Cleanup the vm_map_entry_[k]reserve/[k]release() API. This API is used to
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.18 2004/01/14 23:26:14 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory mapping module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93
94 #include <sys/thread2.h>
95
96 /*
97  *      Virtual memory maps provide for the mapping, protection,
98  *      and sharing of virtual memory objects.  In addition,
99  *      this module provides for an efficient virtual copy of
100  *      memory from one map to another.
101  *
102  *      Synchronization is required prior to most operations.
103  *
104  *      Maps consist of an ordered doubly-linked list of simple
105  *      entries; a single hint is used to speed up lookups.
106  *
107  *      Since portions of maps are specified by start/end addresses,
108  *      which may not align with existing map entries, all
109  *      routines merely "clip" entries to these start/end values.
110  *      [That is, an entry is split into two, bordering at a
111  *      start or end value.]  Note that these clippings may not
112  *      always be necessary (as the two resulting entries are then
113  *      not changed); however, the clipping is done for convenience.
114  *
115  *      As mentioned above, virtual copy operations are performed
116  *      by copying VM object references from one map to
117  *      another, and then marking both regions as copy-on-write.
118  */
119
120 /*
121  *      vm_map_startup:
122  *
123  *      Initialize the vm_map module.  Must be called before
124  *      any other vm_map routines.
125  *
126  *      Map and entry structures are allocated from the general
127  *      purpose memory pool with some exceptions:
128  *
129  *      - The kernel map and kmem submap are allocated statically.
130  *      - Kernel map entries are allocated out of a static pool.
131  *
132  *      These restrictions are necessary since malloc() uses the
133  *      maps and requires map entries.
134  */
135
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150                 vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153
154 void
155 vm_map_startup()
156 {
157         mapzone = &mapzone_store;
158         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159                 map_init, MAX_KMAP);
160         mapentzone = &mapentzone_store;
161         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162                 map_entry_init, MAX_MAPENT);
163 }
164
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172         vm_offset_t min, max;
173 {
174         struct vmspace *vm;
175
176         vm = zalloc(vmspace_zone);
177         vm_map_init(&vm->vm_map, min, max);
178         pmap_pinit(vmspace_pmap(vm));
179         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
180         vm->vm_refcnt = 1;
181         vm->vm_shm = NULL;
182         vm->vm_exitingcnt = 0;
183         return (vm);
184 }
185
186 void
187 vm_init2(void) 
188 {
189         zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
191         vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192         pmap_init2();
193         vm_object_init2();
194 }
195
196 static __inline void
197 vmspace_dofree(struct vmspace *vm)
198 {
199         int count;
200
201         /*
202          * Make sure any SysV shm is freed, it might not have in
203          * exit1()
204          */
205         shmexit(vm);
206
207         KKASSERT(vm->vm_upcalls == NULL);
208
209         /*
210          * Lock the map, to wait out all other references to it.
211          * Delete all of the mappings and pages they hold, then call
212          * the pmap module to reclaim anything left.
213          */
214         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
215         vm_map_lock(&vm->vm_map);
216         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
217                 vm->vm_map.max_offset, &count);
218         vm_map_unlock(&vm->vm_map);
219         vm_map_entry_release(count);
220
221         pmap_release(vmspace_pmap(vm));
222         zfree(vmspace_zone, vm);
223 }
224
225 void
226 vmspace_free(struct vmspace *vm)
227 {
228         if (vm->vm_refcnt == 0)
229                 panic("vmspace_free: attempt to free already freed vmspace");
230
231         if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
232                 vmspace_dofree(vm);
233 }
234
235 void
236 vmspace_exitfree(struct proc *p)
237 {
238         struct vmspace *vm;
239
240         vm = p->p_vmspace;
241         p->p_vmspace = NULL;
242
243         /*
244          * cleanup by parent process wait()ing on exiting child.  vm_refcnt
245          * may not be 0 (e.g. fork() and child exits without exec()ing).
246          * exitingcnt may increment above 0 and drop back down to zero
247          * several times while vm_refcnt is held non-zero.  vm_refcnt
248          * may also increment above 0 and drop back down to zero several
249          * times while vm_exitingcnt is held non-zero.
250          *
251          * The last wait on the exiting child's vmspace will clean up
252          * the remainder of the vmspace.
253          */
254         if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
255                 vmspace_dofree(vm);
256 }
257
258 /*
259  * vmspace_swap_count() - count the approximate swap useage in pages for a
260  *                        vmspace.
261  *
262  *      Swap useage is determined by taking the proportional swap used by
263  *      VM objects backing the VM map.  To make up for fractional losses,
264  *      if the VM object has any swap use at all the associated map entries
265  *      count for at least 1 swap page.
266  */
267 int
268 vmspace_swap_count(struct vmspace *vmspace)
269 {
270         vm_map_t map = &vmspace->vm_map;
271         vm_map_entry_t cur;
272         int count = 0;
273
274         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
275                 vm_object_t object;
276
277                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
278                     (object = cur->object.vm_object) != NULL &&
279                     object->type == OBJT_SWAP
280                 ) {
281                         int n = (cur->end - cur->start) / PAGE_SIZE;
282
283                         if (object->un_pager.swp.swp_bcount) {
284                                 count += object->un_pager.swp.swp_bcount *
285                                     SWAP_META_PAGES * n / object->size + 1;
286                         }
287                 }
288         }
289         return(count);
290 }
291
292
293 /*
294  *      vm_map_create:
295  *
296  *      Creates and returns a new empty VM map with
297  *      the given physical map structure, and having
298  *      the given lower and upper address bounds.
299  */
300 vm_map_t
301 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
302 {
303         vm_map_t result;
304
305         result = zalloc(mapzone);
306         vm_map_init(result, min, max);
307         result->pmap = pmap;
308         return (result);
309 }
310
311 /*
312  * Initialize an existing vm_map structure
313  * such as that in the vmspace structure.
314  * The pmap is set elsewhere.
315  */
316 void
317 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
318 {
319         map->header.next = map->header.prev = &map->header;
320         map->nentries = 0;
321         map->size = 0;
322         map->system_map = 0;
323         map->infork = 0;
324         map->min_offset = min;
325         map->max_offset = max;
326         map->first_free = &map->header;
327         map->hint = &map->header;
328         map->timestamp = 0;
329         lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
330 }
331
332 /*
333  *      vm_map_entry_reserve:
334  *
335  *      Reserves vm_map_entry structures so code later on can manipulate
336  *      map_entry structures within a locked map without blocking trying
337  *      to allocate a new vm_map_entry.
338  */
339 int
340 vm_map_entry_reserve(int count)
341 {
342         struct globaldata *gd = mycpu;
343         vm_map_entry_t entry;
344
345         crit_enter();
346         gd->gd_vme_avail -= count;
347
348         /*
349          * Make sure we have enough structures in gd_vme_base to handle
350          * the reservation request.
351          */
352         while (gd->gd_vme_avail < 0) {
353                 entry = zalloc(mapentzone);
354                 entry->next = gd->gd_vme_base;
355                 gd->gd_vme_base = entry;
356                 ++gd->gd_vme_avail;
357         }
358         crit_exit();
359         return(count);
360 }
361
362 /*
363  *      vm_map_entry_release:
364  *
365  *      Releases previously reserved vm_map_entry structures that were not
366  *      used.  If we have too much junk in our per-cpu cache clean some of
367  *      it out.
368  */
369 void
370 vm_map_entry_release(int count)
371 {
372         struct globaldata *gd = mycpu;
373         vm_map_entry_t entry;
374
375         crit_enter();
376         gd->gd_vme_avail += count;
377         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
378                 entry = gd->gd_vme_base;
379                 KKASSERT(entry != NULL);
380                 gd->gd_vme_base = entry->next;
381                 --gd->gd_vme_avail;
382                 crit_exit();
383                 zfree(mapentzone, entry);
384                 crit_enter();
385         }
386         crit_exit();
387 }
388
389 /*
390  *      vm_map_entry_kreserve:
391  *
392  *      Reserve map entry structures for use in kernel_map or (if it exists)
393  *      kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
394  *      basis when the map was inited.  This function is used by zalloc()
395  *      to avoid a recursion when zalloc() itself needs to allocate additional
396  *      kernel memory.
397  *
398  *      This function should only be used when the caller intends to later
399  *      call vm_map_entry_reserve() to 'normalize' the reserve cache.
400  */
401 int
402 vm_map_entry_kreserve(int count)
403 {
404         struct globaldata *gd = mycpu;
405
406         crit_enter();
407         gd->gd_vme_kdeficit += count;
408         crit_exit();
409         KKASSERT(gd->gd_vme_base != NULL);
410         return(count);
411 }
412
413 /*
414  *      vm_map_entry_krelease:
415  *
416  *      Release previously reserved map entries for kernel_map or kmem_map
417  *      use.  This routine determines how many entries were actually used and
418  *      replentishes the kernel reserve supply from vme_avail.
419  *
420  *      If there is insufficient supply vme_avail will go negative, which is
421  *      ok.  We cannot safely call zalloc in this function without getting
422  *      into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
423  *      to regenerate the lost entries.
424  */
425 void
426 vm_map_entry_krelease(int count)
427 {
428         struct globaldata *gd = mycpu;
429
430         crit_enter();
431         gd->gd_vme_kdeficit -= count;
432         gd->gd_vme_avail -= gd->gd_vme_kdeficit;        /* can go negative */
433         gd->gd_vme_kdeficit = 0;
434         crit_exit();
435 }
436
437 /*
438  *      vm_map_entry_create:    [ internal use only ]
439  *
440  *      Allocates a VM map entry for insertion.  No entry fields are filled 
441  *      in.
442  *
443  *      This routine may be called from an interrupt thread but not a FAST
444  *      interrupt.  This routine may recurse the map lock.
445  */
446 static vm_map_entry_t
447 vm_map_entry_create(vm_map_t map, int *countp)
448 {
449         struct globaldata *gd = mycpu;
450         vm_map_entry_t entry;
451
452         KKASSERT(*countp > 0);
453         --*countp;
454         crit_enter();
455         entry = gd->gd_vme_base;
456         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
457         gd->gd_vme_base = entry->next;
458         crit_exit();
459         return(entry);
460 }
461
462 /*
463  *      vm_map_entry_dispose:   [ internal use only ]
464  *
465  *      Dispose of a vm_map_entry that is no longer being referenced.  This
466  *      function may be called from an interrupt.
467  */
468 static void
469 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
470 {
471         struct globaldata *gd = mycpu;
472
473         ++*countp;
474         crit_enter();
475         entry->next = gd->gd_vme_base;
476         gd->gd_vme_base = entry;
477         crit_exit();
478 }
479
480
481 /*
482  *      vm_map_entry_{un,}link:
483  *
484  *      Insert/remove entries from maps.
485  */
486 static __inline void
487 vm_map_entry_link(vm_map_t map,
488                   vm_map_entry_t after_where,
489                   vm_map_entry_t entry)
490 {
491         map->nentries++;
492         entry->prev = after_where;
493         entry->next = after_where->next;
494         entry->next->prev = entry;
495         after_where->next = entry;
496 }
497
498 static __inline void
499 vm_map_entry_unlink(vm_map_t map,
500                     vm_map_entry_t entry)
501 {
502         vm_map_entry_t prev;
503         vm_map_entry_t next;
504
505         if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
506                 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
507         prev = entry->prev;
508         next = entry->next;
509         next->prev = prev;
510         prev->next = next;
511         map->nentries--;
512 }
513
514 /*
515  *      SAVE_HINT:
516  *
517  *      Saves the specified entry as the hint for
518  *      future lookups.
519  */
520 #define SAVE_HINT(map,value) \
521                 (map)->hint = (value);
522
523 /*
524  *      vm_map_lookup_entry:    [ internal use only ]
525  *
526  *      Finds the map entry containing (or
527  *      immediately preceding) the specified address
528  *      in the given map; the entry is returned
529  *      in the "entry" parameter.  The boolean
530  *      result indicates whether the address is
531  *      actually contained in the map.
532  */
533 boolean_t
534 vm_map_lookup_entry(map, address, entry)
535         vm_map_t map;
536         vm_offset_t address;
537         vm_map_entry_t *entry;  /* OUT */
538 {
539         vm_map_entry_t cur;
540         vm_map_entry_t last;
541
542         /*
543          * Start looking either from the head of the list, or from the hint.
544          */
545
546         cur = map->hint;
547
548         if (cur == &map->header)
549                 cur = cur->next;
550
551         if (address >= cur->start) {
552                 /*
553                  * Go from hint to end of list.
554                  *
555                  * But first, make a quick check to see if we are already looking
556                  * at the entry we want (which is usually the case). Note also
557                  * that we don't need to save the hint here... it is the same
558                  * hint (unless we are at the header, in which case the hint
559                  * didn't buy us anything anyway).
560                  */
561                 last = &map->header;
562                 if ((cur != last) && (cur->end > address)) {
563                         *entry = cur;
564                         return (TRUE);
565                 }
566         } else {
567                 /*
568                  * Go from start to hint, *inclusively*
569                  */
570                 last = cur->next;
571                 cur = map->header.next;
572         }
573
574         /*
575          * Search linearly
576          */
577
578         while (cur != last) {
579                 if (cur->end > address) {
580                         if (address >= cur->start) {
581                                 /*
582                                  * Save this lookup for future hints, and
583                                  * return
584                                  */
585
586                                 *entry = cur;
587                                 SAVE_HINT(map, cur);
588                                 return (TRUE);
589                         }
590                         break;
591                 }
592                 cur = cur->next;
593         }
594         *entry = cur->prev;
595         SAVE_HINT(map, *entry);
596         return (FALSE);
597 }
598
599 /*
600  *      vm_map_insert:
601  *
602  *      Inserts the given whole VM object into the target
603  *      map at the specified address range.  The object's
604  *      size should match that of the address range.
