HAMMER2_TRANS_RESTRICTED; */
2922         kprintf("snapshot %s ochain->refs %d ochain->flags %08x\n",
2923                 pfs->name, ochain->refs, ochain->flags);
2924
2925         /*
2926          * Create the snapshot directory under the super-root
2927          *
2928          * Set PFS type, generate a unique filesystem id, and generate
2929          * a cluster id.  Use the same clid when snapshotting a PFS root,
2930          * which theoretically allows the snapshot to be used as part of
2931          * the same cluster (perhaps as a cache).
2932          *
2933          * Copy the (flushed) ochain's blockref array.  Theoretically we
2934          * could use chain_duplicate() but it becomes difficult to disentangle
2935          * the shared core so for now just brute-force it.
2936          */
2937         VATTR_NULL(&vat);
2938         vat.va_type = VDIR;
2939         vat.va_mode = 0755;
2940         nchain = NULL;
2941         nip = hammer2_inode_create(trans, hmp->sroot, &vat, proc0.p_ucred,
2942                                    pfs->name, name_len, &nchain, &error);
2943
2944         if (nip) {
2945                 ipdata = hammer2_chain_modify_ip(trans, nip, &nchain, 0);
2946                 ipdata->pfs_type = HAMMER2_PFSTYPE_SNAPSHOT;
2947                 kern_uuidgen(&ipdata->pfs_fsid, 1);
2948                 if (ochain->flags & HAMMER2_CHAIN_PFSROOT)
2949                         ipdata->pfs_clid = opfs_clid;
2950                 else
2951                         kern_uuidgen(&ipdata->pfs_clid, 1);
2952                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_PFSROOT);
2953                 ipdata->u.blockset = ochain->data->ipdata.u.blockset;
2954
2955                 hammer2_inode_unlock_ex(nip, nchain);
2956         }
2957         return (error);
2958
2959 #if 0
2960
2961
2962
2963
2964         /*
2965          * Get second lock for duplication to replace, original lock
2966          * will be left intact (caller must unlock the original chain).
2967          */
2968         nchain = ochain;
2969         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_MAYBE);
2970
2971         /*
2972          * Create disconnected duplicate flagged as a snapshot
2973          */
2974         hammer2_chain_duplicate(trans, NULL, &nchain, NULL, 1);
2975
2976         /*
2977          * Create named entry in the super-root.
2978          */
2979         parent = hammer2_inode_lock_ex(hmp->sroot);
2980         error = 0;
2981         while (error == 0) {
2982                 chain = hammer2_chain_lookup(&parent, &key_dummy,
2983                                              lhc, lhc, &cache_index, 0);
2984                 if (chain == NULL)
2985                         break;
2986                 if ((lhc & HAMMER2_DIRHASH_LOMASK) == HAMMER2_DIRHASH_LOMASK)
2987                         error = ENOSPC;
2988                 hammer2_chain_unlock(chain);
2989                 chain = NULL;
2990                 ++lhc;
2991         }
2992         hammer2_chain_create(trans, &parent, &nchain, lhc, 0,
2993                              HAMMER2_BREF_TYPE_INODE,
2994                              HAMMER2_INODE_BYTES);
2995         hammer2_chain_modify(trans, &nchain, HAMMER2_MODIFY_ASSERTNOCOPY);
2996         hammer2_inode_unlock_ex(hmp->sroot, parent);
2997         parent = NULL;  /* safety */
2998
2999         /*
3000          * Name fixup
3001          */
3002         ipdata = &nchain->data->ipdata;
3003         ipdata->name_key = lhc;
3004         ipdata->name_len = name_len;
3005         ksnprintf(ipdata->filename, sizeof(ipdata->filename), "%s", pfs->name);
3006
3007         /*
3008          * Unlock nchain.  This should cause nchain to be freed by virtue
3009          * of its SNAPSHOT flag, which serves to disconnect its core.  If
3010          * we were to retain nchain it would be a problem because the shared
3011          * core would pick up changes made in the original after the snapshot
3012          * operation has returned.
3013          */
3014         kprintf("nchain refs %d %08x\n", nchain->refs, nchain->flags);
3015         hammer2_chain_unlock(nchain);
3016 #endif
3017 }
3018
3019 /*
3020  * Create an indirect block that covers one or more of the elements in the
3021  * current parent.  Either returns the existing parent with no locking or
3022  * ref changes or returns the new indirect block locked and referenced
3023  * and leaving the original parent lock/ref intact as well.
3024  *
3025  * If an error occurs, NULL is returned and *errorp is set to the error.
3026  *
3027  * The returned chain depends on where the specified key falls.
3028  *
3029  * The key/keybits for the indirect mode only needs to follow three rules:
3030  *
3031  * (1) That all elements underneath it fit within its key space and
3032  *
3033  * (2) That all elements outside it are outside its key space.
3034  *
3035  * (3) When creating the new indirect block any elements in the current
3036  *     parent that fit within the new indirect block's keyspace must be
3037  *     moved into the new indirect block.
3038  *
3039  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3040  *     keyspace the the current parent, but lookup/iteration rules will
3041  *     ensure (and must ensure) that rule (2) for all parents leading up
3042  *     to the nearest inode or the root volume header is adhered to.  This
3043  *     is accomplished by always recursing through matching keyspaces in
3044  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3045  *
3046  * The current implementation calculates the current worst-case keyspace by
3047  * iterating the current parent and then divides it into two halves, choosing
3048  * whichever half has the most elements (not necessarily the half containing
3049  * the requested key).
3050  *
3051  * We can also opt to use the half with the least number of elements.  This
3052  * causes lower-numbered keys (aka logical file offsets) to recurse through
3053  * fewer indirect blocks and higher-numbered keys to recurse through more.
3054  * This also has the risk of not moving enough elements to the new indirect
3055  * block and being forced to create several indirect blocks before the element
3056  * can be inserted.
