kernel - Preliminary vm_page hash lookup (2), cleanups, page wiring
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *      The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98
99 /*
100  *      Page fault handling module.
101  */
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113
114 #include <cpu/lwbuf.h>
115
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127
128 #include <vm/vm_page2.h>
129
130 struct faultstate {
131         vm_page_t m;
132         vm_object_t object;
133         vm_pindex_t pindex;
134         vm_prot_t prot;
135         vm_page_t first_m;
136         vm_object_t first_object;
137         vm_prot_t first_prot;
138         vm_map_t map;
139         vm_map_entry_t entry;
140         int lookup_still_valid;
141         int hardfault;
142         int fault_flags;
143         int map_generation;
144         int shared;
145         int msoftonly;
146         int first_shared;
147         int wflags;
148         struct vnode *vp;
149 };
150
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 static int virtual_copy_enable = 1;
156 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
157                 &virtual_copy_enable, 0, "");
158 int vm_shared_fault = 1;
159 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
160 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
161                 &vm_shared_fault, 0, "Allow shared token on vm_object");
162 static int vm_fault_quick_enable = 0;
163 TUNABLE_INT("vm.fault_quick", &vm_fault_quick_enable);
164 SYSCTL_INT(_vm, OID_AUTO, fault_quick, CTLFLAG_RW,
165                 &vm_fault_quick_enable, 0, "Allow fast vm_fault shortcut");
166 #ifdef VM_FAULT_QUICK_DEBUG
167 static long vm_fault_quick_success_count = 0;
168 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_success_count, CTLFLAG_RW,
169                 &vm_fault_quick_success_count, 0, "");
170 static long vm_fault_quick_failure_count1 = 0;
171 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count1, CTLFLAG_RW,
172                 &vm_fault_quick_failure_count1, 0, "");
173 static long vm_fault_quick_failure_count2 = 0;
174 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count2, CTLFLAG_RW,
175                 &vm_fault_quick_failure_count2, 0, "");
176 static long vm_fault_quick_failure_count3 = 0;
177 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count3, CTLFLAG_RW,
178                 &vm_fault_quick_failure_count3, 0, "");
179 static long vm_fault_quick_failure_count4 = 0;
180 SYSCTL_LONG(_vm, OID_AUTO, fault_quick_failure_count4, CTLFLAG_RW,
181                 &vm_fault_quick_failure_count4, 0, "");
182 #endif
183
184 static int vm_fault_quick(struct faultstate *fs, vm_pindex_t first_pindex,
185                         vm_prot_t fault_type);
186 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
187 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
188                         vpte_t, int, int);
189 #if 0
190 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
191 #endif
192 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
193 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
194                         vm_map_entry_t entry, int prot, int fault_flags);
195 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
196                         vm_map_entry_t entry, int prot, int fault_flags);
197
198 static __inline void
199 release_page(struct faultstate *fs)
200 {
201         vm_page_deactivate(fs->m);
202         vm_page_wakeup(fs->m);
203         fs->m = NULL;
204 }
205
206 /*
207  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
208  *       requires relocking and then checking the timestamp.
209  *
210  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
211  *       not have to update fs->map_generation here.
212  *
213  * NOTE: This function can fail due to a deadlock against the caller's
214  *       holding of a vm_page BUSY.
215  */
216 static __inline int
217 relock_map(struct faultstate *fs)
218 {
219         int error;
220
221         if (fs->lookup_still_valid == FALSE && fs->map) {
222                 error = vm_map_lock_read_to(fs->map);
223                 if (error == 0)
224                         fs->lookup_still_valid = TRUE;
225         } else {
226                 error = 0;
227         }
228         return error;
229 }
230
231 static __inline void
232 unlock_map(struct faultstate *fs)
233 {
234         if (fs->lookup_still_valid && fs->map) {
235                 vm_map_lookup_done(fs->map, fs->entry, 0);
236                 fs->lookup_still_valid = FALSE;
237         }
238 }
239
240 /*
241  * Clean up after a successful call to vm_fault_object() so another call
242  * to vm_fault_object() can be made.
243  */
244 static void
245 _cleanup_successful_fault(struct faultstate *fs, int relock)
246 {
247         /*
248          * We allocated a junk page for a COW operation that did
249          * not occur, the page must be freed.
250          */
251         if (fs->object != fs->first_object) {
252                 KKASSERT(fs->first_shared == 0);
253                 vm_page_free(fs->first_m);
254                 vm_object_pip_wakeup(fs->object);
255                 fs->first_m = NULL;
256         }
257
258         /*
259          * Reset fs->object.
260          */
261         fs->object = fs->first_object;
262         if (relock && fs->lookup_still_valid == FALSE) {
263                 if (fs->map)
264                         vm_map_lock_read(fs->map);
265                 fs->lookup_still_valid = TRUE;
266         }
267 }
268
269 static void
270 _unlock_things(struct faultstate *fs, int dealloc)
271 {
272         _cleanup_successful_fault(fs, 0);
273         if (dealloc) {
274                 /*vm_object_deallocate(fs->first_object);*/
275                 /*fs->first_object = NULL; drop used later on */
276         }
277         unlock_map(fs); 
278         if (fs->vp != NULL) { 
279                 vput(fs->vp);
280                 fs->vp = NULL;
281         }
282 }
283
284 #define unlock_things(fs) _unlock_things(fs, 0)
285 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
286 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
287
288 /*
289  * Virtual copy tests.   Used by the fault code to determine if a
290  * page can be moved from an orphan vm_object into its shadow
291  * instead of copying its contents.
292  */
293 static __inline int
294 virtual_copy_test(struct faultstate *fs)
295 {
296         /*
297          * Must be holding exclusive locks
298          */
299         if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
300                 return 0;
301
302         /*
303          * Map, if present, has not changed
304          */
305         if (fs->map && fs->map_generation != fs->map->timestamp)
306                 return 0;
307
308         /*
309          * Only one shadow object
310          */
311         if (fs->object->shadow_count != 1)
312                 return 0;
313
314         /*
315          * No COW refs, except us
316          */
317         if (fs->object->ref_count != 1)
318                 return 0;
319
320         /*
321          * No one else can look this object up
322          */
323         if (fs->object->handle != NULL)
324                 return 0;
325
326         /*
327          * No other ways to look the object up
328          */
329         if (fs->object->type != OBJT_DEFAULT &&
330             fs->object->type != OBJT_SWAP)
331                 return 0;
332
333         /*
334          * We don't chase down the shadow chain
335          */
336         if (fs->object != fs->first_object->backing_object)
337                 return 0;
338
339         return 1;
340 }
341
342 static __inline int
343 virtual_copy_ok(struct faultstate *fs)
344 {
345         if (virtual_copy_test(fs)) {
346                 /*
347                  * Grab the lock and re-test changeable items.
348                  */
349                 if (fs->lookup_still_valid == FALSE && fs->map) {
350                         if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
351                                 return 0;
352                         fs->lookup_still_valid = TRUE;
353                         if (virtual_copy_test(fs)) {
354                                 fs->map_generation = ++fs->map->timestamp;
355                                 return 1;
356                         }
357                         fs->lookup_still_valid = FALSE;
358                         lockmgr(&fs->map->lock, LK_RELEASE);
359                 }
360         }
361         return 0;
362 }
363
364 /*
365  * TRYPAGER 
366  *
367  * Determine if the pager for the current object *might* contain the page.
368  *
369  * We only need to try the pager if this is not a default object (default
370  * objects are zero-fill and have no real pager), and if we are not taking
371  * a wiring fault or if the FS entry is wired.
372  */
373 #define TRYPAGER(fs)    \
374                 (fs->object->type != OBJT_DEFAULT &&                    \
375                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) ||       \
376                  (fs->wflags & FW_WIRED)))
377
378 /*
379  * vm_fault:
380  *
381  * Handle a page fault occuring at the given address, requiring the given
382  * permissions, in the map specified.  If successful, the page is inserted
383  * into the associated physical map.
384  *
385  * NOTE: The given address should be truncated to the proper page address.
386  *
387  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
388  * a standard error specifying why the fault is fatal is returned.
389  *
390  * The map in question must be referenced, and remains so.
391  * The caller may hold no locks.
392  * No other requirements.
393  */
394 int
395 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
396 {
397         int result;
398         vm_pindex_t first_pindex;
399         struct faultstate fs;
400         struct lwp *lp;
401         struct proc *p;
402         thread_t td;
403         struct vm_map_ilock ilock;
404         int didilock;
405         int didhold;
406         int growstack;
407         int retry = 0;
408         int inherit_prot;
409
410         inherit_prot = fault_type & VM_PROT_NOSYNC;
411         fs.hardfault = 0;
412         fs.fault_flags = fault_flags;
413         fs.vp = NULL;
414         fs.shared = vm_shared_fault;
415         fs.first_shared = vm_shared_fault;
416         growstack = 1;
417
418         /*
419          * vm_map interactions
420          */
421         td = curthread;
422         if ((lp = td->td_lwp) != NULL)
423                 lp->lwp_flags |= LWP_PAGING;
424
425 RetryFault:
426         /*
427          * vm_fault_quick() can shortcut us.
428          */
429         fs.msoftonly = 0;
430         didhold = 0;
431
432         /*
433          * Find the vm_map_entry representing the backing store and resolve
434          * the top level object and page index.  This may have the side
435          * effect of executing a copy-on-write on the map entry,
436          * creating a shadow object, or splitting an anonymous entry for
437          * performance, but will not COW any actual VM pages.
438          *
439          * On success fs.map is left read-locked and various other fields 
440          * are initialized but not otherwise referenced or locked.
441          *
442          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
443          *        VM_FAULT_WRITE if the map entry is a virtual page table
444          *        and also writable, so we can set the 'A'accessed bit in
445          *        the virtual page table entry.
446          */
447         fs.map = map;
448         result = vm_map_lookup(&fs.map, vaddr, fault_type,
449                                &fs.entry, &fs.first_object,
450                                &first_pindex, &fs.first_prot, &fs.wflags);
451
452         /*
453          * If the lookup failed or the map protections are incompatible,
454          * the fault generally fails.
455          *
456          * The failure could be due to TDF_NOFAULT if vm_map_lookup()
457          * tried to do a COW fault.
458          *
459          * If the caller is trying to do a user wiring we have more work
460          * to do.
461          */
462         if (result != KERN_SUCCESS) {
463                 if (result == KERN_FAILURE_NOFAULT) {
464                         result = KERN_FAILURE;
465                         goto done;
466                 }
467                 if (result != KERN_PROTECTION_FAILURE ||
468                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
469                 {
470                         if (result == KERN_INVALID_ADDRESS && growstack &&
471                             map != &kernel_map && curproc != NULL) {
472                                 result = vm_map_growstack(map, vaddr);
473                                 if (result == KERN_SUCCESS) {
474                                         growstack = 0;
475                                         ++retry;
476                                         goto RetryFault;
477                                 }
478                                 result = KERN_FAILURE;
479                         }
480                         goto done;
481                 }
482
483                 /*
484                  * If we are user-wiring a r/w segment, and it is COW, then
485                  * we need to do the COW operation.  Note that we don't
486                  * currently COW RO sections now, because it is NOT desirable
487                  * to COW .text.  We simply keep .text from ever being COW'ed
488                  * and take the heat that one cannot debug wired .text sections.
489                  *
490                  * XXX Try to allow the above by specifying OVERRIDE_WRITE.
491                  */
492                 result = vm_map_lookup(&fs.map, vaddr,
493                                        VM_PROT_READ|VM_PROT_WRITE|
494                                         VM_PROT_OVERRIDE_WRITE,
495                                        &fs.entry, &fs.first_object,
496                                        &first_pindex, &fs.first_prot,
497                                        &fs.wflags);
498                 if (result != KERN_SUCCESS) {
499                         /* could also be KERN_FAILURE_NOFAULT */
500                         result = KERN_FAILURE;
501                         goto done;
502                 }
503
504                 /*
505                  * If we don't COW now, on a user wire, the user will never
506                  * be able to write to the mapping.  If we don't make this
507                  * restriction, the bookkeeping would be nearly impossible.
508                  *
509                  * XXX We have a shared lock, this will have a MP race but
510                  * I don't see how it can hurt anything.
511                  */
512                 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
513                         atomic_clear_char(&fs.entry->max_protection,
514                                           VM_PROT_WRITE);
515                 }
516         }
517
518         /*
519          * fs.map is read-locked
520          *
521          * Misc checks.  Save the map generation number to detect races.
522          */
523         fs.map_generation = fs.map->timestamp;
524         fs.lookup_still_valid = TRUE;
525         fs.first_m = NULL;
526         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
527         fs.prot = fs.first_prot;        /* default (used by uksmap) */
528
529         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
530                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
531                         panic("vm_fault: fault on nofault entry, addr: %p",
532                               (void *)vaddr);
533                 }
534                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
535                     vaddr >= fs.entry->start &&
536                     vaddr < fs.entry->start + PAGE_SIZE) {
537                         panic("vm_fault: fault on stack guard, addr: %p",
538                               (void *)vaddr);
539                 }
540         }
541
542         /*
543          * A user-kernel shared map has no VM object and bypasses
544          * everything.  We execute the uksmap function with a temporary
545          * fictitious vm_page.  The address is directly mapped with no
546          * management.
547          */
548         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
549                 struct vm_page fakem;
550
551                 bzero(&fakem, sizeof(fakem));
552                 fakem.pindex = first_pindex;
553                 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
554                 fakem.busy_count = PBUSY_LOCKED;
555                 fakem.valid = VM_PAGE_BITS_ALL;
556                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
557                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
558                         result = KERN_FAILURE;
559                         unlock_things(&fs);
560                         goto done2;
561                 }
562                 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
563                            (fs.wflags & FW_WIRED), fs.entry);
564                 goto done_success;
565         }
566
567         /*
568          * A system map entry may return a NULL object.  No object means
569          * no pager means an unrecoverable kernel fault.