605  *
606  *      Requires that the map be locked, and leaves it so.  Requires that
607  *      sufficient vm_map_entry structures have been reserved and tracks
608  *      the use via countp.
609  *
610  *      If object is non-NULL, ref count must be bumped by caller
611  *      prior to making call to account for the new entry.
612  */
613 int
614 vm_map_insert(vm_map_t map, int *countp,
615               vm_object_t object, vm_ooffset_t offset,
616               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
617               int cow)
618 {
619         vm_map_entry_t new_entry;
620         vm_map_entry_t prev_entry;
621         vm_map_entry_t temp_entry;
622         vm_eflags_t protoeflags;
623
624         /*
625          * Check that the start and end points are not bogus.
626          */
627
628         if ((start < map->min_offset) || (end > map->max_offset) ||
629             (start >= end))
630                 return (KERN_INVALID_ADDRESS);
631
632         /*
633          * Find the entry prior to the proposed starting address; if it's part
634          * of an existing entry, this range is bogus.
635          */
636
637         if (vm_map_lookup_entry(map, start, &temp_entry))
638                 return (KERN_NO_SPACE);
639
640         prev_entry = temp_entry;
641
642         /*
643          * Assert that the next entry doesn't overlap the end point.
644          */
645
646         if ((prev_entry->next != &map->header) &&
647             (prev_entry->next->start < end))
648                 return (KERN_NO_SPACE);
649
650         protoeflags = 0;
651
652         if (cow & MAP_COPY_ON_WRITE)
653                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
654
655         if (cow & MAP_NOFAULT) {
656                 protoeflags |= MAP_ENTRY_NOFAULT;
657
658                 KASSERT(object == NULL,
659                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
660         }
661         if (cow & MAP_DISABLE_SYNCER)
662                 protoeflags |= MAP_ENTRY_NOSYNC;
663         if (cow & MAP_DISABLE_COREDUMP)
664                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
665
666         if (object) {
667                 /*
668                  * When object is non-NULL, it could be shared with another
669                  * process.  We have to set or clear OBJ_ONEMAPPING 
670                  * appropriately.
671                  */
672                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
673                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
674                 }
675         }
676         else if ((prev_entry != &map->header) &&
677                  (prev_entry->eflags == protoeflags) &&
678                  (prev_entry->end == start) &&
679                  (prev_entry->wired_count == 0) &&
680                  ((prev_entry->object.vm_object == NULL) ||
681                   vm_object_coalesce(prev_entry->object.vm_object,
682                                      OFF_TO_IDX(prev_entry->offset),
683                                      (vm_size_t)(prev_entry->end - prev_entry->start),
684                                      (vm_size_t)(end - prev_entry->end)))) {
685                 /*
686                  * We were able to extend the object.  Determine if we
687                  * can extend the previous map entry to include the 
688                  * new range as well.
689                  */
690                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
691                     (prev_entry->protection == prot) &&
692                     (prev_entry->max_protection == max)) {
693                         map->size += (end - prev_entry->end);
694                         prev_entry->end = end;
695                         vm_map_simplify_entry(map, prev_entry, countp);
696                         return (KERN_SUCCESS);
697                 }
698
699                 /*
700                  * If we can extend the object but cannot extend the
701                  * map entry, we have to create a new map entry.  We
702                  * must bump the ref count on the extended object to
703                  * account for it.  object may be NULL.
704                  */
705                 object = prev_entry->object.vm_object;
706                 offset = prev_entry->offset +
707                         (prev_entry->end - prev_entry->start);
708                 vm_object_reference(object);
709         }
710
711         /*
712          * NOTE: if conditionals fail, object can be NULL here.  This occurs
713          * in things like the buffer map where we manage kva but do not manage
714          * backing objects.
715          */
716
717         /*
718          * Create a new entry
719          */
720
721         new_entry = vm_map_entry_create(map, countp);
722         new_entry->start = start;
723         new_entry->end = end;
724
725         new_entry->eflags = protoeflags;
726         new_entry->object.vm_object = object;
727         new_entry->offset = offset;
728         new_entry->avail_ssize = 0;
729
730         new_entry->inheritance = VM_INHERIT_DEFAULT;
731         new_entry->protection = prot;
732         new_entry->max_protection = max;
733         new_entry->wired_count = 0;
734
735         /*
736          * Insert the new entry into the list
737          */
738
739         vm_map_entry_link(map, prev_entry, new_entry);
740         map->size += new_entry->end - new_entry->start;
741
742         /*
743          * Update the free space hint
744          */
745         if ((map->first_free == prev_entry) &&
746             (prev_entry->end >= new_entry->start)) {
747                 map->first_free = new_entry;
748         }
749
750 #if 0
751         /*
752          * Temporarily removed to avoid MAP_STACK panic, due to
753          * MAP_STACK being a huge hack.  Will be added back in
754          * when MAP_STACK (and the user stack mapping) is fixed.
755          */
756         /*
757          * It may be possible to simplify the entry
758          */
759         vm_map_simplify_entry(map, new_entry, countp);
760 #endif
761
762         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
763                 pmap_object_init_pt(map->pmap, start,
764                                     object, OFF_TO_IDX(offset), end - start,
765                                     cow & MAP_PREFAULT_PARTIAL);
766         }
767
768         return (KERN_SUCCESS);
769 }
770
771 /*
772  * Find sufficient space for `length' bytes in the given map, starting at
773  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
774  *
775  * This function will returned an arbitrarily aligned pointer.  If no
776  * particular alignment is required you should pass align as 1.  Note that
777  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
778  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
779  * argument.
780  *
781  * 'align' should be a power of 2 but is not required to be.
782  */
783 int
784 vm_map_findspace(
785         vm_map_t map,
786         vm_offset_t start,
787         vm_size_t length,
788         vm_offset_t align,
789         vm_offset_t *addr)
790 {
791         vm_map_entry_t entry, next;
792         vm_offset_t end;
793         vm_offset_t align_mask;
794
795         if (start < map->min_offset)
796                 start = map->min_offset;
797         if (start > map->max_offset)
798                 return (1);
799
800         /*
801          * If the alignment is not a power of 2 we will have to use
802          * a mod/division, set align_mask to a special value.
803          */
804         if ((align | (align - 1)) + 1 != (align << 1))
805                 align_mask = (vm_offset_t)-1;
806         else
807                 align_mask = align - 1;
808
809 retry:
810         /*
811          * Look for the first possible address; if there's already something
812          * at this address, we have to start after it.
813          */
814         if (start == map->min_offset) {
815                 if ((entry = map->first_free) != &map->header)
816                         start = entry->end;
817         } else {
818                 vm_map_entry_t tmp;
819
820                 if (vm_map_lookup_entry(map, start, &tmp))
821                         start = tmp->end;
822                 entry = tmp;
823         }
824
825         /*
826          * Look through the rest of the map, trying to fit a new region in the
827          * gap between existing regions, or after the very last region.
828          */
829         for (;; start = (entry = next)->end) {
830                 /*
831                  * Adjust the proposed start by the requested alignment,
832                  * be sure that we didn't wrap the address.
833                  */
834                 if (align_mask == (vm_offset_t)-1)
835                         end = ((start + align - 1) / align) * align;
836                 else
837                         end = (start + align_mask) & ~align_mask;
838                 if (end < start)
839                         return (1);
840                 start = end;
841                 /*
842                  * Find the end of the proposed new region.  Be sure we didn't
843                  * go beyond the end of the map, or wrap around the address.
844                  * Then check to see if this is the last entry or if the 
845                  * proposed end fits in the gap between this and the next
846                  * entry.
847                  */
848                 end = start + length;
849                 if (end > map->max_offset || end < start)
850                         return (1);
851                 next = entry->next;
852                 if (next == &map->header || next->start >= end)
853                         break;
854         }
855         SAVE_HINT(map, entry);
856         if (map == kernel_map) {
857                 vm_offset_t ksize;
858                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
859                         pmap_growkernel(ksize);
860                         goto retry;
861                 }
862         }
863         *addr = start;
864         return (0);
865 }
866
867 /*
868  *      vm_map_find finds an unallocated region in the target address
869  *      map with the given length.  The search is defined to be
870  *      first-fit from the specified address; the region found is
871  *      returned in the same parameter.
872  *
873  *      If object is non-NULL, ref count must be bumped by caller
874  *      prior to making call to account for the new entry.
875  */
876 int
877 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
878             vm_offset_t *addr,  /* IN/OUT */
879             vm_size_t length, boolean_t find_space, vm_prot_t prot,
880             vm_prot_t max, int cow)
881 {
882         vm_offset_t start;
883         int result;
884         int count;
885
886         start = *addr;
887
888         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
889         vm_map_lock(map);
890         if (find_space) {
891                 if (vm_map_findspace(map, start, length, 1, addr)) {
892                         vm_map_unlock(map);
893                         vm_map_entry_release(count);
894                         return (KERN_NO_SPACE);
895                 }
896                 start = *addr;
897         }
898         result = vm_map_insert(map, &count, object, offset,
899                 start, start + length, prot, max, cow);
900         vm_map_unlock(map);
901         vm_map_entry_release(count);
902
903         return (result);
904 }
905
906 /*
907  *      vm_map_simplify_entry:
908  *
909  *      Simplify the given map entry by merging with either neighbor.  This
910  *      routine also has the ability to merge with both neighbors.
911  *
912  *      The map must be locked.
913  *
914  *      This routine guarentees that the passed entry remains valid (though
915  *      possibly extended).  When merging, this routine may delete one or
916  *      both neighbors.  No action is taken on entries which have their
917  *      in-transition flag set.
918  */
919 void
920 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
921 {
922         vm_map_entry_t next, prev;
923         vm_size_t prevsize, esize;
924
925         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
926                 ++mycpu->gd_cnt.v_intrans_coll;
927                 return;
928         }
929
930         prev = entry->prev;
931         if (prev != &map->header) {
932                 prevsize = prev->end - prev->start;
933                 if ( (prev->end == entry->start) &&
934                      (prev->object.vm_object == entry->object.vm_object) &&
935                      (!prev->object.vm_object ||
936                         (prev->offset + prevsize == entry->offset)) &&
937                      (prev->eflags == entry->eflags) &&
938                      (prev->protection == entry->protection) &&
939                      (prev->max_protection == entry->max_protection) &&
940                      (prev->inheritance == entry->inheritance) &&
941                      (prev->wired_count == entry->wired_count)) {
942                         if (map->first_free == prev)
943                                 map->first_free = entry;
944                         if (map->hint == prev)
945                                 map->hint = entry;
946                         vm_map_entry_unlink(map, prev);
947                         entry->start = prev->start;
948                         entry->offset = prev->offset;
949                         if (prev->object.vm_object)
950                                 vm_object_deallocate(prev->object.vm_object);
951                         vm_map_entry_dispose(map, prev, countp);
952                 }
953         }
954
955         next = entry->next;
956         if (next != &map->header) {
957                 esize = entry->end - entry->start;
958                 if ((entry->end == next->start) &&
959                     (next->object.vm_object == entry->object.vm_object) &&
960                      (!entry->object.vm_object ||
961                         (entry->offset + esize == next->offset)) &&
962                     (next->eflags == entry->eflags) &&
963                     (next->protection == entry->protection) &&
964                     (next->max_protection == entry->max_protection) &&
965                     (next->inheritance == entry->inheritance) &&
966                     (next->wired_count == entry->wired_count)) {
967                         if (map->first_free == next)
968                                 map->first_free = entry;
969                         if (map->hint == next)
970                                 map->hint = entry;
971                         vm_map_entry_unlink(map, next);
972                         entry->end = next->end;
973                         if (next->object.vm_object)
974                                 vm_object_deallocate(next->object.vm_object);
975                         vm_map_entry_dispose(map, next, countp);
976                 }
977         }
978 }
979 /*
980  *      vm_map_clip_start:      [ internal use only ]
981  *
982  *      Asserts that the given entry begins at or after
983  *      the specified address; if necessary,
984  *      it splits the entry into two.
985  */
986 #define vm_map_clip_start(map, entry, startaddr, countp) \
987 { \
988         if (startaddr > entry->start) \
989                 _vm_map_clip_start(map, entry, startaddr, countp); \
990 }
991
992 /*
993  *      This routine is called only when it is known that
994  *      the entry must be split.
995  */
996 static void
997 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
998 {
999         vm_map_entry_t new_entry;
1000
1001         /*
1002          * Split off the front portion -- note that we must insert the new
1003          * entry BEFORE this one, so that this entry has the specified
1004          * starting address.
1005          */
1006
1007         vm_map_simplify_entry(map, entry, countp);
1008
1009         /*
1010          * If there is no object backing this entry, we might as well create
1011          * one now.  If we defer it, an object can get created after the map
1012          * is clipped, and individual objects will be created for the split-up
1013          * map.  This is a bit of a hack, but is also about the best place to
1014          * put this improvement.
1015          */
1016
1017         if (entry->object.vm_object == NULL && !map->system_map) {
1018                 vm_object_t object;
1019                 object = vm_object_allocate(OBJT_DEFAULT,
1020                                 atop(entry->end - entry->start));
1021                 entry->object.vm_object = object;
1022                 entry->offset = 0;
1023         }
1024
1025         new_entry = vm_map_entry_create(map, countp);
1026         *new_entry = *entry;
1027
1028         new_entry->end = start;
1029         entry->offset += (start - entry->start);
1030         entry->start = start;
1031
1032         vm_map_entry_link(map, entry->prev, new_entry);
1033
1034         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1035                 vm_object_reference(new_entry->object.vm_object);
1036         }
1037 }
1038
1039 /*
1040  *      vm_map_clip_end:        [ internal use only ]
1041  *
1042  *      Asserts that the given entry ends at or before
1043  *      the specified address; if necessary,
1044  *      it splits the entry into two.