3057  *
3058  * Must be called with an exclusively locked parent.
3059  */
3060 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3061                                 hammer2_key_t *keyp, int keybits,
3062                                 hammer2_blockref_t *base, int count);
3063 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
3064                                 hammer2_key_t *keyp, int keybits,
3065                                 hammer2_blockref_t *base, int count);
3066 static
3067 hammer2_chain_t *
3068 hammer2_chain_create_indirect(hammer2_trans_t *trans, hammer2_chain_t *parent,
3069                               hammer2_key_t create_key, int create_bits,
3070                               int for_type, int *errorp)
3071 {
3072         hammer2_mount_t *hmp;
3073         hammer2_chain_core_t *above;
3074         hammer2_chain_core_t *icore;
3075         hammer2_blockref_t *base;
3076         hammer2_blockref_t *bref;
3077         hammer2_blockref_t bcopy;
3078         hammer2_chain_t *chain;
3079         hammer2_chain_t *ichain;
3080         hammer2_chain_t dummy;
3081         hammer2_key_t key = create_key;
3082         hammer2_key_t key_beg;
3083         hammer2_key_t key_end;
3084         hammer2_key_t key_next;
3085         int keybits = create_bits;
3086         int count;
3087         int nbytes;
3088         int cache_index;
3089         int loops;
3090
3091         /*
3092          * Calculate the base blockref pointer or NULL if the chain
3093          * is known to be empty.  We need to calculate the array count
3094          * for RB lookups either way.
3095          */
3096         hmp = parent->hmp;
3097         *errorp = 0;
3098         KKASSERT(ccms_thread_lock_owned(&parent->core->cst));
3099         above = parent->core;
3100
3101         /*hammer2_chain_modify(trans, &parent, HAMMER2_MODIFY_OPTDATA);*/
3102         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3103                 base = NULL;
3104
3105                 switch(parent->bref.type) {
3106                 case HAMMER2_BREF_TYPE_INODE:
3107                         count = HAMMER2_SET_COUNT;
3108                         break;
3109                 case HAMMER2_BREF_TYPE_INDIRECT:
3110                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3111                         count = parent->bytes / sizeof(hammer2_blockref_t);
3112                         break;
3113                 case HAMMER2_BREF_TYPE_VOLUME:
3114                         count = HAMMER2_SET_COUNT;
3115                         break;
3116                 case HAMMER2_BREF_TYPE_FREEMAP:
3117                         count = HAMMER2_SET_COUNT;
3118                         break;
3119                 default:
3120                         panic("hammer2_chain_create_indirect: "
3121                               "unrecognized blockref type: %d",
3122                               parent->bref.type);
3123                         count = 0;
3124                         break;
3125                 }
3126         } else {
3127                 switch(parent->bref.type) {
3128                 case HAMMER2_BREF_TYPE_INODE:
3129                         base = &parent->data->ipdata.u.blockset.blockref[0];
3130                         count = HAMMER2_SET_COUNT;
3131                         break;
3132                 case HAMMER2_BREF_TYPE_INDIRECT:
3133                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3134                         base = &parent->data->npdata[0];
3135                         count = parent->bytes / sizeof(hammer2_blockref_t);
3136                         break;
3137                 case HAMMER2_BREF_TYPE_VOLUME:
3138                         base = &hmp->voldata.sroot_blockset.blockref[0];
3139                         count = HAMMER2_SET_COUNT;
3140                         break;
3141                 case HAMMER2_BREF_TYPE_FREEMAP:
3142                         base = &hmp->voldata.freemap_blockset.blockref[0];
3143                         count = HAMMER2_SET_COUNT;
3144                         break;
3145                 default:
3146                         panic("hammer2_chain_create_indirect: "
3147                               "unrecognized blockref type: %d",
3148                               parent->bref.type);
3149                         count = 0;
3150                         break;
3151                 }
3152         }
3153
3154         /*
3155          * dummy used in later chain allocation (no longer used for lookups).
3156          */
3157         bzero(&dummy, sizeof(dummy));
3158         dummy.delete_tid = HAMMER2_MAX_TID;
3159
3160         /*
3161          * When creating an indirect block for a freemap node or leaf
3162          * the key/keybits must be fitted to static radix levels because
3163          * particular radix levels use particular reserved blocks in the
3164          * related zone.
3165          *
3166          * This routine calculates the key/radix of the indirect block
3167          * we need to create, and whether it is on the high-side or the
3168          * low-side.
3169          */
3170         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3171             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3172                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3173                                                        base, count);
3174         } else {
3175                 keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
3176                                                       base, count);
3177         }
3178
3179         /*
3180          * Normalize the key for the radix being represented, keeping the
3181          * high bits and throwing away the low bits.
3182          */
3183         key &= ~(((hammer2_key_t)1 << keybits) - 1);
3184
3185         /*
3186          * How big should our new indirect block be?  It has to be at least
3187          * as large as its parent.
3188          */
3189         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE)
3190                 nbytes = HAMMER2_IND_BYTES_MIN;
3191         else
3192                 nbytes = HAMMER2_IND_BYTES_MAX;
3193         if (nbytes < count * sizeof(hammer2_blockref_t))
3194                 nbytes = count * sizeof(hammer2_blockref_t);
3195
3196         /*
3197          * Ok, create our new indirect block
3198          */
3199         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3200             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3201                 dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
3202         } else {
3203                 dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
3204         }
3205         dummy.bref.key = key;
3206         dummy.bref.keybits = keybits;
3207         dummy.bref.data_off = hammer2_getradix(nbytes);
3208         dummy.bref.methods = parent->bref.methods;
3209
3210         ichain = hammer2_chain_alloc(hmp, parent->pmp, trans, &dummy.bref);
3211         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
3212         hammer2_chain_core_alloc(trans, ichain, NULL);
3213         icore = ichain->core;
3214         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
3215         hammer2_chain_drop(ichain);     /* excess ref from alloc */
3216
3217         /*
3218          * We have to mark it modified to allocate its block, but use
3219          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
3220          * it won't be acted upon by the flush code.
