Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory mapping module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_zone.h>
96
97 #include <sys/thread2.h>
98 #include <sys/sysref2.h>
99
100 /*
101  *      Virtual memory maps provide for the mapping, protection,
102  *      and sharing of virtual memory objects.  In addition,
103  *      this module provides for an efficient virtual copy of
104  *      memory from one map to another.
105  *
106  *      Synchronization is required prior to most operations.
107  *
108  *      Maps consist of an ordered doubly-linked list of simple
109  *      entries; a single hint is used to speed up lookups.
110  *
111  *      Since portions of maps are specified by start/end addresses,
112  *      which may not align with existing map entries, all
113  *      routines merely "clip" entries to these start/end values.
114  *      [That is, an entry is split into two, bordering at a
115  *      start or end value.]  Note that these clippings may not
116  *      always be necessary (as the two resulting entries are then
117  *      not changed); however, the clipping is done for convenience.
118  *
119  *      As mentioned above, virtual copy operations are performed
120  *      by copying VM object references from one map to
121  *      another, and then marking both regions as copy-on-write.
122  */
123
124 static void vmspace_terminate(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128
129 struct sysref_class vmspace_sysref_class = {
130         .name =         "vmspace",
131         .mtype =        M_VMSPACE,
132         .proto =        SYSREF_PROTO_VMSPACE,
133         .offset =       offsetof(struct vmspace, vm_sysref),
134         .objsize =      sizeof(struct vmspace),
135         .mag_capacity = 32,
136         .flags = SRC_MANAGEDINIT,
137         .dtor = vmspace_dtor,
138         .ops = {
139                 .terminate = (sysref_terminate_func_t)vmspace_terminate
140         }
141 };
142
143 #define VMEPERCPU       2
144
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
148
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
152
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161                 vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
164
165 /*
166  *      vm_map_startup:
167  *
168  *      Initialize the vm_map module.  Must be called before
169  *      any other vm_map routines.
170  *
171  *      Map and entry structures are allocated from the general
172  *      purpose memory pool with some exceptions:
173  *
174  *      - The kernel map and kmem submap are allocated statically.
175  *      - Kernel map entries are allocated out of a static pool.
176  *
177  *      These restrictions are necessary since malloc() uses the
178  *      maps and requires map entries.
179  */
180 void
181 vm_map_startup(void)
182 {
183         mapzone = &mapzone_store;
184         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185                 map_init, MAX_KMAP);
186         mapentzone = &mapentzone_store;
187         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188                 map_entry_init, MAX_MAPENT);
189 }
190
191 /*
192  *      vm_init2 - called prior to any vmspace allocations
193  */
194 void
195 vm_init2(void) 
196 {
197         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
198                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
199         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
200         pmap_init2();
201         vm_object_init2();
202 }
203
204
205 /*
206  * Red black tree functions
207  */
208 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
209 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
210
211 /* a->start is address, and the only field has to be initialized */
212 static int
213 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
214 {
215         if (a->start < b->start)
216                 return(-1);
217         else if (a->start > b->start)
218                 return(1);
219         return(0);
220 }
221
222 /*
223  * Allocate a vmspace structure, including a vm_map and pmap.
224  * Initialize numerous fields.  While the initial allocation is zerod,
225  * subsequence reuse from the objcache leaves elements of the structure
226  * intact (particularly the pmap), so portions must be zerod.
227  *
228  * The structure is not considered activated until we call sysref_activate().
229  */
230 struct vmspace *
231 vmspace_alloc(vm_offset_t min, vm_offset_t max)
232 {
233         struct vmspace *vm;
234
235         vm = sysref_alloc(&vmspace_sysref_class);
236         bzero(&vm->vm_startcopy,
237               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
238         vm_map_init(&vm->vm_map, min, max, NULL);
239         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
240         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
241         vm->vm_shm = NULL;
242         vm->vm_exitingcnt = 0;
243         cpu_vmspace_alloc(vm);
244         sysref_activate(&vm->vm_sysref);
245         return (vm);
246 }
247
248 /*
249  * dtor function - Some elements of the pmap are retained in the
250  * free-cached vmspaces to improve performance.  We have to clean them up
251  * here before returning the vmspace to the memory pool.
252  */
253 static void
254 vmspace_dtor(void *obj, void *private)
255 {
256         struct vmspace *vm = obj;
257
258         pmap_puninit(vmspace_pmap(vm));
259 }
260
261 /*
262  * Called in two cases: 
263  *
264  * (1) When the last sysref is dropped, but exitingcnt might still be
265  *     non-zero.
266  *
267  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
268  *     exitingcnt becomes zero
269  *
270  * sysref will not scrap the object until we call sysref_put() once more
271  * after the last ref has been dropped.
272  */
273 static void
274 vmspace_terminate(struct vmspace *vm)
275 {
276         int count;
277
278         /*
279          * If exitingcnt is non-zero we can't get rid of the entire vmspace
280          * yet, but we can scrap user memory.
281          */
282         if (vm->vm_exitingcnt) {
283                 shmexit(vm);
284                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
285                                   VM_MAX_USER_ADDRESS);
286                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
287                               VM_MAX_USER_ADDRESS);
288
289                 return;
290         }
291         cpu_vmspace_free(vm);
292
293         /*
294          * Make sure any SysV shm is freed, it might not have in
295          * exit1()
296          */
297         shmexit(vm);
298
299         KKASSERT(vm->vm_upcalls == NULL);
300
301         /*
302          * Lock the map, to wait out all other references to it.
303          * Delete all of the mappings and pages they hold, then call
304          * the pmap module to reclaim anything left.
305          */
306         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
307         vm_map_lock(&vm->vm_map);
308         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
309                 vm->vm_map.max_offset, &count);
310         vm_map_unlock(&vm->vm_map);
311         vm_map_entry_release(count);
312
313         pmap_release(vmspace_pmap(vm));
314         sysref_put(&vm->vm_sysref);
315 }
316
317 /*
318  * This is called in the wait*() handling code.  The vmspace can be terminated
319  * after the last wait is finished using it.
320  */
321 void
322 vmspace_exitfree(struct proc *p)
323 {
324         struct vmspace *vm;
325
326         vm = p->p_vmspace;
327         p->p_vmspace = NULL;
328
329         if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
330                 vmspace_terminate(vm);
331 }
332
333 /*
334  * vmspace_swap_count()
335  *
336  *      Swap useage is determined by taking the proportional swap used by
337  *      VM objects backing the VM map.  To make up for fractional losses,
338  *      if the VM object has any swap use at all the associated map entries
339  *      count for at least 1 swap page.
340  */
341 int
342 vmspace_swap_count(struct vmspace *vmspace)
343 {
344         vm_map_t map = &vmspace->vm_map;
345         vm_map_entry_t cur;
346         vm_object_t object;
347         int count = 0;
348         int n;
349
350         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
351                 switch(cur->maptype) {
352                 case VM_MAPTYPE_NORMAL:
353                 case VM_MAPTYPE_VPAGETABLE:
354                         if ((object = cur->object.vm_object) == NULL)
355                                 break;
356                         if (object->type != OBJT_SWAP)
357                                 break;
358                         n = (cur->end - cur->start) / PAGE_SIZE;
359                         if (object->un_pager.swp.swp_bcount) {
360                                 count += object->un_pager.swp.swp_bcount *
361                                     SWAP_META_PAGES * n / object->size + 1;
362                         }
363                         break;
364                 default:
365                         break;
366                 }
367         }
368         return(count);
369 }
370
371 /*
372  * vmspace_anonymous_count()
373  *
374  *      Calculate the approximate number of anonymous pages in use by
375  *      this vmspace.  To make up for fractional losses, we count each
376  *      VM object as having at least 1 anonymous page.
377  */
378 int
379 vmspace_anonymous_count(struct vmspace *vmspace)
380 {
381         vm_map_t map = &vmspace->vm_map;
382         vm_map_entry_t cur;
383         vm_object_t object;
384         int count = 0;
385
386         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
387                 switch(cur->maptype) {
388                 case VM_MAPTYPE_NORMAL:
389                 case VM_MAPTYPE_VPAGETABLE:
390                         if ((object = cur->object.vm_object) == NULL)
391                                 break;
392                         if (object->type != OBJT_DEFAULT &&
393                             object->type != OBJT_SWAP) {
394                                 break;
395                         }
396                         count += object->resident_page_count;
397                         break;
398                 default:
399                         break;
400                 }
401         }
402         return(count);
403 }
404
405
406
407
408 /*
409  *      vm_map_create:
410  *
411  *      Creates and returns a new empty VM map with
412  *      the given physical map structure, and having
413  *      the given lower and upper address bounds.
414  */
415 vm_map_t
416 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
417 {
418         if (result == NULL)
419                 result = zalloc(mapzone);
420         vm_map_init(result, min, max, pmap);
421         return (result);
422 }
423
424 /*
425  * Initialize an existing vm_map structure
426  * such as that in the vmspace structure.
427  * The pmap is set elsewhere.
428  */
429 void
430 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
431 {
432         map->header.next = map->header.prev = &map->header;
433         RB_INIT(&map->rb_root);
434         map->nentries = 0;
435         map->size = 0;
436         map->system_map = 0;
437         map->infork = 0;
438         map->min_offset = min;
439         map->max_offset = max;
440         map->pmap = pmap;
441         map->first_free = &map->header;
442         map->hint = &map->header;
443         map->timestamp = 0;
444         lockinit(&map->lock, "thrd_sleep", 0, 0);
445 }
446
447 /*
448  * Shadow the vm_map_entry's object.  This typically needs to be done when
449  * a write fault is taken on an entry which had previously been cloned by
450  * fork().  The shared object (which might be NULL) must become private so
451  * we add a shadow layer above it.
452  *
453  * Object allocation for anonymous mappings is defered as long as possible.
454  * When creating a shadow, however, the underlying object must be instantiated
455  * so it can be shared.
456  *
457  * If the map segment is governed by a virtual page table then it is
458  * possible to address offsets beyond the mapped area.  Just allocate
459  * a maximally sized object for this case.
460  */
461 static
462 void
463 vm_map_entry_shadow(vm_map_entry_t entry)
464 {
465         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
466                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
467                                  0x7FFFFFFF);   /* XXX */
468         } else {
469                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
470                                  atop(entry->end - entry->start));
471         }
472         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
473 }
474
475 /*
476  * Allocate an object for a vm_map_entry.
477  *
478  * Object allocation for anonymous mappings is defered as long as possible.
479  * This function is called when we can defer no longer, generally when a map
480  * entry might be split or forked or takes a page fault.
481  *
482  * If the map segment is governed by a virtual page table then it is
483  * possible to address offsets beyond the mapped area.  Just allocate
484  * a maximally sized object for this case.
485  */
486 void 
487 vm_map_entry_allocate_object(vm_map_entry_t entry)
488 {
489         vm_object_t obj;
490
491         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
492                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
493         } else {
494                 obj = vm_object_allocate(OBJT_DEFAULT,
495                                          atop(entry->end - entry->start));
496         }
497         entry->object.vm_object = obj;
498         entry->offset = 0;
499 }
500
501 /*
502  *      vm_map_entry_reserve_cpu_init:
503  *
504  *      Set an initial negative count so the first attempt to reserve
505  *      space preloads a bunch of vm_map_entry's for this cpu.  Also
506  *      pre-allocate 2 vm_map_entries which will be needed by zalloc() to
507  *      map a new page for vm_map_entry structures.  SMP systems are
508  *      particularly sensitive.
509  *
510  *      This routine is called in early boot so we cannot just call
511  *      vm_map_entry_reserve().
512  *
513  *      May be called for a gd other then mycpu, but may only be called
514  *      during early boot.
515  */
516 void
517 vm_map_entry_reserve_cpu_init(globaldata_t gd)
518 {
519         vm_map_entry_t entry;
520         int i;
521
522         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
523         entry = &cpu_map_entry_init[gd->gd_cpuid][0];
524         for (i = 0; i < VMEPERCPU; ++i, ++entry) {
525                 entry->next = gd->gd_vme_base;
526                 gd->gd_vme_base = entry;
527         }
528 }
529
530 /*
531  *      vm_map_entry_reserve:
532  *
533  *      Reserves vm_map_entry structures so code later on can manipulate
534  *      map_entry structures within a locked map without blocking trying
535  *      to allocate a new vm_map_entry.
536  */
537 int
538 vm_map_entry_reserve(int count)
539 {
540         struct globaldata *gd = mycpu;
541         vm_map_entry_t entry;
542
543         crit_enter();
544
545         /*
546          * Make sure we have enough structures in gd_vme_base to handle
547          * the reservation request.
548          */
549         while (gd->gd_vme_avail < count) {
550                 entry = zalloc(mapentzone);
551                 entry->next = gd->gd_vme_base;
552                 gd->gd_vme_base = entry;
553                 ++gd->gd_vme_avail;
554         }
555         gd->gd_vme_avail -= count;
556         crit_exit();
557         return(count);
558 }
559
560 /*
561  *      vm_map_entry_release:
562  *
563  *      Releases previously reserved vm_map_entry structures that were not
564  *      used.  If we have too much junk in our per-cpu cache clean some of
565  *      it out.
566  */
567 void
568 vm_map_entry_release(int count)
569 {
570         struct globaldata *gd = mycpu;
571         vm_map_entry_t entry;
572
573         crit_enter();
574         gd->gd_vme_avail += count;
575         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
576                 entry = gd->gd_vme_base;
577                 KKASSERT(entry != NULL);
578                 gd->gd_vme_base = entry->next;
579                 --gd->gd_vme_avail;
580                 crit_exit();
581                 zfree(mapentzone, entry);
582                 crit_enter();
583         }
584         crit_exit();
585 }
586
587 /*
588  *      vm_map_entry_kreserve:
589  *
590  *      Reserve map entry structures for use in kernel_map itself.  These
591  *      entries have *ALREADY* been reserved on a per-cpu basis when the map
592  *      was inited.  This function is used by zalloc() to avoid a recursion
593  *      when zalloc() itself needs to allocate additional kernel memory.