1045  */
1046
1047 #define vm_map_clip_end(map, entry, endaddr, countp) \
1048 { \
1049         if (endaddr < entry->end) \
1050                 _vm_map_clip_end(map, entry, endaddr, countp); \
1051 }
1052
1053 /*
1054  *      This routine is called only when it is known that
1055  *      the entry must be split.
1056  */
1057 static void
1058 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1059 {
1060         vm_map_entry_t new_entry;
1061
1062         /*
1063          * If there is no object backing this entry, we might as well create
1064          * one now.  If we defer it, an object can get created after the map
1065          * is clipped, and individual objects will be created for the split-up
1066          * map.  This is a bit of a hack, but is also about the best place to
1067          * put this improvement.
1068          */
1069
1070         if (entry->object.vm_object == NULL && !map->system_map) {
1071                 vm_object_t object;
1072                 object = vm_object_allocate(OBJT_DEFAULT,
1073                                 atop(entry->end - entry->start));
1074                 entry->object.vm_object = object;
1075                 entry->offset = 0;
1076         }
1077
1078         /*
1079          * Create a new entry and insert it AFTER the specified entry
1080          */
1081
1082         new_entry = vm_map_entry_create(map, countp);
1083         *new_entry = *entry;
1084
1085         new_entry->start = entry->end = end;
1086         new_entry->offset += (end - entry->start);
1087
1088         vm_map_entry_link(map, entry, new_entry);
1089
1090         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1091                 vm_object_reference(new_entry->object.vm_object);
1092         }
1093 }
1094
1095 /*
1096  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1097  *
1098  *      Asserts that the starting and ending region
1099  *      addresses fall within the valid range of the map.
1100  */
1101 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1102                 {                                       \
1103                 if (start < vm_map_min(map))            \
1104                         start = vm_map_min(map);        \
1105                 if (end > vm_map_max(map))              \
1106                         end = vm_map_max(map);          \
1107                 if (start > end)                        \
1108                         start = end;                    \
1109                 }
1110
1111 /*
1112  *      vm_map_transition_wait: [ kernel use only ]
1113  *
1114  *      Used to block when an in-transition collison occurs.  The map
1115  *      is unlocked for the sleep and relocked before the return.
1116  */
1117 static
1118 void
1119 vm_map_transition_wait(vm_map_t map)
1120 {
1121         vm_map_unlock(map);
1122         tsleep(map, 0, "vment", 0);
1123         vm_map_lock(map);
1124 }
1125
1126 /*
1127  * CLIP_CHECK_BACK
1128  * CLIP_CHECK_FWD
1129  *
1130  *      When we do blocking operations with the map lock held it is
1131  *      possible that a clip might have occured on our in-transit entry,
1132  *      requiring an adjustment to the entry in our loop.  These macros
1133  *      help the pageable and clip_range code deal with the case.  The
1134  *      conditional costs virtually nothing if no clipping has occured.
1135  */
1136
1137 #define CLIP_CHECK_BACK(entry, save_start)              \
1138     do {                                                \
1139             while (entry->start != save_start) {        \
1140                     entry = entry->prev;                \
1141                     KASSERT(entry != &map->header, ("bad entry clip")); \
1142             }                                           \
1143     } while(0)
1144
1145 #define CLIP_CHECK_FWD(entry, save_end)                 \
1146     do {                                                \
1147             while (entry->end != save_end) {            \
1148                     entry = entry->next;                \
1149                     KASSERT(entry != &map->header, ("bad entry clip")); \
1150             }                                           \
1151     } while(0)
1152
1153
1154 /*
1155  *      vm_map_clip_range:      [ kernel use only ]
1156  *
1157  *      Clip the specified range and return the base entry.  The
1158  *      range may cover several entries starting at the returned base
1159  *      and the first and last entry in the covering sequence will be
1160  *      properly clipped to the requested start and end address.
1161  *
1162  *      If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1163  *      flag.  
1164  *
1165  *      The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1166  *      covered by the requested range.
1167  *
1168  *      The map must be exclusively locked on entry and will remain locked
1169  *      on return. If no range exists or the range contains holes and you
1170  *      specified that no holes were allowed, NULL will be returned.  This
1171  *      routine may temporarily unlock the map in order avoid a deadlock when
1172  *      sleeping.
1173  */
1174 static
1175 vm_map_entry_t
1176 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1177         int *countp, int flags)
1178 {
1179         vm_map_entry_t start_entry;
1180         vm_map_entry_t entry;
1181
1182         /*
1183          * Locate the entry and effect initial clipping.  The in-transition
1184          * case does not occur very often so do not try to optimize it.
1185          */
1186 again:
1187         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1188                 return (NULL);
1189         entry = start_entry;
1190         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1191                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1192                 ++mycpu->gd_cnt.v_intrans_coll;
1193                 ++mycpu->gd_cnt.v_intrans_wait;
1194                 vm_map_transition_wait(map);
1195                 /*
1196                  * entry and/or start_entry may have been clipped while
1197                  * we slept, or may have gone away entirely.  We have
1198                  * to restart from the lookup.
1199                  */
1200                 goto again;
1201         }
1202         /*
1203          * Since we hold an exclusive map lock we do not have to restart
1204          * after clipping, even though clipping may block in zalloc.
1205          */
1206         vm_map_clip_start(map, entry, start, countp);
1207         vm_map_clip_end(map, entry, end, countp);
1208         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1209
1210         /*
1211          * Scan entries covered by the range.  When working on the next
1212          * entry a restart need only re-loop on the current entry which
1213          * we have already locked, since 'next' may have changed.  Also,
1214          * even though entry is safe, it may have been clipped so we
1215          * have to iterate forwards through the clip after sleeping.
1216          */
1217         while (entry->next != &map->header && entry->next->start < end) {
1218                 vm_map_entry_t next = entry->next;
1219
1220                 if (flags & MAP_CLIP_NO_HOLES) {
1221                         if (next->start > entry->end) {
1222                                 vm_map_unclip_range(map, start_entry,
1223                                         start, entry->end, countp, flags);
1224                                 return(NULL);
1225                         }
1226                 }
1227
1228                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1229                         vm_offset_t save_end = entry->end;
1230                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1231                         ++mycpu->gd_cnt.v_intrans_coll;
1232                         ++mycpu->gd_cnt.v_intrans_wait;
1233                         vm_map_transition_wait(map);
1234
1235                         /*
1236                          * clips might have occured while we blocked.
1237                          */
1238                         CLIP_CHECK_FWD(entry, save_end);
1239                         CLIP_CHECK_BACK(start_entry, start);
1240                         continue;
1241                 }
1242                 /*
1243                  * No restart necessary even though clip_end may block, we
1244                  * are holding the map lock.
1245                  */
1246                 vm_map_clip_end(map, next, end, countp);
1247                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1248                 entry = next;
1249         }
1250         if (flags & MAP_CLIP_NO_HOLES) {
1251                 if (entry->end != end) {
1252                         vm_map_unclip_range(map, start_entry,
1253                                 start, entry->end, countp, flags);
1254                         return(NULL);
1255                 }
1256         }
1257         return(start_entry);
1258 }
1259
1260 /*
1261  *      vm_map_unclip_range:    [ kernel use only ]
1262  *
1263  *      Undo the effect of vm_map_clip_range().  You should pass the same
1264  *      flags and the same range that you passed to vm_map_clip_range().
1265  *      This code will clear the in-transition flag on the entries and
1266  *      wake up anyone waiting.  This code will also simplify the sequence 
1267  *      and attempt to merge it with entries before and after the sequence.
1268  *
1269  *      The map must be locked on entry and will remain locked on return.
1270  *
1271  *      Note that you should also pass the start_entry returned by 
1272  *      vm_map_clip_range().  However, if you block between the two calls
1273  *      with the map unlocked please be aware that the start_entry may
1274  *      have been clipped and you may need to scan it backwards to find
1275  *      the entry corresponding with the original start address.  You are
1276  *      responsible for this, vm_map_unclip_range() expects the correct
1277  *      start_entry to be passed to it and will KASSERT otherwise.
1278  */
1279 static
1280 void
1281 vm_map_unclip_range(
1282         vm_map_t map,
1283         vm_map_entry_t start_entry,
1284         vm_offset_t start,
1285         vm_offset_t end,
1286         int *countp,
1287         int flags)
1288 {
1289         vm_map_entry_t entry;
1290
1291         entry = start_entry;
1292
1293         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1294         while (entry != &map->header && entry->start < end) {
1295                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1296                 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1297                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1298                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1299                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1300                         wakeup(map);
1301                 }
1302                 entry = entry->next;
1303         }
1304
1305         /*
1306          * Simplification does not block so there is no restart case.
1307          */
1308         entry = start_entry;
1309         while (entry != &map->header && entry->start < end) {
1310                 vm_map_simplify_entry(map, entry, countp);
1311                 entry = entry->next;
1312         }
1313 }
1314
1315 /*
1316  *      vm_map_submap:          [ kernel use only ]
1317  *
1318  *      Mark the given range as handled by a subordinate map.
1319  *
1320  *      This range must have been created with vm_map_find,
1321  *      and no other operations may have been performed on this
1322  *      range prior to calling vm_map_submap.
1323  *
1324  *      Only a limited number of operations can be performed
1325  *      within this rage after calling vm_map_submap:
1326  *              vm_fault
1327  *      [Don't try vm_map_copy!]
1328  *
1329  *      To remove a submapping, one must first remove the
1330  *      range from the superior map, and then destroy the
1331  *      submap (if desired).  [Better yet, don't try it.]
1332  */
1333 int
1334 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1335 {
1336         vm_map_entry_t entry;
1337         int result = KERN_INVALID_ARGUMENT;
1338         int count;
1339
1340         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1341         vm_map_lock(map);
1342
1343         VM_MAP_RANGE_CHECK(map, start, end);
1344
1345         if (vm_map_lookup_entry(map, start, &entry)) {
1346                 vm_map_clip_start(map, entry, start, &count);
1347         } else {
1348                 entry = entry->next;
1349         }
1350
1351         vm_map_clip_end(map, entry, end, &count);
1352
1353         if ((entry->start == start) && (entry->end == end) &&
1354             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1355             (entry->object.vm_object == NULL)) {
1356                 entry->object.sub_map = submap;
1357                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1358                 result = KERN_SUCCESS;
1359         }
1360         vm_map_unlock(map);
1361         vm_map_entry_release(count);
1362
1363         return (result);
1364 }
1365
1366 /*
1367  *      vm_map_protect:
1368  *
1369  *      Sets the protection of the specified address
1370  *      region in the target map.  If "set_max" is
1371  *      specified, the maximum protection is to be set;
1372  *      otherwise, only the current protection is affected.
1373  */
1374 int
1375 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1376                vm_prot_t new_prot, boolean_t set_max)
1377 {
1378         vm_map_entry_t current;
1379         vm_map_entry_t entry;
1380         int count;
1381
1382         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1383         vm_map_lock(map);
1384
1385         VM_MAP_RANGE_CHECK(map, start, end);
1386
1387         if (vm_map_lookup_entry(map, start, &entry)) {
1388                 vm_map_clip_start(map, entry, start, &count);
1389         } else {
1390                 entry = entry->next;
1391         }
1392
1393         /*
1394          * Make a first pass to check for protection violations.
1395          */
1396
1397         current = entry;
1398         while ((current != &map->header) && (current->start < end)) {
1399                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1400                         vm_map_unlock(map);
1401                         vm_map_entry_release(count);
1402                         return (KERN_INVALID_ARGUMENT);
1403                 }
1404                 if ((new_prot & current->max_protection) != new_prot) {
1405                         vm_map_unlock(map);
1406                         vm_map_entry_release(count);
1407                         return (KERN_PROTECTION_FAILURE);
1408                 }
1409                 current = current->next;
1410         }
1411
1412         /*
1413          * Go back and fix up protections. [Note that clipping is not
1414          * necessary the second time.]
1415          */
1416         current = entry;
1417
1418         while ((current != &map->header) && (current->start < end)) {
1419                 vm_prot_t old_prot;
1420
1421                 vm_map_clip_end(map, current, end, &count);
1422
1423                 old_prot = current->protection;
1424                 if (set_max)
1425                         current->protection =
1426                             (current->max_protection = new_prot) &
1427                             old_prot;
1428                 else
1429                         current->protection = new_prot;
1430
1431                 /*
1432                  * Update physical map if necessary. Worry about copy-on-write
1433                  * here -- CHECK THIS XXX
1434                  */
1435
1436                 if (current->protection != old_prot) {
1437 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1438                                                         VM_PROT_ALL)
1439
1440                         pmap_protect(map->pmap, current->start,
1441                             current->end,
1442                             current->protection & MASK(current));
1443 #undef  MASK
1444                 }
1445
1446                 vm_map_simplify_entry(map, current, &count);
1447
1448                 current = current->next;
1449         }
1450
1451         vm_map_unlock(map);
1452         vm_map_entry_release(count);
1453         return (KERN_SUCCESS);
1454 }
1455
1456 /*
1457  *      vm_map_madvise:
1458  *
1459  *      This routine traverses a processes map handling the madvise
1460  *      system call.  Advisories are classified as either those effecting
1461  *      the vm_map_entry structure, or those effecting the underlying 
1462  *      objects.