570          */
571         if (fs.first_object == NULL) {
572                 panic("vm_fault: unrecoverable fault at %p in entry %p",
573                         (void *)vaddr, fs.entry);
574         }
575
576         /*
577          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
578          * is set.
579          *
580          * Unfortunately a deadlock can occur if we are forced to page-in
581          * from swap, but diving all the way into the vm_pager_get_page()
582          * function to find out is too much.  Just check the object type.
583          *
584          * The deadlock is a CAM deadlock on a busy VM page when trying
585          * to finish an I/O if another process gets stuck in
586          * vop_helper_read_shortcut() due to a swap fault.
587          */
588         if ((td->td_flags & TDF_NOFAULT) &&
589             (retry ||
590              fs.first_object->type == OBJT_VNODE ||
591              fs.first_object->type == OBJT_SWAP ||
592              fs.first_object->backing_object)) {
593                 result = KERN_FAILURE;
594                 unlock_things(&fs);
595                 goto done2;
596         }
597
598         /*
599          * If the entry is wired we cannot change the page protection.
600          */
601         if (fs.wflags & FW_WIRED)
602                 fault_type = fs.first_prot;
603
604         /*
605          * We generally want to avoid unnecessary exclusive modes on backing
606          * and terminal objects because this can seriously interfere with
607          * heavily fork()'d processes (particularly /bin/sh scripts).
608          *
609          * However, we also want to avoid unnecessary retries due to needed
610          * shared->exclusive promotion for common faults.  Exclusive mode is
611          * always needed if any page insertion, rename, or free occurs in an
612          * object (and also indirectly if any I/O is done).
613          *
614          * The main issue here is going to be fs.first_shared.  If the
615          * first_object has a backing object which isn't shadowed and the
616          * process is single-threaded we might as well use an exclusive
617          * lock/chain right off the bat.
618          */
619         if (fs.first_shared && fs.first_object->backing_object &&
620             LIST_EMPTY(&fs.first_object->shadow_head) &&
621             td->td_proc && td->td_proc->p_nthreads == 1) {
622                 fs.first_shared = 0;
623         }
624
625         /*
626          * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
627          * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
628          *                   we can try shared first.
629          */
630         if (fault_flags & VM_FAULT_UNSWAP) {
631                 fs.first_shared = 0;
632         }
633
634         /*
635          * Try to shortcut the entire mess and run the fault lockless.
636          */
637         if (vm_fault_quick_enable &&
638             vm_fault_quick(&fs, first_pindex, fault_type) == KERN_SUCCESS) {
639                 didilock = 0;
640                 fault_flags &= ~VM_FAULT_BURST;
641                 goto success;
642         }
643
644         /*
645          * Obtain a top-level object lock, shared or exclusive depending
646          * on fs.first_shared.  If a shared lock winds up being insufficient
647          * we will retry with an exclusive lock.
648          *
649          * The vnode pager lock is always shared.
650          */
651         if (fs.first_shared)
652                 vm_object_hold_shared(fs.first_object);
653         else
654                 vm_object_hold(fs.first_object);
655         if (fs.vp == NULL)
656                 fs.vp = vnode_pager_lock(fs.first_object);
657         didhold = 1;
658
659         /*
660          * The page we want is at (first_object, first_pindex), but if the
661          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
662          * page table to figure out the actual pindex.
663          *
664          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
665          * ONLY
666          */
667         didilock = 0;
668         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
669                 vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
670                 didilock = 1;
671                 result = vm_fault_vpagetable(&fs, &first_pindex,
672                                              fs.entry->aux.master_pde,
673                                              fault_type, 1);
674                 if (result == KERN_TRY_AGAIN) {
675                         vm_map_deinterlock(fs.map, &ilock);
676                         vm_object_drop(fs.first_object);
677                         ++retry;
678                         goto RetryFault;
679                 }
680                 if (result != KERN_SUCCESS) {
681                         vm_map_deinterlock(fs.map, &ilock);
682                         goto done;
683                 }
684         }
685
686         /*
687          * Now we have the actual (object, pindex), fault in the page.  If
688          * vm_fault_object() fails it will unlock and deallocate the FS
689          * data.   If it succeeds everything remains locked and fs->object
690          * will have an additional PIP count if it is not equal to
691          * fs->first_object
692          *
693          * vm_fault_object will set fs->prot for the pmap operation.  It is
694          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
695          * page can be safely written.  However, it will force a read-only
696          * mapping for a read fault if the memory is managed by a virtual
697          * page table.
698          *
699          * If the fault code uses the shared object lock shortcut
700          * we must not try to burst (we can't allocate VM pages).
701          */
702         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
703
704         if (debug_fault > 0) {
705                 --debug_fault;
706                 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
707                         "fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
708                         result, (intmax_t)vaddr, fault_type, fault_flags,
709                         fs.m, fs.prot, fs.wflags, fs.entry);
710         }
711
712         if (result == KERN_TRY_AGAIN) {
713                 if (didilock)
714                         vm_map_deinterlock(fs.map, &ilock);
715                 vm_object_drop(fs.first_object);
716                 ++retry;
717                 goto RetryFault;
718         }
719         if (result != KERN_SUCCESS) {
720                 if (didilock)
721                         vm_map_deinterlock(fs.map, &ilock);
722                 goto done;
723         }
724
725 success:
726         /*
727          * On success vm_fault_object() does not unlock or deallocate, and fs.m
728          * will contain a busied page.
729          *
730          * Enter the page into the pmap and do pmap-related adjustments.
731          *
732          * WARNING! Soft-busied fs.m's can only be manipulated in limited
733          *          ways.
734          */
735         KKASSERT(fs.lookup_still_valid == TRUE);
736         vm_page_flag_set(fs.m, PG_REFERENCED);
737         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
738                    fs.wflags & FW_WIRED, fs.entry);
739
740         if (didilock)
741                 vm_map_deinterlock(fs.map, &ilock);
742
743         /*
744          * If the page is not wired down, then put it where the pageout daemon
745          * can find it.
746          *
747          * NOTE: We cannot safely wire, unwire, or adjust queues for a
748          *       soft-busied page.
749          */
750         if (fs.msoftonly) {
751                 KKASSERT(fs.m->busy_count & PBUSY_MASK);
752                 KKASSERT((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0);
753                 vm_page_sbusy_drop(fs.m);
754         } else {
755                 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
756                         if (fs.wflags & FW_WIRED)
757                                 vm_page_wire(fs.m);
758                         else
759                                 vm_page_unwire(fs.m, 1);
760                 } else {
761                         vm_page_activate(fs.m);
762                 }
763                 KKASSERT(fs.m->busy_count & PBUSY_LOCKED);
764                 vm_page_wakeup(fs.m);
765         }
766
767         /*
768          * Burst in a few more pages if possible.  The fs.map should still
769          * be locked.  To avoid interlocking against a vnode->getblk
770          * operation we had to be sure to unbusy our primary vm_page above
771          * first.
772          *
773          * A normal burst can continue down backing store, only execute
774          * if we are holding an exclusive lock, otherwise the exclusive
775          * locks the burst code gets might cause excessive SMP collisions.
776          *
777          * A quick burst can be utilized when there is no backing object
778          * (i.e. a shared file mmap).
779          */
780         if ((fault_flags & VM_FAULT_BURST) &&
781             (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
782             (fs.wflags & FW_WIRED) == 0) {
783                 if (fs.first_shared == 0 && fs.shared == 0) {
784                         vm_prefault(fs.map->pmap, vaddr,
785                                     fs.entry, fs.prot, fault_flags);
786                 } else {
787                         vm_prefault_quick(fs.map->pmap, vaddr,
788                                           fs.entry, fs.prot, fault_flags);
789                 }
790         }
791
792 done_success:
793         mycpu->gd_cnt.v_vm_faults++;
794         if (td->td_lwp)
795                 ++td->td_lwp->lwp_ru.ru_minflt;
796
797         /*
798          * Unlock everything, and return
799          */
800         unlock_things(&fs);
801
802         if (td->td_lwp) {
803                 if (fs.hardfault) {
804                         td->td_lwp->lwp_ru.ru_majflt++;
805                 } else {
806                         td->td_lwp->lwp_ru.ru_minflt++;
807                 }
808         }
809
810         /*vm_object_deallocate(fs.first_object);*/
811         /*fs.m = NULL; */
812         /*fs.first_object = NULL; must still drop later */
813
814         result = KERN_SUCCESS;
815 done:
816         if (fs.first_object && didhold)
817                 vm_object_drop(fs.first_object);
818 done2:
819         if (lp)
820                 lp->lwp_flags &= ~LWP_PAGING;
821
822 #if !defined(NO_SWAPPING)
823         /*
824          * Check the process RSS limit and force deactivation and
825          * (asynchronous) paging if necessary.  This is a complex operation,
826          * only do it for direct user-mode faults, for now.
827          *
828          * To reduce overhead implement approximately a ~16MB hysteresis.
829          */
830         p = td->td_proc;
831         if ((fault_flags & VM_FAULT_USERMODE) && lp &&
832             p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
833             map != &kernel_map) {
834                 vm_pindex_t limit;
835                 vm_pindex_t size;
836
837                 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
838                                         p->p_rlimit[RLIMIT_RSS].rlim_max));
839                 size = pmap_resident_tlnw_count(map->pmap);
840                 if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
841                         vm_pageout_map_deactivate_pages(map, limit);
842                 }
843         }
844 #endif
845
846         return (result);
847 }
848
849 /*
850  * Attempt a lockless vm_fault() shortcut.  The stars have to align for this
851  * to work.  But if it does we can get our page only soft-busied and not
852  * have to touch the vm_object or vnode locks at all.
853  */
854 static
855 int
856 vm_fault_quick(struct faultstate *fs, vm_pindex_t first_pindex,
857                vm_prot_t fault_type)
858 {
859         vm_page_t m;
860         vm_object_t obj;        /* NOT LOCKED */
861
862         /*
863          * Don't waste time if the object is only being used by one vm_map.
864          */
865         obj = fs->first_object;
866         if (obj->flags & OBJ_ONEMAPPING)
867                 return KERN_FAILURE;
868
869         /*
870          * This will try to wire/unwire a page, which can't be done with
871          * a soft-busied page.
872          */
873         if (fs->fault_flags & VM_FAULT_WIRE_MASK)
874                 return KERN_FAILURE;
875
876         /*
877          * Ick, can't handle this
878          */
879         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
880 #ifdef VM_FAULT_QUICK_DEBUG
881                 ++vm_fault_quick_failure_count1;
882 #endif
883                 return KERN_FAILURE;
884         }
885
886         /*
887          * Ok, try to get the vm_page quickly via the hash table.  The
888          * page will be soft-busied on success (NOT hard-busied).
889          */
890         m = vm_page_hash_get(obj, first_pindex);
891         if (m == NULL) {
892 #ifdef VM_FAULT_QUICK_DEBUG
893                 ++vm_fault_quick_failure_count2;
894 #endif
895                 return KERN_FAILURE;
896         }
897         if ((obj->flags & OBJ_DEAD) ||
898             m->valid != VM_PAGE_BITS_ALL ||
899             m->queue - m->pc == PQ_CACHE ||
900             (m->flags & PG_SWAPPED)) {
901                 vm_page_sbusy_drop(m);
902 #ifdef VM_FAULT_QUICK_DEBUG
903                 ++vm_fault_quick_failure_count3;
904 #endif
905                 return KERN_FAILURE;
906         }
907
908         /*
909          * The page is already fully valid, ACTIVE, and is not PG_SWAPPED.
910          *
911          * Don't map the page writable when emulating the dirty bit, a
912          * fault must be taken for proper emulation (vkernel).
913          */
914         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
915             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
916                 if ((fault_type & VM_PROT_WRITE) == 0)
917                         fs->prot &= ~VM_PROT_WRITE;
918         }
919
920         /*
921          * If this is a write fault the object and the page must already
922          * be writable.  Since we don't hold an object lock and only a
923          * soft-busy on the page, we cannot manipulate the object or
924          * the page state (other than the page queue).
925          */
926         if (fs->prot & VM_PROT_WRITE) {
927                 if ((obj->flags & (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY)) !=
928                     (OBJ_WRITEABLE | OBJ_MIGHTBEDIRTY) ||
929                     m->dirty != VM_PAGE_BITS_ALL) {
930                         vm_page_sbusy_drop(m);
931 #ifdef VM_FAULT_QUICK_DEBUG
932                         ++vm_fault_quick_failure_count4;
933 #endif
934                         return KERN_FAILURE;
935                 }
936                 vm_set_nosync(m, fs->entry);
937         }
938
939         /*
940          * Even though we are only soft-busied we can still move pages
941          * around in the normal queue(s).  The soft-busy prevents the
942          * page from being removed from the object, etc (normal operation).
943          */
944         vm_page_activate(m);
945         fs->m = m;
946         fs->msoftonly = 1;
947 #ifdef VM_FAULT_QUICK_DEBUG
948         ++vm_fault_quick_success_count;
949 #endif
950
951         return KERN_SUCCESS;
952 }
953
954 /*
955  * Fault in the specified virtual address in the current process map, 
956  * returning a held VM page or NULL.  See vm_fault_page() for more 
957  * information.
958  *
959  * No requirements.