3221          *
3222          * XXX leave the node unmodified, depend on the SUBMODIFIED
3223          * flush to assign and modify parent blocks.
3224          */
3225         hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);
3226
3227         /*
3228          * Iterate the original parent and move the matching brefs into
3229          * the new indirect block.
3230          *
3231          * XXX handle flushes.
3232          */
3233         key_beg = 0;
3234         key_end = HAMMER2_MAX_TID;
3235         cache_index = 0;
3236         spin_lock(&above->cst.spin);
3237         loops = 0;
3238
3239 #if 0
3240         kprintf("I %p,%d/%d key %016jx %016jx/%d nbytes=%d\n",
3241                 parent, parent->core->live_count,
3242                         (int)(parent->bytes / sizeof(hammer2_blockref_t)),
3243                 create_key, key, keybits, (int)nbytes);
3244 #endif
3245         for (;;) {
3246                 if (++loops > 8192) {
3247                     spin_unlock(&above->cst.spin);
3248                     panic("shit parent=%p base/count %p:%d\n",
3249                           parent, base, count);
3250                 }
3251
3252                 /*
3253                  * NOTE: spinlock stays intact, returned chain (if not NULL)
3254                  *       is not referenced or locked.
3255                  */
3256                 chain = hammer2_combined_find(parent, base, count,
3257                                               &cache_index, &key_next,
3258                                               key_beg, key_end,
3259                                               &bref);
3260                 if (bref == NULL)
3261                         break;
3262                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3263                         if (key_next == 0 || key_next > key_end)
3264                                 break;
3265                         key_beg = key_next;
3266                         continue;
3267                 }
3268                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3269 #if 0
3270                 kprintf("%c%p %016jx,%016jx,%016jx bref=%p,%016jx\n",
3271                         (chain ? 'm' : 'd'),
3272                         parent,
3273                         key_beg, key_end, key_next,
3274                         bref, (bref ? bref->key : 0));
3275 #endif
3276
3277                 /*
3278                  * Skip keys that are not within the key/radix of the new
3279                  * indirect block.  They stay in the parent.
3280                  */
3281                 if ((~(((hammer2_key_t)1 << keybits) - 1) &
3282                     (key ^ bref->key)) != 0) {
3283                         if (key_next == 0 || key_next > key_end)
3284                                 break;
3285                         key_beg = key_next;
3286                         continue;
3287                 }
3288
3289                 /*
3290                  * Load the new indirect block by acquiring or allocating
3291                  * the related chain, then move it to the new parent (ichain)
3292                  * via DELETE-DUPLICATE.
3293                  *
3294                  * WARNING! above->cst.spin must be held when parent is
3295                  *          modified, even though we own the full blown lock,
3296                  *          to deal with setsubmod and rename races.
3297                  *          (XXX remove this req).
3298                  */
3299                 if (chain) {
3300                         /*
3301                          * Use chain already present in the RBTREE
3302                          */
3303                         hammer2_chain_ref(chain);
3304                         spin_unlock(&above->cst.spin);
3305                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
3306                                                   HAMMER2_RESOLVE_NOREF);
3307                 } else {
3308                         /*
3309                          * Get chain for blockref element.  _get returns NULL
3310                          * on insertion race.
3311                          */
3312                         bcopy = *bref;
3313                         spin_unlock(&above->cst.spin);
3314                         chain = hammer2_chain_get(parent, bref);
3315                         if (chain == NULL)
3316                                 continue;
3317                         if (bcmp(&bcopy, bref, sizeof(bcopy))) {
3318                                 hammer2_chain_drop(chain);
3319                                 continue;
3320                         }
3321                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER |
3322                                                   HAMMER2_RESOLVE_NOREF);
3323                 }
3324                 hammer2_chain_delete(trans, chain, HAMMER2_DELETE_WILLDUP);
3325                 hammer2_chain_duplicate(trans, ichain, &chain, NULL, 0);
3326                 hammer2_chain_unlock(chain);
3327                 KKASSERT(parent->refs > 0);
3328                 chain = NULL;
3329                 spin_lock(&above->cst.spin);
3330                 if (key_next == 0 || key_next > key_end)
3331                         break;
3332                 key_beg = key_next;
3333         }
3334         spin_unlock(&above->cst.spin);
3335
3336         /*
3337          * Insert the new indirect block into the parent now that we've
3338          * cleared out some entries in the parent.  We calculated a good
3339          * insertion index in the loop above (ichain->index).
3340          *
3341          * We don't have to set MOVED here because we mark ichain modified
3342          * down below (so the normal modified -> flush -> set-moved sequence
3343          * applies).
3344          *
3345          * The insertion shouldn't race as this is a completely new block
3346          * and the parent is locked.
3347          */
3348         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3349         hammer2_chain_insert(above, ichain, HAMMER2_CHAIN_INSERT_SPIN |
3350                                             HAMMER2_CHAIN_INSERT_LIVE);
3351
3352         /*
3353          * Mark the new indirect block modified after insertion, which
3354          * will propagate up through parent all the way to the root and
3355          * also allocate the physical block in ichain for our caller,
3356          * and assign ichain->data to a pre-zero'd space (because there
3357          * is not prior data to copy into it).
3358          *
3359          * We have to set SUBMODIFIED in ichain's flags manually so the
3360          * flusher knows it has to recurse through it to get to all of
3361          * our moved blocks, then call setsubmod() to set the bit
3362          * recursively.
3363          */
3364         /*hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);*/
3365         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_SUBMODIFIED);
3366         hammer2_chain_setsubmod(trans, ichain);
3367
3368         /*
3369          * Figure out what to return.