1463  */
1464
1465 int
1466 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1467 {
1468         vm_map_entry_t current, entry;
1469         int modify_map = 0;
1470         int count;
1471
1472         /*
1473          * Some madvise calls directly modify the vm_map_entry, in which case
1474          * we need to use an exclusive lock on the map and we need to perform 
1475          * various clipping operations.  Otherwise we only need a read-lock
1476          * on the map.
1477          */
1478
1479         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1480
1481         switch(behav) {
1482         case MADV_NORMAL:
1483         case MADV_SEQUENTIAL:
1484         case MADV_RANDOM:
1485         case MADV_NOSYNC:
1486         case MADV_AUTOSYNC:
1487         case MADV_NOCORE:
1488         case MADV_CORE:
1489                 modify_map = 1;
1490                 vm_map_lock(map);
1491                 break;
1492         case MADV_WILLNEED:
1493         case MADV_DONTNEED:
1494         case MADV_FREE:
1495                 vm_map_lock_read(map);
1496                 break;
1497         default:
1498                 vm_map_entry_release(count);
1499                 return (KERN_INVALID_ARGUMENT);
1500         }
1501
1502         /*
1503          * Locate starting entry and clip if necessary.
1504          */
1505
1506         VM_MAP_RANGE_CHECK(map, start, end);
1507
1508         if (vm_map_lookup_entry(map, start, &entry)) {
1509                 if (modify_map)
1510                         vm_map_clip_start(map, entry, start, &count);
1511         } else {
1512                 entry = entry->next;
1513         }
1514
1515         if (modify_map) {
1516                 /*
1517                  * madvise behaviors that are implemented in the vm_map_entry.
1518                  *
1519                  * We clip the vm_map_entry so that behavioral changes are
1520                  * limited to the specified address range.
1521                  */
1522                 for (current = entry;
1523                      (current != &map->header) && (current->start < end);
1524                      current = current->next
1525                 ) {
1526                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1527                                 continue;
1528
1529                         vm_map_clip_end(map, current, end, &count);
1530
1531                         switch (behav) {
1532                         case MADV_NORMAL:
1533                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1534                                 break;
1535                         case MADV_SEQUENTIAL:
1536                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1537                                 break;
1538                         case MADV_RANDOM:
1539                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1540                                 break;
1541                         case MADV_NOSYNC:
1542                                 current->eflags |= MAP_ENTRY_NOSYNC;
1543                                 break;
1544                         case MADV_AUTOSYNC:
1545                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1546                                 break;
1547                         case MADV_NOCORE:
1548                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1549                                 break;
1550                         case MADV_CORE:
1551                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1552                                 break;
1553                         default:
1554                                 break;
1555                         }
1556                         vm_map_simplify_entry(map, current, &count);
1557                 }
1558                 vm_map_unlock(map);
1559         } else {
1560                 vm_pindex_t pindex;
1561                 int count;
1562
1563                 /*
1564                  * madvise behaviors that are implemented in the underlying
1565                  * vm_object.
1566                  *
1567                  * Since we don't clip the vm_map_entry, we have to clip
1568                  * the vm_object pindex and count.
1569                  */
1570                 for (current = entry;
1571                      (current != &map->header) && (current->start < end);
1572                      current = current->next
1573                 ) {
1574                         vm_offset_t useStart;
1575
1576                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1577                                 continue;
1578
1579                         pindex = OFF_TO_IDX(current->offset);
1580                         count = atop(current->end - current->start);
1581                         useStart = current->start;
1582
1583                         if (current->start < start) {
1584                                 pindex += atop(start - current->start);
1585                                 count -= atop(start - current->start);
1586                                 useStart = start;
1587                         }
1588                         if (current->end > end)
1589                                 count -= atop(current->end - end);
1590
1591                         if (count <= 0)
1592                                 continue;
1593
1594                         vm_object_madvise(current->object.vm_object,
1595                                           pindex, count, behav);
1596                         if (behav == MADV_WILLNEED) {
1597                                 pmap_object_init_pt(
1598                                     map->pmap, 
1599                                     useStart,
1600                                     current->object.vm_object,
1601                                     pindex, 
1602                                     (count << PAGE_SHIFT),
1603                                     MAP_PREFAULT_MADVISE
1604                                 );
1605                         }
1606                 }
1607                 vm_map_unlock_read(map);
1608         }
1609         vm_map_entry_release(count);
1610         return(0);
1611 }       
1612
1613
1614 /*
1615  *      vm_map_inherit:
1616  *
1617  *      Sets the inheritance of the specified address
1618  *      range in the target map.  Inheritance
1619  *      affects how the map will be shared with
1620  *      child maps at the time of vm_map_fork.
1621  */
1622 int
1623 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1624                vm_inherit_t new_inheritance)
1625 {
1626         vm_map_entry_t entry;
1627         vm_map_entry_t temp_entry;
1628         int count;
1629
1630         switch (new_inheritance) {
1631         case VM_INHERIT_NONE:
1632         case VM_INHERIT_COPY:
1633         case VM_INHERIT_SHARE:
1634                 break;
1635         default:
1636                 return (KERN_INVALID_ARGUMENT);
1637         }
1638
1639         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1640         vm_map_lock(map);
1641
1642         VM_MAP_RANGE_CHECK(map, start, end);
1643
1644         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1645                 entry = temp_entry;
1646                 vm_map_clip_start(map, entry, start, &count);
1647         } else
1648                 entry = temp_entry->next;
1649
1650         while ((entry != &map->header) && (entry->start < end)) {
1651                 vm_map_clip_end(map, entry, end, &count);
1652
1653                 entry->inheritance = new_inheritance;
1654
1655                 vm_map_simplify_entry(map, entry, &count);
1656
1657                 entry = entry->next;
1658         }
1659         vm_map_unlock(map);
1660         vm_map_entry_release(count);
1661         return (KERN_SUCCESS);
1662 }
1663
1664 /*
1665  * Implement the semantics of mlock
1666  */
1667 int
1668 vm_map_unwire(map, start, real_end, new_pageable)
1669         vm_map_t map;
1670         vm_offset_t start;
1671         vm_offset_t real_end;
1672         boolean_t new_pageable;
1673 {
1674         vm_map_entry_t entry;
1675         vm_map_entry_t start_entry;
1676         vm_offset_t end;
1677         int rv = KERN_SUCCESS;
1678         int count;
1679
1680         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1681         vm_map_lock(map);
1682         VM_MAP_RANGE_CHECK(map, start, real_end);
1683         end = real_end;
1684
1685         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1686         if (start_entry == NULL) {
1687                 vm_map_unlock(map);
1688                 vm_map_entry_release(count);
1689                 return (KERN_INVALID_ADDRESS);
1690         }
1691
1692         if (new_pageable == 0) {
1693                 entry = start_entry;
1694                 while ((entry != &map->header) && (entry->start < end)) {
1695                         vm_offset_t save_start;
1696                         vm_offset_t save_end;
1697
1698                         /*
1699                          * Already user wired or hard wired (trivial cases)
1700                          */
1701                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1702                                 entry = entry->next;
1703                                 continue;
1704                         }
1705                         if (entry->wired_count != 0) {
1706                                 entry->wired_count++;
1707                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
1708                                 entry = entry->next;
1709                                 continue;
1710                         }
1711
1712                         /*
1713                          * A new wiring requires instantiation of appropriate
1714                          * management structures and the faulting in of the
1715                          * page.
1716                          */
1717                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1718                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1719                                 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1720
1721                                         vm_object_shadow(&entry->object.vm_object,
1722                                             &entry->offset,
1723                                             atop(entry->end - entry->start));
1724                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1725
1726                                 } else if (entry->object.vm_object == NULL &&
1727                                            !map->system_map) {
1728
1729                                         entry->object.vm_object =
1730                                             vm_object_allocate(OBJT_DEFAULT,
1731                                                 atop(entry->end - entry->start));
1732                                         entry->offset = (vm_offset_t) 0;
1733
1734                                 }
1735                         }
1736                         entry->wired_count++;
1737                         entry->eflags |= MAP_ENTRY_USER_WIRED;
1738
1739                         /*
1740                          * Now fault in the area.  The map lock needs to be
1741                          * manipulated to avoid deadlocks.  The in-transition
1742                          * flag protects the entries. 
1743                          */
1744                         save_start = entry->start;
1745                         save_end = entry->end;
1746                         vm_map_unlock(map);
1747                         map->timestamp++;
1748                         rv = vm_fault_user_wire(map, save_start, save_end);
1749                         vm_map_lock(map);
1750                         if (rv) {
1751                                 CLIP_CHECK_BACK(entry, save_start);
1752                                 for (;;) {
1753                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1754                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1755                                         entry->wired_count = 0;
1756                                         if (entry->end == save_end)
1757                                                 break;
1758                                         entry = entry->next;
1759                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1760                                 }
1761                                 end = save_start;       /* unwire the rest */
1762                                 break;
1763                         }
1764                         /*
1765                          * note that even though the entry might have been
1766                          * clipped, the USER_WIRED flag we set prevents
1767                          * duplication so we do not have to do a 
1768                          * clip check.
1769                          */
1770                         entry = entry->next;
1771                 }
1772
1773                 /*
1774                  * If we failed fall through to the unwiring section to
1775                  * unwire what we had wired so far.  'end' has already
1776                  * been adjusted.
1777                  */
1778                 if (rv)
1779                         new_pageable = 1;
1780
1781                 /*
1782                  * start_entry might have been clipped if we unlocked the
1783                  * map and blocked.  No matter how clipped it has gotten
1784                  * there should be a fragment that is on our start boundary.
1785                  */
1786                 CLIP_CHECK_BACK(start_entry, start);
1787         }
1788
1789         /*
1790          * Deal with the unwiring case.
1791          */
1792         if (new_pageable) {
1793                 /*
1794                  * This is the unwiring case.  We must first ensure that the
1795                  * range to be unwired is really wired down.  We know there
1796                  * are no holes.
1797                  */
1798                 entry = start_entry;
1799                 while ((entry != &map->header) && (entry->start < end)) {
1800                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1801                                 rv = KERN_INVALID_ARGUMENT;
1802                                 goto done;
1803                         }
1804                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1805                         entry = entry->next;
1806                 }
1807
1808                 /*
1809                  * Now decrement the wiring count for each region. If a region
1810                  * becomes completely unwired, unwire its physical pages and
1811                  * mappings.
1812                  */
1813                 /*
1814                  * The map entries are processed in a loop, checking to
1815                  * make sure the entry is wired and asserting it has a wired
1816                  * count. However, another loop was inserted more-or-less in
1817                  * the middle of the unwiring path. This loop picks up the
1818                  * "entry" loop variable from the first loop without first
1819                  * setting it to start_entry. Naturally, the secound loop
1820                  * is never entered and the pages backing the entries are
1821                  * never unwired. This can lead to a leak of wired pages.
1822                  */
1823                 entry = start_entry;
1824                 while ((entry != &map->header) && (entry->start < end)) {
1825                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1826                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1827                         entry->wired_count--;
1828                         if (entry->wired_count == 0)
1829                                 vm_fault_unwire(map, entry->start, entry->end);
1830                         entry = entry->next;
1831                 }
1832         }
1833 done:
1834         vm_map_unclip_range(map, start_entry, start, real_end, &count,
1835                 MAP_CLIP_NO_HOLES);
1836         map->timestamp++;
1837         vm_map_unlock(map);
1838         vm_map_entry_release(count);
1839         return (rv);
1840 }
1841
1842 /*
1843  *      vm_map_wire:
1844  *
1845  *      Sets the pageability of the specified address
1846  *      range in the target map.  Regions specified
1847  *      as not pageable require locked-down physical
1848  *      memory and physical page maps.
1849  *
1850  *      The map must not be locked, but a reference
1851  *      must remain to the map throughout the call.
1852  *
1853  *      This function may be called via the zalloc path and must properly
1854  *      reserve map entries for kernel_map.
1855  */
1856 int
1857 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1858 {
1859         vm_map_entry_t entry;
1860         vm_map_entry_t start_entry;
1861         vm_offset_t end;
1862         int rv = KERN_SUCCESS;
1863         int count;
1864         int s;
1865
1866         if (kmflags & KM_KRESERVE)
1867                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1868         else
1869                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1870         vm_map_lock(map);
1871         VM_MAP_RANGE_CHECK(map, start, real_end);
1872         end = real_end;
1873
1874         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1875         if (start_entry == NULL) {
1876                 vm_map_unlock(map);
1877                 rv = KERN_INVALID_ADDRESS;
1878                 goto failure;
1879         }
1880         if ((kmflags & KM_PAGEABLE) == 0) {
1881                 /*
1882                  * Wiring.  
1883                  *
1884                  * 1.  Holding the write lock, we create any shadow or zero-fill
1885                  * objects that need to be created. Then we clip each map
1886                  * entry to the region to be wired and increment its wiring
1887                  * count.  We create objects before clipping the map entries
1888                  * to avoid object proliferation.
1889                  *
1890                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
1891                  * fault in the pages for any newly wired area (wired_count is
1892                  * 1).
1893                  *
1894                  * Downgrading to a read lock for vm_fault_wire avoids a 
1895                  * possible deadlock with another process that may have faulted
1896                  * on one of the pages to be wired (it would mark the page busy,
1897                  * blocking us, then in turn block on the map lock that we
1898                  * hold).  Because of problems in the recursive lock package,
1899                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1900                  * any actions that require the write lock must be done
1901                  * beforehand.  Because we keep the read lock on the map, the
1902                  * copy-on-write status of the entries we modify here cannot
1903                  * change.
