Device layer rollup commit.
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.14 2004/05/13 17:40:19 dillon Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/vnode.h>
81 #include <sys/resourcevar.h>
82 #include <sys/vmmeter.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_page2.h>
97
98 static int vm_fault_additional_pages (vm_page_t, int,
99                                           int, vm_page_t *, int *);
100
101 #define VM_FAULT_READ_AHEAD 8
102 #define VM_FAULT_READ_BEHIND 7
103 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
104
105 struct faultstate {
106         vm_page_t m;
107         vm_object_t object;
108         vm_pindex_t pindex;
109         vm_page_t first_m;
110         vm_object_t     first_object;
111         vm_pindex_t first_pindex;
112         vm_map_t map;
113         vm_map_entry_t entry;
114         int lookup_still_valid;
115         struct vnode *vp;
116 };
117
118 static __inline void
119 release_page(struct faultstate *fs)
120 {
121         vm_page_wakeup(fs->m);
122         vm_page_deactivate(fs->m);
123         fs->m = NULL;
124 }
125
126 static __inline void
127 unlock_map(struct faultstate *fs)
128 {
129         if (fs->lookup_still_valid) {
130                 vm_map_lookup_done(fs->map, fs->entry, 0);
131                 fs->lookup_still_valid = FALSE;
132         }
133 }
134
135 static void
136 _unlock_things(struct faultstate *fs, int dealloc)
137 {
138         vm_object_pip_wakeup(fs->object);
139         if (fs->object != fs->first_object) {
140                 vm_page_free(fs->first_m);
141                 vm_object_pip_wakeup(fs->first_object);
142                 fs->first_m = NULL;
143         }
144         if (dealloc) {
145                 vm_object_deallocate(fs->first_object);
146         }
147         unlock_map(fs); 
148         if (fs->vp != NULL) { 
149                 vput(fs->vp);
150                 fs->vp = NULL;
151         }
152 }
153
154 #define unlock_things(fs) _unlock_things(fs, 0)
155 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
156
157 /*
158  * TRYPAGER - used by vm_fault to calculate whether the pager for the
159  *            current object *might* contain the page.
160  *
161  *            default objects are zero-fill, there is no real pager.
162  */
163
164 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
165                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
166
167 /*
168  *      vm_fault:
169  *
170  *      Handle a page fault occurring at the given address,
171  *      requiring the given permissions, in the map specified.
172  *      If successful, the page is inserted into the
173  *      associated physical map.
174  *
175  *      NOTE: the given address should be truncated to the
176  *      proper page address.
177  *
178  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
179  *      a standard error specifying why the fault is fatal is returned.
180  *
181  *
182  *      The map in question must be referenced, and remains so.
183  *      Caller may hold no locks.
184  */
185 int
186 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
187 {
188         vm_prot_t prot;
189         int result;
190         boolean_t wired;
191         int map_generation;
192         vm_object_t next_object;
193         vm_page_t marray[VM_FAULT_READ];
194         int hardfault;
195         int faultcount;
196         int s;
197         struct faultstate fs;
198
199         mycpu->gd_cnt.v_vm_faults++;
200         hardfault = 0;
201
202 RetryFault:
203         /*
204          * Find the backing store object and offset into it to begin the
205          * search.
206          */
207         fs.map = map;
208         if ((result = vm_map_lookup(&fs.map, vaddr,
209                 fault_type, &fs.entry, &fs.first_object,
210                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
211                 if ((result != KERN_PROTECTION_FAILURE) ||
212                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
213                         return result;
214                 }
215
216                 /*
217                  * If we are user-wiring a r/w segment, and it is COW, then
218                  * we need to do the COW operation.  Note that we don't COW
219                  * currently RO sections now, because it is NOT desirable
220                  * to COW .text.  We simply keep .text from ever being COW'ed
221                  * and take the heat that one cannot debug wired .text sections.
222                  */
223                 result = vm_map_lookup(&fs.map, vaddr,
224                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
225                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
226                 if (result != KERN_SUCCESS) {
227                         return result;
228                 }
229
230                 /*
231                  * If we don't COW now, on a user wire, the user will never
232                  * be able to write to the mapping.  If we don't make this
233                  * restriction, the bookkeeping would be nearly impossible.