960  */
961 vm_page_t
962 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
963                     int *errorp, int *busyp)
964 {
965         struct lwp *lp = curthread->td_lwp;
966         vm_page_t m;
967
968         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
969                           fault_type, VM_FAULT_NORMAL,
970                           errorp, busyp);
971         return(m);
972 }
973
974 /*
975  * Fault in the specified virtual address in the specified map, doing all
976  * necessary manipulation of the object store and all necessary I/O.  Return
977  * a held VM page or NULL, and set *errorp.  The related pmap is not
978  * updated.
979  *
980  * If busyp is not NULL then *busyp will be set to TRUE if this routine
981  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
982  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
983  * NULL the returned page is only held.
984  *
985  * If the caller has no intention of writing to the page's contents, busyp
986  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
987  * without busying the page.
988  *
989  * The returned page will also be marked PG_REFERENCED.
990  *
991  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
992  * error will be returned.
993  *
994  * No requirements.
995  */
996 vm_page_t
997 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
998               int fault_flags, int *errorp, int *busyp)
999 {
1000         vm_pindex_t first_pindex;
1001         struct faultstate fs;
1002         int result;
1003         int retry;
1004         int growstack;
1005         int didcow;
1006         vm_prot_t orig_fault_type = fault_type;
1007
1008         retry = 0;
1009         didcow = 0;
1010         fs.hardfault = 0;
1011         fs.fault_flags = fault_flags;
1012         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1013
1014         /*
1015          * Dive the pmap (concurrency possible).  If we find the
1016          * appropriate page we can terminate early and quickly.
1017          *
1018          * This works great for normal programs but will always return
1019          * NULL for host lookups of vkernel maps in VMM mode.
1020          *
1021          * NOTE: pmap_fault_page_quick() might not busy the page.  If
1022          *       VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
1023          *       returns non-NULL, it will safely dirty the returned vm_page_t
1024          *       for us.  We cannot safely dirty it here (it might not be
1025          *       busy).
1026          */
1027         fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
1028         if (fs.m) {
1029                 *errorp = 0;
1030                 return(fs.m);
1031         }
1032
1033         /*
1034          * Otherwise take a concurrency hit and do a formal page
1035          * fault.
1036          */
1037         fs.vp = NULL;
1038         fs.shared = vm_shared_fault;
1039         fs.first_shared = vm_shared_fault;
1040         fs.msoftonly = 0;
1041         growstack = 1;
1042
1043         /*
1044          * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1045          * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1046          *                   we can try shared first.
1047          */
1048         if (fault_flags & VM_FAULT_UNSWAP) {
1049                 fs.first_shared = 0;
1050         }
1051
1052 RetryFault:
1053         /*
1054          * Find the vm_map_entry representing the backing store and resolve
1055          * the top level object and page index.  This may have the side
1056          * effect of executing a copy-on-write on the map entry and/or
1057          * creating a shadow object, but will not COW any actual VM pages.
1058          *
1059          * On success fs.map is left read-locked and various other fields 
1060          * are initialized but not otherwise referenced or locked.
1061          *
1062          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
1063          *        if the map entry is a virtual page table and also writable,
1064          *        so we can set the 'A'accessed bit in the virtual page table
1065          *        entry.
1066          */
1067         fs.map = map;
1068         result = vm_map_lookup(&fs.map, vaddr, fault_type,
1069                                &fs.entry, &fs.first_object,
1070                                &first_pindex, &fs.first_prot, &fs.wflags);
1071
1072         if (result != KERN_SUCCESS) {
1073                 if (result == KERN_FAILURE_NOFAULT) {
1074                         *errorp = KERN_FAILURE;
1075                         fs.m = NULL;
1076                         goto done;
1077                 }
1078                 if (result != KERN_PROTECTION_FAILURE ||
1079                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
1080                 {
1081                         if (result == KERN_INVALID_ADDRESS && growstack &&
1082                             map != &kernel_map && curproc != NULL) {
1083                                 result = vm_map_growstack(map, vaddr);
1084                                 if (result == KERN_SUCCESS) {
1085                                         growstack = 0;
1086                                         ++retry;
1087                                         goto RetryFault;
1088                                 }
1089                                 result = KERN_FAILURE;
1090                         }
1091                         fs.m = NULL;
1092                         *errorp = result;
1093                         goto done;
1094                 }
1095
1096                 /*
1097                  * If we are user-wiring a r/w segment, and it is COW, then
1098                  * we need to do the COW operation.  Note that we don't
1099                  * currently COW RO sections now, because it is NOT desirable
1100                  * to COW .text.  We simply keep .text from ever being COW'ed
1101                  * and take the heat that one cannot debug wired .text sections.
1102                  */
1103                 result = vm_map_lookup(&fs.map, vaddr,
1104                                        VM_PROT_READ|VM_PROT_WRITE|
1105                                         VM_PROT_OVERRIDE_WRITE,
1106                                        &fs.entry, &fs.first_object,
1107                                        &first_pindex, &fs.first_prot,
1108                                        &fs.wflags);
1109                 if (result != KERN_SUCCESS) {
1110                         /* could also be KERN_FAILURE_NOFAULT */
1111                         *errorp = KERN_FAILURE;
1112                         fs.m = NULL;
1113                         goto done;
1114                 }
1115
1116                 /*
1117                  * If we don't COW now, on a user wire, the user will never
1118                  * be able to write to the mapping.  If we don't make this
1119                  * restriction, the bookkeeping would be nearly impossible.
1120                  *
1121                  * XXX We have a shared lock, this will have a MP race but
1122                  * I don't see how it can hurt anything.
1123                  */
1124                 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
1125                         atomic_clear_char(&fs.entry->max_protection,
1126                                           VM_PROT_WRITE);
1127                 }
1128         }
1129
1130         /*
1131          * fs.map is read-locked
1132          *
1133          * Misc checks.  Save the map generation number to detect races.
1134          */
1135         fs.map_generation = fs.map->timestamp;
1136         fs.lookup_still_valid = TRUE;
1137         fs.first_m = NULL;
1138         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
1139
1140         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
1141                 panic("vm_fault: fault on nofault entry, addr: %lx",
1142                     (u_long)vaddr);
1143         }
1144
1145         /*
1146          * A user-kernel shared map has no VM object and bypasses
1147          * everything.  We execute the uksmap function with a temporary
1148          * fictitious vm_page.  The address is directly mapped with no
1149          * management.
1150          */
1151         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
1152                 struct vm_page fakem;
1153
1154                 bzero(&fakem, sizeof(fakem));
1155                 fakem.pindex = first_pindex;
1156                 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
1157                 fakem.busy_count = PBUSY_LOCKED;
1158                 fakem.valid = VM_PAGE_BITS_ALL;
1159                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
1160                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
1161                         *errorp = KERN_FAILURE;
1162                         fs.m = NULL;
1163                         unlock_things(&fs);
1164                         goto done2;
1165                 }
1166                 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
1167                 vm_page_hold(fs.m);
1168                 if (busyp)
1169                         *busyp = 0;     /* don't need to busy R or W */
1170                 unlock_things(&fs);
1171                 *errorp = 0;
1172                 goto done;
1173         }
1174
1175
1176         /*
1177          * A system map entry may return a NULL object.  No object means
1178          * no pager means an unrecoverable kernel fault.
1179          */
1180         if (fs.first_object == NULL) {
1181                 panic("vm_fault: unrecoverable fault at %p in entry %p",
1182                         (void *)vaddr, fs.entry);
1183         }
1184
1185         /*
1186          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1187          * is set.
1188          *
1189          * Unfortunately a deadlock can occur if we are forced to page-in
1190          * from swap, but diving all the way into the vm_pager_get_page()
1191          * function to find out is too much.  Just check the object type.
1192          */
1193         if ((curthread->td_flags & TDF_NOFAULT) &&
1194             (retry ||
1195              fs.first_object->type == OBJT_VNODE ||
1196              fs.first_object->type == OBJT_SWAP ||
1197              fs.first_object->backing_object)) {
1198                 *errorp = KERN_FAILURE;
1199                 unlock_things(&fs);
1200                 fs.m = NULL;
1201                 goto done2;
1202         }
1203
1204         /*
1205          * If the entry is wired we cannot change the page protection.
1206          */
1207         if (fs.wflags & FW_WIRED)
1208                 fault_type = fs.first_prot;
1209
1210         /*
1211          * Make a reference to this object to prevent its disposal while we
1212          * are messing with it.  Once we have the reference, the map is free
1213          * to be diddled.  Since objects reference their shadows (and copies),
1214          * they will stay around as well.
1215          *
1216          * The reference should also prevent an unexpected collapse of the
1217          * parent that might move pages from the current object into the
1218          * parent unexpectedly, resulting in corruption.
1219          *
1220          * Bump the paging-in-progress count to prevent size changes (e.g.
1221          * truncation operations) during I/O.  This must be done after
1222          * obtaining the vnode lock in order to avoid possible deadlocks.
1223          */
1224         if (fs.first_shared)
1225                 vm_object_hold_shared(fs.first_object);
1226         else
1227                 vm_object_hold(fs.first_object);
1228         if (fs.vp == NULL)
1229                 fs.vp = vnode_pager_lock(fs.first_object);      /* shared */
1230
1231         /*
1232          * The page we want is at (first_object, first_pindex), but if the
1233          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
1234          * page table to figure out the actual pindex.
1235          *
1236          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
1237          * ONLY
1238          */
1239         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1240                 result = vm_fault_vpagetable(&fs, &first_pindex,
1241                                              fs.entry->aux.master_pde,
1242                                              fault_type, 1);
1243                 if (result == KERN_TRY_AGAIN) {
1244                         vm_object_drop(fs.first_object);
1245                         ++retry;
1246                         goto RetryFault;
1247                 }
1248                 if (result != KERN_SUCCESS) {
1249                         *errorp = result;
1250                         fs.m = NULL;
1251                         goto done;
1252                 }
1253         }
1254
1255         /*
1256          * Now we have the actual (object, pindex), fault in the page.  If
1257          * vm_fault_object() fails it will unlock and deallocate the FS
1258          * data.   If it succeeds everything remains locked and fs->object
1259          * will have an additinal PIP count if it is not equal to
1260          * fs->first_object
1261          */
1262         fs.m = NULL;
1263         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1264
1265         if (result == KERN_TRY_AGAIN) {
1266                 vm_object_drop(fs.first_object);
1267                 ++retry;
1268                 didcow |= fs.wflags & FW_DIDCOW;
1269                 goto RetryFault;
1270         }
1271         if (result != KERN_SUCCESS) {
1272                 *errorp = result;
1273                 fs.m = NULL;
1274                 goto done;
1275         }
1276
1277         if ((orig_fault_type & VM_PROT_WRITE) &&
1278             (fs.prot & VM_PROT_WRITE) == 0) {
1279                 *errorp = KERN_PROTECTION_FAILURE;
1280                 unlock_and_deallocate(&fs);
1281                 fs.m = NULL;
1282                 goto done;
1283         }
1284
1285         /*
1286          * Generally speaking we don't want to update the pmap because
1287          * this routine can be called many times for situations that do
1288          * not require updating the pmap, not to mention the page might
1289          * already be in the pmap.
1290          *
1291          * However, if our vm_map_lookup() results in a COW, we need to
1292          * at least remove the pte from the pmap to guarantee proper
1293          * visibility of modifications made to the process.  For example,
1294          * modifications made by vkernel uiocopy/related routines and
1295          * modifications made by ptrace().
1296          */
1297         vm_page_flag_set(fs.m, PG_REFERENCED);
1298 #if 0
1299         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1300                    fs.wflags & FW_WIRED, NULL);
1301         mycpu->gd_cnt.v_vm_faults++;
1302         if (curthread->td_lwp)
1303                 ++curthread->td_lwp->lwp_ru.ru_minflt;
1304 #endif
1305         if ((fs.wflags | didcow) | FW_DIDCOW) {
1306                 pmap_remove(fs.map->pmap,
1307                             vaddr & ~PAGE_MASK,
1308                             (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1309         }
1310
1311         /*
1312          * On success vm_fault_object() does not unlock or deallocate, and fs.m
1313          * will contain a busied page.  So we must unlock here after having
1314          * messed with the pmap.
1315          */
1316         unlock_things(&fs);
1317
1318         /*
1319          * Return a held page.  We are not doing any pmap manipulation so do
1320          * not set PG_MAPPED.  However, adjust the page flags according to
1321          * the fault type because the caller may not use a managed pmapping
1322          * (so we don't want to lose the fact that the page will be dirtied
1323          * if a write fault was specified).
1324          */
1325         if (fault_type & VM_PROT_WRITE)
1326                 vm_page_dirty(fs.m);
1327         vm_page_activate(fs.m);
1328
1329         if (curthread->td_lwp) {
1330                 if (fs.hardfault) {
1331                         curthread->td_lwp->lwp_ru.ru_majflt++;
1332                 } else {
1333                         curthread->td_lwp->lwp_ru.ru_minflt++;
1334                 }
1335         }
1336
1337         /*
1338          * Unlock everything, and return the held or busied page.
1339          */
1340         if (busyp) {
1341                 if (fault_type & VM_PROT_WRITE) {
1342                         vm_page_dirty(fs.m);
1343                         *busyp = 1;
1344                 } else {
1345                         *busyp = 0;
1346                         vm_page_hold(fs.m);
1347                         vm_page_wakeup(fs.m);
1348                 }
1349         } else {
1350                 vm_page_hold(fs.m);
1351                 vm_page_wakeup(fs.m);
1352         }
1353         /*vm_object_deallocate(fs.first_object);*/
1354         /*fs.first_object = NULL; */
1355         *errorp = 0;
1356
1357 done:
1358         if (fs.first_object)
1359                 vm_object_drop(fs.first_object);
1360 done2:
1361         return(fs.m);
1362 }
1363
1364 /*
1365  * Fault in the specified (object,offset), dirty the returned page as
1366  * needed.  If the requested fault_type cannot be done NULL and an
1367  * error is returned.