1904                  */
1905
1906                 entry = start_entry;
1907                 while ((entry != &map->header) && (entry->start < end)) {
1908                         /*
1909                          * Trivial case if the entry is already wired
1910                          */
1911                         if (entry->wired_count) {
1912                                 entry->wired_count++;
1913                                 entry = entry->next;
1914                                 continue;
1915                         }
1916
1917                         /*
1918                          * The entry is being newly wired, we have to setup
1919                          * appropriate management structures.  A shadow 
1920                          * object is required for a copy-on-write region,
1921                          * or a normal object for a zero-fill region.  We
1922                          * do not have to do this for entries that point to sub
1923                          * maps because we won't hold the lock on the sub map.
1924                          */
1925                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1926                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1927                                 if (copyflag &&
1928                                     ((entry->protection & VM_PROT_WRITE) != 0)) {
1929
1930                                         vm_object_shadow(&entry->object.vm_object,
1931                                             &entry->offset,
1932                                             atop(entry->end - entry->start));
1933                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1934                                 } else if (entry->object.vm_object == NULL &&
1935                                            !map->system_map) {
1936                                         entry->object.vm_object =
1937                                             vm_object_allocate(OBJT_DEFAULT,
1938                                                 atop(entry->end - entry->start));
1939                                         entry->offset = (vm_offset_t) 0;
1940                                 }
1941                         }
1942
1943                         entry->wired_count++;
1944                         entry = entry->next;
1945                 }
1946
1947                 /*
1948                  * Pass 2.
1949                  */
1950
1951                 /*
1952                  * HACK HACK HACK HACK
1953                  *
1954                  * Unlock the map to avoid deadlocks.  The in-transit flag
1955                  * protects us from most changes but note that
1956                  * clipping may still occur.  To prevent clipping from
1957                  * occuring after the unlock, except for when we are
1958                  * blocking in vm_fault_wire, we must run at splvm().
1959                  * Otherwise our accesses to entry->start and entry->end
1960                  * could be corrupted.  We have to set splvm() prior to
1961                  * unlocking so start_entry does not change out from
1962                  * under us at the very beginning of the loop.
1963                  *
1964                  * HACK HACK HACK HACK
1965                  */
1966
1967                 s = splvm();
1968                 vm_map_unlock(map);
1969
1970                 entry = start_entry;
1971                 while (entry != &map->header && entry->start < end) {
1972                         /*
1973                          * If vm_fault_wire fails for any page we need to undo
1974                          * what has been done.  We decrement the wiring count
1975                          * for those pages which have not yet been wired (now)
1976                          * and unwire those that have (later).
1977                          */
1978                         vm_offset_t save_start = entry->start;
1979                         vm_offset_t save_end = entry->end;
1980
1981                         if (entry->wired_count == 1)
1982                                 rv = vm_fault_wire(map, entry->start, entry->end);
1983                         if (rv) {
1984                                 CLIP_CHECK_BACK(entry, save_start);
1985                                 for (;;) {
1986                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1987                                         entry->wired_count = 0;
1988                                         if (entry->end == save_end)
1989                                                 break;
1990                                         entry = entry->next;
1991                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1992                                 }
1993                                 end = save_start;
1994                                 break;
1995                         }
1996                         CLIP_CHECK_FWD(entry, save_end);
1997                         entry = entry->next;
1998                 }
1999                 splx(s);
2000
2001                 /*
2002                  * relock.  start_entry is still IN_TRANSITION and must
2003                  * still exist, but may have been clipped (handled just
2004                  * below).
2005                  */
2006                 vm_map_lock(map);
2007
2008                 /*
2009                  * If a failure occured undo everything by falling through
2010                  * to the unwiring code.  'end' has already been adjusted
2011                  * appropriately.
2012                  */
2013                 if (rv)
2014                         kmflags |= KM_PAGEABLE;
2015
2016                 /*
2017                  * start_entry might have been clipped if we unlocked the
2018                  * map and blocked.  No matter how clipped it has gotten
2019                  * there should be a fragment that is on our start boundary.
2020                  */
2021                 CLIP_CHECK_BACK(start_entry, start);
2022         }
2023
2024         if (kmflags & KM_PAGEABLE) {
2025                 /*
2026                  * This is the unwiring case.  We must first ensure that the
2027                  * range to be unwired is really wired down.  We know there
2028                  * are no holes.
2029                  */
2030                 entry = start_entry;
2031                 while ((entry != &map->header) && (entry->start < end)) {
2032                         if (entry->wired_count == 0) {
2033                                 rv = KERN_INVALID_ARGUMENT;
2034                                 goto done;
2035                         }
2036                         entry = entry->next;
2037                 }
2038
2039                 /*
2040                  * Now decrement the wiring count for each region. If a region
2041                  * becomes completely unwired, unwire its physical pages and
2042                  * mappings.
2043                  */
2044                 entry = start_entry;
2045                 while ((entry != &map->header) && (entry->start < end)) {
2046                         entry->wired_count--;
2047                         if (entry->wired_count == 0)
2048                                 vm_fault_unwire(map, entry->start, entry->end);
2049                         entry = entry->next;
2050                 }
2051         }
2052 done:
2053         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2054                 MAP_CLIP_NO_HOLES);
2055         map->timestamp++;
2056         vm_map_unlock(map);
2057 failure:
2058         if (kmflags & KM_KRESERVE)
2059                 vm_map_entry_krelease(count);
2060         else
2061                 vm_map_entry_release(count);
2062         return (rv);
2063 }
2064
2065 /*
2066  * vm_map_set_wired_quick()
2067  *
2068  *      Mark a newly allocated address range as wired but do not fault in
2069  *      the pages.  The caller is expected to load the pages into the object.
2070  *
2071  *      The map must be locked on entry and will remain locked on return.
2072  */
2073 void
2074 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2075 {
2076         vm_map_entry_t scan;
2077         vm_map_entry_t entry;
2078
2079         entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2080         for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2081             KKASSERT(entry->wired_count == 0);
2082             entry->wired_count = 1;                                              
2083         }
2084         vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2085 }
2086
2087 /*
2088  * vm_map_clean
2089  *
2090  * Push any dirty cached pages in the address range to their pager.
2091  * If syncio is TRUE, dirty pages are written synchronously.
2092  * If invalidate is TRUE, any cached pages are freed as well.
2093  *
2094  * Returns an error if any part of the specified range is not mapped.
2095  */
2096 int
2097 vm_map_clean(map, start, end, syncio, invalidate)
2098         vm_map_t map;
2099         vm_offset_t start;
2100         vm_offset_t end;
2101         boolean_t syncio;
2102         boolean_t invalidate;
2103 {
2104         vm_map_entry_t current;
2105         vm_map_entry_t entry;
2106         vm_size_t size;
2107         vm_object_t object;
2108         vm_ooffset_t offset;
2109
2110         vm_map_lock_read(map);
2111         VM_MAP_RANGE_CHECK(map, start, end);
2112         if (!vm_map_lookup_entry(map, start, &entry)) {
2113                 vm_map_unlock_read(map);
2114                 return (KERN_INVALID_ADDRESS);
2115         }
2116         /*
2117          * Make a first pass to check for holes.
2118          */
2119         for (current = entry; current->start < end; current = current->next) {
2120                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2121                         vm_map_unlock_read(map);
2122                         return (KERN_INVALID_ARGUMENT);
2123                 }
2124                 if (end > current->end &&
2125                     (current->next == &map->header ||
2126                         current->end != current->next->start)) {
2127                         vm_map_unlock_read(map);
2128                         return (KERN_INVALID_ADDRESS);
2129                 }
2130         }
2131
2132         if (invalidate)
2133                 pmap_remove(vm_map_pmap(map), start, end);
2134         /*
2135          * Make a second pass, cleaning/uncaching pages from the indicated
2136          * objects as we go.
2137          */
2138         for (current = entry; current->start < end; current = current->next) {
2139                 offset = current->offset + (start - current->start);
2140                 size = (end <= current->end ? end : current->end) - start;
2141                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2142                         vm_map_t smap;
2143                         vm_map_entry_t tentry;
2144                         vm_size_t tsize;
2145
2146                         smap = current->object.sub_map;
2147                         vm_map_lock_read(smap);
2148                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2149                         tsize = tentry->end - offset;
2150                         if (tsize < size)
2151                                 size = tsize;
2152                         object = tentry->object.vm_object;
2153                         offset = tentry->offset + (offset - tentry->start);
2154                         vm_map_unlock_read(smap);
2155                 } else {
2156                         object = current->object.vm_object;
2157                 }
2158                 /*
2159                  * Note that there is absolutely no sense in writing out
2160                  * anonymous objects, so we track down the vnode object
2161                  * to write out.
2162                  * We invalidate (remove) all pages from the address space
2163                  * anyway, for semantic correctness.
2164                  *
2165                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2166                  * may start out with a NULL object.
2167                  */
2168                 while (object && object->backing_object) {
2169                         object = object->backing_object;
2170                         offset += object->backing_object_offset;
2171                         if (object->size < OFF_TO_IDX( offset + size))
2172                                 size = IDX_TO_OFF(object->size) - offset;
2173                 }
2174                 if (object && (object->type == OBJT_VNODE) && 
2175                     (current->protection & VM_PROT_WRITE)) {
2176                         /*
2177                          * Flush pages if writing is allowed, invalidate them
2178                          * if invalidation requested.  Pages undergoing I/O
2179                          * will be ignored by vm_object_page_remove().
2180                          *
2181                          * We cannot lock the vnode and then wait for paging
2182                          * to complete without deadlocking against vm_fault.
2183                          * Instead we simply call vm_object_page_remove() and
2184                          * allow it to block internally on a page-by-page 
2185                          * basis when it encounters pages undergoing async 
2186                          * I/O.
2187                          */
2188                         int flags;
2189
2190                         vm_object_reference(object);
2191                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
2192                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2193                         flags |= invalidate ? OBJPC_INVAL : 0;
2194                         vm_object_page_clean(object,
2195                             OFF_TO_IDX(offset),
2196                             OFF_TO_IDX(offset + size + PAGE_MASK),
2197                             flags);
2198                         VOP_UNLOCK(object->handle, 0, curthread);
2199                         vm_object_deallocate(object);
2200                 }
2201                 if (object && invalidate &&
2202                    ((object->type == OBJT_VNODE) ||
2203                     (object->type == OBJT_DEVICE))) {
2204                         vm_object_reference(object);
2205                         vm_object_page_remove(object,
2206                             OFF_TO_IDX(offset),
2207                             OFF_TO_IDX(offset + size + PAGE_MASK),
2208                             FALSE);
2209                         vm_object_deallocate(object);
2210                 }
2211                 start += size;
2212         }
2213
2214         vm_map_unlock_read(map);
2215         return (KERN_SUCCESS);
2216 }
2217
2218 /*
2219  *      vm_map_entry_unwire:    [ internal use only ]
2220  *
2221  *      Make the region specified by this entry pageable.
2222  *
2223  *      The map in question should be locked.
2224  *      [This is the reason for this routine's existence.]
2225  */
2226 static void 
2227 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2228 {
2229         vm_fault_unwire(map, entry->start, entry->end);
2230         entry->wired_count = 0;
2231 }
2232
2233 /*
2234  *      vm_map_entry_delete:    [ internal use only ]
2235  *
2236  *      Deallocate the given entry from the target map.
2237  */
2238 static void
2239 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2240 {
2241         vm_map_entry_unlink(map, entry);
2242         map->size -= entry->end - entry->start;
2243
2244         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2245                 vm_object_deallocate(entry->object.vm_object);
2246         }
2247
2248         vm_map_entry_dispose(map, entry, countp);
2249 }
2250
2251 /*
2252  *      vm_map_delete:  [ internal use only ]
2253  *
2254  *      Deallocates the given address range from the target
2255  *      map.
2256  */
2257 int
2258 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2259 {
2260         vm_object_t object;
2261         vm_map_entry_t entry;
2262         vm_map_entry_t first_entry;
2263
2264         /*
2265          * Find the start of the region, and clip it
2266          */
2267
2268 again:
2269         if (!vm_map_lookup_entry(map, start, &first_entry))
2270                 entry = first_entry->next;
2271         else {
2272                 entry = first_entry;
2273                 vm_map_clip_start(map, entry, start, countp);
2274                 /*
2275                  * Fix the lookup hint now, rather than each time though the
2276                  * loop.
2277                  */
2278                 SAVE_HINT(map, entry->prev);
2279         }
2280
2281         /*
2282          * Save the free space hint
2283          */
2284
2285         if (entry == &map->header) {
2286                 map->first_free = &map->header;
2287         } else if (map->first_free->start >= start) {
2288                 map->first_free = entry->prev;
2289         }
2290
2291         /*
2292          * Step through all entries in this region
2293          */
2294
2295         while ((entry != &map->header) && (entry->start < end)) {
2296                 vm_map_entry_t next;
2297                 vm_offset_t s, e;
2298                 vm_pindex_t offidxstart, offidxend, count;
2299
2300                 /*
2301                  * If we hit an in-transition entry we have to sleep and
2302                  * retry.  It's easier (and not really slower) to just retry
2303                  * since this case occurs so rarely and the hint is already
2304                  * pointing at the right place.  We have to reset the
2305                  * start offset so as not to accidently delete an entry
2306                  * another process just created in vacated space.
2307                  */
2308                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2309                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2310                         start = entry->start;
2311                         ++mycpu->gd_cnt.v_intrans_coll;
2312                         ++mycpu->gd_cnt.v_intrans_wait;
2313                         vm_map_transition_wait(map);
2314                         goto again;
2315                 }
2316                 vm_map_clip_end(map, entry, end, countp);
2317
2318                 s = entry->start;
2319                 e = entry->end;
2320                 next = entry->next;
2321
2322                 offidxstart = OFF_TO_IDX(entry->offset);
2323                 count = OFF_TO_IDX(e - s);
2324                 object = entry->object.vm_object;
2325
2326                 /*
2327                  * Unwire before removing addresses from the pmap; otherwise,
2328                  * unwiring will put the entries back in the pmap.