234                  */
235                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
236                         fs.entry->max_protection &= ~VM_PROT_WRITE;
237         }
238
239         map_generation = fs.map->timestamp;
240
241         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
242                 panic("vm_fault: fault on nofault entry, addr: %lx",
243                     (u_long)vaddr);
244         }
245
246         /*
247          * Make a reference to this object to prevent its disposal while we
248          * are messing with it.  Once we have the reference, the map is free
249          * to be diddled.  Since objects reference their shadows (and copies),
250          * they will stay around as well.
251          *
252          * Bump the paging-in-progress count to prevent size changes (e.g.
253          * truncation operations) during I/O.  This must be done after
254          * obtaining the vnode lock in order to avoid possible deadlocks.
255          */
256         vm_object_reference(fs.first_object);
257         fs.vp = vnode_pager_lock(fs.first_object);
258         vm_object_pip_add(fs.first_object, 1);
259
260         if ((fault_type & VM_PROT_WRITE) &&
261                 (fs.first_object->type == OBJT_VNODE)) {
262                 vm_freeze_copyopts(fs.first_object,
263                         fs.first_pindex, fs.first_pindex + 1);
264         }
265
266         fs.lookup_still_valid = TRUE;
267
268         if (wired)
269                 fault_type = prot;
270
271         fs.first_m = NULL;
272
273         /*
274          * Search for the page at object/offset.
275          */
276
277         fs.object = fs.first_object;
278         fs.pindex = fs.first_pindex;
279
280         while (TRUE) {
281                 /*
282                  * If the object is dead, we stop here
283                  */
284
285                 if (fs.object->flags & OBJ_DEAD) {
286                         unlock_and_deallocate(&fs);
287                         return (KERN_PROTECTION_FAILURE);
288                 }
289
290                 /*
291                  * See if page is resident.  spl protection is required
292                  * to avoid an interrupt unbusy/free race against our
293                  * lookup.  We must hold the protection through a page
294                  * allocation or busy.
295                  */
296                 s = splvm();
297                 fs.m = vm_page_lookup(fs.object, fs.pindex);
298                 if (fs.m != NULL) {
299                         int queue;
300                         /*
301                          * Wait/Retry if the page is busy.  We have to do this
302                          * if the page is busy via either PG_BUSY or 
303                          * vm_page_t->busy because the vm_pager may be using
304                          * vm_page_t->busy for pageouts ( and even pageins if
305                          * it is the vnode pager ), and we could end up trying
306                          * to pagein and pageout the same page simultaneously.
307                          *
308                          * We can theoretically allow the busy case on a read
309                          * fault if the page is marked valid, but since such
310                          * pages are typically already pmap'd, putting that
311                          * special case in might be more effort then it is 
312                          * worth.  We cannot under any circumstances mess
313                          * around with a vm_page_t->busy page except, perhaps,
314                          * to pmap it.
315                          */
316                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
317                                 unlock_things(&fs);
318                                 vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
319                                 mycpu->gd_cnt.v_intrans++;
320                                 vm_object_deallocate(fs.first_object);
321                                 splx(s);
322                                 goto RetryFault;
323                         }
324
325                         queue = fs.m->queue;
326                         vm_page_unqueue_nowakeup(fs.m);
327
328                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
329                                 vm_page_activate(fs.m);
330                                 unlock_and_deallocate(&fs);
331                                 VM_WAITPFAULT;
332                                 splx(s);
333                                 goto RetryFault;
334                         }
335
336                         /*
337                          * Mark page busy for other processes, and the 
338                          * pagedaemon.  If it still isn't completely valid
339                          * (readable), jump to readrest, else break-out ( we
340                          * found the page ).
341                          *
342                          * We can release the spl once we have marked the
343                          * page busy.
344                          */
345
346                         vm_page_busy(fs.m);
347                         splx(s);
348
349                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
350                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
351                                 goto readrest;
352                         }
353
354                         break;
355                 }
356
357                 /*
358                  * Page is not resident, If this is the search termination
359                  * or the pager might contain the page, allocate a new page.
360                  *
361                  * note: we are still in splvm().
362                  */
363
364                 if (TRYPAGER || fs.object == fs.first_object) {
365                         if (fs.pindex >= fs.object->size) {
366                                 splx(s);
367                                 unlock_and_deallocate(&fs);
368                                 return (KERN_PROTECTION_FAILURE);
369                         }
370
371                         /*
372                          * Allocate a new page for this object/offset pair.