594  *
595  *      This function works like the normal reserve but does not load the
596  *      vm_map_entry cache (because that would result in an infinite
597  *      recursion).  Note that gd_vme_avail may go negative.  This is expected.
598  *
599  *      Any caller of this function must be sure to renormalize after 
600  *      potentially eating entries to ensure that the reserve supply
601  *      remains intact.
602  */
603 int
604 vm_map_entry_kreserve(int count)
605 {
606         struct globaldata *gd = mycpu;
607
608         crit_enter();
609         gd->gd_vme_avail -= count;
610         crit_exit();
611         KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
612         return(count);
613 }
614
615 /*
616  *      vm_map_entry_krelease:
617  *
618  *      Release previously reserved map entries for kernel_map.  We do not
619  *      attempt to clean up like the normal release function as this would
620  *      cause an unnecessary (but probably not fatal) deep procedure call.
621  */
622 void
623 vm_map_entry_krelease(int count)
624 {
625         struct globaldata *gd = mycpu;
626
627         crit_enter();
628         gd->gd_vme_avail += count;
629         crit_exit();
630 }
631
632 /*
633  *      vm_map_entry_create:    [ internal use only ]
634  *
635  *      Allocates a VM map entry for insertion.  No entry fields are filled 
636  *      in.
637  *
638  *      This routine may be called from an interrupt thread but not a FAST
639  *      interrupt.  This routine may recurse the map lock.
640  */
641 static vm_map_entry_t
642 vm_map_entry_create(vm_map_t map, int *countp)
643 {
644         struct globaldata *gd = mycpu;
645         vm_map_entry_t entry;
646
647         KKASSERT(*countp > 0);
648         --*countp;
649         crit_enter();
650         entry = gd->gd_vme_base;
651         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
652         gd->gd_vme_base = entry->next;
653         crit_exit();
654         return(entry);
655 }
656
657 /*
658  *      vm_map_entry_dispose:   [ internal use only ]
659  *
660  *      Dispose of a vm_map_entry that is no longer being referenced.  This
661  *      function may be called from an interrupt.
662  */
663 static void
664 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
665 {
666         struct globaldata *gd = mycpu;
667
668         KKASSERT(map->hint != entry);
669         KKASSERT(map->first_free != entry);
670
671         ++*countp;
672         crit_enter();
673         entry->next = gd->gd_vme_base;
674         gd->gd_vme_base = entry;
675         crit_exit();
676 }
677
678
679 /*
680  *      vm_map_entry_{un,}link:
681  *
682  *      Insert/remove entries from maps.
683  */
684 static __inline void
685 vm_map_entry_link(vm_map_t map,
686                   vm_map_entry_t after_where,
687                   vm_map_entry_t entry)
688 {
689         map->nentries++;
690         entry->prev = after_where;
691         entry->next = after_where->next;
692         entry->next->prev = entry;
693         after_where->next = entry;
694         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
695                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
696 }
697
698 static __inline void
699 vm_map_entry_unlink(vm_map_t map,
700                     vm_map_entry_t entry)
701 {
702         vm_map_entry_t prev;
703         vm_map_entry_t next;
704
705         if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
706                 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
707         prev = entry->prev;
708         next = entry->next;
709         next->prev = prev;
710         prev->next = next;
711         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
712         map->nentries--;
713 }
714
715 /*
716  *      vm_map_lookup_entry:    [ internal use only ]
717  *
718  *      Finds the map entry containing (or
719  *      immediately preceding) the specified address
720  *      in the given map; the entry is returned
721  *      in the "entry" parameter.  The boolean
722  *      result indicates whether the address is
723  *      actually contained in the map.
724  */
725 boolean_t
726 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
727     vm_map_entry_t *entry /* OUT */)
728 {
729         vm_map_entry_t tmp;
730         vm_map_entry_t last;
731
732 #if 0
733         /*
734          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
735          * the hint code with the red-black lookup meets with system crashes
736          * and lockups.  We do not yet know why.
737          *
738          * It is possible that the problem is related to the setting
739          * of the hint during map_entry deletion, in the code specified
740          * at the GGG comment later on in this file.
741          */
742         /*
743          * Quickly check the cached hint, there's a good chance of a match.
744          */
745         if (map->hint != &map->header) {
746                 tmp = map->hint;
747                 if (address >= tmp->start && address < tmp->end) {
748                         *entry = tmp;
749                         return(TRUE);
750                 }
751         }
752 #endif
753
754         /*
755          * Locate the record from the top of the tree.  'last' tracks the
756          * closest prior record and is returned if no match is found, which
757          * in binary tree terms means tracking the most recent right-branch
758          * taken.  If there is no prior record, &map->header is returned.
759          */
760         last = &map->header;
761         tmp = RB_ROOT(&map->rb_root);
762
763         while (tmp) {
764                 if (address >= tmp->start) {
765                         if (address < tmp->end) {
766                                 *entry = tmp;
767                                 map->hint = tmp;
768                                 return(TRUE);
769                         }
770                         last = tmp;
771                         tmp = RB_RIGHT(tmp, rb_entry);
772                 } else {
773                         tmp = RB_LEFT(tmp, rb_entry);
774                 }
775         }
776         *entry = last;
777         return (FALSE);
778 }
779
780 /*
781  *      vm_map_insert:
782  *
783  *      Inserts the given whole VM object into the target
784  *      map at the specified address range.  The object's
785  *      size should match that of the address range.
786  *
787  *      Requires that the map be locked, and leaves it so.  Requires that
788  *      sufficient vm_map_entry structures have been reserved and tracks
789  *      the use via countp.
790  *
791  *      If object is non-NULL, ref count must be bumped by caller
792  *      prior to making call to account for the new entry.
793  */
794 int
795 vm_map_insert(vm_map_t map, int *countp,
796               vm_object_t object, vm_ooffset_t offset,
797               vm_offset_t start, vm_offset_t end,
798               vm_maptype_t maptype,
799               vm_prot_t prot, vm_prot_t max,
800               int cow)
801 {
802         vm_map_entry_t new_entry;
803         vm_map_entry_t prev_entry;
804         vm_map_entry_t temp_entry;
805         vm_eflags_t protoeflags;
806
807         /*
808          * Check that the start and end points are not bogus.
809          */
810
811         if ((start < map->min_offset) || (end > map->max_offset) ||
812             (start >= end))
813                 return (KERN_INVALID_ADDRESS);
814
815         /*
816          * Find the entry prior to the proposed starting address; if it's part
817          * of an existing entry, this range is bogus.
818          */
819
820         if (vm_map_lookup_entry(map, start, &temp_entry))
821                 return (KERN_NO_SPACE);
822
823         prev_entry = temp_entry;
824
825         /*
826          * Assert that the next entry doesn't overlap the end point.
827          */
828
829         if ((prev_entry->next != &map->header) &&
830             (prev_entry->next->start < end))
831                 return (KERN_NO_SPACE);
832
833         protoeflags = 0;
834
835         if (cow & MAP_COPY_ON_WRITE)
836                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
837
838         if (cow & MAP_NOFAULT) {
839                 protoeflags |= MAP_ENTRY_NOFAULT;
840
841                 KASSERT(object == NULL,
842                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
843         }
844         if (cow & MAP_DISABLE_SYNCER)
845                 protoeflags |= MAP_ENTRY_NOSYNC;
846         if (cow & MAP_DISABLE_COREDUMP)
847                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
848
849         if (object) {
850                 /*
851                  * When object is non-NULL, it could be shared with another
852                  * process.  We have to set or clear OBJ_ONEMAPPING 
853                  * appropriately.
854                  */
855                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
856                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
857                 }
858         }
859         else if ((prev_entry != &map->header) &&
860                  (prev_entry->eflags == protoeflags) &&
861                  (prev_entry->end == start) &&
862                  (prev_entry->wired_count == 0) &&
863                  prev_entry->maptype == maptype &&
864                  ((prev_entry->object.vm_object == NULL) ||
865                   vm_object_coalesce(prev_entry->object.vm_object,
866                                      OFF_TO_IDX(prev_entry->offset),
867                                      (vm_size_t)(prev_entry->end - prev_entry->start),
868                                      (vm_size_t)(end - prev_entry->end)))) {
869                 /*
870                  * We were able to extend the object.  Determine if we
871                  * can extend the previous map entry to include the 
872                  * new range as well.
873                  */
874                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
875                     (prev_entry->protection == prot) &&
876                     (prev_entry->max_protection == max)) {
877                         map->size += (end - prev_entry->end);
878                         prev_entry->end = end;
879                         vm_map_simplify_entry(map, prev_entry, countp);
880                         return (KERN_SUCCESS);
881                 }
882
883                 /*
884                  * If we can extend the object but cannot extend the
885                  * map entry, we have to create a new map entry.  We
886                  * must bump the ref count on the extended object to
887                  * account for it.  object may be NULL.
888                  */
889                 object = prev_entry->object.vm_object;
890                 offset = prev_entry->offset +
891                         (prev_entry->end - prev_entry->start);
892                 vm_object_reference(object);
893         }
894
895         /*
896          * NOTE: if conditionals fail, object can be NULL here.  This occurs
897          * in things like the buffer map where we manage kva but do not manage
898          * backing objects.
899          */
900
901         /*
902          * Create a new entry
903          */
904
905         new_entry = vm_map_entry_create(map, countp);
906         new_entry->start = start;
907         new_entry->end = end;
908
909         new_entry->maptype = maptype;
910         new_entry->eflags = protoeflags;
911         new_entry->object.vm_object = object;
912         new_entry->offset = offset;
913         new_entry->aux.master_pde = 0;
914
915         new_entry->inheritance = VM_INHERIT_DEFAULT;
916         new_entry->protection = prot;
917         new_entry->max_protection = max;
918         new_entry->wired_count = 0;
919
920         /*
921          * Insert the new entry into the list
922          */
923
924         vm_map_entry_link(map, prev_entry, new_entry);
925         map->size += new_entry->end - new_entry->start;
926
927         /*
928          * Update the free space hint
929          */
930         if ((map->first_free == prev_entry) &&
931             (prev_entry->end >= new_entry->start)) {
932                 map->first_free = new_entry;
933         }
934
935 #if 0
936         /*
937          * Temporarily removed to avoid MAP_STACK panic, due to
938          * MAP_STACK being a huge hack.  Will be added back in
939          * when MAP_STACK (and the user stack mapping) is fixed.
940          */
941         /*
942          * It may be possible to simplify the entry
943          */
944         vm_map_simplify_entry(map, new_entry, countp);
945 #endif
946
947         /*
948          * Try to pre-populate the page table.  Mappings governed by virtual
949          * page tables cannot be prepopulated without a lot of work, so
950          * don't try.
951          */
952         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
953             maptype != VM_MAPTYPE_VPAGETABLE) {
954                 pmap_object_init_pt(map->pmap, start, prot,
955                                     object, OFF_TO_IDX(offset), end - start,
956                                     cow & MAP_PREFAULT_PARTIAL);
957         }
958
959         return (KERN_SUCCESS);
960 }
961
962 /*
963  * Find sufficient space for `length' bytes in the given map, starting at
964  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
965  *
966  * This function will returned an arbitrarily aligned pointer.  If no
967  * particular alignment is required you should pass align as 1.  Note that
968  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
969  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
970  * argument.
971  *
972  * 'align' should be a power of 2 but is not required to be.
973  */
974 int
975 vm_map_findspace(
976         vm_map_t map,
977         vm_offset_t start,
978         vm_size_t length,
979         vm_offset_t align,
980         vm_offset_t *addr)
981 {
982         vm_map_entry_t entry, next;
983         vm_offset_t end;
984         vm_offset_t align_mask;
985
986         if (start < map->min_offset)
987                 start = map->min_offset;
988         if (start > map->max_offset)
989                 return (1);
990
991         /*
992          * If the alignment is not a power of 2 we will have to use
993          * a mod/division, set align_mask to a special value.
994          */
995         if ((align | (align - 1)) + 1 != (align << 1))
996                 align_mask = (vm_offset_t)-1;
997         else
998                 align_mask = align - 1;
999
1000 retry:
1001         /*
1002          * Look for the first possible address; if there's already something
1003          * at this address, we have to start after it.
1004          */
1005         if (start == map->min_offset) {
1006                 if ((entry = map->first_free) != &map->header)
1007                         start = entry->end;
1008         } else {
1009                 vm_map_entry_t tmp;
1010
1011                 if (vm_map_lookup_entry(map, start, &tmp))
1012                         start = tmp->end;
1013                 entry = tmp;
1014         }
1015
1016         /*
1017          * Look through the rest of the map, trying to fit a new region in the
1018          * gap between existing regions, or after the very last region.
1019          */
1020         for (;; start = (entry = next)->end) {
1021                 /*
1022                  * Adjust the proposed start by the requested alignment,
1023                  * be sure that we didn't wrap the address.
1024                  */
1025                 if (align_mask == (vm_offset_t)-1)
1026                         end = ((start + align - 1) / align) * align;
1027                 else
1028                         end = (start + align_mask) & ~align_mask;
1029                 if (end < start)
1030                         return (1);
1031                 start = end;
1032                 /*
1033                  * Find the end of the proposed new region.  Be sure we didn't
1034                  * go beyond the end of the map, or wrap around the address.