2329                  */
2330                 if (entry->wired_count != 0) {
2331                         vm_map_entry_unwire(map, entry);
2332                 }
2333
2334                 offidxend = offidxstart + count;
2335
2336                 if ((object == kernel_object) || (object == kmem_object)) {
2337                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2338                 } else {
2339                         pmap_remove(map->pmap, s, e);
2340                         if (object != NULL &&
2341                             object->ref_count != 1 &&
2342                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2343                             (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2344                                 vm_object_collapse(object);
2345                                 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2346                                 if (object->type == OBJT_SWAP) {
2347                                         swap_pager_freespace(object, offidxstart, count);
2348                                 }
2349                                 if (offidxend >= object->size &&
2350                                     offidxstart < object->size) {
2351                                         object->size = offidxstart;
2352                                 }
2353                         }
2354                 }
2355
2356                 /*
2357                  * Delete the entry (which may delete the object) only after
2358                  * removing all pmap entries pointing to its pages.
2359                  * (Otherwise, its page frames may be reallocated, and any
2360                  * modify bits will be set in the wrong object!)
2361                  */
2362                 vm_map_entry_delete(map, entry, countp);
2363                 entry = next;
2364         }
2365         return (KERN_SUCCESS);
2366 }
2367
2368 /*
2369  *      vm_map_remove:
2370  *
2371  *      Remove the given address range from the target map.
2372  *      This is the exported form of vm_map_delete.
2373  */
2374 int
2375 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2376 {
2377         int result;
2378         int count;
2379
2380         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2381         vm_map_lock(map);
2382         VM_MAP_RANGE_CHECK(map, start, end);
2383         result = vm_map_delete(map, start, end, &count);
2384         vm_map_unlock(map);
2385         vm_map_entry_release(count);
2386
2387         return (result);
2388 }
2389
2390 /*
2391  *      vm_map_check_protection:
2392  *
2393  *      Assert that the target map allows the specified
2394  *      privilege on the entire address region given.
2395  *      The entire region must be allocated.
2396  */
2397 boolean_t
2398 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2399                         vm_prot_t protection)
2400 {
2401         vm_map_entry_t entry;
2402         vm_map_entry_t tmp_entry;
2403
2404         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2405                 return (FALSE);
2406         }
2407         entry = tmp_entry;
2408
2409         while (start < end) {
2410                 if (entry == &map->header) {
2411                         return (FALSE);
2412                 }
2413                 /*
2414                  * No holes allowed!
2415                  */
2416
2417                 if (start < entry->start) {
2418                         return (FALSE);
2419                 }
2420                 /*
2421                  * Check protection associated with entry.
2422                  */
2423
2424                 if ((entry->protection & protection) != protection) {
2425                         return (FALSE);
2426                 }
2427                 /* go to next entry */
2428
2429                 start = entry->end;
2430                 entry = entry->next;
2431         }
2432         return (TRUE);
2433 }
2434
2435 /*
2436  * Split the pages in a map entry into a new object.  This affords
2437  * easier removal of unused pages, and keeps object inheritance from
2438  * being a negative impact on memory usage.
2439  */
2440 static void
2441 vm_map_split(vm_map_entry_t entry)
2442 {
2443         vm_page_t m;
2444         vm_object_t orig_object, new_object, source;
2445         vm_offset_t s, e;
2446         vm_pindex_t offidxstart, offidxend, idx;
2447         vm_size_t size;
2448         vm_ooffset_t offset;
2449
2450         orig_object = entry->object.vm_object;
2451         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2452                 return;
2453         if (orig_object->ref_count <= 1)
2454                 return;
2455
2456         offset = entry->offset;
2457         s = entry->start;
2458         e = entry->end;
2459
2460         offidxstart = OFF_TO_IDX(offset);
2461         offidxend = offidxstart + OFF_TO_IDX(e - s);
2462         size = offidxend - offidxstart;
2463
2464         new_object = vm_pager_allocate(orig_object->type,
2465                 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2466         if (new_object == NULL)
2467                 return;
2468
2469         source = orig_object->backing_object;
2470         if (source != NULL) {
2471                 vm_object_reference(source);    /* Referenced by new_object */
2472                 LIST_INSERT_HEAD(&source->shadow_head,
2473                                   new_object, shadow_list);
2474                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2475                 new_object->backing_object_offset = 
2476                         orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2477                 new_object->backing_object = source;
2478                 source->shadow_count++;
2479                 source->generation++;
2480         }
2481
2482         for (idx = 0; idx < size; idx++) {
2483                 vm_page_t m;
2484
2485         retry:
2486                 m = vm_page_lookup(orig_object, offidxstart + idx);
2487                 if (m == NULL)
2488                         continue;
2489
2490                 /*
2491                  * We must wait for pending I/O to complete before we can
2492                  * rename the page.
2493                  *
2494                  * We do not have to VM_PROT_NONE the page as mappings should
2495                  * not be changed by this operation.
2496                  */
2497                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2498                         goto retry;
2499                         
2500                 vm_page_busy(m);
2501                 vm_page_rename(m, new_object, idx);
2502                 /* page automatically made dirty by rename and cache handled */
2503                 vm_page_busy(m);
2504         }
2505
2506         if (orig_object->type == OBJT_SWAP) {
2507                 vm_object_pip_add(orig_object, 1);
2508                 /*
2509                  * copy orig_object pages into new_object
2510                  * and destroy unneeded pages in
2511                  * shadow object.
2512                  */
2513                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2514                 vm_object_pip_wakeup(orig_object);
2515         }
2516
2517         for (idx = 0; idx < size; idx++) {
2518                 m = vm_page_lookup(new_object, idx);
2519                 if (m) {
2520                         vm_page_wakeup(m);
2521                 }
2522         }
2523
2524         entry->object.vm_object = new_object;
2525         entry->offset = 0LL;
2526         vm_object_deallocate(orig_object);
2527 }
2528
2529 /*
2530  *      vm_map_copy_entry:
2531  *
2532  *      Copies the contents of the source entry to the destination
2533  *      entry.  The entries *must* be aligned properly.
2534  */
2535 static void
2536 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2537         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2538 {
2539         vm_object_t src_object;
2540
2541         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2542                 return;
2543
2544         if (src_entry->wired_count == 0) {
2545
2546                 /*
2547                  * If the source entry is marked needs_copy, it is already
2548                  * write-protected.
2549                  */
2550                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2551                         pmap_protect(src_map->pmap,
2552                             src_entry->start,
2553                             src_entry->end,
2554                             src_entry->protection & ~VM_PROT_WRITE);
2555                 }
2556
2557                 /*
2558                  * Make a copy of the object.
2559                  */
2560                 if ((src_object = src_entry->object.vm_object) != NULL) {
2561
2562                         if ((src_object->handle == NULL) &&
2563                                 (src_object->type == OBJT_DEFAULT ||
2564                                  src_object->type == OBJT_SWAP)) {
2565                                 vm_object_collapse(src_object);
2566                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2567                                         vm_map_split(src_entry);
2568                                         src_object = src_entry->object.vm_object;
2569                                 }
2570                         }
2571
2572                         vm_object_reference(src_object);
2573                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2574                         dst_entry->object.vm_object = src_object;
2575                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2576                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2577                         dst_entry->offset = src_entry->offset;
2578                 } else {
2579                         dst_entry->object.vm_object = NULL;
2580                         dst_entry->offset = 0;
2581                 }
2582
2583                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2584                     dst_entry->end - dst_entry->start, src_entry->start);
2585         } else {
2586                 /*
2587                  * Of course, wired down pages can't be set copy-on-write.
2588                  * Cause wired pages to be copied into the new map by
2589                  * simulating faults (the new pages are pageable)
2590                  */
2591                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2592         }
2593 }
2594
2595 /*
2596  * vmspace_fork:
2597  * Create a new process vmspace structure and vm_map
2598  * based on those of an existing process.  The new map
2599  * is based on the old map, according to the inheritance
2600  * values on the regions in that map.
2601  *
2602  * The source map must not be locked.
2603  */
2604 struct vmspace *
2605 vmspace_fork(struct vmspace *vm1)
2606 {
2607         struct vmspace *vm2;
2608         vm_map_t old_map = &vm1->vm_map;
2609         vm_map_t new_map;
2610         vm_map_entry_t old_entry;
2611         vm_map_entry_t new_entry;
2612         vm_object_t object;
2613         int count;
2614
2615         vm_map_lock(old_map);
2616         old_map->infork = 1;
2617
2618         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2619         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2620             (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2621         new_map = &vm2->vm_map; /* XXX */
2622         new_map->timestamp = 1;
2623
2624         count = 0;
2625         old_entry = old_map->header.next;
2626         while (old_entry != &old_map->header) {
2627                 ++count;
2628                 old_entry = old_entry->next;
2629         }
2630
2631         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2632
2633         old_entry = old_map->header.next;
2634         while (old_entry != &old_map->header) {
2635                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2636                         panic("vm_map_fork: encountered a submap");
2637
2638                 switch (old_entry->inheritance) {
2639                 case VM_INHERIT_NONE:
2640                         break;
2641
2642                 case VM_INHERIT_SHARE:
2643                         /*
2644                          * Clone the entry, creating the shared object if necessary.
2645                          */
2646                         object = old_entry->object.vm_object;
2647                         if (object == NULL) {
2648                                 object = vm_object_allocate(OBJT_DEFAULT,
2649                                         atop(old_entry->end - old_entry->start));
2650                                 old_entry->object.vm_object = object;
2651                                 old_entry->offset = (vm_offset_t) 0;
2652                         }
2653
2654                         /*
2655                          * Add the reference before calling vm_object_shadow
2656                          * to insure that a shadow object is created.
2657                          */
2658                         vm_object_reference(object);
2659                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2660                                 vm_object_shadow(&old_entry->object.vm_object,
2661                                         &old_entry->offset,
2662                                         atop(old_entry->end - old_entry->start));
2663                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2664                                 /* Transfer the second reference too. */
2665                                 vm_object_reference(
2666                                     old_entry->object.vm_object);
2667                                 vm_object_deallocate(object);
2668                                 object = old_entry->object.vm_object;
2669                         }
2670                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2671
2672                         /*
2673                          * Clone the entry, referencing the shared object.
2674                          */
2675                         new_entry = vm_map_entry_create(new_map, &count);
2676                         *new_entry = *old_entry;
2677                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2678                         new_entry->wired_count = 0;
2679
2680                         /*
2681                          * Insert the entry into the new map -- we know we're
2682                          * inserting at the end of the new map.
2683                          */
2684
2685                         vm_map_entry_link(new_map, new_map->header.prev,
2686                             new_entry);
2687
2688                         /*
2689                          * Update the physical map
2690                          */
2691
2692                         pmap_copy(new_map->pmap, old_map->pmap,
2693                             new_entry->start,
2694                             (old_entry->end - old_entry->start),
2695                             old_entry->start);
2696                         break;
2697
2698                 case VM_INHERIT_COPY:
2699                         /*
2700                          * Clone the entry and link into the map.
2701                          */
2702                         new_entry = vm_map_entry_create(new_map, &count);
2703                         *new_entry = *old_entry;
2704                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2705                         new_entry->wired_count = 0;
2706                         new_entry->object.vm_object = NULL;
2707                         vm_map_entry_link(new_map, new_map->header.prev,
2708                             new_entry);
2709                         vm_map_copy_entry(old_map, new_map, old_entry,
2710                             new_entry);
2711                         break;
2712                 }
2713                 old_entry = old_entry->next;
2714         }
2715
2716         new_map->size = old_map->size;
2717         old_map->infork = 0;
2718         vm_map_unlock(old_map);
2719         vm_map_entry_release(count);
2720
2721         return (vm2);
2722 }
2723
2724 int
2725 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2726               vm_prot_t prot, vm_prot_t max, int cow)
2727 {
2728         vm_map_entry_t prev_entry;
2729         vm_map_entry_t new_stack_entry;
2730         vm_size_t      init_ssize;
2731         int            rv;
2732         int             count;
2733
2734         if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2735                 return (KERN_NO_SPACE);
2736
2737         if (max_ssize < sgrowsiz)
2738                 init_ssize = max_ssize;
2739         else
2740                 init_ssize = sgrowsiz;
2741
2742         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2743         vm_map_lock(map);
2744
2745         /* If addr is already mapped, no go */
2746         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2747                 vm_map_unlock(map);
2748                 vm_map_entry_release(count);
2749                 return (KERN_NO_SPACE);
2750         }
2751
2752         /* If we would blow our VMEM resource limit, no go */
2753         if (map->size + init_ssize >
2754             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2755                 vm_map_unlock(map);
2756                 vm_map_entry_release(count);
2757                 return (KERN_NO_SPACE);
2758         }
2759
2760         /* If we can't accomodate max_ssize in the current mapping,
2761          * no go.  However, we need to be aware that subsequent user
2762          * mappings might map into the space we have reserved for
2763          * stack, and currently this space is not protected.  
2764          * 
2765          * Hopefully we will at least detect this condition 
2766          * when we try to grow the stack.
2767          */
2768         if ((prev_entry->next != &map->header) &&
2769             (prev_entry->next->start < addrbos + max_ssize)) {
2770                 vm_map_unlock(map);
2771                 vm_map_entry_release(count);
2772                 return (KERN_NO_SPACE);
2773         }
2774
2775         /* We initially map a stack of only init_ssize.  We will
2776          * grow as needed later.  Since this is to be a grow 
2777          * down stack, we map at the top of the range.
2778          *
2779          * Note: we would normally expect prot and max to be
2780          * VM_PROT_ALL, and cow to be 0.  Possibly we should
2781          * eliminate these as input parameters, and just
2782          * pass these values here in the insert call.