3370          */
3371         if (~(((hammer2_key_t)1 << keybits) - 1) &
3372                    (create_key ^ key)) {
3373                 /*
3374                  * Key being created is outside the key range,
3375                  * return the original parent.
3376                  */
3377                 hammer2_chain_unlock(ichain);
3378 #if 0
3379                 kprintf("return original parent\n");
3380 #endif
3381         } else {
3382                 /*
3383                  * Otherwise its in the range, return the new parent.
3384                  * (leave both the new and old parent locked).
3385                  */
3386                 parent = ichain;
3387 #if 0
3388                 kprintf("return new ichain\n");
3389 #endif
3390         }
3391
3392         return(parent);
3393 }
3394
3395 /*
3396  * Calculate the keybits and highside/lowside of the freemap node the
3397  * caller is creating.
3398  *
3399  * This routine will specify the next higher-level freemap key/radix
3400  * representing the lowest-ordered set.  By doing so, eventually all
3401  * low-ordered sets will be moved one level down.
3402  *
3403  * We have to be careful here because the freemap reserves a limited
3404  * number of blocks for a limited number of levels.  So we can't just
3405  * push indiscriminately.
3406  */
3407 int
3408 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3409                              int keybits, hammer2_blockref_t *base, int count)
3410 {
3411         hammer2_chain_core_t *above;
3412         hammer2_chain_t *chain;
3413         hammer2_blockref_t *bref;
3414         hammer2_key_t key;
3415         hammer2_key_t key_beg;
3416         hammer2_key_t key_end;
3417         hammer2_key_t key_next;
3418         int cache_index;
3419         int locount;
3420         int hicount;
3421         int loops = 0;
3422
3423         key = *keyp;
3424         above = parent->core;
3425         locount = 0;
3426         hicount = 0;
3427         keybits = 64;
3428
3429         /*
3430          * Calculate the range of keys in the array being careful to skip
3431          * slots which are overridden with a deletion.
3432          */
3433         key_beg = 0;
3434         key_end = HAMMER2_MAX_TID;
3435         cache_index = 0;
3436         spin_lock(&above->cst.spin);
3437
3438         for (;;) {
3439                 if (++loops == 100000) {
3440                         panic("indkey_freemap shit %p %p:%d\n",
3441                               parent, base, count);
3442                 }
3443                 chain = hammer2_combined_find(parent, base, count,
3444                                               &cache_index, &key_next,
3445                                               key_beg, key_end, &bref);
3446
3447                 /*
3448                  * Exhausted search
3449                  */
3450                 if (bref == NULL)
3451                         break;
3452                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3453                         if (key_next == 0 || key_next > key_end)
3454                                 break;
3455                         key_beg = key_next;
3456                         continue;
3457                 }
3458                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3459
3460                 if (keybits > bref->keybits) {
3461                         key = bref->key;
3462                         keybits = bref->keybits;
3463                 } else if (keybits == bref->keybits && bref->key < key) {
3464                         key = bref->key;
3465                 }
3466                 if (key_next == 0)
3467                         break;
3468                 key_beg = key_next;
3469         }
3470         spin_unlock(&above->cst.spin);
3471
3472         /*
3473          * Return the keybits for a higher-level FREEMAP_NODE covering
3474          * this node.
3475          */
3476         switch(keybits) {
3477         case HAMMER2_FREEMAP_LEVEL0_RADIX:
3478                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3479                 break;
3480         case HAMMER2_FREEMAP_LEVEL1_RADIX:
3481                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3482                 break;
3483         case HAMMER2_FREEMAP_LEVEL2_RADIX:
3484                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3485                 break;
3486         case HAMMER2_FREEMAP_LEVEL3_RADIX:
3487                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3488                 break;
3489         case HAMMER2_FREEMAP_LEVEL4_RADIX:
3490                 panic("hammer2_chain_indkey_freemap: level too high");
3491                 break;
3492         default:
3493                 panic("hammer2_chain_indkey_freemap: bad radix");
3494                 break;
3495         }
3496         *keyp = key;
3497
3498         return (keybits);
3499 }
3500
3501 /*
3502  * Calculate the keybits and highside/lowside of the indirect block the
3503  * caller is creating.
3504  */
3505 static int
3506 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3507                             int keybits, hammer2_blockref_t *base, int count)
3508 {
3509         hammer2_chain_core_t *above;
3510         hammer2_blockref_t *bref;
3511         hammer2_chain_t *chain;
3512         hammer2_key_t key_beg;
3513         hammer2_key_t key_end;
3514         hammer2_key_t key_next;
3515         hammer2_key_t key;
3516         int nkeybits;
3517         int locount;
3518         int hicount;
3519         int cache_index;
3520         int loops = 0;
3521
3522         key = *keyp;
3523         above = parent->core;
3524         locount = 0;
3525         hicount = 0;
3526
3527         /*
3528          * Calculate the range of keys in the array being careful to skip
3529          * slots which are overridden with a deletion.  Once the scan
3530          * completes we will cut the key range in half and shift half the
3531          * range into the new indirect block.
3532          */
3533         key_beg = 0;
3534         key_end = HAMMER2_MAX_TID;
3535         cache_index = 0;
3536         spin_lock(&above->cst.spin);
3537
3538         for (;;) {
3539                 if (++loops == 100000) {
3540                         panic("indkey_freemap shit %p %p:%d\n",
3541                               parent, base, count);
3542                 }
3543                 chain = hammer2_combined_find(parent, base, count,
3544                                               &cache_index, &key_next,
3545                                               key_beg, key_end, &bref);
3546
3547                 /*
3548                  * Exhausted search
3549                  */
3550                 if (bref == NULL)
3551                         break;
3552                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3553                         if (key_next == 0 || key_next > key_end)
3554                                 break;
3555                         key_beg = key_next;
3556                         continue;
3557                 }
3558                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3559
3560                 /*
3561                  * Expand our calculated key range (key, keybits) to fit
3562                  * the scanned key.  nkeybits represents the full range
3563                  * that we will later cut in half (two halves @ nkeybits - 1).