1368  *
1369  * A held (but not busied) page is returned.
1370  *
1371  * The passed in object must be held as specified by the shared
1372  * argument.
1373  */
1374 vm_page_t
1375 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1376                      vm_prot_t fault_type, int fault_flags,
1377                      int *sharedp, int *errorp)
1378 {
1379         int result;
1380         vm_pindex_t first_pindex;
1381         struct faultstate fs;
1382         struct vm_map_entry entry;
1383
1384         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1385         bzero(&entry, sizeof(entry));
1386         entry.object.vm_object = object;
1387         entry.maptype = VM_MAPTYPE_NORMAL;
1388         entry.protection = entry.max_protection = fault_type;
1389
1390         fs.hardfault = 0;
1391         fs.fault_flags = fault_flags;
1392         fs.map = NULL;
1393         fs.shared = vm_shared_fault;
1394         fs.first_shared = *sharedp;
1395         fs.msoftonly = 0;
1396         fs.vp = NULL;
1397         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1398
1399         /*
1400          * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1401          * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1402          *                   we can try shared first.
1403          */
1404         if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1405                 fs.first_shared = 0;
1406                 vm_object_upgrade(object);
1407         }
1408
1409         /*
1410          * Retry loop as needed (typically for shared->exclusive transitions)
1411          */
1412 RetryFault:
1413         *sharedp = fs.first_shared;
1414         first_pindex = OFF_TO_IDX(offset);
1415         fs.first_object = object;
1416         fs.entry = &entry;
1417         fs.first_prot = fault_type;
1418         fs.wflags = 0;
1419         /*fs.map_generation = 0; unused */
1420
1421         /*
1422          * Make a reference to this object to prevent its disposal while we
1423          * are messing with it.  Once we have the reference, the map is free
1424          * to be diddled.  Since objects reference their shadows (and copies),
1425          * they will stay around as well.
1426          *
1427          * The reference should also prevent an unexpected collapse of the
1428          * parent that might move pages from the current object into the
1429          * parent unexpectedly, resulting in corruption.
1430          *
1431          * Bump the paging-in-progress count to prevent size changes (e.g.
1432          * truncation operations) during I/O.  This must be done after
1433          * obtaining the vnode lock in order to avoid possible deadlocks.
1434          */
1435         if (fs.vp == NULL)
1436                 fs.vp = vnode_pager_lock(fs.first_object);
1437
1438         fs.lookup_still_valid = TRUE;
1439         fs.first_m = NULL;
1440         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
1441
1442 #if 0
1443         /* XXX future - ability to operate on VM object using vpagetable */
1444         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1445                 result = vm_fault_vpagetable(&fs, &first_pindex,
1446                                              fs.entry->aux.master_pde,
1447                                              fault_type, 0);
1448                 if (result == KERN_TRY_AGAIN) {
1449                         if (fs.first_shared == 0 && *sharedp)
1450                                 vm_object_upgrade(object);
1451                         goto RetryFault;
1452                 }
1453                 if (result != KERN_SUCCESS) {
1454                         *errorp = result;
1455                         return (NULL);
1456                 }
1457         }
1458 #endif
1459
1460         /*
1461          * Now we have the actual (object, pindex), fault in the page.  If
1462          * vm_fault_object() fails it will unlock and deallocate the FS
1463          * data.   If it succeeds everything remains locked and fs->object
1464          * will have an additinal PIP count if it is not equal to
1465          * fs->first_object
1466          *
1467          * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1468          * We may have to upgrade its lock to handle the requested fault.
1469          */
1470         result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1471
1472         if (result == KERN_TRY_AGAIN) {
1473                 if (fs.first_shared == 0 && *sharedp)
1474                         vm_object_upgrade(object);
1475                 goto RetryFault;
1476         }
1477         if (result != KERN_SUCCESS) {
1478                 *errorp = result;
1479                 return(NULL);
1480         }
1481
1482         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1483                 *errorp = KERN_PROTECTION_FAILURE;
1484                 unlock_and_deallocate(&fs);
1485                 return(NULL);
1486         }
1487
1488         /*
1489          * On success vm_fault_object() does not unlock or deallocate, so we
1490          * do it here.  Note that the returned fs.m will be busied.
1491          */
1492         unlock_things(&fs);
1493
1494         /*
1495          * Return a held page.  We are not doing any pmap manipulation so do
1496          * not set PG_MAPPED.  However, adjust the page flags according to
1497          * the fault type because the caller may not use a managed pmapping
1498          * (so we don't want to lose the fact that the page will be dirtied
1499          * if a write fault was specified).
1500          */
1501         vm_page_hold(fs.m);
1502         vm_page_activate(fs.m);
1503         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1504                 vm_page_dirty(fs.m);
1505         if (fault_flags & VM_FAULT_UNSWAP)
1506                 swap_pager_unswapped(fs.m);
1507
1508         /*
1509          * Indicate that the page was accessed.
1510          */
1511         vm_page_flag_set(fs.m, PG_REFERENCED);
1512
1513         if (curthread->td_lwp) {
1514                 if (fs.hardfault) {
1515                         curthread->td_lwp->lwp_ru.ru_majflt++;
1516                 } else {
1517                         curthread->td_lwp->lwp_ru.ru_minflt++;
1518                 }
1519         }
1520
1521         /*
1522          * Unlock everything, and return the held page.
1523          */
1524         vm_page_wakeup(fs.m);
1525         /*vm_object_deallocate(fs.first_object);*/
1526         /*fs.first_object = NULL; */
1527
1528         *errorp = 0;
1529         return(fs.m);
1530 }
1531
1532 /*
1533  * Translate the virtual page number (first_pindex) that is relative
1534  * to the address space into a logical page number that is relative to the
1535  * backing object.  Use the virtual page table pointed to by (vpte).
1536  *
1537  * Possibly downgrade the protection based on the vpte bits.
1538  *
1539  * This implements an N-level page table.  Any level can terminate the
1540  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1541  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1542  */
1543 static
1544 int
1545 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1546                     vpte_t vpte, int fault_type, int allow_nofault)
1547 {
1548         struct lwbuf *lwb;
1549         struct lwbuf lwb_cache;
1550         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1551         int result;
1552         vpte_t *ptep;
1553
1554         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1555         for (;;) {
1556                 /*
1557                  * We cannot proceed if the vpte is not valid, not readable
1558                  * for a read fault, not writable for a write fault, or
1559                  * not executable for an instruction execution fault.
1560                  */
1561                 if ((vpte & VPTE_V) == 0) {
1562                         unlock_and_deallocate(fs);
1563                         return (KERN_FAILURE);
1564                 }
1565                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1566                         unlock_and_deallocate(fs);
1567                         return (KERN_FAILURE);
1568                 }
1569                 if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1570                         unlock_and_deallocate(fs);
1571                         return (KERN_FAILURE);
1572                 }
1573                 if ((vpte & VPTE_PS) || vshift == 0)
1574                         break;
1575
1576                 /*
1577                  * Get the page table page.  Nominally we only read the page
1578                  * table, but since we are actively setting VPTE_M and VPTE_A,
1579                  * tell vm_fault_object() that we are writing it. 
1580                  *
1581                  * There is currently no real need to optimize this.
1582                  */
1583                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1584                                          VM_PROT_READ|VM_PROT_WRITE,
1585                                          allow_nofault);
1586                 if (result != KERN_SUCCESS)
1587                         return (result);
1588
1589                 /*
1590                  * Process the returned fs.m and look up the page table
1591                  * entry in the page table page.
1592                  */
1593                 vshift -= VPTE_PAGE_BITS;
1594                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1595                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1596                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1597                 vm_page_activate(fs->m);
1598
1599                 /*
1600                  * Page table write-back - entire operation including
1601                  * validation of the pte must be atomic to avoid races
1602                  * against the vkernel changing the pte.
1603                  *
1604                  * If the vpte is valid for the* requested operation, do
1605                  * a write-back to the page table.
1606                  *
1607                  * XXX VPTE_M is not set properly for page directory pages.
1608                  * It doesn't get set in the page directory if the page table
1609                  * is modified during a read access.
1610                  */
1611                 for (;;) {
1612                         vpte_t nvpte;
1613
1614                         /*
1615                          * Reload for the cmpset, but make sure the pte is
1616                          * still valid.
1617                          */
1618                         vpte = *ptep;
1619                         cpu_ccfence();
1620                         nvpte = vpte;
1621
1622                         if ((vpte & VPTE_V) == 0)
1623                                 break;
1624
1625                         if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1626                                 nvpte |= VPTE_M | VPTE_A;
1627                         if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1628                                 nvpte |= VPTE_A;
1629                         if (vpte == nvpte)
1630                                 break;
1631                         if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1632                                 vm_page_dirty(fs->m);
1633                                 break;
1634                         }
1635                 }
1636                 lwbuf_free(lwb);
1637                 vm_page_flag_set(fs->m, PG_REFERENCED);
1638                 vm_page_wakeup(fs->m);
1639                 fs->m = NULL;
1640                 cleanup_successful_fault(fs);
1641         }
1642
1643         /*
1644          * When the vkernel sets VPTE_RW it expects the real kernel to
1645          * reflect VPTE_M back when the page is modified via the mapping.
1646          * In order to accomplish this the real kernel must map the page
1647          * read-only for read faults and use write faults to reflect VPTE_M
1648          * back.
1649          *
1650          * Once VPTE_M has been set, the real kernel's pte allows writing.
1651          * If the vkernel clears VPTE_M the vkernel must be sure to
1652          * MADV_INVAL the real kernel's mappings to force the real kernel
1653          * to re-fault on the next write so oit can set VPTE_M again.
1654          */
1655         if ((fault_type & VM_PROT_WRITE) == 0 &&
1656             (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1657                 fs->first_prot &= ~VM_PROT_WRITE;
1658         }
1659
1660         /*
1661          * Disable EXECUTE perms if NX bit is set.
1662          */
1663         if (vpte & VPTE_NX)
1664                 fs->first_prot &= ~VM_PROT_EXECUTE;
1665
1666         /*
1667          * Combine remaining address bits with the vpte.
1668          */
1669         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1670                   (*pindex & ((1L << vshift) - 1));
1671         return (KERN_SUCCESS);
1672 }
1673
1674
1675 /*
1676  * This is the core of the vm_fault code.
1677  *
1678  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1679  * through the shadow chain as necessary and do required COW or virtual
1680  * copy operations.  The caller has already fully resolved the vm_map_entry
1681  * and, if appropriate, has created a copy-on-write layer.  All we need to
1682  * do is iterate the object chain.
1683  *
1684  * On failure (fs) is unlocked and deallocated and the caller may return or
1685  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1686  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1687  * will have an additional PIP count if it is not equal to fs.first_object.
1688  *
1689  * If locks based on fs->first_shared or fs->shared are insufficient,
1690  * clear the appropriate field(s) and return RETRY.  COWs require that
1691  * first_shared be 0, while page allocations (or frees) require that
1692  * shared be 0.  Renames require that both be 0.
1693  *
1694  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1695  *       we will have to retry with it exclusive if the vm_page is
1696  *       PG_SWAPPED.
1697  *
1698  * fs->first_object must be held on call.
1699  */
1700 static
1701 int
1702 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1703                 vm_prot_t fault_type, int allow_nofault)
1704 {
1705         vm_object_t next_object;
1706         vm_pindex_t pindex;
1707         int error;
1708
1709         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1710         fs->prot = fs->first_prot;
1711         fs->object = fs->first_object;
1712         pindex = first_pindex;
1713
1714         vm_object_chain_acquire(fs->first_object, fs->shared);
1715         vm_object_pip_add(fs->first_object, 1);
1716
1717         /* 
1718          * If a read fault occurs we try to upgrade the page protection
1719          * and make it also writable if possible.  There are three cases
1720          * where we cannot make the page mapping writable:
1721          *
1722          * (1) The mapping is read-only or the VM object is read-only,
1723          *     fs->prot above will simply not have VM_PROT_WRITE set.
1724          *
1725          * (2) If the mapping is a virtual page table fs->first_prot will
1726          *     have already been properly adjusted by vm_fault_vpagetable().
1727          *     to detect writes so we can set VPTE_M in the virtual page
1728          *     table.  Used by vkernels.
1729          *
1730          * (3) If the VM page is read-only or copy-on-write, upgrading would
1731          *     just result in an unnecessary COW fault.
1732          *
1733          * (4) If the pmap specifically requests A/M bit emulation, downgrade
1734          *     here.
1735          */
1736 #if 0
1737         /* see vpagetable code */
1738         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1739                 if ((fault_type & VM_PROT_WRITE) == 0)
1740                         fs->prot &= ~VM_PROT_WRITE;
1741         }
1742 #endif
1743
1744         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1745             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1746                 if ((fault_type & VM_PROT_WRITE) == 0)
1747                         fs->prot &= ~VM_PROT_WRITE;
1748         }
1749
1750         /* vm_object_hold(fs->object); implied b/c object == first_object */
1751
1752         for (;;) {
1753                 /*
1754                  * The entire backing chain from first_object to object
1755                  * inclusive is chainlocked.