1035                  * Then check to see if this is the last entry or if the 
1036                  * proposed end fits in the gap between this and the next
1037                  * entry.
1038                  */
1039                 end = start + length;
1040                 if (end > map->max_offset || end < start)
1041                         return (1);
1042                 next = entry->next;
1043                 if (next == &map->header || next->start >= end)
1044                         break;
1045         }
1046         map->hint = entry;
1047         if (map == &kernel_map) {
1048                 vm_offset_t ksize;
1049                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
1050                         pmap_growkernel(ksize);
1051                         goto retry;
1052                 }
1053         }
1054         *addr = start;
1055         return (0);
1056 }
1057
1058 /*
1059  *      vm_map_find finds an unallocated region in the target address
1060  *      map with the given length.  The search is defined to be
1061  *      first-fit from the specified address; the region found is
1062  *      returned in the same parameter.
1063  *
1064  *      If object is non-NULL, ref count must be bumped by caller
1065  *      prior to making call to account for the new entry.
1066  */
1067 int
1068 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1069             vm_offset_t *addr,  vm_size_t length,
1070             boolean_t find_space,
1071             vm_maptype_t maptype,
1072             vm_prot_t prot, vm_prot_t max,
1073             int cow)
1074 {
1075         vm_offset_t start;
1076         int result;
1077         int count;
1078
1079         start = *addr;
1080
1081         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1082         vm_map_lock(map);
1083         if (find_space) {
1084                 if (vm_map_findspace(map, start, length, 1, addr)) {
1085                         vm_map_unlock(map);
1086                         vm_map_entry_release(count);
1087                         return (KERN_NO_SPACE);
1088                 }
1089                 start = *addr;
1090         }
1091         result = vm_map_insert(map, &count, object, offset,
1092                                start, start + length,
1093                                maptype,
1094                                prot, max,
1095                                cow);
1096         vm_map_unlock(map);
1097         vm_map_entry_release(count);
1098
1099         return (result);
1100 }
1101
1102 /*
1103  *      vm_map_simplify_entry:
1104  *
1105  *      Simplify the given map entry by merging with either neighbor.  This
1106  *      routine also has the ability to merge with both neighbors.
1107  *
1108  *      The map must be locked.
1109  *
1110  *      This routine guarentees that the passed entry remains valid (though
1111  *      possibly extended).  When merging, this routine may delete one or
1112  *      both neighbors.  No action is taken on entries which have their
1113  *      in-transition flag set.
1114  */
1115 void
1116 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1117 {
1118         vm_map_entry_t next, prev;
1119         vm_size_t prevsize, esize;
1120
1121         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1122                 ++mycpu->gd_cnt.v_intrans_coll;
1123                 return;
1124         }
1125
1126         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1127                 return;
1128
1129         prev = entry->prev;
1130         if (prev != &map->header) {
1131                 prevsize = prev->end - prev->start;
1132                 if ( (prev->end == entry->start) &&
1133                      (prev->maptype == entry->maptype) &&
1134                      (prev->object.vm_object == entry->object.vm_object) &&
1135                      (!prev->object.vm_object ||
1136                         (prev->offset + prevsize == entry->offset)) &&
1137                      (prev->eflags == entry->eflags) &&
1138                      (prev->protection == entry->protection) &&
1139                      (prev->max_protection == entry->max_protection) &&
1140                      (prev->inheritance == entry->inheritance) &&
1141                      (prev->wired_count == entry->wired_count)) {
1142                         if (map->first_free == prev)
1143                                 map->first_free = entry;
1144                         if (map->hint == prev)
1145                                 map->hint = entry;
1146                         vm_map_entry_unlink(map, prev);
1147                         entry->start = prev->start;
1148                         entry->offset = prev->offset;
1149                         if (prev->object.vm_object)
1150                                 vm_object_deallocate(prev->object.vm_object);
1151                         vm_map_entry_dispose(map, prev, countp);
1152                 }
1153         }
1154
1155         next = entry->next;
1156         if (next != &map->header) {
1157                 esize = entry->end - entry->start;
1158                 if ((entry->end == next->start) &&
1159                     (next->maptype == entry->maptype) &&
1160                     (next->object.vm_object == entry->object.vm_object) &&
1161                      (!entry->object.vm_object ||
1162                         (entry->offset + esize == next->offset)) &&
1163                     (next->eflags == entry->eflags) &&
1164                     (next->protection == entry->protection) &&
1165                     (next->max_protection == entry->max_protection) &&
1166                     (next->inheritance == entry->inheritance) &&
1167                     (next->wired_count == entry->wired_count)) {
1168                         if (map->first_free == next)
1169                                 map->first_free = entry;
1170                         if (map->hint == next)
1171                                 map->hint = entry;
1172                         vm_map_entry_unlink(map, next);
1173                         entry->end = next->end;
1174                         if (next->object.vm_object)
1175                                 vm_object_deallocate(next->object.vm_object);
1176                         vm_map_entry_dispose(map, next, countp);
1177                 }
1178         }
1179 }
1180 /*
1181  *      vm_map_clip_start:      [ internal use only ]
1182  *
1183  *      Asserts that the given entry begins at or after
1184  *      the specified address; if necessary,
1185  *      it splits the entry into two.
1186  */
1187 #define vm_map_clip_start(map, entry, startaddr, countp) \
1188 { \
1189         if (startaddr > entry->start) \
1190                 _vm_map_clip_start(map, entry, startaddr, countp); \
1191 }
1192
1193 /*
1194  *      This routine is called only when it is known that
1195  *      the entry must be split.
1196  */
1197 static void
1198 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1199 {
1200         vm_map_entry_t new_entry;
1201
1202         /*
1203          * Split off the front portion -- note that we must insert the new
1204          * entry BEFORE this one, so that this entry has the specified
1205          * starting address.
1206          */
1207
1208         vm_map_simplify_entry(map, entry, countp);
1209
1210         /*
1211          * If there is no object backing this entry, we might as well create
1212          * one now.  If we defer it, an object can get created after the map
1213          * is clipped, and individual objects will be created for the split-up
1214          * map.  This is a bit of a hack, but is also about the best place to
1215          * put this improvement.
1216          */
1217         if (entry->object.vm_object == NULL && !map->system_map) {
1218                 vm_map_entry_allocate_object(entry);
1219         }
1220
1221         new_entry = vm_map_entry_create(map, countp);
1222         *new_entry = *entry;
1223
1224         new_entry->end = start;
1225         entry->offset += (start - entry->start);
1226         entry->start = start;
1227
1228         vm_map_entry_link(map, entry->prev, new_entry);
1229
1230         switch(entry->maptype) {
1231         case VM_MAPTYPE_NORMAL:
1232         case VM_MAPTYPE_VPAGETABLE:
1233                 vm_object_reference(new_entry->object.vm_object);
1234                 break;
1235         default:
1236                 break;
1237         }
1238 }
1239
1240 /*
1241  *      vm_map_clip_end:        [ internal use only ]
1242  *
1243  *      Asserts that the given entry ends at or before
1244  *      the specified address; if necessary,
1245  *      it splits the entry into two.
1246  */
1247
1248 #define vm_map_clip_end(map, entry, endaddr, countp) \
1249 { \
1250         if (endaddr < entry->end) \
1251                 _vm_map_clip_end(map, entry, endaddr, countp); \
1252 }
1253
1254 /*
1255  *      This routine is called only when it is known that
1256  *      the entry must be split.
1257  */
1258 static void
1259 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1260 {
1261         vm_map_entry_t new_entry;
1262
1263         /*
1264          * If there is no object backing this entry, we might as well create
1265          * one now.  If we defer it, an object can get created after the map
1266          * is clipped, and individual objects will be created for the split-up
1267          * map.  This is a bit of a hack, but is also about the best place to
1268          * put this improvement.
1269          */
1270
1271         if (entry->object.vm_object == NULL && !map->system_map) {
1272                 vm_map_entry_allocate_object(entry);
1273         }
1274
1275         /*
1276          * Create a new entry and insert it AFTER the specified entry
1277          */
1278
1279         new_entry = vm_map_entry_create(map, countp);
1280         *new_entry = *entry;
1281
1282         new_entry->start = entry->end = end;
1283         new_entry->offset += (end - entry->start);
1284
1285         vm_map_entry_link(map, entry, new_entry);
1286
1287         switch(entry->maptype) {
1288         case VM_MAPTYPE_NORMAL:
1289         case VM_MAPTYPE_VPAGETABLE:
1290                 vm_object_reference(new_entry->object.vm_object);
1291                 break;
1292         default:
1293                 break;
1294         }
1295 }
1296
1297 /*
1298  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1299  *
1300  *      Asserts that the starting and ending region
1301  *      addresses fall within the valid range of the map.
1302  */
1303 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1304                 {                                       \
1305                 if (start < vm_map_min(map))            \
1306                         start = vm_map_min(map);        \
1307                 if (end > vm_map_max(map))              \
1308                         end = vm_map_max(map);          \
1309                 if (start > end)                        \
1310                         start = end;                    \
1311                 }
1312
1313 /*
1314  *      vm_map_transition_wait: [ kernel use only ]
1315  *
1316  *      Used to block when an in-transition collison occurs.  The map
1317  *      is unlocked for the sleep and relocked before the return.
1318  */
1319 static
1320 void
1321 vm_map_transition_wait(vm_map_t map)
1322 {
1323         vm_map_unlock(map);
1324         tsleep(map, 0, "vment", 0);
1325         vm_map_lock(map);
1326 }
1327
1328 /*
1329  * CLIP_CHECK_BACK
1330  * CLIP_CHECK_FWD
1331  *
1332  *      When we do blocking operations with the map lock held it is
1333  *      possible that a clip might have occured on our in-transit entry,
1334  *      requiring an adjustment to the entry in our loop.  These macros
1335  *      help the pageable and clip_range code deal with the case.  The
1336  *      conditional costs virtually nothing if no clipping has occured.
1337  */
1338
1339 #define CLIP_CHECK_BACK(entry, save_start)              \
1340     do {                                                \
1341             while (entry->start != save_start) {        \
1342                     entry = entry->prev;                \
1343                     KASSERT(entry != &map->header, ("bad entry clip")); \
1344             }                                           \
1345     } while(0)
1346
1347 #define CLIP_CHECK_FWD(entry, save_end)                 \
1348     do {                                                \
1349             while (entry->end != save_end) {            \
1350                     entry = entry->next;                \
1351                     KASSERT(entry != &map->header, ("bad entry clip")); \
1352             }                                           \
1353     } while(0)
1354
1355
1356 /*
1357  *      vm_map_clip_range:      [ kernel use only ]
1358  *
1359  *      Clip the specified range and return the base entry.  The
1360  *      range may cover several entries starting at the returned base
1361  *      and the first and last entry in the covering sequence will be
1362  *      properly clipped to the requested start and end address.
1363  *
1364  *      If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1365  *      flag.  
1366  *
1367  *      The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1368  *      covered by the requested range.
1369  *
1370  *      The map must be exclusively locked on entry and will remain locked
1371  *      on return. If no range exists or the range contains holes and you
1372  *      specified that no holes were allowed, NULL will be returned.  This
1373  *      routine may temporarily unlock the map in order avoid a deadlock when
1374  *      sleeping.
1375  */
1376 static
1377 vm_map_entry_t
1378 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1379         int *countp, int flags)
1380 {
1381         vm_map_entry_t start_entry;
1382         vm_map_entry_t entry;
1383
1384         /*
1385          * Locate the entry and effect initial clipping.  The in-transition
1386          * case does not occur very often so do not try to optimize it.
1387          */
1388 again:
1389         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1390                 return (NULL);
1391         entry = start_entry;
1392         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1393                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1394                 ++mycpu->gd_cnt.v_intrans_coll;
1395                 ++mycpu->gd_cnt.v_intrans_wait;
1396                 vm_map_transition_wait(map);
1397                 /*
1398                  * entry and/or start_entry may have been clipped while
1399                  * we slept, or may have gone away entirely.  We have
1400                  * to restart from the lookup.
1401                  */
1402                 goto again;
1403         }
1404         /*
1405          * Since we hold an exclusive map lock we do not have to restart
1406          * after clipping, even though clipping may block in zalloc.
1407          */
1408         vm_map_clip_start(map, entry, start, countp);
1409         vm_map_clip_end(map, entry, end, countp);
1410         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1411
1412         /*
1413          * Scan entries covered by the range.  When working on the next
1414          * entry a restart need only re-loop on the current entry which
1415          * we have already locked, since 'next' may have changed.  Also,
1416          * even though entry is safe, it may have been clipped so we
1417          * have to iterate forwards through the clip after sleeping.
1418          */
1419         while (entry->next != &map->header && entry->next->start < end) {
1420                 vm_map_entry_t next = entry->next;
1421
1422                 if (flags & MAP_CLIP_NO_HOLES) {
1423                         if (next->start > entry->end) {
1424                                 vm_map_unclip_range(map, start_entry,
1425                                         start, entry->end, countp, flags);
1426                                 return(NULL);
1427                         }
1428                 }
1429
1430                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1431                         vm_offset_t save_end = entry->end;
1432                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1433                         ++mycpu->gd_cnt.v_intrans_coll;
1434                         ++mycpu->gd_cnt.v_intrans_wait;
1435                         vm_map_transition_wait(map);
1436
1437                         /*
1438                          * clips might have occured while we blocked.
1439                          */
1440                         CLIP_CHECK_FWD(entry, save_end);
1441                         CLIP_CHECK_BACK(start_entry, start);
1442                         continue;
1443                 }
1444                 /*
1445                  * No restart necessary even though clip_end may block, we
1446                  * are holding the map lock.