3564                  */
3565                 nkeybits = keybits;
3566                 if (nkeybits < bref->keybits) {
3567                         if (bref->keybits > 64) {
3568                                 kprintf("bad bref chain %p bref %p\n",
3569                                         chain, bref);
3570                                 Debugger("fubar");
3571                         }
3572                         nkeybits = bref->keybits;
3573                 }
3574                 while (nkeybits < 64 &&
3575                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
3576                         (key ^ bref->key)) != 0) {
3577                         ++nkeybits;
3578                 }
3579
3580                 /*
3581                  * If the new key range is larger we have to determine
3582                  * which side of the new key range the existing keys fall
3583                  * under by checking the high bit, then collapsing the
3584                  * locount into the hicount or vise-versa.
3585                  */
3586                 if (keybits != nkeybits) {
3587                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3588                                 hicount += locount;
3589                                 locount = 0;
3590                         } else {
3591                                 locount += hicount;
3592                                 hicount = 0;
3593                         }
3594                         keybits = nkeybits;
3595                 }
3596
3597                 /*
3598                  * The newly scanned key will be in the lower half or the
3599                  * upper half of the (new) key range.
3600                  */
3601                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3602                         ++hicount;
3603                 else
3604                         ++locount;
3605
3606                 if (key_next == 0)
3607                         break;
3608                 key_beg = key_next;
3609         }
3610         spin_unlock(&above->cst.spin);
3611         bref = NULL;    /* now invalid (safety) */
3612
3613         /*
3614          * Adjust keybits to represent half of the full range calculated
3615          * above (radix 63 max)
3616          */
3617         --keybits;
3618
3619         /*
3620          * Select whichever half contains the most elements.  Theoretically
3621          * we can select either side as long as it contains at least one
3622          * element (in order to ensure that a free slot is present to hold
3623          * the indirect block).
3624          */
3625         if (hammer2_indirect_optimize) {
3626                 /*
3627                  * Insert node for least number of keys, this will arrange
3628                  * the first few blocks of a large file or the first few
3629                  * inodes in a directory with fewer indirect blocks when
3630                  * created linearly.
3631                  */
3632                 if (hicount < locount && hicount != 0)
3633                         key |= (hammer2_key_t)1 << keybits;
3634                 else
3635                         key &= ~(hammer2_key_t)1 << keybits;
3636         } else {
3637                 /*
3638                  * Insert node for most number of keys, best for heavily
3639                  * fragmented files.
3640                  */
3641                 if (hicount > locount)
3642                         key |= (hammer2_key_t)1 << keybits;
3643                 else
3644                         key &= ~(hammer2_key_t)1 << keybits;
3645         }
3646         *keyp = key;
3647
3648         return (keybits);
3649 }
3650
3651 /*
3652  * Sets CHAIN_DELETED and CHAIN_MOVED in the chain being deleted and
3653  * set chain->delete_tid.
3654  *
3655  * This function does NOT generate a modification to the parent.  It
3656  * would be nearly impossible to figure out which parent to modify anyway.
3657  * Such modifications are handled by the flush code and are properly merged
3658  * using the flush synchronization point.
3659  *
3660  * The find/get code will properly overload the RBTREE check on top of
3661  * the bref check to detect deleted entries.
3662  *
3663  * This function is NOT recursive.  Any entity already pushed into the
3664  * chain (such as an inode) may still need visibility into its contents,
3665  * as well as the ability to read and modify the contents.  For example,
3666  * for an unlinked file which is still open.
3667  *
3668  * NOTE: This function does NOT set chain->modify_tid, allowing future
3669  *       code to distinguish between live and deleted chains by testing
3670  *       sync_tid.
3671  *
3672  * NOTE: Deletions normally do not occur in the middle of a duplication
3673  *       chain but we use a trick for hardlink migration that refactors
3674  *       the originating inode without deleting it, so we make no assumptions
3675  *       here.
3676  */
3677 void
3678 hammer2_chain_delete(hammer2_trans_t *trans, hammer2_chain_t *chain, int flags)
3679 {
3680         KKASSERT(ccms_thread_lock_owned(&chain->core->cst));
3681
3682         /*
3683          * Nothing to do if already marked.
3684          */
3685         if (chain->flags & HAMMER2_CHAIN_DELETED)
3686                 return;
3687
3688         /*
3689          * We must set MOVED along with DELETED for the flush code to
3690          * recognize the operation and properly disconnect the chain
3691          * in-memory.
3692          *
3693          * The setting of DELETED causes finds, lookups, and _next iterations
3694          * to no longer recognize the chain.  RB_SCAN()s will still have
3695          * visibility (needed for flush serialization points).
3696          *
3697          * We need the spinlock on the core whos RBTREE contains chain
3698          * to protect against races.
3699          */
3700         KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3701         spin_lock(&chain->above->cst.spin);
3702
3703         chain->delete_tid = trans->sync_tid;
3704         /*chain->delete_gen = ++trans->delete_gen;*/
3705         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3706         atomic_add_int(&chain->above->live_count, -1);
3707
3708         if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
3709                 hammer2_chain_ref(chain);
3710                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
3711         }
3712         spin_unlock(&chain->above->cst.spin);
3713
3714         /*
3715          * Mark the underlying block as possibly being free unless WILLDUP
3716          * is set.  Duplication can occur in many situations, particularly
3717          * when chains are moved to indirect blocks.
3718          */
3719         if ((flags & HAMMER2_DELETE_WILLDUP) == 0)
3720                 hammer2_freemap_free(trans, chain->hmp, &chain->bref, 0);
3721         hammer2_chain_setsubmod(trans, chain);
3722 }
3723
3724 /*
3725  * Called with the core spinlock held to check for freeable layers.