373                          */
374                         fs.m = NULL;
375                         if (!vm_page_count_severe()) {
376                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
377                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
378                         }
379                         if (fs.m == NULL) {
380                                 splx(s);
381                                 unlock_and_deallocate(&fs);
382                                 VM_WAITPFAULT;
383                                 goto RetryFault;
384                         }
385                 }
386                 splx(s);
387
388 readrest:
389                 /*
390                  * We have found a valid page or we have allocated a new page.
391                  * The page thus may not be valid or may not be entirely 
392                  * valid.
393                  *
394                  * Attempt to fault-in the page if there is a chance that the
395                  * pager has it, and potentially fault in additional pages
396                  * at the same time.
397                  *
398                  * We are NOT in splvm here and if TRYPAGER is true then
399                  * fs.m will be non-NULL and will be PG_BUSY for us.
400                  */
401
402                 if (TRYPAGER) {
403                         int rv;
404                         int reqpage;
405                         int ahead, behind;
406                         u_char behavior = vm_map_entry_behavior(fs.entry);
407
408                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
409                                 ahead = 0;
410                                 behind = 0;
411                         } else {
412                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
413                                 if (behind > VM_FAULT_READ_BEHIND)
414                                         behind = VM_FAULT_READ_BEHIND;
415
416                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
417                                 if (ahead > VM_FAULT_READ_AHEAD)
418                                         ahead = VM_FAULT_READ_AHEAD;
419                         }
420
421                         if ((fs.first_object->type != OBJT_DEVICE) &&
422                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
423                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
424                                 fs.pindex >= fs.entry->lastr &&
425                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
426                         ) {
427                                 vm_pindex_t firstpindex, tmppindex;
428
429                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
430                                         firstpindex = 0;
431                                 else
432                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
433
434                                 /*
435                                  * note: partially valid pages cannot be 
436                                  * included in the lookahead - NFS piecemeal
437                                  * writes will barf on it badly.
438                                  *
439                                  * spl protection is required to avoid races
440                                  * between the lookup and an interrupt
441                                  * unbusy/free sequence occuring prior to
442                                  * our busy check.
443                                  */
444                                 s = splvm();
445                                 for (tmppindex = fs.first_pindex - 1;
446                                     tmppindex >= firstpindex;
447                                     --tmppindex
448                                 ) {
449                                         vm_page_t mt;
450                                         mt = vm_page_lookup( fs.first_object, tmppindex);
451                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
452                                                 break;
453                                         if (mt->busy ||
454                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
455                                                 mt->hold_count ||
456                                                 mt->wire_count) 
457                                                 continue;
458                                         if (mt->dirty == 0)
459                                                 vm_page_test_dirty(mt);
460                                         if (mt->dirty) {
461                                                 vm_page_protect(mt, VM_PROT_NONE);
462                                                 vm_page_deactivate(mt);
463                                         } else {
464                                                 vm_page_cache(mt);
465                                         }
466                                 }
467                                 splx(s);
468
469                                 ahead += behind;
470                                 behind = 0;
471                         }
472
473                         /*
474                          * now we find out if any other pages should be paged
475                          * in at this time this routine checks to see if the
476                          * pages surrounding this fault reside in the same
477                          * object as the page for this fault.  If they do,
478                          * then they are faulted in also into the object.  The
479                          * array "marray" returned contains an array of
480                          * vm_page_t structs where one of them is the
481                          * vm_page_t passed to the routine.  The reqpage
482                          * return value is the index into the marray for the
483                          * vm_page_t passed to the routine.
484                          *
485                          * fs.m plus the additional pages are PG_BUSY'd.
486                          */
487                         faultcount = vm_fault_additional_pages(
488                             fs.m, behind, ahead, marray, &reqpage);
489
490                         /*
491                          * update lastr imperfectly (we do not know how much
492                          * getpages will actually read), but good enough.
493                          */
494                         fs.entry->lastr = fs.pindex + faultcount - behind;
495
496                         /*
497                          * Call the pager to retrieve the data, if any, after
498                          * releasing the lock on the map.  We hold a ref on
499                          * fs.object and the pages are PG_BUSY'd.
500                          */
501                         unlock_map(&fs);
502
503                         rv = faultcount ?
504                             vm_pager_get_pages(fs.object, marray, faultcount,
505                                 reqpage) : VM_PAGER_FAIL;
506
507                         if (rv == VM_PAGER_OK) {
508                                 /*
509                                  * Found the page. Leave it busy while we play
510                                  * with it.