1447                  */
1448                 vm_map_clip_end(map, next, end, countp);
1449                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1450                 entry = next;
1451         }
1452         if (flags & MAP_CLIP_NO_HOLES) {
1453                 if (entry->end != end) {
1454                         vm_map_unclip_range(map, start_entry,
1455                                 start, entry->end, countp, flags);
1456                         return(NULL);
1457                 }
1458         }
1459         return(start_entry);
1460 }
1461
1462 /*
1463  *      vm_map_unclip_range:    [ kernel use only ]
1464  *
1465  *      Undo the effect of vm_map_clip_range().  You should pass the same
1466  *      flags and the same range that you passed to vm_map_clip_range().
1467  *      This code will clear the in-transition flag on the entries and
1468  *      wake up anyone waiting.  This code will also simplify the sequence 
1469  *      and attempt to merge it with entries before and after the sequence.
1470  *
1471  *      The map must be locked on entry and will remain locked on return.
1472  *
1473  *      Note that you should also pass the start_entry returned by 
1474  *      vm_map_clip_range().  However, if you block between the two calls
1475  *      with the map unlocked please be aware that the start_entry may
1476  *      have been clipped and you may need to scan it backwards to find
1477  *      the entry corresponding with the original start address.  You are
1478  *      responsible for this, vm_map_unclip_range() expects the correct
1479  *      start_entry to be passed to it and will KASSERT otherwise.
1480  */
1481 static
1482 void
1483 vm_map_unclip_range(
1484         vm_map_t map,
1485         vm_map_entry_t start_entry,
1486         vm_offset_t start,
1487         vm_offset_t end,
1488         int *countp,
1489         int flags)
1490 {
1491         vm_map_entry_t entry;
1492
1493         entry = start_entry;
1494
1495         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1496         while (entry != &map->header && entry->start < end) {
1497                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1498                 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1499                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1500                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1501                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1502                         wakeup(map);
1503                 }
1504                 entry = entry->next;
1505         }
1506
1507         /*
1508          * Simplification does not block so there is no restart case.
1509          */
1510         entry = start_entry;
1511         while (entry != &map->header && entry->start < end) {
1512                 vm_map_simplify_entry(map, entry, countp);
1513                 entry = entry->next;
1514         }
1515 }
1516
1517 /*
1518  *      vm_map_submap:          [ kernel use only ]
1519  *
1520  *      Mark the given range as handled by a subordinate map.
1521  *
1522  *      This range must have been created with vm_map_find,
1523  *      and no other operations may have been performed on this
1524  *      range prior to calling vm_map_submap.
1525  *
1526  *      Only a limited number of operations can be performed
1527  *      within this rage after calling vm_map_submap:
1528  *              vm_fault
1529  *      [Don't try vm_map_copy!]
1530  *
1531  *      To remove a submapping, one must first remove the
1532  *      range from the superior map, and then destroy the
1533  *      submap (if desired).  [Better yet, don't try it.]
1534  */
1535 int
1536 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1537 {
1538         vm_map_entry_t entry;
1539         int result = KERN_INVALID_ARGUMENT;
1540         int count;
1541
1542         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1543         vm_map_lock(map);
1544
1545         VM_MAP_RANGE_CHECK(map, start, end);
1546
1547         if (vm_map_lookup_entry(map, start, &entry)) {
1548                 vm_map_clip_start(map, entry, start, &count);
1549         } else {
1550                 entry = entry->next;
1551         }
1552
1553         vm_map_clip_end(map, entry, end, &count);
1554
1555         if ((entry->start == start) && (entry->end == end) &&
1556             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1557             (entry->object.vm_object == NULL)) {
1558                 entry->object.sub_map = submap;
1559                 entry->maptype = VM_MAPTYPE_SUBMAP;
1560                 result = KERN_SUCCESS;
1561         }
1562         vm_map_unlock(map);
1563         vm_map_entry_release(count);
1564
1565         return (result);
1566 }
1567
1568 /*
1569  * vm_map_protect:
1570  *
1571  * Sets the protection of the specified address region in the target map. 
1572  * If "set_max" is specified, the maximum protection is to be set;
1573  * otherwise, only the current protection is affected.
1574  *
1575  * The protection is not applicable to submaps, but is applicable to normal
1576  * maps and maps governed by virtual page tables.  For example, when operating
1577  * on a virtual page table our protection basically controls how COW occurs
1578  * on the backing object, whereas the virtual page table abstraction itself
1579  * is an abstraction for userland.
1580  */
1581 int
1582 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1583                vm_prot_t new_prot, boolean_t set_max)
1584 {
1585         vm_map_entry_t current;
1586         vm_map_entry_t entry;
1587         int count;
1588
1589         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1590         vm_map_lock(map);
1591
1592         VM_MAP_RANGE_CHECK(map, start, end);
1593
1594         if (vm_map_lookup_entry(map, start, &entry)) {
1595                 vm_map_clip_start(map, entry, start, &count);
1596         } else {
1597                 entry = entry->next;
1598         }
1599
1600         /*
1601          * Make a first pass to check for protection violations.
1602          */
1603         current = entry;
1604         while ((current != &map->header) && (current->start < end)) {
1605                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1606                         vm_map_unlock(map);
1607                         vm_map_entry_release(count);
1608                         return (KERN_INVALID_ARGUMENT);
1609                 }
1610                 if ((new_prot & current->max_protection) != new_prot) {
1611                         vm_map_unlock(map);
1612                         vm_map_entry_release(count);
1613                         return (KERN_PROTECTION_FAILURE);
1614                 }
1615                 current = current->next;
1616         }
1617
1618         /*
1619          * Go back and fix up protections. [Note that clipping is not
1620          * necessary the second time.]
1621          */
1622         current = entry;
1623
1624         while ((current != &map->header) && (current->start < end)) {
1625                 vm_prot_t old_prot;
1626
1627                 vm_map_clip_end(map, current, end, &count);
1628
1629                 old_prot = current->protection;
1630                 if (set_max) {
1631                         current->protection =
1632                             (current->max_protection = new_prot) &
1633                             old_prot;
1634                 } else {
1635                         current->protection = new_prot;
1636                 }
1637
1638                 /*
1639                  * Update physical map if necessary. Worry about copy-on-write
1640                  * here -- CHECK THIS XXX
1641                  */
1642
1643                 if (current->protection != old_prot) {
1644 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1645                                                         VM_PROT_ALL)
1646
1647                         pmap_protect(map->pmap, current->start,
1648                             current->end,
1649                             current->protection & MASK(current));
1650 #undef  MASK
1651                 }
1652
1653                 vm_map_simplify_entry(map, current, &count);
1654
1655                 current = current->next;
1656         }
1657
1658         vm_map_unlock(map);
1659         vm_map_entry_release(count);
1660         return (KERN_SUCCESS);
1661 }
1662
1663 /*
1664  *      vm_map_madvise:
1665  *
1666  *      This routine traverses a processes map handling the madvise
1667  *      system call.  Advisories are classified as either those effecting
1668  *      the vm_map_entry structure, or those effecting the underlying 
1669  *      objects.
1670  *
1671  *      The <value> argument is used for extended madvise calls.
1672  */
1673 int
1674 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1675                int behav, off_t value)
1676 {
1677         vm_map_entry_t current, entry;
1678         int modify_map = 0;
1679         int error = 0;
1680         int count;
1681
1682         /*
1683          * Some madvise calls directly modify the vm_map_entry, in which case
1684          * we need to use an exclusive lock on the map and we need to perform 
1685          * various clipping operations.  Otherwise we only need a read-lock
1686          * on the map.
1687          */
1688
1689         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1690
1691         switch(behav) {
1692         case MADV_NORMAL:
1693         case MADV_SEQUENTIAL:
1694         case MADV_RANDOM:
1695         case MADV_NOSYNC:
1696         case MADV_AUTOSYNC:
1697         case MADV_NOCORE:
1698         case MADV_CORE:
1699         case MADV_SETMAP:
1700         case MADV_INVAL:
1701                 modify_map = 1;
1702                 vm_map_lock(map);
1703                 break;
1704         case MADV_WILLNEED:
1705         case MADV_DONTNEED:
1706         case MADV_FREE:
1707                 vm_map_lock_read(map);
1708                 break;
1709         default:
1710                 vm_map_entry_release(count);
1711                 return (EINVAL);
1712         }
1713
1714         /*
1715          * Locate starting entry and clip if necessary.
1716          */
1717
1718         VM_MAP_RANGE_CHECK(map, start, end);
1719
1720         if (vm_map_lookup_entry(map, start, &entry)) {
1721                 if (modify_map)
1722                         vm_map_clip_start(map, entry, start, &count);
1723         } else {
1724                 entry = entry->next;
1725         }
1726
1727         if (modify_map) {
1728                 /*
1729                  * madvise behaviors that are implemented in the vm_map_entry.
1730                  *
1731                  * We clip the vm_map_entry so that behavioral changes are
1732                  * limited to the specified address range.
1733                  */
1734                 for (current = entry;
1735                      (current != &map->header) && (current->start < end);
1736                      current = current->next
1737                 ) {
1738                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1739                                 continue;
1740
1741                         vm_map_clip_end(map, current, end, &count);
1742
1743                         switch (behav) {
1744                         case MADV_NORMAL:
1745                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1746                                 break;
1747                         case MADV_SEQUENTIAL:
1748                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1749                                 break;
1750                         case MADV_RANDOM:
1751                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1752                                 break;
1753                         case MADV_NOSYNC:
1754                                 current->eflags |= MAP_ENTRY_NOSYNC;
1755                                 break;
1756                         case MADV_AUTOSYNC:
1757                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1758                                 break;
1759                         case MADV_NOCORE:
1760                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1761                                 break;
1762                         case MADV_CORE:
1763                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1764                                 break;
1765                         case MADV_INVAL:
1766                                 /*
1767                                  * Invalidate the related pmap entries, used
1768                                  * to flush portions of the real kernel's
1769                                  * pmap when the caller has removed or
1770                                  * modified existing mappings in a virtual
1771                                  * page table.
1772                                  */
1773                                 pmap_remove(map->pmap,
1774                                             current->start, current->end);
1775                                 break;
1776                         case MADV_SETMAP:
1777                                 /*
1778                                  * Set the page directory page for a map
1779                                  * governed by a virtual page table.  Mark
1780                                  * the entry as being governed by a virtual
1781                                  * page table if it is not.
1782                                  *
1783                                  * XXX the page directory page is stored
1784                                  * in the avail_ssize field if the map_entry.
1785                                  *
1786                                  * XXX the map simplification code does not
1787                                  * compare this field so weird things may
1788                                  * happen if you do not apply this function
1789                                  * to the entire mapping governed by the
1790                                  * virtual page table.
1791                                  */
1792                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1793                                         error = EINVAL;
1794                                         break;
1795                                 }
1796                                 current->aux.master_pde = value;
1797                                 pmap_remove(map->pmap,
1798                                             current->start, current->end);
1799                                 break;
1800                         default:
1801                                 error = EINVAL;
1802                                 break;
1803                         }
1804                         vm_map_simplify_entry(map, current, &count);
1805                 }
1806                 vm_map_unlock(map);
1807         } else {
1808                 vm_pindex_t pindex;
1809                 int count;
1810
1811                 /*
1812                  * madvise behaviors that are implemented in the underlying
1813                  * vm_object.
1814                  *
1815                  * Since we don't clip the vm_map_entry, we have to clip
1816                  * the vm_object pindex and count.
1817                  *
1818                  * NOTE!  We currently do not support these functions on
1819                  * virtual page tables.
1820                  */
1821                 for (current = entry;
1822                      (current != &map->header) && (current->start < end);
1823                      current = current->next
1824                 ) {
1825                         vm_offset_t useStart;
1826
1827                         if (current->maptype != VM_MAPTYPE_NORMAL)
1828                                 continue;
1829
1830                         pindex = OFF_TO_IDX(current->offset);
1831                         count = atop(current->end - current->start);
1832                         useStart = current->start;
1833
1834                         if (current->start < start) {
1835                                 pindex += atop(start - current->start);
1836                                 count -= atop(start - current->start);
1837                                 useStart = start;
1838                         }
1839                         if (current->end > end)
1840                                 count -= atop(current->end - end);
1841
1842                         if (count <= 0)
1843                                 continue;
1844
1845                         vm_object_madvise(current->object.vm_object,
1846                                           pindex, count, behav);
1847
1848                         /*
1849                          * Try to populate the page table.  Mappings governed
1850                          * by virtual page tables cannot be pre-populated
1851                          * without a lot of work so don't try.
1852                          */
1853                         if (behav == MADV_WILLNEED &&
1854                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
1855                                 pmap_object_init_pt(
1856                                     map->pmap, 
1857                                     useStart,
1858                                     current->protection,
1859                                     current->object.vm_object,
1860                                     pindex, 
1861                                     (count << PAGE_SHIFT),
1862                                     MAP_PREFAULT_MADVISE
1863                                 );
1864                         }
1865                 }
1866                 vm_map_unlock_read(map);
1867         }
1868         vm_map_entry_release(count);
1869         return(error);
1870 }       
1871
1872
1873 /*
1874  *      vm_map_inherit:
1875  *
1876  *      Sets the inheritance of the specified address
1877  *      range in the target map.  Inheritance
1878  *      affects how the map will be shared with
1879  *      child maps at the time of vm_map_fork.