3726  * Used by the flush code.  Layers can wind up not being freed due
3727  * to the temporary layer->refs count.  This function frees up any
3728  * layers that were missed.
3729  */
3730 void
3731 hammer2_chain_layer_check_locked(hammer2_mount_t *hmp,
3732                                  hammer2_chain_core_t *core)
3733 {
3734         hammer2_chain_layer_t *layer;
3735         hammer2_chain_layer_t *tmp;
3736
3737         tmp = TAILQ_FIRST(&core->layerq);
3738         while ((layer = tmp) != NULL) {
3739                 tmp = TAILQ_NEXT(tmp, entry);
3740                 if (layer->refs == 0 && RB_EMPTY(&layer->rbtree)) {
3741                         TAILQ_REMOVE(&core->layerq, layer, entry);
3742                         if (tmp)
3743                                 ++tmp->refs;
3744                         spin_unlock(&core->cst.spin);
3745                         kfree(layer, hmp->mchain);
3746                         spin_lock(&core->cst.spin);
3747                         if (tmp)
3748                                 --tmp->refs;
3749                 }
3750         }
3751 }
3752
3753 /*
3754  * Returns the index of the nearest element in the blockref array >= elm.
3755  * Returns (count) if no element could be found.
3756  *
3757  * Sets *key_nextp to the next key for loop purposes but does not modify
3758  * it if the next key would be higher than the current value of *key_nextp.
3759  * Note that *key_nexp can overflow to 0, which should be tested by the
3760  * caller.
3761  *
3762  * (*cache_indexp) is a heuristic and can be any value without effecting
3763  * the result.
3764  *
3765  * The spin lock on the related chain must be held.
3766  */
3767 int
3768 hammer2_base_find(hammer2_chain_t *chain,
3769                   hammer2_blockref_t *base, int count,
3770                   int *cache_indexp, hammer2_key_t *key_nextp,
3771                   hammer2_key_t key_beg, hammer2_key_t key_end)
3772 {
3773         hammer2_blockref_t *scan;
3774         hammer2_key_t scan_end;
3775         int i;
3776
3777         /*
3778          * Degenerate case
3779          */
3780         KKASSERT(chain->flags & HAMMER2_CHAIN_COUNTEDBREFS);
3781         if (count == 0 || base == NULL)
3782                 return(count);
3783
3784         /*
3785          * Sequential optimization
3786          */
3787         i = *cache_indexp;
3788         cpu_ccfence();
3789         if (i >= chain->live_zero)
3790                 i = chain->live_zero - 1;
3791         if (i < 0)
3792                 i = 0;
3793         KKASSERT(i < count);
3794
3795         /*
3796          * Search backwards
3797          */
3798         scan = &base[i];
3799         while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
3800                 --scan;
3801                 --i;
3802         }
3803         *cache_indexp = i;
3804
3805         /*
3806          * Search forwards, stop when we find a scan element which
3807          * encloses the key or until we know that there are no further
3808          * elements.
3809          */
3810         while (i < count) {
3811                 if (scan->type != 0) {
3812                         if (scan->key > key_beg)
3813                                 break;
3814                         scan_end = scan->key +
3815                                    ((hammer2_key_t)1 << scan->keybits) - 1;
3816                         if (scan_end >= key_beg)
3817                                 break;
3818                 }
3819                 if (i >= chain->live_zero)
3820                         return (count);
3821                 ++scan;
3822                 ++i;
3823         }
3824         if (i != count) {
3825                 *cache_indexp = i;
3826                 if (i >= chain->live_zero) {
3827                         i = count;
3828                 } else {
3829                         scan_end = scan->key +
3830                                    ((hammer2_key_t)1 << scan->keybits);
3831                         if (scan_end && (*key_nextp > scan_end ||
3832                                          *key_nextp == 0)) {
3833                                 *key_nextp = scan_end;
3834                         }
3835                 }
3836         }
3837         return (i);
3838 }
3839
3840 /*
3841  * Do a combined search and return the next match either from the blockref
3842  * array or from the in-memory chain.  Sets *bresp to the returned bref in
3843  * both cases, or sets it to NULL if the search exhausted.  Only returns
3844  * a non-NULL chain if the search matched from the in-memory chain.
3845  *
3846  * Must be called with above's spinlock held.  Spinlock remains held
3847  * through the operation.
3848  *
3849  * The returned chain is not locked or referenced.  Use the returned bref
3850  * to determine if the search exhausted or not.
3851  */
3852 static hammer2_chain_t *
3853 hammer2_combined_find(hammer2_chain_t *parent,
3854                       hammer2_blockref_t *base, int count,
3855                       int *cache_indexp, hammer2_key_t *key_nextp,
3856                       hammer2_key_t key_beg, hammer2_key_t key_end,
3857                       hammer2_blockref_t **bresp)
3858 {
3859         hammer2_blockref_t *bref;
3860         hammer2_chain_t *chain;
3861         int i;
3862
3863         *key_nextp = key_end + 1;
3864         i = hammer2_base_find(parent, base, count, cache_indexp,
3865                               key_nextp, key_beg, key_end);
3866         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
3867
3868         /*
3869          * Neither matched
3870          */
3871         if (i == count && chain == NULL) {
3872                 *bresp = NULL;
3873                 return(chain);  /* NULL */
3874         }
3875
3876         /*
3877          * Only chain matched
3878          */
3879         if (i == count) {
3880                 bref = &chain->bref;
3881                 goto found;
3882         }
3883
3884         /*
3885          * Only blockref matched.
3886          */
3887         if (chain == NULL) {
3888                 bref = &base[i];
3889                 goto found;
3890         }
3891
3892         /*
3893          * Both in-memory and blockref match.
3894          *
3895          * If they are both flush with the left hand side select the chain.
3896          * If their starts match select the chain.
3897          * Otherwise the nearer element wins.