2783          */
2784         rv = vm_map_insert(map, &count,
2785                            NULL, 0, addrbos + max_ssize - init_ssize,
2786                            addrbos + max_ssize, prot, max, cow);
2787
2788         /* Now set the avail_ssize amount */
2789         if (rv == KERN_SUCCESS){
2790                 if (prev_entry != &map->header)
2791                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2792                 new_stack_entry = prev_entry->next;
2793                 if (new_stack_entry->end   != addrbos + max_ssize ||
2794                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
2795                         panic ("Bad entry start/end for new stack entry");
2796                 else 
2797                         new_stack_entry->avail_ssize = max_ssize - init_ssize;
2798         }
2799
2800         vm_map_unlock(map);
2801         vm_map_entry_release(count);
2802         return (rv);
2803 }
2804
2805 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2806  * desired address is already mapped, or if we successfully grow
2807  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2808  * stack range (this is strange, but preserves compatibility with
2809  * the grow function in vm_machdep.c).
2810  */
2811 int
2812 vm_map_growstack (struct proc *p, vm_offset_t addr)
2813 {
2814         vm_map_entry_t prev_entry;
2815         vm_map_entry_t stack_entry;
2816         vm_map_entry_t new_stack_entry;
2817         struct vmspace *vm = p->p_vmspace;
2818         vm_map_t map = &vm->vm_map;
2819         vm_offset_t    end;
2820         int grow_amount;
2821         int rv = KERN_SUCCESS;
2822         int is_procstack;
2823         int use_read_lock = 1;
2824         int count;
2825
2826         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2827 Retry:
2828         if (use_read_lock)
2829                 vm_map_lock_read(map);
2830         else
2831                 vm_map_lock(map);
2832
2833         /* If addr is already in the entry range, no need to grow.*/
2834         if (vm_map_lookup_entry(map, addr, &prev_entry))
2835                 goto done;
2836
2837         if ((stack_entry = prev_entry->next) == &map->header)
2838                 goto done;
2839         if (prev_entry == &map->header) 
2840                 end = stack_entry->start - stack_entry->avail_ssize;
2841         else
2842                 end = prev_entry->end;
2843
2844         /* This next test mimics the old grow function in vm_machdep.c.
2845          * It really doesn't quite make sense, but we do it anyway
2846          * for compatibility.
2847          *
2848          * If not growable stack, return success.  This signals the
2849          * caller to proceed as he would normally with normal vm.
2850          */
2851         if (stack_entry->avail_ssize < 1 ||
2852             addr >= stack_entry->start ||
2853             addr <  stack_entry->start - stack_entry->avail_ssize) {
2854                 goto done;
2855         } 
2856         
2857         /* Find the minimum grow amount */
2858         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2859         if (grow_amount > stack_entry->avail_ssize) {
2860                 rv = KERN_NO_SPACE;
2861                 goto done;
2862         }
2863
2864         /* If there is no longer enough space between the entries
2865          * nogo, and adjust the available space.  Note: this 
2866          * should only happen if the user has mapped into the
2867          * stack area after the stack was created, and is
2868          * probably an error.
2869          *
2870          * This also effectively destroys any guard page the user
2871          * might have intended by limiting the stack size.
2872          */
2873         if (grow_amount > stack_entry->start - end) {
2874                 if (use_read_lock && vm_map_lock_upgrade(map)) {
2875                         use_read_lock = 0;
2876                         goto Retry;
2877                 }
2878                 use_read_lock = 0;
2879                 stack_entry->avail_ssize = stack_entry->start - end;
2880                 rv = KERN_NO_SPACE;
2881                 goto done;
2882         }
2883
2884         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2885
2886         /* If this is the main process stack, see if we're over the 
2887          * stack limit.
2888          */
2889         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2890                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2891                 rv = KERN_NO_SPACE;
2892                 goto done;
2893         }
2894
2895         /* Round up the grow amount modulo SGROWSIZ */
2896         grow_amount = roundup (grow_amount, sgrowsiz);
2897         if (grow_amount > stack_entry->avail_ssize) {
2898                 grow_amount = stack_entry->avail_ssize;
2899         }
2900         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2901                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2902                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2903                               ctob(vm->vm_ssize);
2904         }
2905
2906         /* If we would blow our VMEM resource limit, no go */
2907         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2908                 rv = KERN_NO_SPACE;
2909                 goto done;
2910         }
2911
2912         if (use_read_lock && vm_map_lock_upgrade(map)) {
2913                 use_read_lock = 0;
2914                 goto Retry;
2915         }
2916         use_read_lock = 0;
2917
2918         /* Get the preliminary new entry start value */
2919         addr = stack_entry->start - grow_amount;
2920
2921         /* If this puts us into the previous entry, cut back our growth
2922          * to the available space.  Also, see the note above.
2923          */
2924         if (addr < end) {
2925                 stack_entry->avail_ssize = stack_entry->start - end;
2926                 addr = end;
2927         }
2928
2929         rv = vm_map_insert(map, &count,
2930                            NULL, 0, addr, stack_entry->start,
2931                            VM_PROT_ALL,
2932                            VM_PROT_ALL,
2933                            0);
2934
2935         /* Adjust the available stack space by the amount we grew. */
2936         if (rv == KERN_SUCCESS) {
2937                 if (prev_entry != &map->header)
2938                         vm_map_clip_end(map, prev_entry, addr, &count);
2939                 new_stack_entry = prev_entry->next;
2940                 if (new_stack_entry->end   != stack_entry->start  ||
2941                     new_stack_entry->start != addr)
2942                         panic ("Bad stack grow start/end in new stack entry");
2943                 else {
2944                         new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2945                                                         (new_stack_entry->end -
2946                                                          new_stack_entry->start);
2947                         if (is_procstack)
2948                                 vm->vm_ssize += btoc(new_stack_entry->end -
2949                                                      new_stack_entry->start);
2950                 }
2951         }
2952
2953 done:
2954         if (use_read_lock)
2955                 vm_map_unlock_read(map);
2956         else
2957                 vm_map_unlock(map);
2958         vm_map_entry_release(count);
2959         return (rv);
2960 }
2961
2962 /*
2963  * Unshare the specified VM space for exec.  If other processes are
2964  * mapped to it, then create a new one.  The new vmspace is null.
2965  */
2966
2967 void
2968 vmspace_exec(struct proc *p) 
2969 {
2970         struct vmspace *oldvmspace = p->p_vmspace;
2971         struct vmspace *newvmspace;
2972         vm_map_t map = &p->p_vmspace->vm_map;
2973
2974         newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2975         bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2976             (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2977         /*
2978          * This code is written like this for prototype purposes.  The
2979          * goal is to avoid running down the vmspace here, but let the
2980          * other process's that are still using the vmspace to finally
2981          * run it down.  Even though there is little or no chance of blocking
2982          * here, it is a good idea to keep this form for future mods.
2983          */
2984         vmspace_free(oldvmspace);
2985         p->p_vmspace = newvmspace;
2986         pmap_pinit2(vmspace_pmap(newvmspace));
2987         if (p == curproc)
2988                 pmap_activate(p);
2989 }
2990
2991 /*
2992  * Unshare the specified VM space for forcing COW.  This
2993  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2994  */
2995
2996 void
2997 vmspace_unshare(struct proc *p) 
2998 {
2999         struct vmspace *oldvmspace = p->p_vmspace;
3000         struct vmspace *newvmspace;
3001
3002         if (oldvmspace->vm_refcnt == 1)
3003                 return;
3004         newvmspace = vmspace_fork(oldvmspace);
3005         vmspace_free(oldvmspace);
3006         p->p_vmspace = newvmspace;
3007         pmap_pinit2(vmspace_pmap(newvmspace));
3008         if (p == curproc)
3009                 pmap_activate(p);
3010 }
3011
3012 /*
3013  *      vm_map_lookup:
3014  *
3015  *      Finds the VM object, offset, and
3016  *      protection for a given virtual address in the
3017  *      specified map, assuming a page fault of the
3018  *      type specified.
3019  *
3020  *      Leaves the map in question locked for read; return
3021  *      values are guaranteed until a vm_map_lookup_done
3022  *      call is performed.  Note that the map argument
3023  *      is in/out; the returned map must be used in
3024  *      the call to vm_map_lookup_done.
3025  *
3026  *      A handle (out_entry) is returned for use in
3027  *      vm_map_lookup_done, to make that fast.
3028  *
3029  *      If a lookup is requested with "write protection"
3030  *      specified, the map may be changed to perform virtual
3031  *      copying operations, although the data referenced will
3032  *      remain the same.
3033  */
3034 int
3035 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3036               vm_offset_t vaddr,
3037               vm_prot_t fault_typea,
3038               vm_map_entry_t *out_entry,        /* OUT */
3039               vm_object_t *object,              /* OUT */
3040               vm_pindex_t *pindex,              /* OUT */
3041               vm_prot_t *out_prot,              /* OUT */
3042               boolean_t *wired)                 /* OUT */
3043 {
3044         vm_map_entry_t entry;
3045         vm_map_t map = *var_map;
3046         vm_prot_t prot;
3047         vm_prot_t fault_type = fault_typea;
3048         int use_read_lock = 1;
3049         int rv = KERN_SUCCESS;
3050
3051 RetryLookup:
3052         if (use_read_lock)
3053                 vm_map_lock_read(map);
3054         else
3055                 vm_map_lock(map);
3056
3057         /*
3058          * If the map has an interesting hint, try it before calling full
3059          * blown lookup routine.
3060          */
3061         entry = map->hint;
3062         *out_entry = entry;
3063
3064         if ((entry == &map->header) ||
3065             (vaddr < entry->start) || (vaddr >= entry->end)) {
3066                 vm_map_entry_t tmp_entry;
3067
3068                 /*
3069                  * Entry was either not a valid hint, or the vaddr was not
3070                  * contained in the entry, so do a full lookup.
3071                  */
3072                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3073                         rv = KERN_INVALID_ADDRESS;
3074                         goto done;
3075                 }
3076
3077                 entry = tmp_entry;
3078                 *out_entry = entry;
3079         }
3080         
3081         /*
3082          * Handle submaps.
3083          */
3084
3085         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3086                 vm_map_t old_map = map;
3087
3088                 *var_map = map = entry->object.sub_map;
3089                 if (use_read_lock)
3090                         vm_map_unlock_read(old_map);
3091                 else
3092                         vm_map_unlock(old_map);
3093                 use_read_lock = 1;
3094                 goto RetryLookup;
3095         }
3096
3097         /*
3098          * Check whether this task is allowed to have this page.
3099          * Note the special case for MAP_ENTRY_COW
3100          * pages with an override.  This is to implement a forced
3101          * COW for debuggers.
3102          */
3103
3104         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3105                 prot = entry->max_protection;
3106         else
3107                 prot = entry->protection;
3108
3109         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3110         if ((fault_type & prot) != fault_type) {
3111                 rv = KERN_PROTECTION_FAILURE;
3112                 goto done;
3113         }
3114
3115         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3116             (entry->eflags & MAP_ENTRY_COW) &&
3117             (fault_type & VM_PROT_WRITE) &&
3118             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3119                 rv = KERN_PROTECTION_FAILURE;
3120                 goto done;
3121         }
3122
3123         /*
3124          * If this page is not pageable, we have to get it for all possible
3125          * accesses.
3126          */
3127
3128         *wired = (entry->wired_count != 0);
3129         if (*wired)
3130                 prot = fault_type = entry->protection;
3131
3132         /*
3133          * If the entry was copy-on-write, we either ...
3134          */
3135
3136         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3137                 /*
3138                  * If we want to write the page, we may as well handle that
3139                  * now since we've got the map locked.
3140                  *
3141                  * If we don't need to write the page, we just demote the
3142                  * permissions allowed.
3143                  */
3144
3145                 if (fault_type & VM_PROT_WRITE) {
3146                         /*
3147                          * Make a new object, and place it in the object
3148                          * chain.  Note that no new references have appeared
3149                          * -- one just moved from the map to the new
3150                          * object.
3151                          */
3152
3153                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3154                                 use_read_lock = 0;
3155                                 goto RetryLookup;
3156                         }
3157                         use_read_lock = 0;
3158
3159                         vm_object_shadow(
3160                             &entry->object.vm_object,
3161                             &entry->offset,
3162                             atop(entry->end - entry->start));
3163
3164                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3165                 } else {
3166                         /*
3167                          * We're attempting to read a copy-on-write page --
3168                          * don't allow writes.
3169                          */
3170
3171                         prot &= ~VM_PROT_WRITE;
3172                 }
3173         }
3174
3175         /*
3176          * Create an object if necessary.
3177          */
3178         if (entry->object.vm_object == NULL &&
3179             !map->system_map) {
3180                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3181                         use_read_lock = 0;
3182                         goto RetryLookup;
3183                 }
3184                 use_read_lock = 0;
3185                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3186                     atop(entry->end - entry->start));
3187                 entry->offset = 0;
3188         }
3189
3190         /*
3191          * Return the object/offset from this entry.  If the entry was
3192          * copy-on-write or empty, it has been fixed up.
3193          */
3194
3195         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3196         *object = entry->object.vm_object;
3197
3198         /*
3199          * Return whether this is the only map sharing this data.  On
3200          * success we return with a read lock held on the map.  On failure
3201          * we return with the map unlocked.