1880  */
1881 int
1882 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1883                vm_inherit_t new_inheritance)
1884 {
1885         vm_map_entry_t entry;
1886         vm_map_entry_t temp_entry;
1887         int count;
1888
1889         switch (new_inheritance) {
1890         case VM_INHERIT_NONE:
1891         case VM_INHERIT_COPY:
1892         case VM_INHERIT_SHARE:
1893                 break;
1894         default:
1895                 return (KERN_INVALID_ARGUMENT);
1896         }
1897
1898         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1899         vm_map_lock(map);
1900
1901         VM_MAP_RANGE_CHECK(map, start, end);
1902
1903         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1904                 entry = temp_entry;
1905                 vm_map_clip_start(map, entry, start, &count);
1906         } else
1907                 entry = temp_entry->next;
1908
1909         while ((entry != &map->header) && (entry->start < end)) {
1910                 vm_map_clip_end(map, entry, end, &count);
1911
1912                 entry->inheritance = new_inheritance;
1913
1914                 vm_map_simplify_entry(map, entry, &count);
1915
1916                 entry = entry->next;
1917         }
1918         vm_map_unlock(map);
1919         vm_map_entry_release(count);
1920         return (KERN_SUCCESS);
1921 }
1922
1923 /*
1924  * Implement the semantics of mlock
1925  */
1926 int
1927 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1928     boolean_t new_pageable)
1929 {
1930         vm_map_entry_t entry;
1931         vm_map_entry_t start_entry;
1932         vm_offset_t end;
1933         int rv = KERN_SUCCESS;
1934         int count;
1935
1936         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1937         vm_map_lock(map);
1938         VM_MAP_RANGE_CHECK(map, start, real_end);
1939         end = real_end;
1940
1941         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1942         if (start_entry == NULL) {
1943                 vm_map_unlock(map);
1944                 vm_map_entry_release(count);
1945                 return (KERN_INVALID_ADDRESS);
1946         }
1947
1948         if (new_pageable == 0) {
1949                 entry = start_entry;
1950                 while ((entry != &map->header) && (entry->start < end)) {
1951                         vm_offset_t save_start;
1952                         vm_offset_t save_end;
1953
1954                         /*
1955                          * Already user wired or hard wired (trivial cases)
1956                          */
1957                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1958                                 entry = entry->next;
1959                                 continue;
1960                         }
1961                         if (entry->wired_count != 0) {
1962                                 entry->wired_count++;
1963                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
1964                                 entry = entry->next;
1965                                 continue;
1966                         }
1967
1968                         /*
1969                          * A new wiring requires instantiation of appropriate
1970                          * management structures and the faulting in of the
1971                          * page.
1972                          */
1973                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1974                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1975                                 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1976                                         vm_map_entry_shadow(entry);
1977                                 } else if (entry->object.vm_object == NULL &&
1978                                            !map->system_map) {
1979                                         vm_map_entry_allocate_object(entry);
1980                                 }
1981                         }
1982                         entry->wired_count++;
1983                         entry->eflags |= MAP_ENTRY_USER_WIRED;
1984
1985                         /*
1986                          * Now fault in the area.  Note that vm_fault_wire()
1987                          * may release the map lock temporarily, it will be
1988                          * relocked on return.  The in-transition
1989                          * flag protects the entries. 
1990                          */
1991                         save_start = entry->start;
1992                         save_end = entry->end;
1993                         rv = vm_fault_wire(map, entry, TRUE);
1994                         if (rv) {
1995                                 CLIP_CHECK_BACK(entry, save_start);
1996                                 for (;;) {
1997                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1998                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1999                                         entry->wired_count = 0;
2000                                         if (entry->end == save_end)
2001                                                 break;
2002                                         entry = entry->next;
2003                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2004                                 }
2005                                 end = save_start;       /* unwire the rest */
2006                                 break;
2007                         }
2008                         /*
2009                          * note that even though the entry might have been
2010                          * clipped, the USER_WIRED flag we set prevents
2011                          * duplication so we do not have to do a 
2012                          * clip check.
2013                          */
2014                         entry = entry->next;
2015                 }
2016
2017                 /*
2018                  * If we failed fall through to the unwiring section to
2019                  * unwire what we had wired so far.  'end' has already
2020                  * been adjusted.
2021                  */
2022                 if (rv)
2023                         new_pageable = 1;
2024
2025                 /*
2026                  * start_entry might have been clipped if we unlocked the
2027                  * map and blocked.  No matter how clipped it has gotten
2028                  * there should be a fragment that is on our start boundary.
2029                  */
2030                 CLIP_CHECK_BACK(start_entry, start);
2031         }
2032
2033         /*
2034          * Deal with the unwiring case.
2035          */
2036         if (new_pageable) {
2037                 /*
2038                  * This is the unwiring case.  We must first ensure that the
2039                  * range to be unwired is really wired down.  We know there
2040                  * are no holes.
2041                  */
2042                 entry = start_entry;
2043                 while ((entry != &map->header) && (entry->start < end)) {
2044                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2045                                 rv = KERN_INVALID_ARGUMENT;
2046                                 goto done;
2047                         }
2048                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2049                         entry = entry->next;
2050                 }
2051
2052                 /*
2053                  * Now decrement the wiring count for each region. If a region
2054                  * becomes completely unwired, unwire its physical pages and
2055                  * mappings.
2056                  */
2057                 /*
2058                  * The map entries are processed in a loop, checking to
2059                  * make sure the entry is wired and asserting it has a wired
2060                  * count. However, another loop was inserted more-or-less in
2061                  * the middle of the unwiring path. This loop picks up the
2062                  * "entry" loop variable from the first loop without first
2063                  * setting it to start_entry. Naturally, the secound loop
2064                  * is never entered and the pages backing the entries are
2065                  * never unwired. This can lead to a leak of wired pages.
2066                  */
2067                 entry = start_entry;
2068                 while ((entry != &map->header) && (entry->start < end)) {
2069                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2070                                 ("expected USER_WIRED on entry %p", entry));
2071                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2072                         entry->wired_count--;
2073                         if (entry->wired_count == 0)
2074                                 vm_fault_unwire(map, entry);
2075                         entry = entry->next;
2076                 }
2077         }
2078 done:
2079         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2080                 MAP_CLIP_NO_HOLES);
2081         map->timestamp++;
2082         vm_map_unlock(map);
2083         vm_map_entry_release(count);
2084         return (rv);
2085 }
2086
2087 /*
2088  *      vm_map_wire:
2089  *
2090  *      Sets the pageability of the specified address
2091  *      range in the target map.  Regions specified
2092  *      as not pageable require locked-down physical
2093  *      memory and physical page maps.
2094  *
2095  *      The map must not be locked, but a reference
2096  *      must remain to the map throughout the call.
2097  *
2098  *      This function may be called via the zalloc path and must properly
2099  *      reserve map entries for kernel_map.
2100  */
2101 int
2102 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2103 {
2104         vm_map_entry_t entry;
2105         vm_map_entry_t start_entry;
2106         vm_offset_t end;
2107         int rv = KERN_SUCCESS;
2108         int count;
2109
2110         if (kmflags & KM_KRESERVE)
2111                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2112         else
2113                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2114         vm_map_lock(map);
2115         VM_MAP_RANGE_CHECK(map, start, real_end);
2116         end = real_end;
2117
2118         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2119         if (start_entry == NULL) {
2120                 vm_map_unlock(map);
2121                 rv = KERN_INVALID_ADDRESS;
2122                 goto failure;
2123         }
2124         if ((kmflags & KM_PAGEABLE) == 0) {
2125                 /*
2126                  * Wiring.  
2127                  *
2128                  * 1.  Holding the write lock, we create any shadow or zero-fill
2129                  * objects that need to be created. Then we clip each map
2130                  * entry to the region to be wired and increment its wiring
2131                  * count.  We create objects before clipping the map entries
2132                  * to avoid object proliferation.
2133                  *
2134                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2135                  * fault in the pages for any newly wired area (wired_count is
2136                  * 1).
2137                  *
2138                  * Downgrading to a read lock for vm_fault_wire avoids a 
2139                  * possible deadlock with another process that may have faulted
2140                  * on one of the pages to be wired (it would mark the page busy,
2141                  * blocking us, then in turn block on the map lock that we
2142                  * hold).  Because of problems in the recursive lock package,
2143                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2144                  * any actions that require the write lock must be done
2145                  * beforehand.  Because we keep the read lock on the map, the
2146                  * copy-on-write status of the entries we modify here cannot
2147                  * change.
2148                  */
2149
2150                 entry = start_entry;
2151                 while ((entry != &map->header) && (entry->start < end)) {
2152                         /*
2153                          * Trivial case if the entry is already wired
2154                          */
2155                         if (entry->wired_count) {
2156                                 entry->wired_count++;
2157                                 entry = entry->next;
2158                                 continue;
2159                         }
2160
2161                         /*
2162                          * The entry is being newly wired, we have to setup
2163                          * appropriate management structures.  A shadow 
2164                          * object is required for a copy-on-write region,
2165                          * or a normal object for a zero-fill region.  We
2166                          * do not have to do this for entries that point to sub
2167                          * maps because we won't hold the lock on the sub map.
2168                          */
2169                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2170                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2171                                 if (copyflag &&
2172                                     ((entry->protection & VM_PROT_WRITE) != 0)) {
2173                                         vm_map_entry_shadow(entry);
2174                                 } else if (entry->object.vm_object == NULL &&
2175                                            !map->system_map) {
2176                                         vm_map_entry_allocate_object(entry);
2177                                 }
2178                         }
2179
2180                         entry->wired_count++;
2181                         entry = entry->next;
2182                 }
2183
2184                 /*
2185                  * Pass 2.
2186                  */
2187
2188                 /*
2189                  * HACK HACK HACK HACK
2190                  *
2191                  * Unlock the map to avoid deadlocks.  The in-transit flag
2192                  * protects us from most changes but note that
2193                  * clipping may still occur.  To prevent clipping from
2194                  * occuring after the unlock, except for when we are
2195                  * blocking in vm_fault_wire, we must run in a critical
2196                  * section, otherwise our accesses to entry->start and 
2197                  * entry->end could be corrupted.  We have to enter the
2198                  * critical section prior to unlocking so start_entry does
2199                  * not change out from under us at the very beginning of the
2200                  * loop.
2201                  *
2202                  * HACK HACK HACK HACK
2203                  */
2204
2205                 crit_enter();
2206
2207                 entry = start_entry;
2208                 while (entry != &map->header && entry->start < end) {
2209                         /*
2210                          * If vm_fault_wire fails for any page we need to undo
2211                          * what has been done.  We decrement the wiring count
2212                          * for those pages which have not yet been wired (now)
2213                          * and unwire those that have (later).
2214                          */
2215                         vm_offset_t save_start = entry->start;
2216                         vm_offset_t save_end = entry->end;
2217
2218                         if (entry->wired_count == 1)
2219                                 rv = vm_fault_wire(map, entry, FALSE);
2220                         if (rv) {
2221                                 CLIP_CHECK_BACK(entry, save_start);
2222                                 for (;;) {
2223                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2224                                         entry->wired_count = 0;
2225                                         if (entry->end == save_end)
2226                                                 break;
2227                                         entry = entry->next;
2228                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2229                                 }
2230                                 end = save_start;
2231                                 break;
2232                         }
2233                         CLIP_CHECK_FWD(entry, save_end);
2234                         entry = entry->next;
2235                 }
2236                 crit_exit();
2237
2238                 /*
2239                  * If a failure occured undo everything by falling through
2240                  * to the unwiring code.  'end' has already been adjusted
2241                  * appropriately.
2242                  */
2243                 if (rv)
2244                         kmflags |= KM_PAGEABLE;
2245
2246                 /*
2247                  * start_entry is still IN_TRANSITION but may have been 
2248                  * clipped since vm_fault_wire() unlocks and relocks the
2249                  * map.  No matter how clipped it has gotten there should
2250                  * be a fragment that is on our start boundary.
2251                  */
2252                 CLIP_CHECK_BACK(start_entry, start);
2253         }
2254
2255         if (kmflags & KM_PAGEABLE) {
2256                 /*
2257                  * This is the unwiring case.  We must first ensure that the
2258                  * range to be unwired is really wired down.  We know there
2259                  * are no holes.
2260                  */
2261                 entry = start_entry;
2262                 while ((entry != &map->header) && (entry->start < end)) {
2263                         if (entry->wired_count == 0) {
2264                                 rv = KERN_INVALID_ARGUMENT;
2265                                 goto done;
2266                         }
2267                         entry = entry->next;
2268                 }
2269
2270                 /*
2271                  * Now decrement the wiring count for each region. If a region
2272                  * becomes completely unwired, unwire its physical pages and
2273                  * mappings.
2274                  */
2275                 entry = start_entry;
2276                 while ((entry != &map->header) && (entry->start < end)) {
2277                         entry->wired_count--;
2278                         if (entry->wired_count == 0)
2279                                 vm_fault_unwire(map, entry);
2280                         entry = entry->next;
2281                 }
2282         }
2283 done:
2284         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2285                 MAP_CLIP_NO_HOLES);
2286         map->timestamp++;
2287         vm_map_unlock(map);
2288 failure:
2289         if (kmflags & KM_KRESERVE)
2290                 vm_map_entry_krelease(count);
2291         else
2292                 vm_map_entry_release(count);
2293         return (rv);
2294 }
2295
2296 /*
2297  * vm_map_set_wired_quick()
2298  *
2299  *      Mark a newly allocated address range as wired but do not fault in
2300  *      the pages.  The caller is expected to load the pages into the object.
2301  *
2302  *      The map must be locked on entry and will remain locked on return.
2303  */
2304 void
2305 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2306 {
2307         vm_map_entry_t scan;
2308         vm_map_entry_t entry;
2309
2310         entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2311         for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2312             KKASSERT(entry->wired_count == 0);
2313             entry->wired_count = 1;                                              
2314         }
2315         vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2316 }
2317
2318 /*
2319  * vm_map_clean
2320  *
2321  * Push any dirty cached pages in the address range to their pager.