3898          */
3899         if (chain->bref.key <= key_beg && base[i].key <= key_beg) {
3900                 bref = &chain->bref;
3901                 goto found;
3902         }
3903         if (chain->bref.key <= base[i].key) {
3904                 bref = &chain->bref;
3905                 goto found;
3906                 return(chain);
3907         }
3908         bref = &base[i];
3909         chain = NULL;
3910
3911         /*
3912          * If the bref is out of bounds we've exhausted our search.
3913          */
3914 found:
3915         if (bref->key > key_end) {
3916                 *bresp = NULL;
3917                 chain = NULL;
3918         } else {
3919                 *bresp = bref;
3920         }
3921         return(chain);
3922 }
3923
3924 /*
3925  * Locate the specified block array element and delete it.  The element
3926  * must exist.
3927  *
3928  * The spin lock on the related chain must be held.
3929  *
3930  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3931  *       need to be adjusted when we commit the media change.
3932  */
3933 void
3934 hammer2_base_delete(hammer2_chain_t *chain,
3935                     hammer2_blockref_t *base, int count,
3936                     int *cache_indexp, hammer2_blockref_t *elm)
3937 {
3938         hammer2_key_t key_next;
3939         int i;
3940
3941         /*
3942          * Delete element.  Expect the element to exist.
3943          *
3944          * XXX see caller, flush code not yet sophisticated enough to prevent
3945          *     re-flushed in some cases.
3946          */
3947         key_next = 0; /* max range */
3948         i = hammer2_base_find(chain, base, count, cache_indexp,
3949                               &key_next, elm->key, elm->key);
3950         if (i == count || base[i].type == 0 ||
3951             base[i].key != elm->key || base[i].keybits != elm->keybits) {
3952                 kprintf("hammer2_base_delete: duplicate key %016jx/%d\n",
3953                         elm->key, elm->keybits);
3954                 return;
3955         }
3956 #if 0
3957         KKASSERT(i != count);
3958         KKASSERT(base[i].type &&
3959                  base[i].key == elm->key && base[i].keybits == elm->keybits);
3960 #endif
3961         bzero(&base[i], sizeof(*base));
3962         if (chain->live_zero == i + 1) {
3963                 while (--i >= 0 && base[i].type == 0)
3964                         ;
3965                 chain->live_zero = i + 1;
3966         }
3967 }
3968
3969 /*
3970  * Insert the specified element.  The block array must have space and
3971  * will be rearranged as necessary.
3972  *
3973  * The spin lock on the related chain must be held.
3974  *
3975  * Test (*flagsp) for HAMMER2_CHAIN_REPLACE.  If set an existing bref
3976  * is replaced, otherwise a new bref is created.  The flag is then set
3977  * prior to return indicating that a bref is now present in the block table.
3978  *
3979  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3980  *       need to be adjusted when we commit the media change.
3981  */
3982 void
3983 hammer2_base_insert(hammer2_chain_t *chain,
3984                     hammer2_blockref_t *base, int count,
3985                     int *cache_indexp, hammer2_blockref_t *elm,
3986                     int flags)
3987 {
3988         hammer2_key_t key_next;
3989         hammer2_key_t xkey;
3990         int i;
3991         int j;
3992         int k;
3993         int l;
3994         int u = 1;
3995
3996         /*
3997          * Insert new element.  Expect the element to not already exist
3998          * unless we are replacing it.
3999          *
4000          * XXX see caller, flush code not yet sophisticated enough to prevent
4001          *     re-flushed in some cases.
4002          */
4003         key_next = 0; /* max range */
4004         i = hammer2_base_find(chain, base, count, cache_indexp,
4005                               &key_next, elm->key, elm->key);
4006
4007         if (i != count && (flags & HAMMER2_CHAIN_REPLACE) == 0 &&
4008             base[i].type &&
4009             base[i].key == elm->key && base[i].keybits == elm->keybits) {
4010                 kprintf("hammer2_base_insert: duplicate key %016jx/%d\n",
4011                         elm->key, elm->keybits);
4012                 return;
4013         }
4014 #if 0
4015         KKASSERT(i == count || (flags & HAMMER2_CHAIN_REPLACE) ||
4016                  base[i].type == 0 || base[i].key != elm->key ||
4017                  base[i].keybits != elm->keybits);
4018 #endif
4019
4020         /*
4021          * Shortcut fill optimization, typical ordered insertion(s) may not
4022          * require a search.
4023          */
4024         KKASSERT(i >= 0 && i <= count);
4025
4026         if (i == count && chain->live_zero < count) {
4027                 i = chain->live_zero++;
4028                 base[i] = *elm;
4029                 return;
4030         }
4031
4032         if (i < count &&
4033             base[i].key == elm->key &&
4034             base[i].keybits == elm->keybits) {
4035                 base[i] = *elm;
4036                 return;
4037         }
4038
4039         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
4040         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
4041                 panic("insert base %p overlapping elements at %d elm %p\n",
4042                       base, i, elm);
4043         }
4044
4045         /*
4046          * Try to find an empty slot before or after.
4047          */
4048         j = i;
4049         k = i;
4050         while (j > 0 || k < count) {
4051                 --j;
4052                 if (j >= 0 && base[j].type == 0) {
4053                         if (j == i - 1) {
4054                                 base[j] = *elm;
4055                         } else {
4056                                 bcopy(&base[j+1], &base[j],
4057                                       (i - j - 1) * sizeof(*base));
4058                                 base[i - 1] = *elm;
4059                         }
4060                         goto validate;
4061                 }
4062                 ++k;
4063                 if (k < count && base[k].type == 0) {
4064                         bcopy(&base[i], &base[i+1],
4065                               (k - i) * sizeof(hammer2_blockref_t));
4066                         base[i] = *elm;
4067                         if (chain->live_zero <= k)
4068                                 chain->live_zero = k + 1;
4069                         u = 2;
4070                         goto validate;
4071                 }
4072         }
4073         panic("hammer2_base_insert: no room!");
4074
4075         /*
4076          * Debugging
4077          */
4078 validate:
4079         key_next = 0;
4080         for (l = 0; l < count; ++l) {
4081                 if (base[l].type) {
4082                         key_next = base[l].key +
4083                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
4084                         break;
4085                 }
4086         }
4087         while (++l < count) {
4088                 if (base[l].type) {
4089                         if (base[l].key <= key_next)
4090                                 panic("base_insert%d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
4091                         key_next = base[l].key +
4092                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
4093
4094                 }
4095         }
4096
4097 }
4098
4099 #if 0
4100
4101 /*
4102  * Sort the blockref array for the chain.  Used by the flush code to
4103  * sort the blockref[] array.