1756                  *
1757                  * If the object is dead, we stop here
1758                  */
1759                 if (fs->object->flags & OBJ_DEAD) {
1760                         vm_object_pip_wakeup(fs->first_object);
1761                         vm_object_chain_release_all(fs->first_object,
1762                                                     fs->object);
1763                         if (fs->object != fs->first_object)
1764                                 vm_object_drop(fs->object);
1765                         unlock_and_deallocate(fs);
1766                         return (KERN_PROTECTION_FAILURE);
1767                 }
1768
1769                 /*
1770                  * See if the page is resident.  Wait/Retry if the page is
1771                  * busy (lots of stuff may have changed so we can't continue
1772                  * in that case).
1773                  *
1774                  * We can theoretically allow the soft-busy case on a read
1775                  * fault if the page is marked valid, but since such
1776                  * pages are typically already pmap'd, putting that
1777                  * special case in might be more effort then it is
1778                  * worth.  We cannot under any circumstances mess
1779                  * around with a vm_page_t->busy page except, perhaps,
1780                  * to pmap it.
1781                  */
1782                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1783                                                 TRUE, &error);
1784                 if (error) {
1785                         vm_object_pip_wakeup(fs->first_object);
1786                         vm_object_chain_release_all(fs->first_object,
1787                                                     fs->object);
1788                         if (fs->object != fs->first_object)
1789                                 vm_object_drop(fs->object);
1790                         unlock_things(fs);
1791                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1792                         mycpu->gd_cnt.v_intrans++;
1793                         /*vm_object_deallocate(fs->first_object);*/
1794                         /*fs->first_object = NULL;*/
1795                         fs->m = NULL;
1796                         return (KERN_TRY_AGAIN);
1797                 }
1798                 if (fs->m) {
1799                         /*
1800                          * The page is busied for us.
1801                          *
1802                          * If reactivating a page from PQ_CACHE we may have
1803                          * to rate-limit.
1804                          */
1805                         int queue = fs->m->queue;
1806                         vm_page_unqueue_nowakeup(fs->m);
1807
1808                         if ((queue - fs->m->pc) == PQ_CACHE && 
1809                             vm_page_count_severe()) {
1810                                 vm_page_activate(fs->m);
1811                                 vm_page_wakeup(fs->m);
1812                                 fs->m = NULL;
1813                                 vm_object_pip_wakeup(fs->first_object);
1814                                 vm_object_chain_release_all(fs->first_object,
1815                                                             fs->object);
1816                                 if (fs->object != fs->first_object)
1817                                         vm_object_drop(fs->object);
1818                                 unlock_and_deallocate(fs);
1819                                 if (allow_nofault == 0 ||
1820                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1821                                         thread_t td;
1822
1823                                         vm_wait_pfault();
1824                                         td = curthread;
1825                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1826                                                 return (KERN_PROTECTION_FAILURE);
1827                                 }
1828                                 return (KERN_TRY_AGAIN);
1829                         }
1830
1831                         /*
1832                          * If it still isn't completely valid (readable),
1833                          * or if a read-ahead-mark is set on the VM page,
1834                          * jump to readrest, else we found the page and
1835                          * can return.
1836                          *
1837                          * We can release the spl once we have marked the
1838                          * page busy.
1839                          */
1840                         if (fs->m->object != &kernel_object) {
1841                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1842                                     VM_PAGE_BITS_ALL) {
1843                                         goto readrest;
1844                                 }
1845                                 if (fs->m->flags & PG_RAM) {
1846                                         if (debug_cluster)
1847                                                 kprintf("R");
1848                                         vm_page_flag_clear(fs->m, PG_RAM);
1849                                         goto readrest;
1850                                 }
1851                         }
1852                         break; /* break to PAGE HAS BEEN FOUND */
1853                 }
1854
1855                 /*
1856                  * Page is not resident, If this is the search termination
1857                  * or the pager might contain the page, allocate a new page.
1858                  */
1859                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1860                         /*
1861                          * Allocating, must be exclusive.
1862                          */
1863                         if (fs->object == fs->first_object &&
1864                             fs->first_shared) {
1865                                 fs->first_shared = 0;
1866                                 vm_object_pip_wakeup(fs->first_object);
1867                                 vm_object_chain_release_all(fs->first_object,
1868                                                             fs->object);
1869                                 if (fs->object != fs->first_object)
1870                                         vm_object_drop(fs->object);
1871                                 unlock_and_deallocate(fs);
1872                                 return (KERN_TRY_AGAIN);
1873                         }
1874                         if (fs->object != fs->first_object &&
1875                             fs->shared) {
1876                                 fs->first_shared = 0;
1877                                 fs->shared = 0;
1878                                 vm_object_pip_wakeup(fs->first_object);
1879                                 vm_object_chain_release_all(fs->first_object,
1880                                                             fs->object);
1881                                 if (fs->object != fs->first_object)
1882                                         vm_object_drop(fs->object);
1883                                 unlock_and_deallocate(fs);
1884                                 return (KERN_TRY_AGAIN);
1885                         }
1886
1887                         /*
1888                          * If the page is beyond the object size we fail
1889                          */
1890                         if (pindex >= fs->object->size) {
1891                                 vm_object_pip_wakeup(fs->first_object);
1892                                 vm_object_chain_release_all(fs->first_object,
1893                                                             fs->object);
1894                                 if (fs->object != fs->first_object)
1895                                         vm_object_drop(fs->object);
1896                                 unlock_and_deallocate(fs);
1897                                 return (KERN_PROTECTION_FAILURE);
1898                         }
1899
1900                         /*
1901                          * Allocate a new page for this object/offset pair.
1902                          *
1903                          * It is possible for the allocation to race, so
1904                          * handle the case.
1905                          */
1906                         fs->m = NULL;
1907                         if (!vm_page_count_severe()) {
1908                                 fs->m = vm_page_alloc(fs->object, pindex,
1909                                     ((fs->vp || fs->object->backing_object) ?
1910                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1911                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1912                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1913                         }
1914                         if (fs->m == NULL) {
1915                                 vm_object_pip_wakeup(fs->first_object);
1916                                 vm_object_chain_release_all(fs->first_object,
1917                                                             fs->object);
1918                                 if (fs->object != fs->first_object)
1919                                         vm_object_drop(fs->object);
1920                                 unlock_and_deallocate(fs);
1921                                 if (allow_nofault == 0 ||
1922                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1923                                         thread_t td;
1924
1925                                         vm_wait_pfault();
1926                                         td = curthread;
1927                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1928                                                 return (KERN_PROTECTION_FAILURE);
1929                                 }
1930                                 return (KERN_TRY_AGAIN);
1931                         }
1932
1933                         /*
1934                          * Fall through to readrest.  We have a new page which
1935                          * will have to be paged (since m->valid will be 0).
1936                          */
1937                 }
1938
1939 readrest:
1940                 /*
1941                  * We have found an invalid or partially valid page, a
1942                  * page with a read-ahead mark which might be partially or
1943                  * fully valid (and maybe dirty too), or we have allocated
1944                  * a new page.
1945                  *
1946                  * Attempt to fault-in the page if there is a chance that the
1947                  * pager has it, and potentially fault in additional pages
1948                  * at the same time.
1949                  *
1950                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1951                  * for us.
1952                  */
1953                 if (TRYPAGER(fs)) {
1954                         int rv;
1955                         int seqaccess;
1956                         u_char behavior = vm_map_entry_behavior(fs->entry);
1957
1958                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1959                                 seqaccess = 0;
1960                         else
1961                                 seqaccess = -1;
1962
1963                         /*
1964                          * Doing I/O may synchronously insert additional
1965                          * pages so we can't be shared at this point either.
1966                          *
1967                          * NOTE: We can't free fs->m here in the allocated
1968                          *       case (fs->object != fs->first_object) as
1969                          *       this would require an exclusively locked
1970                          *       VM object.
1971                          */
1972                         if (fs->object == fs->first_object &&
1973                             fs->first_shared) {
1974                                 vm_page_deactivate(fs->m);
1975                                 vm_page_wakeup(fs->m);
1976                                 fs->m = NULL;
1977                                 fs->first_shared = 0;
1978                                 vm_object_pip_wakeup(fs->first_object);
1979                                 vm_object_chain_release_all(fs->first_object,
1980                                                             fs->object);
1981                                 if (fs->object != fs->first_object)
1982                                         vm_object_drop(fs->object);
1983                                 unlock_and_deallocate(fs);
1984                                 return (KERN_TRY_AGAIN);
1985                         }
1986                         if (fs->object != fs->first_object &&
1987                             fs->shared) {
1988                                 vm_page_deactivate(fs->m);
1989                                 vm_page_wakeup(fs->m);
1990                                 fs->m = NULL;
1991                                 fs->first_shared = 0;
1992                                 fs->shared = 0;
1993                                 vm_object_pip_wakeup(fs->first_object);
1994                                 vm_object_chain_release_all(fs->first_object,
1995                                                             fs->object);
1996                                 if (fs->object != fs->first_object)
1997                                         vm_object_drop(fs->object);
1998                                 unlock_and_deallocate(fs);
1999                                 return (KERN_TRY_AGAIN);
2000                         }
2001
2002                         /*
2003                          * Avoid deadlocking against the map when doing I/O.
2004                          * fs.object and the page is BUSY'd.
2005                          *
2006                          * NOTE: Once unlocked, fs->entry can become stale
2007                          *       so this will NULL it out.
2008                          *
2009                          * NOTE: fs->entry is invalid until we relock the
2010                          *       map and verify that the timestamp has not
2011                          *       changed.
2012                          */
2013                         unlock_map(fs);
2014
2015                         /*
2016                          * Acquire the page data.  We still hold a ref on
2017                          * fs.object and the page has been BUSY's.
2018                          *
2019                          * The pager may replace the page (for example, in
2020                          * order to enter a fictitious page into the
2021                          * object).  If it does so it is responsible for
2022                          * cleaning up the passed page and properly setting
2023                          * the new page BUSY.
2024                          *
2025                          * If we got here through a PG_RAM read-ahead
2026                          * mark the page may be partially dirty and thus
2027                          * not freeable.  Don't bother checking to see
2028                          * if the pager has the page because we can't free
2029                          * it anyway.  We have to depend on the get_page
2030                          * operation filling in any gaps whether there is
2031                          * backing store or not.
2032                          */
2033                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
2034
2035                         if (rv == VM_PAGER_OK) {
2036                                 /*
2037                                  * Relookup in case pager changed page. Pager
2038                                  * is responsible for disposition of old page
2039                                  * if moved.
2040                                  *
2041                                  * XXX other code segments do relookups too.
2042                                  * It's a bad abstraction that needs to be
2043                                  * fixed/removed.
2044                                  */
2045                                 fs->m = vm_page_lookup(fs->object, pindex);
2046                                 if (fs->m == NULL) {
2047                                         vm_object_pip_wakeup(fs->first_object);
2048                                         vm_object_chain_release_all(
2049                                                 fs->first_object, fs->object);
2050                                         if (fs->object != fs->first_object)
2051                                                 vm_object_drop(fs->object);
2052                                         unlock_and_deallocate(fs);
2053                                         return (KERN_TRY_AGAIN);
2054                                 }
2055                                 ++fs->hardfault;
2056                                 break; /* break to PAGE HAS BEEN FOUND */
2057                         }
2058
2059                         /*
2060                          * Remove the bogus page (which does not exist at this
2061                          * object/offset); before doing so, we must get back
2062                          * our object lock to preserve our invariant.
2063                          *
2064                          * Also wake up any other process that may want to bring
2065                          * in this page.
2066                          *
2067                          * If this is the top-level object, we must leave the
2068                          * busy page to prevent another process from rushing
2069                          * past us, and inserting the page in that object at
2070                          * the same time that we are.
2071                          */
2072                         if (rv == VM_PAGER_ERROR) {
2073                                 if (curproc) {
2074                                         kprintf("vm_fault: pager read error, "
2075                                                 "pid %d (%s)\n",
2076                                                 curproc->p_pid,
2077                                                 curproc->p_comm);
2078                                 } else {
2079                                         kprintf("vm_fault: pager read error, "
2080                                                 "thread %p (%s)\n",
2081                                                 curthread,
2082                                                 curthread->td_comm);
2083                                 }
2084                         }
2085
2086                         /*
2087                          * Data outside the range of the pager or an I/O error
2088                          *
2089                          * The page may have been wired during the pagein,
2090                          * e.g. by the buffer cache, and cannot simply be
2091                          * freed.  Call vnode_pager_freepage() to deal with it.
2092                          *
2093                          * Also note that we cannot free the page if we are
2094                          * holding the related object shared. XXX not sure
2095                          * what to do in that case.
2096                          */
2097                         if (fs->object != fs->first_object) {
2098                                 /*
2099                                  * Scrap the page.  Check to see if the
2100                                  * vm_pager_get_page() call has already
2101                                  * dealt with it.
2102                                  */
2103                                 if (fs->m) {
2104                                         vnode_pager_freepage(fs->m);
2105                                         fs->m = NULL;
2106                                 }
2107
2108                                 /*
2109                                  * XXX - we cannot just fall out at this
2110                                  * point, m has been freed and is invalid!
2111                                  */
2112                         }
2113                         /*
2114                          * XXX - the check for kernel_map is a kludge to work
2115                          * around having the machine panic on a kernel space
2116                          * fault w/ I/O error.
2117                          */
2118                         if (((fs->map != &kernel_map) &&
2119                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
2120                                 if (fs->m) {
2121                                         if (fs->first_shared) {
2122                                                 vm_page_deactivate(fs->m);
2123                                                 vm_page_wakeup(fs->m);
2124                                         } else {
2125                                                 vnode_pager_freepage(fs->m);
2126                                         }
2127                                         fs->m = NULL;
2128                                 }
2129                                 vm_object_pip_wakeup(fs->first_object);
2130                                 vm_object_chain_release_all(fs->first_object,
2131                                                             fs->object);
2132                                 if (fs->object != fs->first_object)
2133                                         vm_object_drop(fs->object);
2134                                 unlock_and_deallocate(fs);
2135                                 if (rv == VM_PAGER_ERROR)
2136                                         return (KERN_FAILURE);
2137                                 else
2138                                         return (KERN_PROTECTION_FAILURE);
2139                                 /* NOT REACHED */
2140                         }
2141                 }
2142
2143                 /*
2144                  * We get here if the object has a default pager (or unwiring) 
2145                  * or the pager doesn't have the page.