3202          */
3203         *out_prot = prot;
3204 done:
3205         if (rv == KERN_SUCCESS) {
3206                 if (use_read_lock == 0)
3207                         vm_map_lock_downgrade(map);
3208         } else if (use_read_lock) {
3209                 vm_map_unlock_read(map);
3210         } else {
3211                 vm_map_unlock(map);
3212         }
3213         return (rv);
3214 }
3215
3216 /*
3217  *      vm_map_lookup_done:
3218  *
3219  *      Releases locks acquired by a vm_map_lookup
3220  *      (according to the handle returned by that lookup).
3221  */
3222
3223 void
3224 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3225 {
3226         /*
3227          * Unlock the main-level map
3228          */
3229         vm_map_unlock_read(map);
3230         if (count)
3231                 vm_map_entry_release(count);
3232 }
3233
3234 /*
3235  * Implement uiomove with VM operations.  This handles (and collateral changes)
3236  * support every combination of source object modification, and COW type
3237  * operations.
3238  */
3239 int
3240 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3241         vm_map_t mapa;
3242         vm_object_t srcobject;
3243         off_t cp;
3244         int cnta;
3245         vm_offset_t uaddra;
3246         int *npages;
3247 {
3248         vm_map_t map;
3249         vm_object_t first_object, oldobject, object;
3250         vm_map_entry_t entry;
3251         vm_prot_t prot;
3252         boolean_t wired;
3253         int tcnt, rv;
3254         vm_offset_t uaddr, start, end, tend;
3255         vm_pindex_t first_pindex, osize, oindex;
3256         off_t ooffset;
3257         int cnt;
3258         int count;
3259
3260         if (npages)
3261                 *npages = 0;
3262
3263         cnt = cnta;
3264         uaddr = uaddra;
3265
3266         while (cnt > 0) {
3267                 map = mapa;
3268
3269                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3270
3271                 if ((vm_map_lookup(&map, uaddr,
3272                         VM_PROT_READ, &entry, &first_object,
3273                         &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3274                         return EFAULT;
3275                 }
3276
3277                 vm_map_clip_start(map, entry, uaddr, &count);
3278
3279                 tcnt = cnt;
3280                 tend = uaddr + tcnt;
3281                 if (tend > entry->end) {
3282                         tcnt = entry->end - uaddr;
3283                         tend = entry->end;
3284                 }
3285
3286                 vm_map_clip_end(map, entry, tend, &count);
3287
3288                 start = entry->start;
3289                 end = entry->end;
3290
3291                 osize = atop(tcnt);
3292
3293                 oindex = OFF_TO_IDX(cp);
3294                 if (npages) {
3295                         vm_pindex_t idx;
3296                         for (idx = 0; idx < osize; idx++) {
3297                                 vm_page_t m;
3298                                 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3299                                         vm_map_lookup_done(map, entry, count);
3300                                         return 0;
3301                                 }
3302                                 /*
3303                                  * disallow busy or invalid pages, but allow
3304                                  * m->busy pages if they are entirely valid.
3305                                  */
3306                                 if ((m->flags & PG_BUSY) ||
3307                                         ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3308                                         vm_map_lookup_done(map, entry, count);
3309                                         return 0;
3310                                 }
3311                         }
3312                 }
3313
3314 /*
3315  * If we are changing an existing map entry, just redirect
3316  * the object, and change mappings.
3317  */
3318                 if ((first_object->type == OBJT_VNODE) &&
3319                         ((oldobject = entry->object.vm_object) == first_object)) {
3320
3321                         if ((entry->offset != cp) || (oldobject != srcobject)) {
3322                                 /*
3323                                 * Remove old window into the file
3324                                 */
3325                                 pmap_remove (map->pmap, uaddr, tend);
3326
3327                                 /*
3328                                 * Force copy on write for mmaped regions
3329                                 */
3330                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3331
3332                                 /*
3333                                 * Point the object appropriately
3334                                 */
3335                                 if (oldobject != srcobject) {
3336
3337                                 /*
3338                                 * Set the object optimization hint flag
3339                                 */
3340                                         vm_object_set_flag(srcobject, OBJ_OPT);
3341                                         vm_object_reference(srcobject);
3342                                         entry->object.vm_object = srcobject;
3343
3344                                         if (oldobject) {
3345                                                 vm_object_deallocate(oldobject);
3346                                         }
3347                                 }
3348
3349                                 entry->offset = cp;
3350                                 map->timestamp++;
3351                         } else {
3352                                 pmap_remove (map->pmap, uaddr, tend);
3353                         }
3354
3355                 } else if ((first_object->ref_count == 1) &&
3356                         (first_object->size == osize) &&
3357                         ((first_object->type == OBJT_DEFAULT) ||
3358                                 (first_object->type == OBJT_SWAP)) ) {
3359
3360                         oldobject = first_object->backing_object;
3361
3362                         if ((first_object->backing_object_offset != cp) ||
3363                                 (oldobject != srcobject)) {
3364                                 /*
3365                                 * Remove old window into the file
3366                                 */
3367                                 pmap_remove (map->pmap, uaddr, tend);
3368
3369                                 /*
3370                                  * Remove unneeded old pages
3371                                  */
3372                                 vm_object_page_remove(first_object, 0, 0, 0);
3373
3374                                 /*
3375                                  * Invalidate swap space
3376                                  */
3377                                 if (first_object->type == OBJT_SWAP) {
3378                                         swap_pager_freespace(first_object,
3379                                                 0,
3380                                                 first_object->size);
3381                                 }
3382
3383                                 /*
3384                                 * Force copy on write for mmaped regions
3385                                 */
3386                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3387
3388                                 /*
3389                                 * Point the object appropriately
3390                                 */
3391                                 if (oldobject != srcobject) {
3392
3393                                 /*
3394                                 * Set the object optimization hint flag
3395                                 */
3396                                         vm_object_set_flag(srcobject, OBJ_OPT);
3397                                         vm_object_reference(srcobject);
3398
3399                                         if (oldobject) {
3400                                                 LIST_REMOVE(
3401                                                         first_object, shadow_list);
3402                                                 oldobject->shadow_count--;
3403                                                 /* XXX bump generation? */
3404                                                 vm_object_deallocate(oldobject);
3405                                         }
3406
3407                                         LIST_INSERT_HEAD(&srcobject->shadow_head,
3408                                                 first_object, shadow_list);
3409                                         srcobject->shadow_count++;
3410                                         /* XXX bump generation? */
3411
3412                                         first_object->backing_object = srcobject;
3413                                 }
3414                                 first_object->backing_object_offset = cp;
3415                                 map->timestamp++;
3416                         } else {
3417                                 pmap_remove (map->pmap, uaddr, tend);
3418                         }
3419 /*
3420  * Otherwise, we have to do a logical mmap.
3421  */
3422                 } else {
3423
3424                         vm_object_set_flag(srcobject, OBJ_OPT);
3425                         vm_object_reference(srcobject);
3426
3427                         pmap_remove (map->pmap, uaddr, tend);
3428
3429                         vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3430                         vm_map_lock_upgrade(map);
3431
3432                         if (entry == &map->header) {
3433                                 map->first_free = &map->header;
3434                         } else if (map->first_free->start >= start) {
3435                                 map->first_free = entry->prev;
3436                         }
3437
3438                         SAVE_HINT(map, entry->prev);
3439                         vm_map_entry_delete(map, entry, &count);
3440
3441                         object = srcobject;
3442                         ooffset = cp;
3443
3444                         rv = vm_map_insert(map, &count,
3445                                 object, ooffset, start, tend,
3446                                 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3447
3448                         if (rv != KERN_SUCCESS)
3449                                 panic("vm_uiomove: could not insert new entry: %d", rv);
3450                 }
3451
3452 /*
3453  * Map the window directly, if it is already in memory
3454  */
3455                 pmap_object_init_pt(map->pmap, uaddr,
3456                         srcobject, oindex, tcnt, 0);
3457
3458                 map->timestamp++;
3459                 vm_map_unlock(map);
3460                 vm_map_entry_release(count);
3461
3462                 cnt -= tcnt;
3463                 uaddr += tcnt;
3464                 cp += tcnt;
3465                 if (npages)
3466                         *npages += osize;
3467         }
3468         return 0;
3469 }
3470
3471 /*
3472  * Performs the copy_on_write operations necessary to allow the virtual copies
3473  * into user space to work.  This has to be called for write(2) system calls
3474  * from other processes, file unlinking, and file size shrinkage.
3475  */
3476 void
3477 vm_freeze_copyopts(object, froma, toa)
3478         vm_object_t object;
3479         vm_pindex_t froma, toa;
3480 {
3481         int rv;
3482         vm_object_t robject;
3483         vm_pindex_t idx;
3484
3485         if ((object == NULL) ||
3486                 ((object->flags & OBJ_OPT) == 0))
3487                 return;
3488
3489         if (object->shadow_count > object->ref_count)
3490                 panic("vm_freeze_copyopts: sc > rc");
3491
3492         while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3493                 vm_pindex_t bo_pindex;
3494                 vm_page_t m_in, m_out;
3495
3496                 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3497
3498                 vm_object_reference(robject);
3499
3500                 vm_object_pip_wait(robject, "objfrz");
3501
3502                 if (robject->ref_count == 1) {
3503                         vm_object_deallocate(robject);
3504                         continue;
3505                 }
3506
3507                 vm_object_pip_add(robject, 1);
3508
3509                 for (idx = 0; idx < robject->size; idx++) {
3510
3511                         m_out = vm_page_grab(robject, idx,
3512                                                 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3513
3514                         if (m_out->valid == 0) {
3515                                 m_in = vm_page_grab(object, bo_pindex + idx,
3516                                                 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3517                                 if (m_in->valid == 0) {
3518                                         rv = vm_pager_get_pages(object, &m_in, 1, 0);
3519                                         if (rv != VM_PAGER_OK) {
3520                                                 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3521                                                 continue;
3522                                         }
3523                                         vm_page_deactivate(m_in);
3524                                 }
3525
3526                                 vm_page_protect(m_in, VM_PROT_NONE);
3527                                 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3528                                 m_out->valid = m_in->valid;
3529                                 vm_page_dirty(m_out);
3530                                 vm_page_activate(m_out);
3531                                 vm_page_wakeup(m_in);
3532                         }
3533                         vm_page_wakeup(m_out);
3534                 }
3535
3536                 object->shadow_count--;
3537                 object->ref_count--;
3538                 LIST_REMOVE(robject, shadow_list);
3539                 robject->backing_object = NULL;
3540                 robject->backing_object_offset = 0;
3541
3542                 vm_object_pip_wakeup(robject);
3543                 vm_object_deallocate(robject);
3544         }
3545
3546         vm_object_clear_flag(object, OBJ_OPT);
3547 }
3548
3549 #include "opt_ddb.h"
3550 #ifdef DDB
3551 #include <sys/kernel.h>
3552
3553 #include <ddb/ddb.h>
3554
3555 /*
3556  *      vm_map_print:   [ debug ]
3557  */
3558 DB_SHOW_COMMAND(map, vm_map_print)
3559 {
3560         static int nlines;
3561         /* XXX convert args. */
3562         vm_map_t map = (vm_map_t)addr;
3563         boolean_t full = have_addr;
3564
3565         vm_map_entry_t entry;
3566
3567         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3568             (void *)map,
3569             (void *)map->pmap, map->nentries, map->timestamp);
3570         nlines++;
3571
3572         if (!full && db_indent)
3573                 return;
3574
3575         db_indent += 2;
3576         for (entry = map->header.next; entry != &map->header;
3577             entry = entry->next) {
3578                 db_iprintf("map entry %p: start=%p, end=%p\n",
3579                     (void *)entry, (void *)entry->start, (void *)entry->end);
3580                 nlines++;
3581                 {
3582                         static char *inheritance_name[4] =
3583                         {"share", "copy", "none", "donate_copy"};
3584
3585                         db_iprintf(" prot=%x/%x/%s",
3586                             entry->protection,
3587                             entry->max_protection,
3588                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3589                         if (entry->wired_count != 0)
3590                                 db_printf(", wired");
3591                 }
3592                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3593                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3594                         db_printf(", share=%p, offset=0x%lx\n",
3595                             (void *)entry->object.sub_map,
3596                             (long)entry->offset);
3597                         nlines++;
3598                         if ((entry->prev == &map->header) ||
3599                             (entry->prev->object.sub_map !=
3600                                 entry->object.sub_map)) {
3601                                 db_indent += 2;
3602                                 vm_map_print((db_expr_t)(intptr_t)
3603                                              entry->object.sub_map,
3604                                              full, 0, (char *)0);
3605                                 db_indent -= 2;
3606                         }
3607                 } else {
3608                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3609                         db_printf(", object=%p, offset=0x%lx",
3610                             (void *)entry->object.vm_object,
3611                             (long)entry->offset);
3612                         if (entry->eflags & MAP_ENTRY_COW)
3613                                 db_printf(", copy (%s)",
3614                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3615                         db_printf("\n");
3616                         nlines++;
3617
3618                         if ((entry->prev == &map->header) ||
3619                             (entry->prev->object.vm_object !=
3620                                 entry->object.vm_object)) {
3621                                 db_indent += 2;
3622                                 vm_object_print((db_expr_t)(intptr_t)
3623                                                 entry->object.vm_object,
3624                                                 full, 0, (char *)0);
3625                                 nlines += 4;
3626                                 db_indent -= 2;
3627                         }
3628                 }
3629         }
3630         db_indent -= 2;
3631         if (db_indent == 0)
3632                 nlines = 0;
3633 }
3634
3635
3636 DB_SHOW_COMMAND(procvm, procvm)
3637 {
3638         struct proc *p;
3639
3640         if (have_addr) {
3641                 p = (struct proc *) addr;
3642         } else {
3643                 p = curproc;
3644         }
3645
3646         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3647             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3648             (void *)vmspace_pmap(p->p_vmspace));
3649
3650         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3651 }
3652
3653 #endif /* DDB */