4104  *
4105  * The chain must be exclusively locked AND spin-locked.
4106  */
4107 typedef hammer2_blockref_t *hammer2_blockref_p;
4108
4109 static
4110 int
4111 hammer2_base_sort_callback(const void *v1, const void *v2)
4112 {
4113         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
4114         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
4115
4116         /*
4117          * Make sure empty elements are placed at the end of the array
4118          */
4119         if (bref1->type == 0) {
4120                 if (bref2->type == 0)
4121                         return(0);
4122                 return(1);
4123         } else if (bref2->type == 0) {
4124                 return(-1);
4125         }
4126
4127         /*
4128          * Sort by key
4129          */
4130         if (bref1->key < bref2->key)
4131                 return(-1);
4132         if (bref1->key > bref2->key)
4133                 return(1);
4134         return(0);
4135 }
4136
4137 void
4138 hammer2_base_sort(hammer2_chain_t *chain)
4139 {
4140         hammer2_blockref_t *base;
4141         int count;
4142
4143         switch(chain->bref.type) {
4144         case HAMMER2_BREF_TYPE_INODE:
4145                 /*
4146                  * Special shortcut for embedded data returns the inode
4147                  * itself.  Callers must detect this condition and access
4148                  * the embedded data (the strategy code does this for us).
4149                  *
4150                  * This is only applicable to regular files and softlinks.
4151                  */
4152                 if (chain->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
4153                         return;
4154                 base = &chain->data->ipdata.u.blockset.blockref[0];
4155                 count = HAMMER2_SET_COUNT;
4156                 break;
4157         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4158         case HAMMER2_BREF_TYPE_INDIRECT:
4159                 /*
4160                  * Optimize indirect blocks in the INITIAL state to avoid
4161                  * I/O.
4162                  */
4163                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4164                 base = &chain->data->npdata[0];
4165                 count = chain->bytes / sizeof(hammer2_blockref_t);
4166                 break;
4167         case HAMMER2_BREF_TYPE_VOLUME:
4168                 base = &chain->hmp->voldata.sroot_blockset.blockref[0];
4169                 count = HAMMER2_SET_COUNT;
4170                 break;
4171         case HAMMER2_BREF_TYPE_FREEMAP:
4172                 base = &chain->hmp->voldata.freemap_blockset.blockref[0];
4173                 count = HAMMER2_SET_COUNT;
4174                 break;
4175         default:
4176                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
4177                       chain->bref.type);
4178                 base = NULL;    /* safety */
4179                 count = 0;      /* safety */
4180         }
4181         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
4182 }
4183
4184 #endif
4185
4186 /*
4187  * Chain memory management
4188  */
4189 void
4190 hammer2_chain_wait(hammer2_chain_t *chain)
4191 {
4192         tsleep(chain, 0, "chnflw", 1);
4193 }
4194
4195 /*
4196  * Manage excessive memory resource use for chain and related
4197  * structures.
4198  */
4199 void
4200 hammer2_chain_memory_wait(hammer2_pfsmount_t *pmp)
4201 {
4202 #if 0
4203         while (pmp->inmem_chains > desiredvnodes / 10 &&
4204                pmp->inmem_chains > pmp->mp->mnt_nvnodelistsize * 2) {
4205                 kprintf("w");
4206                 speedup_syncer();
4207                 pmp->inmem_waiting = 1;
4208                 tsleep(&pmp->inmem_waiting, 0, "chnmem", hz);
4209         }
4210 #endif
4211 #if 0
4212         if (pmp->inmem_chains > desiredvnodes / 10 &&
4213             pmp->inmem_chains > pmp->mp->mnt_nvnodelistsize * 7 / 4) {
4214                 speedup_syncer();
4215         }
4216 #endif
4217 }
4218
4219 void
4220 hammer2_chain_memory_wakeup(hammer2_pfsmount_t *pmp)
4221 {
4222         if (pmp->inmem_waiting &&
4223             (pmp->inmem_chains <= desiredvnodes / 10 ||
4224              pmp->inmem_chains <= pmp->mp->mnt_nvnodelistsize * 2)) {
4225                 kprintf("s");
4226                 pmp->inmem_waiting = 0;
4227                 wakeup(&pmp->inmem_waiting);
4228         }
4229 }
4230
4231 static
4232 void
4233 adjreadcounter(hammer2_blockref_t *bref, size_t bytes)
4234 {
4235         long *counterp;
4236
4237         switch(bref->type) {
4238         case HAMMER2_BREF_TYPE_DATA:
4239                 counterp = &hammer2_iod_file_read;
4240                 break;
4241         case HAMMER2_BREF_TYPE_INODE:
4242                 counterp = &hammer2_iod_meta_read;
4243                 break;
4244         case HAMMER2_BREF_TYPE_INDIRECT:
4245                 counterp = &hammer2_iod_indr_read;
4246                 break;
4247         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4248         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4249                 counterp = &hammer2_iod_fmap_read;
4250                 break;
4251         default:
4252                 counterp = &hammer2_iod_volu_read;
4253                 break;
4254         }
4255         *counterp += bytes;
4256 }