2146                  *
2147                  * fs->first_m will be used for the COW unless we find a
2148                  * deeper page to be mapped read-only, in which case the
2149                  * unlock*(fs) will free first_m.
2150                  */
2151                 if (fs->object == fs->first_object)
2152                         fs->first_m = fs->m;
2153
2154                 /*
2155                  * Move on to the next object.  The chain lock should prevent
2156                  * the backing_object from getting ripped out from under us.
2157                  *
2158                  * The object lock for the next object is governed by
2159                  * fs->shared.
2160                  */
2161                 if ((next_object = fs->object->backing_object) != NULL) {
2162                         if (fs->shared)
2163                                 vm_object_hold_shared(next_object);
2164                         else
2165                                 vm_object_hold(next_object);
2166                         vm_object_chain_acquire(next_object, fs->shared);
2167                         KKASSERT(next_object == fs->object->backing_object);
2168                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
2169                 }
2170
2171                 if (next_object == NULL) {
2172                         /*
2173                          * If there's no object left, fill the page in the top
2174                          * object with zeros.
2175                          */
2176                         if (fs->object != fs->first_object) {
2177 #if 0
2178                                 if (fs->first_object->backing_object !=
2179                                     fs->object) {
2180                                         vm_object_hold(fs->first_object->backing_object);
2181                                 }
2182 #endif
2183                                 vm_object_chain_release_all(
2184                                         fs->first_object->backing_object,
2185                                         fs->object);
2186 #if 0
2187                                 if (fs->first_object->backing_object !=
2188                                     fs->object) {
2189                                         vm_object_drop(fs->first_object->backing_object);
2190                                 }
2191 #endif
2192                                 vm_object_pip_wakeup(fs->object);
2193                                 vm_object_drop(fs->object);
2194                                 fs->object = fs->first_object;
2195                                 pindex = first_pindex;
2196                                 fs->m = fs->first_m;
2197                         }
2198                         fs->first_m = NULL;
2199
2200                         /*
2201                          * Zero the page and mark it valid.
2202                          */
2203                         vm_page_zero_fill(fs->m);
2204                         mycpu->gd_cnt.v_zfod++;
2205                         fs->m->valid = VM_PAGE_BITS_ALL;
2206                         break;  /* break to PAGE HAS BEEN FOUND */
2207                 }
2208                 if (fs->object != fs->first_object) {
2209                         vm_object_pip_wakeup(fs->object);
2210                         vm_object_lock_swap();
2211                         vm_object_drop(fs->object);
2212                 }
2213                 KASSERT(fs->object != next_object,
2214                         ("object loop %p", next_object));
2215                 fs->object = next_object;
2216                 vm_object_pip_add(fs->object, 1);
2217         }
2218
2219         /*
2220          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2221          * is held.]
2222          *
2223          * object still held.
2224          * vm_map may not be locked (determined by fs->lookup_still_valid)
2225          *
2226          * local shared variable may be different from fs->shared.
2227          *
2228          * If the page is being written, but isn't already owned by the
2229          * top-level object, we have to copy it into a new page owned by the
2230          * top-level object.
2231          */
2232         KASSERT((fs->m->busy_count & PBUSY_LOCKED) != 0,
2233                 ("vm_fault: not busy after main loop"));
2234
2235         if (fs->object != fs->first_object) {
2236                 /*
2237                  * We only really need to copy if we want to write it.
2238                  */
2239                 if (fault_type & VM_PROT_WRITE) {
2240                         /*
2241                          * This allows pages to be virtually copied from a 
2242                          * backing_object into the first_object, where the 
2243                          * backing object has no other refs to it, and cannot
2244                          * gain any more refs.  Instead of a bcopy, we just 
2245                          * move the page from the backing object to the 
2246                          * first object.  Note that we must mark the page 
2247                          * dirty in the first object so that it will go out 
2248                          * to swap when needed.
2249                          */
2250                         if (virtual_copy_ok(fs)) {
2251                                 /*
2252                                  * (first_m) and (m) are both busied.  We have
2253                                  * move (m) into (first_m)'s object/pindex
2254                                  * in an atomic fashion, then free (first_m).
2255                                  *
2256                                  * first_object is held so second remove
2257                                  * followed by the rename should wind
2258                                  * up being atomic.  vm_page_free() might
2259                                  * block so we don't do it until after the
2260                                  * rename.
2261                                  */
2262                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
2263                                 vm_page_remove(fs->first_m);
2264                                 vm_page_rename(fs->m, fs->first_object,
2265                                                first_pindex);
2266                                 vm_page_free(fs->first_m);
2267                                 fs->first_m = fs->m;
2268                                 fs->m = NULL;
2269                                 mycpu->gd_cnt.v_cow_optim++;
2270                         } else {
2271                                 /*
2272                                  * Oh, well, lets copy it.
2273                                  *
2274                                  * Why are we unmapping the original page
2275                                  * here?  Well, in short, not all accessors
2276                                  * of user memory go through the pmap.  The
2277                                  * procfs code doesn't have access user memory
2278                                  * via a local pmap, so vm_fault_page*()
2279                                  * can't call pmap_enter().  And the umtx*()
2280                                  * code may modify the COW'd page via a DMAP
2281                                  * or kernel mapping and not via the pmap,
2282                                  * leaving the original page still mapped
2283                                  * read-only into the pmap.
2284                                  *
2285                                  * So we have to remove the page from at
2286                                  * least the current pmap if it is in it.
2287                                  *
2288                                  * We used to just remove it from all pmaps
2289                                  * but that creates inefficiencies on SMP,
2290                                  * particularly for COW program & library
2291                                  * mappings that are concurrently exec'd.
2292                                  * Only remove the page from the current
2293                                  * pmap.
2294                                  */
2295                                 KKASSERT(fs->first_shared == 0);
2296                                 vm_page_copy(fs->m, fs->first_m);
2297                                 /*vm_page_protect(fs->m, VM_PROT_NONE);*/
2298                                 pmap_remove_specific(
2299                                     &curthread->td_lwp->lwp_vmspace->vm_pmap,
2300                                     fs->m);
2301                         }
2302
2303                         /*
2304                          * We no longer need the old page or object.
2305                          */
2306                         if (fs->m)
2307                                 release_page(fs);
2308
2309                         /*
2310                          * We intend to revert to first_object, undo the
2311                          * chain lock through to that.
2312                          */
2313 #if 0
2314                         if (fs->first_object->backing_object != fs->object)
2315                                 vm_object_hold(fs->first_object->backing_object);
2316 #endif
2317                         vm_object_chain_release_all(
2318                                         fs->first_object->backing_object,
2319                                         fs->object);
2320 #if 0
2321                         if (fs->first_object->backing_object != fs->object)
2322                                 vm_object_drop(fs->first_object->backing_object);
2323 #endif
2324
2325                         /*
2326                          * fs->object != fs->first_object due to above 
2327                          * conditional
2328                          */
2329                         vm_object_pip_wakeup(fs->object);
2330                         vm_object_drop(fs->object);
2331
2332                         /*
2333                          * Only use the new page below...
2334                          */
2335                         mycpu->gd_cnt.v_cow_faults++;
2336                         fs->m = fs->first_m;
2337                         fs->object = fs->first_object;
2338                         pindex = first_pindex;
2339                 } else {
2340                         /*
2341                          * If it wasn't a write fault avoid having to copy
2342                          * the page by mapping it read-only.
2343                          */
2344                         fs->prot &= ~VM_PROT_WRITE;
2345                 }
2346         }
2347
2348         /*
2349          * Relock the map if necessary, then check the generation count.
2350          * relock_map() will update fs->timestamp to account for the
2351          * relocking if necessary.
2352          *
2353          * If the count has changed after relocking then all sorts of
2354          * crap may have happened and we have to retry.
2355          *
2356          * NOTE: The relock_map() can fail due to a deadlock against
2357          *       the vm_page we are holding BUSY.
2358          */
2359         if (fs->lookup_still_valid == FALSE && fs->map) {
2360                 if (relock_map(fs) ||
2361                     fs->map->timestamp != fs->map_generation) {
2362                         release_page(fs);
2363                         vm_object_pip_wakeup(fs->first_object);
2364                         vm_object_chain_release_all(fs->first_object,
2365                                                     fs->object);
2366                         if (fs->object != fs->first_object)
2367                                 vm_object_drop(fs->object);
2368                         unlock_and_deallocate(fs);
2369                         return (KERN_TRY_AGAIN);
2370                 }
2371         }
2372
2373         /*
2374          * If the fault is a write, we know that this page is being
2375          * written NOW so dirty it explicitly to save on pmap_is_modified()
2376          * calls later.
2377          *
2378          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2379          * if the page is already dirty to prevent data written with
2380          * the expectation of being synced from not being synced.
2381          * Likewise if this entry does not request NOSYNC then make
2382          * sure the page isn't marked NOSYNC.  Applications sharing
2383          * data should use the same flags to avoid ping ponging.
2384          *
2385          * Also tell the backing pager, if any, that it should remove
2386          * any swap backing since the page is now dirty.
2387          */
2388         vm_page_activate(fs->m);
2389         if (fs->prot & VM_PROT_WRITE) {
2390                 vm_object_set_writeable_dirty(fs->m->object);
2391                 vm_set_nosync(fs->m, fs->entry);
2392                 if (fs->fault_flags & VM_FAULT_DIRTY) {
2393                         vm_page_dirty(fs->m);
2394                         if (fs->m->flags & PG_SWAPPED) {
2395                                 /*
2396                                  * If the page is swapped out we have to call
2397                                  * swap_pager_unswapped() which requires an
2398                                  * exclusive object lock.  If we are shared,
2399                                  * we must clear the shared flag and retry.
2400                                  */
2401                                 if ((fs->object == fs->first_object &&
2402                                      fs->first_shared) ||
2403                                     (fs->object != fs->first_object &&
2404                                      fs->shared)) {
2405                                         vm_page_wakeup(fs->m);
2406                                         fs->m = NULL;
2407                                         if (fs->object == fs->first_object)
2408                                                 fs->first_shared = 0;
2409                                         else
2410                                                 fs->shared = 0;
2411                                         vm_object_pip_wakeup(fs->first_object);
2412                                         vm_object_chain_release_all(
2413                                                 fs->first_object, fs->object);
2414                                         if (fs->object != fs->first_object)
2415                                                 vm_object_drop(fs->object);
2416                                         unlock_and_deallocate(fs);
2417                                         return (KERN_TRY_AGAIN);
2418                                 }
2419                                 swap_pager_unswapped(fs->m);
2420                         }
2421                 }
2422         }
2423
2424         vm_object_pip_wakeup(fs->first_object);
2425         vm_object_chain_release_all(fs->first_object, fs->object);
2426         if (fs->object != fs->first_object)
2427                 vm_object_drop(fs->object);
2428
2429         /*
2430          * Page had better still be busy.  We are still locked up and 
2431          * fs->object will have another PIP reference if it is not equal
2432          * to fs->first_object.
2433          */
2434         KASSERT(fs->m->busy_count & PBUSY_LOCKED,
2435                 ("vm_fault: page %p not busy!", fs->m));
2436
2437         /*
2438          * Sanity check: page must be completely valid or it is not fit to
2439          * map into user space.  vm_pager_get_pages() ensures this.
2440          */
2441         if (fs->m->valid != VM_PAGE_BITS_ALL) {
2442                 vm_page_zero_invalid(fs->m, TRUE);
2443                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2444         }
2445
2446         return (KERN_SUCCESS);
2447 }
2448
2449 /*
2450  * Wire down a range of virtual addresses in a map.  The entry in question
2451  * should be marked in-transition and the map must be locked.  We must
2452  * release the map temporarily while faulting-in the page to avoid a
2453  * deadlock.  Note that the entry may be clipped while we are blocked but
2454  * will never be freed.
2455  *
2456  * No requirements.
2457  */
2458 int
2459 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2460               boolean_t user_wire, int kmflags)
2461 {
2462         boolean_t fictitious;
2463         vm_offset_t start;
2464         vm_offset_t end;
2465         vm_offset_t va;
2466         pmap_t pmap;
2467         int rv;
2468         int wire_prot;
2469         int fault_flags;
2470         vm_page_t m;
2471
2472         if (user_wire) {
2473                 wire_prot = VM_PROT_READ;
2474                 fault_flags = VM_FAULT_USER_WIRE;
2475         } else {
2476                 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2477                 fault_flags = VM_FAULT_CHANGE_WIRING;
2478         }
2479         if (kmflags & KM_NOTLBSYNC)
2480                 wire_prot |= VM_PROT_NOSYNC;
2481
2482         pmap = vm_map_pmap(map);
2483         start = entry->start;
2484         end = entry->end;
2485
2486         switch(entry->maptype) {
2487         case VM_MAPTYPE_NORMAL:
2488         case VM_MAPTYPE_VPAGETABLE:
2489                 fictitious = entry->object.vm_object &&
2490                             ((entry->object.vm_object->type == OBJT_DEVICE) ||
2491                              (entry->object.vm_object->type == OBJT_MGTDEVICE));
2492                 break;
2493         case VM_MAPTYPE_UKSMAP:
2494                 fictitious = TRUE;
2495                 break;
2496         default:
2497                 fictitious = FALSE;
2498                 break;
2499         }
2500
2501         if (entry->eflags & MAP_ENTRY_KSTACK)
2502                 start += PAGE_SIZE;
2503         map->timestamp++;
2504         vm_map_unlock(map);
2505
2506         /*
2507          * We simulate a fault to get the page and enter it in the physical
2508          * map.