2322  * If syncio is TRUE, dirty pages are written synchronously.
2323  * If invalidate is TRUE, any cached pages are freed as well.
2324  *
2325  * Returns an error if any part of the specified range is not mapped.
2326  */
2327 int
2328 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2329     boolean_t invalidate)
2330 {
2331         vm_map_entry_t current;
2332         vm_map_entry_t entry;
2333         vm_size_t size;
2334         vm_object_t object;
2335         vm_ooffset_t offset;
2336
2337         vm_map_lock_read(map);
2338         VM_MAP_RANGE_CHECK(map, start, end);
2339         if (!vm_map_lookup_entry(map, start, &entry)) {
2340                 vm_map_unlock_read(map);
2341                 return (KERN_INVALID_ADDRESS);
2342         }
2343         /*
2344          * Make a first pass to check for holes.
2345          */
2346         for (current = entry; current->start < end; current = current->next) {
2347                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2348                         vm_map_unlock_read(map);
2349                         return (KERN_INVALID_ARGUMENT);
2350                 }
2351                 if (end > current->end &&
2352                     (current->next == &map->header ||
2353                         current->end != current->next->start)) {
2354                         vm_map_unlock_read(map);
2355                         return (KERN_INVALID_ADDRESS);
2356                 }
2357         }
2358
2359         if (invalidate)
2360                 pmap_remove(vm_map_pmap(map), start, end);
2361         /*
2362          * Make a second pass, cleaning/uncaching pages from the indicated
2363          * objects as we go.
2364          */
2365         for (current = entry; current->start < end; current = current->next) {
2366                 offset = current->offset + (start - current->start);
2367                 size = (end <= current->end ? end : current->end) - start;
2368                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2369                         vm_map_t smap;
2370                         vm_map_entry_t tentry;
2371                         vm_size_t tsize;
2372
2373                         smap = current->object.sub_map;
2374                         vm_map_lock_read(smap);
2375                         vm_map_lookup_entry(smap, offset, &tentry);
2376                         tsize = tentry->end - offset;
2377                         if (tsize < size)
2378                                 size = tsize;
2379                         object = tentry->object.vm_object;
2380                         offset = tentry->offset + (offset - tentry->start);
2381                         vm_map_unlock_read(smap);
2382                 } else {
2383                         object = current->object.vm_object;
2384                 }
2385                 /*
2386                  * Note that there is absolutely no sense in writing out
2387                  * anonymous objects, so we track down the vnode object
2388                  * to write out.
2389                  * We invalidate (remove) all pages from the address space
2390                  * anyway, for semantic correctness.
2391                  *
2392                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2393                  * may start out with a NULL object.
2394                  */
2395                 while (object && object->backing_object) {
2396                         offset += object->backing_object_offset;
2397                         object = object->backing_object;
2398                         if (object->size < OFF_TO_IDX( offset + size))
2399                                 size = IDX_TO_OFF(object->size) - offset;
2400                 }
2401                 if (object && (object->type == OBJT_VNODE) && 
2402                     (current->protection & VM_PROT_WRITE)) {
2403                         /*
2404                          * Flush pages if writing is allowed, invalidate them
2405                          * if invalidation requested.  Pages undergoing I/O
2406                          * will be ignored by vm_object_page_remove().
2407                          *
2408                          * We cannot lock the vnode and then wait for paging
2409                          * to complete without deadlocking against vm_fault.
2410                          * Instead we simply call vm_object_page_remove() and
2411                          * allow it to block internally on a page-by-page 
2412                          * basis when it encounters pages undergoing async 
2413                          * I/O.
2414                          */
2415                         int flags;
2416
2417                         vm_object_reference(object);
2418                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2419                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2420                         flags |= invalidate ? OBJPC_INVAL : 0;
2421
2422                         /*
2423                          * When operating on a virtual page table just
2424                          * flush the whole object.  XXX we probably ought
2425                          * to 
2426                          */
2427                         switch(current->maptype) {
2428                         case VM_MAPTYPE_NORMAL:
2429                                 vm_object_page_clean(object,
2430                                     OFF_TO_IDX(offset),
2431                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2432                                     flags);
2433                                 break;
2434                         case VM_MAPTYPE_VPAGETABLE:
2435                                 vm_object_page_clean(object, 0, 0, flags);
2436                                 break;
2437                         }
2438                         vn_unlock(((struct vnode *)object->handle));
2439                         vm_object_deallocate(object);
2440                 }
2441                 if (object && invalidate &&
2442                    ((object->type == OBJT_VNODE) ||
2443                     (object->type == OBJT_DEVICE))) {
2444                         int clean_only = 
2445                                 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2446                         vm_object_reference(object);
2447                         switch(current->maptype) {
2448                         case VM_MAPTYPE_NORMAL:
2449                                 vm_object_page_remove(object,
2450                                     OFF_TO_IDX(offset),
2451                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2452                                     clean_only);
2453                                 break;
2454                         case VM_MAPTYPE_VPAGETABLE:
2455                                 vm_object_page_remove(object, 0, 0, clean_only);
2456                                 break;
2457                         }
2458                         vm_object_deallocate(object);
2459                 }
2460                 start += size;
2461         }
2462
2463         vm_map_unlock_read(map);
2464         return (KERN_SUCCESS);
2465 }
2466
2467 /*
2468  *      vm_map_entry_unwire:    [ internal use only ]
2469  *
2470  *      Make the region specified by this entry pageable.
2471  *
2472  *      The map in question should be locked.
2473  *      [This is the reason for this routine's existence.]
2474  */
2475 static void 
2476 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2477 {
2478         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2479         entry->wired_count = 0;
2480         vm_fault_unwire(map, entry);
2481 }
2482
2483 /*
2484  *      vm_map_entry_delete:    [ internal use only ]
2485  *
2486  *      Deallocate the given entry from the target map.
2487  */
2488 static void
2489 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2490 {
2491         vm_map_entry_unlink(map, entry);
2492         map->size -= entry->end - entry->start;
2493
2494         switch(entry->maptype) {
2495         case VM_MAPTYPE_NORMAL:
2496         case VM_MAPTYPE_VPAGETABLE:
2497                 vm_object_deallocate(entry->object.vm_object);
2498                 break;
2499         default:
2500                 break;
2501         }
2502
2503         vm_map_entry_dispose(map, entry, countp);
2504 }
2505
2506 /*
2507  *      vm_map_delete:  [ internal use only ]
2508  *
2509  *      Deallocates the given address range from the target
2510  *      map.
2511  */
2512 int
2513 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2514 {
2515         vm_object_t object;
2516         vm_map_entry_t entry;
2517         vm_map_entry_t first_entry;
2518
2519 again:
2520         /*
2521          * Find the start of the region, and clip it.  Set entry to point
2522          * at the first record containing the requested address or, if no
2523          * such record exists, the next record with a greater address.  The
2524          * loop will run from this point until a record beyond the termination
2525          * address is encountered.
2526          *
2527          * map->hint must be adjusted to not point to anything we delete,
2528          * so set it to the entry prior to the one being deleted.
2529          *
2530          * GGG see other GGG comment.
2531          */
2532         if (vm_map_lookup_entry(map, start, &first_entry)) {
2533                 entry = first_entry;
2534                 vm_map_clip_start(map, entry, start, countp);
2535                 map->hint = entry->prev;        /* possible problem XXX */
2536         } else {
2537                 map->hint = first_entry;        /* possible problem XXX */
2538                 entry = first_entry->next;
2539         }
2540
2541         /*
2542          * If a hole opens up prior to the current first_free then
2543          * adjust first_free.  As with map->hint, map->first_free
2544          * cannot be left set to anything we might delete.
2545          */
2546         if (entry == &map->header) {
2547                 map->first_free = &map->header;
2548         } else if (map->first_free->start >= start) {
2549                 map->first_free = entry->prev;
2550         }
2551
2552         /*
2553          * Step through all entries in this region
2554          */
2555
2556         while ((entry != &map->header) && (entry->start < end)) {
2557                 vm_map_entry_t next;
2558                 vm_offset_t s, e;
2559                 vm_pindex_t offidxstart, offidxend, count;
2560
2561                 /*
2562                  * If we hit an in-transition entry we have to sleep and
2563                  * retry.  It's easier (and not really slower) to just retry
2564                  * since this case occurs so rarely and the hint is already
2565                  * pointing at the right place.  We have to reset the
2566                  * start offset so as not to accidently delete an entry
2567                  * another process just created in vacated space.
2568                  */
2569                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2570                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2571                         start = entry->start;
2572                         ++mycpu->gd_cnt.v_intrans_coll;
2573                         ++mycpu->gd_cnt.v_intrans_wait;
2574                         vm_map_transition_wait(map);
2575                         goto again;
2576                 }
2577                 vm_map_clip_end(map, entry, end, countp);
2578
2579                 s = entry->start;
2580                 e = entry->end;
2581                 next = entry->next;
2582
2583                 offidxstart = OFF_TO_IDX(entry->offset);
2584                 count = OFF_TO_IDX(e - s);
2585                 object = entry->object.vm_object;
2586
2587                 /*
2588                  * Unwire before removing addresses from the pmap; otherwise,
2589                  * unwiring will put the entries back in the pmap.
2590                  */
2591                 if (entry->wired_count != 0)
2592                         vm_map_entry_unwire(map, entry);
2593
2594                 offidxend = offidxstart + count;
2595
2596                 if (object == &kernel_object) {
2597                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2598                 } else {
2599                         pmap_remove(map->pmap, s, e);
2600                         if (object != NULL &&
2601                             object->ref_count != 1 &&
2602                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2603                             (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2604                                 vm_object_collapse(object);
2605                                 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2606                                 if (object->type == OBJT_SWAP) {
2607                                         swap_pager_freespace(object, offidxstart, count);
2608                                 }
2609                                 if (offidxend >= object->size &&
2610                                     offidxstart < object->size) {
2611                                         object->size = offidxstart;
2612                                 }
2613                         }
2614                 }
2615
2616                 /*
2617                  * Delete the entry (which may delete the object) only after
2618                  * removing all pmap entries pointing to its pages.
2619                  * (Otherwise, its page frames may be reallocated, and any
2620                  * modify bits will be set in the wrong object!)
2621                  */
2622                 vm_map_entry_delete(map, entry, countp);
2623                 entry = next;
2624         }
2625         return (KERN_SUCCESS);
2626 }
2627
2628 /*
2629  *      vm_map_remove:
2630  *
2631  *      Remove the given address range from the target map.
2632  *      This is the exported form of vm_map_delete.
2633  */
2634 int
2635 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2636 {
2637         int result;
2638         int count;
2639
2640         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2641         vm_map_lock(map);
2642         VM_MAP_RANGE_CHECK(map, start, end);
2643         result = vm_map_delete(map, start, end, &count);
2644         vm_map_unlock(map);
2645         vm_map_entry_release(count);
2646
2647         return (result);
2648 }
2649
2650 /*
2651  *      vm_map_check_protection:
2652  *
2653  *      Assert that the target map allows the specified
2654  *      privilege on the entire address region given.
2655  *      The entire region must be allocated.
2656  */
2657 boolean_t
2658 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2659                         vm_prot_t protection)
2660 {
2661         vm_map_entry_t entry;
2662         vm_map_entry_t tmp_entry;
2663
2664         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2665                 return (FALSE);
2666         }
2667         entry = tmp_entry;
2668
2669         while (start < end) {
2670                 if (entry == &map->header) {
2671                         return (FALSE);
2672                 }
2673                 /*
2674                  * No holes allowed!
2675                  */
2676
2677                 if (start < entry->start) {
2678                         return (FALSE);
2679                 }
2680                 /*
2681                  * Check protection associated with entry.
2682                  */
2683
2684                 if ((entry->protection & protection) != protection) {
2685                         return (FALSE);
2686                 }
2687                 /* go to next entry */
2688
2689                 start = entry->end;
2690                 entry = entry->next;
2691         }
2692         return (TRUE);
2693 }
2694
2695 /*
2696  * Split the pages in a map entry into a new object.  This affords
2697  * easier removal of unused pages, and keeps object inheritance from
2698  * being a negative impact on memory usage.
2699  */
2700 static void
2701 vm_map_split(vm_map_entry_t entry)
2702 {
2703         vm_page_t m;
2704         vm_object_t orig_object, new_object, source;
2705         vm_offset_t s, e;
2706         vm_pindex_t offidxstart, offidxend, idx;
2707         vm_size_t size;
2708         vm_ooffset_t offset;
2709
2710         orig_object = entry->object.vm_object;
2711         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2712                 return;
2713         if (orig_object->ref_count <= 1)
2714                 return;
2715
2716         offset = entry->offset;
2717         s = entry->start;
2718         e = entry->end;
2719
2720         offidxstart = OFF_TO_IDX(offset);
2721         offidxend = offidxstart + OFF_TO_IDX(e - s);
2722         size = offidxend - offidxstart;
2723
2724         new_object = vm_pager_allocate(orig_object->type, NULL,
2725                                        IDX_TO_OFF(size), VM_PROT_ALL, 0);
2726         if (new_object == NULL)
2727                 return;
2728
2729         source = orig_object->backing_object;
2730         if (source != NULL) {
2731                 vm_object_reference(source);    /* Referenced by new_object */
2732                 LIST_INSERT_HEAD(&source->shadow_head,
2733                                   new_object, shadow_list);
2734                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2735                 new_object->backing_object_offset = 
2736                         orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2737                 new_object->backing_object = source;
2738                 source->shadow_count++;
2739                 source->generation++;
2740         }
2741
2742         for (idx = 0; idx < size; idx++) {
2743                 vm_page_t m;
2744
2745                 /*
2746                  * A critical section is required to avoid a race between
2747                  * the lookup and an interrupt/unbusy/free and our busy
2748                  * check.