2509          */
2510         for (va = start; va < end; va += PAGE_SIZE) {
2511                 rv = vm_fault(map, va, wire_prot, fault_flags);
2512                 if (rv) {
2513                         while (va > start) {
2514                                 va -= PAGE_SIZE;
2515                                 m = pmap_unwire(pmap, va);
2516                                 if (m && !fictitious) {
2517                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
2518                                         vm_page_unwire(m, 1);
2519                                         vm_page_wakeup(m);
2520                                 }
2521                         }
2522                         goto done;
2523                 }
2524         }
2525         rv = KERN_SUCCESS;
2526 done:
2527         vm_map_lock(map);
2528
2529         return (rv);
2530 }
2531
2532 /*
2533  * Unwire a range of virtual addresses in a map.  The map should be
2534  * locked.
2535  */
2536 void
2537 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2538 {
2539         boolean_t fictitious;
2540         vm_offset_t start;
2541         vm_offset_t end;
2542         vm_offset_t va;
2543         pmap_t pmap;
2544         vm_page_t m;
2545
2546         pmap = vm_map_pmap(map);
2547         start = entry->start;
2548         end = entry->end;
2549         fictitious = entry->object.vm_object &&
2550                         ((entry->object.vm_object->type == OBJT_DEVICE) ||
2551                          (entry->object.vm_object->type == OBJT_MGTDEVICE));
2552         if (entry->eflags & MAP_ENTRY_KSTACK)
2553                 start += PAGE_SIZE;
2554
2555         /*
2556          * Since the pages are wired down, we must be able to get their
2557          * mappings from the physical map system.
2558          */
2559         for (va = start; va < end; va += PAGE_SIZE) {
2560                 m = pmap_unwire(pmap, va);
2561                 if (m && !fictitious) {
2562                         vm_page_busy_wait(m, FALSE, "vmwrpg");
2563                         vm_page_unwire(m, 1);
2564                         vm_page_wakeup(m);
2565                 }
2566         }
2567 }
2568
2569 /*
2570  * Copy all of the pages from a wired-down map entry to another.
2571  *
2572  * The source and destination maps must be locked for write.
2573  * The source and destination maps token must be held
2574  * The source map entry must be wired down (or be a sharing map
2575  * entry corresponding to a main map entry that is wired down).
2576  *
2577  * No other requirements.
2578  *
2579  * XXX do segment optimization
2580  */
2581 void
2582 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2583                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2584 {
2585         vm_object_t dst_object;
2586         vm_object_t src_object;
2587         vm_ooffset_t dst_offset;
2588         vm_ooffset_t src_offset;
2589         vm_prot_t prot;
2590         vm_offset_t vaddr;
2591         vm_page_t dst_m;
2592         vm_page_t src_m;
2593
2594         src_object = src_entry->object.vm_object;
2595         src_offset = src_entry->offset;
2596
2597         /*
2598          * Create the top-level object for the destination entry. (Doesn't
2599          * actually shadow anything - we copy the pages directly.)
2600          */
2601         vm_map_entry_allocate_object(dst_entry);
2602         dst_object = dst_entry->object.vm_object;
2603
2604         prot = dst_entry->max_protection;
2605
2606         /*
2607          * Loop through all of the pages in the entry's range, copying each
2608          * one from the source object (it should be there) to the destination
2609          * object.
2610          */
2611         vm_object_hold(src_object);
2612         vm_object_hold(dst_object);
2613
2614         for (vaddr = dst_entry->start, dst_offset = 0;
2615              vaddr < dst_entry->end;
2616              vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2617
2618                 /*
2619                  * Allocate a page in the destination object
2620                  */
2621                 do {
2622                         dst_m = vm_page_alloc(dst_object,
2623                                               OFF_TO_IDX(dst_offset),
2624                                               VM_ALLOC_NORMAL);
2625                         if (dst_m == NULL) {
2626                                 vm_wait(0);
2627                         }
2628                 } while (dst_m == NULL);
2629
2630                 /*
2631                  * Find the page in the source object, and copy it in.
2632                  * (Because the source is wired down, the page will be in
2633                  * memory.)
2634                  */
2635                 src_m = vm_page_lookup(src_object,
2636                                        OFF_TO_IDX(dst_offset + src_offset));
2637                 if (src_m == NULL)
2638                         panic("vm_fault_copy_wired: page missing");
2639
2640                 vm_page_copy(src_m, dst_m);
2641
2642                 /*
2643                  * Enter it in the pmap...
2644                  */
2645                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2646
2647                 /*
2648                  * Mark it no longer busy, and put it on the active list.
2649                  */
2650                 vm_page_activate(dst_m);
2651                 vm_page_wakeup(dst_m);
2652         }
2653         vm_object_drop(dst_object);
2654         vm_object_drop(src_object);
2655 }
2656
2657 #if 0
2658
2659 /*
2660  * This routine checks around the requested page for other pages that
2661  * might be able to be faulted in.  This routine brackets the viable
2662  * pages for the pages to be paged in.
2663  *
2664  * Inputs:
2665  *      m, rbehind, rahead
2666  *
2667  * Outputs:
2668  *  marray (array of vm_page_t), reqpage (index of requested page)
2669  *
2670  * Return value:
2671  *  number of pages in marray
2672  */
2673 static int
2674 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2675                           vm_page_t *marray, int *reqpage)
2676 {
2677         int i,j;
2678         vm_object_t object;
2679         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2680         vm_page_t rtm;
2681         int cbehind, cahead;
2682
2683         object = m->object;
2684         pindex = m->pindex;
2685
2686         /*
2687          * we don't fault-ahead for device pager
2688          */
2689         if ((object->type == OBJT_DEVICE) ||
2690             (object->type == OBJT_MGTDEVICE)) {
2691                 *reqpage = 0;
2692                 marray[0] = m;
2693                 return 1;
2694         }
2695
2696         /*
2697          * if the requested page is not available, then give up now
2698          */
2699         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2700                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2701                 return 0;
2702         }
2703
2704         if ((cbehind == 0) && (cahead == 0)) {
2705                 *reqpage = 0;
2706                 marray[0] = m;
2707                 return 1;
2708         }
2709
2710         if (rahead > cahead) {
2711                 rahead = cahead;
2712         }
2713
2714         if (rbehind > cbehind) {
2715                 rbehind = cbehind;
2716         }
2717
2718         /*
2719          * Do not do any readahead if we have insufficient free memory.
2720          *
2721          * XXX code was broken disabled before and has instability
2722          * with this conditonal fixed, so shortcut for now.
2723          */
2724         if (burst_fault == 0 || vm_page_count_severe()) {
2725                 marray[0] = m;
2726                 *reqpage = 0;
2727                 return 1;
2728         }
2729
2730         /*
2731          * scan backward for the read behind pages -- in memory 
2732          *
2733          * Assume that if the page is not found an interrupt will not
2734          * create it.  Theoretically interrupts can only remove (busy)
2735          * pages, not create new associations.
2736          */
2737         if (pindex > 0) {
2738                 if (rbehind > pindex) {
2739                         rbehind = pindex;
2740                         startpindex = 0;
2741                 } else {
2742                         startpindex = pindex - rbehind;
2743                 }
2744
2745                 vm_object_hold(object);
2746                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2747                         if (vm_page_lookup(object, tpindex - 1))
2748                                 break;
2749                 }
2750
2751                 i = 0;
2752                 while (tpindex < pindex) {
2753                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2754                                                              VM_ALLOC_NULL_OK);
2755                         if (rtm == NULL) {
2756                                 for (j = 0; j < i; j++) {
2757                                         vm_page_free(marray[j]);
2758                                 }
2759                                 vm_object_drop(object);
2760                                 marray[0] = m;
2761                                 *reqpage = 0;
2762                                 return 1;
2763                         }
2764                         marray[i] = rtm;
2765                         ++i;
2766                         ++tpindex;
2767                 }
2768                 vm_object_drop(object);
2769         } else {
2770                 i = 0;
2771         }
2772
2773         /*
2774          * Assign requested page
2775          */
2776         marray[i] = m;
2777         *reqpage = i;
2778         ++i;
2779
2780         /*
2781          * Scan forwards for read-ahead pages
2782          */
2783         tpindex = pindex + 1;
2784         endpindex = tpindex + rahead;
2785         if (endpindex > object->size)
2786                 endpindex = object->size;
2787
2788         vm_object_hold(object);
2789         while (tpindex < endpindex) {
2790                 if (vm_page_lookup(object, tpindex))
2791                         break;
2792                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2793                                                      VM_ALLOC_NULL_OK);
2794                 if (rtm == NULL)
2795                         break;
2796                 marray[i] = rtm;
2797                 ++i;
2798                 ++tpindex;
2799         }
2800         vm_object_drop(object);
2801
2802         return (i);
2803 }
2804
2805 #endif
2806
2807 /*
2808  * vm_prefault() provides a quick way of clustering pagefaults into a
2809  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2810  * except it runs at page fault time instead of mmap time.
2811  *
2812  * vm.fast_fault        Enables pre-faulting zero-fill pages
2813  *
2814  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2815  *                      prefault.  Scan stops in either direction when
2816  *                      a page is found to already exist.
2817  *
2818  * This code used to be per-platform pmap_prefault().  It is now
2819  * machine-independent and enhanced to also pre-fault zero-fill pages
2820  * (see vm.fast_fault) as well as make them writable, which greatly
2821  * reduces the number of page faults programs incur.
2822  *
2823  * Application performance when pre-faulting zero-fill pages is heavily
2824  * dependent on the application.  Very tiny applications like /bin/echo
2825  * lose a little performance while applications of any appreciable size
2826  * gain performance.  Prefaulting multiple pages also reduces SMP
2827  * congestion and can improve SMP performance significantly.
2828  *
2829  * NOTE!  prot may allow writing but this only applies to the top level
2830  *        object.  If we wind up mapping a page extracted from a backing
2831  *        object we have to make sure it is read-only.
2832  *
2833  * NOTE!  The caller has already handled any COW operations on the
2834  *        vm_map_entry via the normal fault code.  Do NOT call this
2835  *        shortcut unless the normal fault code has run on this entry.
2836  *
2837  * The related map must be locked.
2838  * No other requirements.
2839  */
2840 static int vm_prefault_pages = 8;
2841 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2842            "Maximum number of pages to pre-fault");
2843 static int vm_fast_fault = 1;
2844 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2845            "Burst fault zero-fill regions");
2846
2847 /*
2848  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2849  * is not already dirty by other means.  This will prevent passive
2850  * filesystem syncing as well as 'sync' from writing out the page.
2851  */
2852 static void
2853 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2854 {
2855         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2856                 if (m->dirty == 0)
2857                         vm_page_flag_set(m, PG_NOSYNC);
2858         } else {
2859                 vm_page_flag_clear(m, PG_NOSYNC);
2860         }
2861 }
2862
2863 static void
2864 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2865             int fault_flags)
2866 {
2867         struct lwp *lp;
2868         vm_page_t m;
2869         vm_offset_t addr;
2870         vm_pindex_t index;
2871         vm_pindex_t pindex;
2872         vm_object_t object;
2873         int pprot;
2874         int i;
2875         int noneg;
2876         int nopos;
2877         int maxpages;
2878
2879         /*
2880          * Get stable max count value, disabled if set to 0
2881          */
2882         maxpages = vm_prefault_pages;
2883         cpu_ccfence();
2884         if (maxpages <= 0)
2885                 return;
2886
2887         /*
2888          * We do not currently prefault mappings that use virtual page
2889          * tables.  We do not prefault foreign pmaps.
2890          */
2891         if (entry->maptype != VM_MAPTYPE_NORMAL)
2892                 return;
2893         lp = curthread->td_lwp;
2894         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2895                 return;
2896
2897         /*
2898          * Limit pre-fault count to 1024 pages.
2899          */
2900         if (maxpages > 1024)
2901                 maxpages = 1024;
2902
2903         object = entry->object.vm_object;
2904         KKASSERT(object != NULL);
2905         KKASSERT(object == entry->object.vm_object);
2906
2907         /*
2908          * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2909          *       now (or do something more complex XXX).
2910          */
2911         vm_object_hold(object);
2912         vm_object_chain_acquire(object, 0);
2913
2914         noneg = 0;
2915         nopos = 0;
2916         for (i = 0; i < maxpages; ++i) {
2917                 vm_object_t lobject;
2918                 vm_object_t nobject;
2919                 int allocated = 0;
2920                 int error;
2921
2922                 /*
2923                  * This can eat a lot of time on a heavily contended
2924                  * machine so yield on the tick if needed.
2925                  */
2926                 if ((i & 7) == 7)
2927                         lwkt_yield();
2928
2929                 /*
2930                  * Calculate the page to pre-fault, stopping the scan in
2931                  * each direction separately if the limit is reached.
2932                  */
2933                 if (i & 1) {
2934                         if (noneg)
2935                                 continue;
2936                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2937                 } else {
2938                         if (nopos)
2939                                 continue;
2940                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2941                 }
2942                 if (addr < entry->start) {
2943                         noneg = 1;
2944                         if (noneg && nopos)
2945                                 break;
2946                         continue;
2947                 }
2948                 if (addr >= entry->end) {
2949                         nopos = 1;
2950                         if (noneg && nopos)
2951                                 break;
2952                         continue;
2953                 }
2954
2955                 /*
2956                  * Skip pages already mapped, and stop scanning in that
2957                  * direction.  When the scan terminates in both directions
2958                  * we are done.
2959                  */
2960                 if (pmap_prefault_ok(pmap, addr) == 0) {
2961                         if (i & 1)
2962                                 noneg = 1;
2963                         else
2964                                 nopos = 1;
2965                         if (noneg && nopos)
2966                                 break;
2967                         continue;
2968                 }
2969
2970                 /*
2971                  * Follow the VM object chain to obtain the page to be mapped
2972                  * into the pmap.
2973                  *
2974                  * If we reach the terminal object without finding a page
2975                  * and we determine it would be advantageous, then allocate
2976                  * a zero-fill page for the base object.  The base object
2977                  * is guaranteed to be OBJT_DEFAULT for this case.
2978                  *
2979                  * In order to not have to check the pager via *haspage*()
2980                  * we stop if any non-default object is encountered.  e.g.
2981                  * a vnode or swap object would stop the loop.
2982                  */
2983                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2984                 lobject = object;
2985                 pindex = index;
2986                 pprot = prot;
2987
2988                 KKASSERT(lobject == entry->object.vm_object);
2989                 /*vm_object_hold(lobject); implied */
2990
2991                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2992                                                     TRUE, &error)) == NULL) {
2993                         if (lobject->type != OBJT_DEFAULT)
2994                                 break;
2995                         if (lobject->backing_object == NULL) {
2996                                 if (vm_fast_fault == 0)
2997                                         break;
2998                                 if ((prot & VM_PROT_WRITE) == 0 ||
2999                                     vm_page_count_min(0)) {
3000                                         break;
3001                                 }
3002
3003                                 /*
3004                                  * NOTE: Allocated from base object
3005                                  */
3006                                 m = vm_page_alloc(object, index,
3007                                                   VM_ALLOC_NORMAL |
3008                                                   VM_ALLOC_ZERO |
3009                                                   VM_ALLOC_USE_GD |
3010                                                   VM_ALLOC_NULL_OK);
3011                                 if (m == NULL)
3012                                         break;
3013                                 allocated = 1;
3014                                 pprot = prot;
3015                                 /* lobject = object .. not needed */
3016                                 break;
3017                         }
3018                         if (lobject->backing_object_offset & PAGE_MASK)
3019                                 break;
3020                         nobject = lobject->backing_object;
3021                         vm_object_hold(nobject);
3022                         KKASSERT(nobject == lobject->backing_object);
3023                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
3024                         if (lobject != object) {
3025                                 vm_object_lock_swap();
3026                                 vm_object_drop(lobject);
3027                         }
3028                         lobject = nobject;
3029                         pprot &= ~VM_PROT_WRITE;
3030                         vm_object_chain_acquire(lobject, 0);
3031                 }
3032
3033                 /*
3034                  * NOTE: A non-NULL (m) will be associated with lobject if
3035                  *       it was found there, otherwise it is probably a
3036                  *       zero-fill page associated with the base object.
3037                  *
3038                  * Give-up if no page is available.
3039                  */
3040                 if (m == NULL) {
3041                         if (lobject != object) {
3042 #if 0
3043                                 if (object->backing_object != lobject)
3044                                         vm_object_hold(object->backing_object);
3045 #endif
3046                                 vm_object_chain_release_all(
3047                                         object->backing_object, lobject);
3048 #if 0
3049                                 if (object->backing_object != lobject)
3050                                         vm_object_drop(object->backing_object);
3051 #endif
3052                                 vm_object_drop(lobject);
3053                         }
3054                         break;
3055                 }
3056
3057                 /*
3058                  * The object must be marked dirty if we are mapping a
3059                  * writable page.  m->object is either lobject or object,
3060                  * both of which are still held.  Do this before we
3061                  * potentially drop the object.
3062                  */
3063                 if (pprot & VM_PROT_WRITE)
3064                         vm_object_set_writeable_dirty(m->object);
3065
3066                 /*
3067                  * Do not conditionalize on PG_RAM.  If pages are present in
3068                  * the VM system we assume optimal caching.  If caching is
3069                  * not optimal the I/O gravy train will be restarted when we
3070                  * hit an unavailable page.  We do not want to try to restart
3071                  * the gravy train now because we really don't know how much
3072                  * of the object has been cached.  The cost for restarting
3073                  * the gravy train should be low (since accesses will likely
3074                  * be I/O bound anyway).
3075                  */
3076                 if (lobject != object) {
3077 #if 0
3078                         if (object->backing_object != lobject)
3079                                 vm_object_hold(object->backing_object);
3080 #endif
3081                         vm_object_chain_release_all(object->backing_object,
3082                                                     lobject);
3083 #if 0
3084                         if (object->backing_object != lobject)
3085                                 vm_object_drop(object->backing_object);
3086 #endif
3087                         vm_object_drop(lobject);
3088                 }
3089
3090                 /*
3091                  * Enter the page into the pmap if appropriate.  If we had
3092                  * allocated the page we have to place it on a queue.  If not
3093                  * we just have to make sure it isn't on the cache queue
3094                  * (pages on the cache queue are not allowed to be mapped).
3095                  */
3096                 if (allocated) {
3097                         /*
3098                          * Page must be zerod.
3099                          */
3100                         vm_page_zero_fill(m);
3101                         mycpu->gd_cnt.v_zfod++;
3102                         m->valid = VM_PAGE_BITS_ALL;
3103
3104                         /*
3105                          * Handle dirty page case
3106                          */
3107                         if (pprot & VM_PROT_WRITE)
3108                                 vm_set_nosync(m, entry);
3109                         pmap_enter(pmap, addr, m, pprot, 0, entry);
3110                         mycpu->gd_cnt.v_vm_faults++;
3111                         if (curthread->td_lwp)
3112                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
3113                         vm_page_deactivate(m);
3114                         if (pprot & VM_PROT_WRITE) {
3115                                 /*vm_object_set_writeable_dirty(m->object);*/
3116                                 vm_set_nosync(m, entry);
3117                                 if (fault_flags & VM_FAULT_DIRTY) {
3118                                         vm_page_dirty(m);
3119                                         /*XXX*/
3120                                         swap_pager_unswapped(m);
3121                                 }
3122                         }
3123                         vm_page_wakeup(m);
3124                 } else if (error) {
3125                         /* couldn't busy page, no wakeup */
3126                 } else if (
3127                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3128                     (m->flags & PG_FICTITIOUS) == 0) {
3129                         /*
3130                          * A fully valid page not undergoing soft I/O can
3131                          * be immediately entered into the pmap.
3132                          */
3133                         if ((m->queue - m->pc) == PQ_CACHE)
3134                                 vm_page_deactivate(m);
3135                         if (pprot & VM_PROT_WRITE) {
3136                                 /*vm_object_set_writeable_dirty(m->object);*/
3137                                 vm_set_nosync(m, entry);
3138                                 if (fault_flags & VM_FAULT_DIRTY) {
3139                                         vm_page_dirty(m);
3140                                         /*XXX*/
3141                                         swap_pager_unswapped(m);
3142                                 }
3143                         }
3144                         if (pprot & VM_PROT_WRITE)
3145                                 vm_set_nosync(m, entry);
3146                         pmap_enter(pmap, addr, m, pprot, 0, entry);
3147                         mycpu->gd_cnt.v_vm_faults++;
3148                         if (curthread->td_lwp)
3149                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
3150                         vm_page_wakeup(m);
3151                 } else {
3152                         vm_page_wakeup(m);
3153                 }
3154         }
3155         vm_object_chain_release(object);
3156         vm_object_drop(object);
3157 }
3158
3159 /*
3160  * Object can be held shared
3161  */
3162 static void
3163 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3164                   vm_map_entry_t entry, int prot, int fault_flags)
3165 {
3166         struct lwp *lp;
3167         vm_page_t m;
3168         vm_offset_t addr;
3169         vm_pindex_t pindex;
3170         vm_object_t object;
3171         int i;
3172         int noneg;
3173         int nopos;
3174         int maxpages;
3175
3176         /*
3177          * Get stable max count value, disabled if set to 0
3178          */
3179         maxpages = vm_prefault_pages;
3180         cpu_ccfence();
3181         if (maxpages <= 0)
3182                 return;
3183
3184         /*
3185          * We do not currently prefault mappings that use virtual page
3186          * tables.  We do not prefault foreign pmaps.
3187          */
3188         if (entry->maptype != VM_MAPTYPE_NORMAL)
3189                 return;
3190         lp = curthread->td_lwp;
3191         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3192                 return;
3193         object = entry->object.vm_object;
3194         if (object->backing_object != NULL)
3195                 return;
3196         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3197
3198         /*
3199          * Limit pre-fault count to 1024 pages.
3200          */
3201         if (maxpages > 1024)
3202                 maxpages = 1024;
3203
3204         noneg = 0;
3205         nopos = 0;
3206         for (i = 0; i < maxpages; ++i) {
3207                 int error;
3208
3209                 /*
3210                  * Calculate the page to pre-fault, stopping the scan in
3211                  * each direction separately if the limit is reached.
3212                  */
3213                 if (i & 1) {
3214                         if (noneg)
3215                                 continue;
3216                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3217                 } else {
3218                         if (nopos)
3219                                 continue;
3220                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3221                 }
3222                 if (addr < entry->start) {
3223                         noneg = 1;
3224                         if (noneg && nopos)
3225                                 break;
3226                         continue;
3227                 }
3228                 if (addr >= entry->end) {
3229                         nopos = 1;
3230                         if (noneg && nopos)
3231                                 break;
3232                         continue;
3233                 }
3234
3235                 /*
3236                  * Follow the VM object chain to obtain the page to be mapped
3237                  * into the pmap.  This version of the prefault code only
3238                  * works with terminal objects.
3239                  *
3240                  * The page must already exist.  If we encounter a problem
3241                  * we stop here.
3242                  *
3243                  * WARNING!  We cannot call swap_pager_unswapped() or insert
3244                  *           a new vm_page with a shared token.
3245                  */
3246                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3247
3248                 /*
3249                  * Skip pages already mapped, and stop scanning in that
3250                  * direction.  When the scan terminates in both directions
3251                  * we are done.
3252                  */
3253                 if (pmap_prefault_ok(pmap, addr) == 0) {
3254                         if (i & 1)
3255                                 noneg = 1;
3256                         else
3257                                 nopos = 1;
3258                         if (noneg && nopos)
3259                                 break;
3260                         continue;
3261                 }
3262
3263                 /*
3264                  * Shortcut the read-only mapping case using the far more
3265                  * efficient vm_page_lookup_sbusy_try() function.  This
3266                  * allows us to acquire the page soft-busied only which
3267                  * is especially nice for concurrent execs of the same
3268                  * program.
3269                  *
3270                  * The lookup function also validates page suitability
3271                  * (all valid bits set, and not fictitious).
3272                  *
3273                  * If the page is in PQ_CACHE we have to fall-through
3274                  * and hard-busy it so we can move it out of PQ_CACHE.
3275                  */
3276                 if ((prot & VM_PROT_WRITE) == 0) {
3277                         m = vm_page_lookup_sbusy_try(object, pindex,
3278                                                      0, PAGE_SIZE);
3279                         if (m == NULL)
3280                                 break;
3281                         if ((m->queue - m->pc) != PQ_CACHE) {
3282                                 pmap_enter(pmap, addr, m, prot, 0, entry);
3283                                 mycpu->gd_cnt.v_vm_faults++;
3284                                 if (curthread->td_lwp)
3285                                         ++curthread->td_lwp->lwp_ru.ru_minflt;
3286                                 vm_page_sbusy_drop(m);
3287                                 continue;
3288                         }
3289                         vm_page_sbusy_drop(m);
3290                 }
3291
3292                 /*
3293                  * Fallback to normal vm_page lookup code.  This code
3294                  * hard-busies the page.  Not only that, but the page
3295                  * can remain in that state for a significant period
3296                  * time due to pmap_enter()'s overhead.
3297                  */
3298                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3299                 if (m == NULL || error)
3300                         break;
3301
3302                 /*
3303                  * Stop if the page cannot be trivially entered into the
3304                  * pmap.
3305                  */
3306                 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3307                     (m->flags & PG_FICTITIOUS) ||
3308                     ((m->flags & PG_SWAPPED) &&
3309                      (prot & VM_PROT_WRITE) &&
3310                      (fault_flags & VM_FAULT_DIRTY))) {
3311                         vm_page_wakeup(m);
3312                         break;
3313                 }
3314
3315                 /*
3316                  * Enter the page into the pmap.  The object might be held
3317                  * shared so we can't do any (serious) modifying operation
3318                  * on it.
3319                  */
3320                 if ((m->queue - m->pc) == PQ_CACHE)
3321                         vm_page_deactivate(m);
3322                 if (prot & VM_PROT_WRITE) {
3323                         vm_object_set_writeable_dirty(m->object);
3324                         vm_set_nosync(m, entry);
3325                         if (fault_flags & VM_FAULT_DIRTY) {
3326                                 vm_page_dirty(m);
3327                                 /* can't happeen due to conditional above */
3328                                 /* swap_pager_unswapped(m); */
3329                         }
3330                 }
3331                 pmap_enter(pmap, addr, m, prot, 0, entry);
3332                 mycpu->gd_cnt.v_vm_faults++;
3333                 if (curthread->td_lwp)
3334                         ++curthread->td_lwp->lwp_ru.ru_minflt;
3335                 vm_page_wakeup(m);
3336         }
3337 }