2749                  */
2750                 crit_enter();
2751         retry:
2752                 m = vm_page_lookup(orig_object, offidxstart + idx);
2753                 if (m == NULL) {
2754                         crit_exit();
2755                         continue;
2756                 }
2757
2758                 /*
2759                  * We must wait for pending I/O to complete before we can
2760                  * rename the page.
2761                  *
2762                  * We do not have to VM_PROT_NONE the page as mappings should
2763                  * not be changed by this operation.
2764                  */
2765                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2766                         goto retry;
2767                 vm_page_busy(m);
2768                 vm_page_rename(m, new_object, idx);
2769                 /* page automatically made dirty by rename and cache handled */
2770                 vm_page_busy(m);
2771                 crit_exit();
2772         }
2773
2774         if (orig_object->type == OBJT_SWAP) {
2775                 vm_object_pip_add(orig_object, 1);
2776                 /*
2777                  * copy orig_object pages into new_object
2778                  * and destroy unneeded pages in
2779                  * shadow object.
2780                  */
2781                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2782                 vm_object_pip_wakeup(orig_object);
2783         }
2784
2785         /*
2786          * Wakeup the pages we played with.  No spl protection is needed
2787          * for a simple wakeup.
2788          */
2789         for (idx = 0; idx < size; idx++) {
2790                 m = vm_page_lookup(new_object, idx);
2791                 if (m)
2792                         vm_page_wakeup(m);
2793         }
2794
2795         entry->object.vm_object = new_object;
2796         entry->offset = 0LL;
2797         vm_object_deallocate(orig_object);
2798 }
2799
2800 /*
2801  *      vm_map_copy_entry:
2802  *
2803  *      Copies the contents of the source entry to the destination
2804  *      entry.  The entries *must* be aligned properly.
2805  */
2806 static void
2807 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2808         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2809 {
2810         vm_object_t src_object;
2811
2812         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2813                 return;
2814         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2815                 return;
2816
2817         if (src_entry->wired_count == 0) {
2818                 /*
2819                  * If the source entry is marked needs_copy, it is already
2820                  * write-protected.
2821                  */
2822                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2823                         pmap_protect(src_map->pmap,
2824                             src_entry->start,
2825                             src_entry->end,
2826                             src_entry->protection & ~VM_PROT_WRITE);
2827                 }
2828
2829                 /*
2830                  * Make a copy of the object.
2831                  */
2832                 if ((src_object = src_entry->object.vm_object) != NULL) {
2833                         if ((src_object->handle == NULL) &&
2834                                 (src_object->type == OBJT_DEFAULT ||
2835                                  src_object->type == OBJT_SWAP)) {
2836                                 vm_object_collapse(src_object);
2837                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2838                                         vm_map_split(src_entry);
2839                                         src_object = src_entry->object.vm_object;
2840                                 }
2841                         }
2842
2843                         vm_object_reference(src_object);
2844                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2845                         dst_entry->object.vm_object = src_object;
2846                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2847                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2848                         dst_entry->offset = src_entry->offset;
2849                 } else {
2850                         dst_entry->object.vm_object = NULL;
2851                         dst_entry->offset = 0;
2852                 }
2853
2854                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2855                     dst_entry->end - dst_entry->start, src_entry->start);
2856         } else {
2857                 /*
2858                  * Of course, wired down pages can't be set copy-on-write.
2859                  * Cause wired pages to be copied into the new map by
2860                  * simulating faults (the new pages are pageable)
2861                  */
2862                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2863         }
2864 }
2865
2866 /*
2867  * vmspace_fork:
2868  * Create a new process vmspace structure and vm_map
2869  * based on those of an existing process.  The new map
2870  * is based on the old map, according to the inheritance
2871  * values on the regions in that map.
2872  *
2873  * The source map must not be locked.
2874  */
2875 struct vmspace *
2876 vmspace_fork(struct vmspace *vm1)
2877 {
2878         struct vmspace *vm2;
2879         vm_map_t old_map = &vm1->vm_map;
2880         vm_map_t new_map;
2881         vm_map_entry_t old_entry;
2882         vm_map_entry_t new_entry;
2883         vm_object_t object;
2884         int count;
2885
2886         vm_map_lock(old_map);
2887         old_map->infork = 1;
2888
2889         /*
2890          * XXX Note: upcalls are not copied.
2891          */
2892         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2893         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2894             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2895         new_map = &vm2->vm_map; /* XXX */
2896         new_map->timestamp = 1;
2897
2898         count = 0;
2899         old_entry = old_map->header.next;
2900         while (old_entry != &old_map->header) {
2901                 ++count;
2902                 old_entry = old_entry->next;
2903         }
2904
2905         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2906
2907         old_entry = old_map->header.next;
2908         while (old_entry != &old_map->header) {
2909                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2910                         panic("vm_map_fork: encountered a submap");
2911
2912                 switch (old_entry->inheritance) {
2913                 case VM_INHERIT_NONE:
2914                         break;
2915
2916                 case VM_INHERIT_SHARE:
2917                         /*
2918                          * Clone the entry, creating the shared object if
2919                          * necessary.
2920                          */
2921                         object = old_entry->object.vm_object;
2922                         if (object == NULL) {
2923                                 vm_map_entry_allocate_object(old_entry);
2924                                 object = old_entry->object.vm_object;
2925                         }
2926
2927                         /*
2928                          * Add the reference before calling vm_map_entry_shadow
2929                          * to insure that a shadow object is created.
2930                          */
2931                         vm_object_reference(object);
2932                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2933                                 vm_map_entry_shadow(old_entry);
2934                                 /* Transfer the second reference too. */
2935                                 vm_object_reference(
2936                                     old_entry->object.vm_object);
2937                                 vm_object_deallocate(object);
2938                                 object = old_entry->object.vm_object;
2939                         }
2940                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2941
2942                         /*
2943                          * Clone the entry, referencing the shared object.
2944                          */
2945                         new_entry = vm_map_entry_create(new_map, &count);
2946                         *new_entry = *old_entry;
2947                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2948                         new_entry->wired_count = 0;
2949
2950                         /*
2951                          * Insert the entry into the new map -- we know we're
2952                          * inserting at the end of the new map.
2953                          */
2954
2955                         vm_map_entry_link(new_map, new_map->header.prev,
2956                             new_entry);
2957
2958                         /*
2959                          * Update the physical map
2960                          */
2961
2962                         pmap_copy(new_map->pmap, old_map->pmap,
2963                             new_entry->start,
2964                             (old_entry->end - old_entry->start),
2965                             old_entry->start);
2966                         break;
2967
2968                 case VM_INHERIT_COPY:
2969                         /*
2970                          * Clone the entry and link into the map.
2971                          */
2972                         new_entry = vm_map_entry_create(new_map, &count);
2973                         *new_entry = *old_entry;
2974                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2975                         new_entry->wired_count = 0;
2976                         new_entry->object.vm_object = NULL;
2977                         vm_map_entry_link(new_map, new_map->header.prev,
2978                             new_entry);
2979                         vm_map_copy_entry(old_map, new_map, old_entry,
2980                             new_entry);
2981                         break;
2982                 }
2983                 old_entry = old_entry->next;
2984         }
2985
2986         new_map->size = old_map->size;
2987         old_map->infork = 0;
2988         vm_map_unlock(old_map);
2989         vm_map_entry_release(count);
2990
2991         return (vm2);
2992 }
2993
2994 int
2995 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2996               vm_prot_t prot, vm_prot_t max, int cow)
2997 {
2998         vm_map_entry_t prev_entry;
2999         vm_map_entry_t new_stack_entry;
3000         vm_size_t      init_ssize;
3001         int            rv;
3002         int             count;
3003
3004         if (VM_MIN_USER_ADDRESS > 0 && addrbos < VM_MIN_USER_ADDRESS)
3005                 return (KERN_NO_SPACE);
3006
3007         if (max_ssize < sgrowsiz)
3008                 init_ssize = max_ssize;
3009         else
3010                 init_ssize = sgrowsiz;
3011
3012         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3013         vm_map_lock(map);
3014
3015         /* If addr is already mapped, no go */
3016         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3017                 vm_map_unlock(map);
3018                 vm_map_entry_release(count);
3019                 return (KERN_NO_SPACE);
3020         }
3021
3022         /* If we would blow our VMEM resource limit, no go */
3023         if (map->size + init_ssize >
3024             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3025                 vm_map_unlock(map);
3026                 vm_map_entry_release(count);
3027                 return (KERN_NO_SPACE);
3028         }
3029
3030         /* If we can't accomodate max_ssize in the current mapping,
3031          * no go.  However, we need to be aware that subsequent user
3032          * mappings might map into the space we have reserved for
3033          * stack, and currently this space is not protected.  
3034          * 
3035          * Hopefully we will at least detect this condition 
3036          * when we try to grow the stack.
3037          */
3038         if ((prev_entry->next != &map->header) &&
3039             (prev_entry->next->start < addrbos + max_ssize)) {
3040                 vm_map_unlock(map);
3041                 vm_map_entry_release(count);
3042                 return (KERN_NO_SPACE);
3043         }
3044
3045         /* We initially map a stack of only init_ssize.  We will
3046          * grow as needed later.  Since this is to be a grow 
3047          * down stack, we map at the top of the range.
3048          *
3049          * Note: we would normally expect prot and max to be
3050          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3051          * eliminate these as input parameters, and just
3052          * pass these values here in the insert call.
3053          */
3054         rv = vm_map_insert(map, &count,
3055                            NULL, 0, addrbos + max_ssize - init_ssize,
3056                            addrbos + max_ssize,
3057                            VM_MAPTYPE_NORMAL,
3058                            prot, max,
3059                            cow);
3060
3061         /* Now set the avail_ssize amount */
3062         if (rv == KERN_SUCCESS) {
3063                 if (prev_entry != &map->header)
3064                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3065                 new_stack_entry = prev_entry->next;
3066                 if (new_stack_entry->end   != addrbos + max_ssize ||
3067                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3068                         panic ("Bad entry start/end for new stack entry");
3069                 else 
3070                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3071         }
3072
3073         vm_map_unlock(map);
3074         vm_map_entry_release(count);
3075         return (rv);
3076 }
3077
3078 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3079  * desired address is already mapped, or if we successfully grow
3080  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3081  * stack range (this is strange, but preserves compatibility with
3082  * the grow function in vm_machdep.c).
3083  */
3084 int
3085 vm_map_growstack (struct proc *p, vm_offset_t addr)
3086 {
3087         vm_map_entry_t prev_entry;
3088         vm_map_entry_t stack_entry;
3089         vm_map_entry_t new_stack_entry;
3090         struct vmspace *vm = p->p_vmspace;
3091         vm_map_t map = &vm->vm_map;
3092         vm_offset_t    end;
3093         int grow_amount;
3094         int rv = KERN_SUCCESS;
3095         int is_procstack;
3096         int use_read_lock = 1;
3097         int count;
3098
3099         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3100 Retry:
3101         if (use_read_lock)
3102                 vm_map_lock_read(map);
3103         else
3104                 vm_map_lock(map);
3105
3106         /* If addr is already in the entry range, no need to grow.*/
3107         if (vm_map_lookup_entry(map, addr, &prev_entry))
3108                 goto done;
3109
3110         if ((stack_entry = prev_entry->next) == &map->header)
3111                 goto done;
3112         if (prev_entry == &map->header) 
3113                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3114         else
3115                 end = prev_entry->end;
3116
3117         /* This next test mimics the old grow function in vm_machdep.c.
3118          * It really doesn't quite make sense, but we do it anyway
3119          * for compatibility.
3120          *
3121          * If not growable stack, return success.  This signals the
3122          * caller to proceed as he would normally with normal vm.
3123          */
3124         if (stack_entry->aux.avail_ssize < 1 ||
3125             addr >= stack_entry->start ||
3126             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3127                 goto done;
3128         } 
3129         
3130         /* Find the minimum grow amount */
3131         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3132         if (grow_amount > stack_entry->aux.avail_ssize) {
3133                 rv = KERN_NO_SPACE;
3134                 goto done;
3135         }
3136
3137         /* If there is no longer enough space between the entries
3138          * nogo, and adjust the available space.  Note: this 
3139          * should only happen if the user has mapped into the
3140          * stack area after the stack was created, and is
3141          * probably an error.
3142          *
3143          * This also effectively destroys any guard page the user
3144          * might have intended by limiting the stack size.
3145          */
3146         if (grow_amount > stack_entry->start - end) {
3147                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3148                         use_read_lock = 0;
3149                         goto Retry;
3150                 }
3151                 use_read_lock = 0;
3152                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3153                 rv = KERN_NO_SPACE;
3154                 goto done;
3155         }
3156
3157         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3158
3159         /* If this is the main process stack, see if we're over the 
3160          * stack limit.
3161          */
3162         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3163                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3164                 rv = KERN_NO_SPACE;
3165                 goto done;
3166         }
3167
3168         /* Round up the grow amount modulo SGROWSIZ */
3169         grow_amount = roundup (grow_amount, sgrowsiz);
3170         if (grow_amount > stack_entry->aux.avail_ssize) {
3171                 grow_amount = stack_entry->aux.avail_ssize;
3172         }
3173         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3174                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3175                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3176                               ctob(vm->vm_ssize);
3177         }
3178
3179         /* If we would blow our VMEM resource limit, no go */
3180         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3181                 rv = KERN_NO_SPACE;
3182                 goto done;
3183         }
3184
3185         if (use_read_lock && vm_map_lock_upgrade(map)) {
3186                 use_read_lock = 0;
3187                 goto Retry;
3188         }
3189         use_read_lock = 0;
3190
3191         /* Get the preliminary new entry start value */
3192         addr = stack_entry->start - grow_amount;
3193
3194         /* If this puts us into the previous entry, cut back our growth
3195          * to the available space.  Also, see the note above.
3196          */
3197         if (addr < end) {
3198                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3199                 addr = end;
3200         }
3201
3202         rv = vm_map_insert(map, &count,
3203                            NULL, 0, addr, stack_entry->start,
3204                            VM_MAPTYPE_NORMAL,
3205                            VM_PROT_ALL, VM_PROT_ALL,
3206                            0);
3207
3208         /* Adjust the available stack space by the amount we grew. */
3209         if (rv == KERN_SUCCESS) {
3210                 if (prev_entry != &map->header)
3211                         vm_map_clip_end(map, prev_entry, addr, &count);
3212                 new_stack_entry = prev_entry->next;
3213                 if (new_stack_entry->end   != stack_entry->start  ||
3214                     new_stack_entry->start != addr)
3215                         panic ("Bad stack grow start/end in new stack entry");
3216                 else {
3217                         new_stack_entry->aux.avail_ssize =
3218                                 stack_entry->aux.avail_ssize -
3219                                 (new_stack_entry->end - new_stack_entry->start);
3220                         if (is_procstack)
3221                                 vm->vm_ssize += btoc(new_stack_entry->end -
3222                                                      new_stack_entry->start);
3223                 }
3224         }
3225
3226 done:
3227         if (use_read_lock)
3228                 vm_map_unlock_read(map);
3229         else
3230                 vm_map_unlock(map);
3231         vm_map_entry_release(count);
3232         return (rv);
3233 }
3234
3235 /*
3236  * Unshare the specified VM space for exec.  If other processes are
3237  * mapped to it, then create a new one.  The new vmspace is null.
3238  */
3239 void
3240 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3241 {
3242         struct vmspace *oldvmspace = p->p_vmspace;
3243         struct vmspace *newvmspace;
3244         vm_map_t map = &p->p_vmspace->vm_map;
3245
3246         /*
3247          * If we are execing a resident vmspace we fork it, otherwise
3248          * we create a new vmspace.  Note that exitingcnt and upcalls
3249          * are not copied to the new vmspace.
3250          */
3251         if (vmcopy)  {
3252             newvmspace = vmspace_fork(vmcopy);
3253         } else {
3254             newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3255             bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3256                 (caddr_t)&oldvmspace->vm_endcopy - 
3257                     (caddr_t)&oldvmspace->vm_startcopy);
3258         }
3259
3260         /*
3261          * Finish initializing the vmspace before assigning it
3262          * to the process.  The vmspace will become the current vmspace
3263          * if p == curproc.
3264          */
3265         pmap_pinit2(vmspace_pmap(newvmspace));
3266         pmap_replacevm(p, newvmspace, 0);
3267         sysref_put(&oldvmspace->vm_sysref);
3268 }
3269
3270 /*
3271  * Unshare the specified VM space for forcing COW.  This
3272  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3273  *
3274  * The exitingcnt test is not strictly necessary but has been
3275  * included for code sanity (to make the code a bit more deterministic).
3276  */
3277
3278 void
3279 vmspace_unshare(struct proc *p) 
3280 {
3281         struct vmspace *oldvmspace = p->p_vmspace;
3282         struct vmspace *newvmspace;
3283
3284         if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3285                 return;
3286         newvmspace = vmspace_fork(oldvmspace);
3287         pmap_pinit2(vmspace_pmap(newvmspace));
3288         pmap_replacevm(p, newvmspace, 0);
3289         sysref_put(&oldvmspace->vm_sysref);
3290 }
3291
3292 /*
3293  *      vm_map_lookup:
3294  *
3295  *      Finds the VM object, offset, and
3296  *      protection for a given virtual address in the
3297  *      specified map, assuming a page fault of the
3298  *      type specified.
3299  *
3300  *      Leaves the map in question locked for read; return
3301  *      values are guaranteed until a vm_map_lookup_done
3302  *      call is performed.  Note that the map argument
3303  *      is in/out; the returned map must be used in
3304  *      the call to vm_map_lookup_done.
3305  *
3306  *      A handle (out_entry) is returned for use in
3307  *      vm_map_lookup_done, to make that fast.
3308  *
3309  *      If a lookup is requested with "write protection"
3310  *      specified, the map may be changed to perform virtual
3311  *      copying operations, although the data referenced will
3312  *      remain the same.
3313  */
3314 int
3315 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3316               vm_offset_t vaddr,
3317               vm_prot_t fault_typea,
3318               vm_map_entry_t *out_entry,        /* OUT */
3319               vm_object_t *object,              /* OUT */
3320               vm_pindex_t *pindex,              /* OUT */
3321               vm_prot_t *out_prot,              /* OUT */
3322               boolean_t *wired)                 /* OUT */
3323 {
3324         vm_map_entry_t entry;
3325         vm_map_t map = *var_map;
3326         vm_prot_t prot;
3327         vm_prot_t fault_type = fault_typea;
3328         int use_read_lock = 1;
3329         int rv = KERN_SUCCESS;
3330
3331 RetryLookup:
3332         if (use_read_lock)
3333                 vm_map_lock_read(map);
3334         else
3335                 vm_map_lock(map);
3336
3337         /*
3338          * If the map has an interesting hint, try it before calling full
3339          * blown lookup routine.
3340          */
3341         entry = map->hint;
3342         *out_entry = entry;
3343
3344         if ((entry == &map->header) ||
3345             (vaddr < entry->start) || (vaddr >= entry->end)) {
3346                 vm_map_entry_t tmp_entry;
3347
3348                 /*
3349                  * Entry was either not a valid hint, or the vaddr was not
3350                  * contained in the entry, so do a full lookup.
3351                  */
3352                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3353                         rv = KERN_INVALID_ADDRESS;
3354                         goto done;
3355                 }
3356
3357                 entry = tmp_entry;
3358                 *out_entry = entry;
3359         }
3360         
3361         /*
3362          * Handle submaps.
3363          */
3364         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3365                 vm_map_t old_map = map;
3366
3367                 *var_map = map = entry->object.sub_map;
3368                 if (use_read_lock)
3369                         vm_map_unlock_read(old_map);
3370                 else
3371                         vm_map_unlock(old_map);
3372                 use_read_lock = 1;
3373                 goto RetryLookup;
3374         }
3375
3376         /*
3377          * Check whether this task is allowed to have this page.
3378          * Note the special case for MAP_ENTRY_COW
3379          * pages with an override.  This is to implement a forced
3380          * COW for debuggers.
3381          */
3382
3383         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3384                 prot = entry->max_protection;
3385         else
3386                 prot = entry->protection;
3387
3388         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3389         if ((fault_type & prot) != fault_type) {
3390                 rv = KERN_PROTECTION_FAILURE;
3391                 goto done;
3392         }
3393
3394         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3395             (entry->eflags & MAP_ENTRY_COW) &&
3396             (fault_type & VM_PROT_WRITE) &&
3397             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3398                 rv = KERN_PROTECTION_FAILURE;
3399                 goto done;
3400         }
3401
3402         /*
3403          * If this page is not pageable, we have to get it for all possible
3404          * accesses.
3405          */
3406         *wired = (entry->wired_count != 0);
3407         if (*wired)
3408                 prot = fault_type = entry->protection;
3409
3410         /*
3411          * Virtual page tables may need to update the accessed (A) bit
3412          * in a page table entry.  Upgrade the fault to a write fault for
3413          * that case if the map will support it.  If the map does not support
3414          * it the page table entry simply will not be updated.
3415          */
3416         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3417                 if (prot & VM_PROT_WRITE)
3418                         fault_type |= VM_PROT_WRITE;
3419         }
3420
3421         /*
3422          * If the entry was copy-on-write, we either ...
3423          */
3424         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3425                 /*
3426                  * If we want to write the page, we may as well handle that
3427                  * now since we've got the map locked.
3428                  *
3429                  * If we don't need to write the page, we just demote the
3430                  * permissions allowed.
3431                  */
3432
3433                 if (fault_type & VM_PROT_WRITE) {
3434                         /*
3435                          * Make a new object, and place it in the object
3436                          * chain.  Note that no new references have appeared
3437                          * -- one just moved from the map to the new
3438                          * object.
3439                          */
3440
3441                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3442                                 use_read_lock = 0;
3443                                 goto RetryLookup;
3444                         }
3445                         use_read_lock = 0;
3446
3447                         vm_map_entry_shadow(entry);
3448                 } else {
3449                         /*
3450                          * We're attempting to read a copy-on-write page --
3451                          * don't allow writes.
3452                          */
3453
3454                         prot &= ~VM_PROT_WRITE;
3455                 }
3456         }
3457
3458         /*
3459          * Create an object if necessary.
3460          */
3461         if (entry->object.vm_object == NULL &&
3462             !map->system_map) {
3463                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3464                         use_read_lock = 0;
3465                         goto RetryLookup;
3466                 }
3467                 use_read_lock = 0;
3468                 vm_map_entry_allocate_object(entry);
3469         }
3470
3471         /*
3472          * Return the object/offset from this entry.  If the entry was
3473          * copy-on-write or empty, it has been fixed up.
3474          */
3475
3476         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3477         *object = entry->object.vm_object;
3478
3479         /*
3480          * Return whether this is the only map sharing this data.  On
3481          * success we return with a read lock held on the map.  On failure
3482          * we return with the map unlocked.
3483          */
3484         *out_prot = prot;
3485 done:
3486         if (rv == KERN_SUCCESS) {
3487                 if (use_read_lock == 0)
3488                         vm_map_lock_downgrade(map);
3489         } else if (use_read_lock) {
3490                 vm_map_unlock_read(map);
3491         } else {
3492                 vm_map_unlock(map);
3493         }
3494         return (rv);
3495 }
3496
3497 /*
3498  *      vm_map_lookup_done:
3499  *
3500  *      Releases locks acquired by a vm_map_lookup
3501  *      (according to the handle returned by that lookup).
3502  */
3503
3504 void
3505 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3506 {
3507         /*
3508          * Unlock the main-level map
3509          */
3510         vm_map_unlock_read(map);
3511         if (count)
3512                 vm_map_entry_release(count);
3513 }
3514
3515 #include "opt_ddb.h"
3516 #ifdef DDB
3517 #include <sys/kernel.h>
3518
3519 #include <ddb/ddb.h>
3520
3521 /*
3522  *      vm_map_print:   [ debug ]
3523  */
3524 DB_SHOW_COMMAND(map, vm_map_print)
3525 {
3526         static int nlines;
3527         /* XXX convert args. */
3528         vm_map_t map = (vm_map_t)addr;
3529         boolean_t full = have_addr;
3530
3531         vm_map_entry_t entry;
3532
3533         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3534             (void *)map,
3535             (void *)map->pmap, map->nentries, map->timestamp);
3536         nlines++;
3537
3538         if (!full && db_indent)
3539                 return;
3540
3541         db_indent += 2;
3542         for (entry = map->header.next; entry != &map->header;
3543             entry = entry->next) {
3544                 db_iprintf("map entry %p: start=%p, end=%p\n",
3545                     (void *)entry, (void *)entry->start, (void *)entry->end);
3546                 nlines++;
3547                 {
3548                         static char *inheritance_name[4] =
3549                         {"share", "copy", "none", "donate_copy"};
3550
3551                         db_iprintf(" prot=%x/%x/%s",
3552                             entry->protection,
3553                             entry->max_protection,
3554                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3555                         if (entry->wired_count != 0)
3556                                 db_printf(", wired");
3557                 }
3558                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3559                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3560                         db_printf(", share=%p, offset=0x%lx\n",
3561                             (void *)entry->object.sub_map,
3562                             (long)entry->offset);
3563                         nlines++;
3564                         if ((entry->prev == &map->header) ||
3565                             (entry->prev->object.sub_map !=
3566                                 entry->object.sub_map)) {
3567                                 db_indent += 2;
3568                                 vm_map_print((db_expr_t)(intptr_t)
3569                                              entry->object.sub_map,
3570                                              full, 0, NULL);
3571                                 db_indent -= 2;
3572                         }
3573                 } else {
3574                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3575                         db_printf(", object=%p, offset=0x%lx",
3576                             (void *)entry->object.vm_object,
3577                             (long)entry->offset);
3578                         if (entry->eflags & MAP_ENTRY_COW)
3579                                 db_printf(", copy (%s)",
3580                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3581                         db_printf("\n");
3582                         nlines++;
3583
3584                         if ((entry->prev == &map->header) ||
3585                             (entry->prev->object.vm_object !=
3586                                 entry->object.vm_object)) {
3587                                 db_indent += 2;
3588                                 vm_object_print((db_expr_t)(intptr_t)
3589                                                 entry->object.vm_object,
3590                                                 full, 0, NULL);
3591                                 nlines += 4;
3592                                 db_indent -= 2;
3593                         }
3594                 }
3595         }
3596         db_indent -= 2;
3597         if (db_indent == 0)
3598                 nlines = 0;
3599 }
3600
3601
3602 DB_SHOW_COMMAND(procvm, procvm)
3603 {
3604         struct proc *p;
3605
3606         if (have_addr) {
3607                 p = (struct proc *) addr;
3608         } else {
3609                 p = curproc;
3610         }
3611
3612         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3613             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3614             (void *)vmspace_pmap(p->p_vmspace));
3615
3616         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3617 }
3618
3619 #endif /* DDB */