511                                  */
512
513                                 /*
514                                  * Relookup in case pager changed page. Pager
515                                  * is responsible for disposition of old page
516                                  * if moved.
517                                  *
518                                  * XXX other code segments do relookups too.
519                                  * It's a bad abstraction that needs to be
520                                  * fixed/removed.
521                                  */
522                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
523                                 if (fs.m == NULL) {
524                                         unlock_and_deallocate(&fs);
525                                         goto RetryFault;
526                                 }
527
528                                 hardfault++;
529                                 break; /* break to PAGE HAS BEEN FOUND */
530                         }
531                         /*
532                          * Remove the bogus page (which does not exist at this
533                          * object/offset); before doing so, we must get back
534                          * our object lock to preserve our invariant.
535                          *
536                          * Also wake up any other process that may want to bring
537                          * in this page.
538                          *
539                          * If this is the top-level object, we must leave the
540                          * busy page to prevent another process from rushing
541                          * past us, and inserting the page in that object at
542                          * the same time that we are.
543                          */
544
545                         if (rv == VM_PAGER_ERROR)
546                                 printf("vm_fault: pager read error, pid %d (%s)\n",
547                                     curproc->p_pid, curproc->p_comm);
548                         /*
549                          * Data outside the range of the pager or an I/O error
550                          */
551                         /*
552                          * XXX - the check for kernel_map is a kludge to work
553                          * around having the machine panic on a kernel space
554                          * fault w/ I/O error.
555                          */
556                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
557                                 (rv == VM_PAGER_BAD)) {
558                                 vm_page_free(fs.m);
559                                 fs.m = NULL;
560                                 unlock_and_deallocate(&fs);
561                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
562                         }
563                         if (fs.object != fs.first_object) {
564                                 vm_page_free(fs.m);
565                                 fs.m = NULL;
566                                 /*
567                                  * XXX - we cannot just fall out at this
568                                  * point, m has been freed and is invalid!
569                                  */
570                         }
571                 }
572
573                 /*
574                  * We get here if the object has default pager (or unwiring) 
575                  * or the pager doesn't have the page.
576                  */
577                 if (fs.object == fs.first_object)
578                         fs.first_m = fs.m;
579
580                 /*
581                  * Move on to the next object.  Lock the next object before
582                  * unlocking the current one.
583                  */
584
585                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
586                 next_object = fs.object->backing_object;
587                 if (next_object == NULL) {
588                         /*
589                          * If there's no object left, fill the page in the top
590                          * object with zeros.
591                          */
592                         if (fs.object != fs.first_object) {
593                                 vm_object_pip_wakeup(fs.object);
594
595                                 fs.object = fs.first_object;
596                                 fs.pindex = fs.first_pindex;
597                                 fs.m = fs.first_m;
598                         }
599                         fs.first_m = NULL;
600
601                         /*
602                          * Zero the page if necessary and mark it valid.
603                          */
604                         if ((fs.m->flags & PG_ZERO) == 0) {
605                                 vm_page_zero_fill(fs.m);
606                         } else {
607                                 mycpu->gd_cnt.v_ozfod++;
608                         }
609                         mycpu->gd_cnt.v_zfod++;
610                         fs.m->valid = VM_PAGE_BITS_ALL;
611                         break;  /* break to PAGE HAS BEEN FOUND */
612                 } else {
613                         if (fs.object != fs.first_object) {
614                                 vm_object_pip_wakeup(fs.object);
615                         }
616                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
617                         fs.object = next_object;
618                         vm_object_pip_add(fs.object, 1);
619                 }
620         }
621
622         KASSERT((fs.m->flags & PG_BUSY) != 0,
623             ("vm_fault: not busy after main loop"));
624
625         /*
626          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
627          * is held.]
628          */
629
630         /*
631          * If the page is being written, but isn't already owned by the
632          * top-level object, we have to copy it into a new page owned by the
633          * top-level object.
634          */
635
636         if (fs.object != fs.first_object) {
637                 /*
638                  * We only really need to copy if we want to write it.
639                  */
640
641                 if (fault_type & VM_PROT_WRITE) {
642                         /*
643                          * This allows pages to be virtually copied from a 
644                          * backing_object into the first_object, where the 
645                          * backing object has no other refs to it, and cannot
646                          * gain any more refs.  Instead of a bcopy, we just 
647                          * move the page from the backing object to the 
648                          * first object.  Note that we must mark the page 
649                          * dirty in the first object so that it will go out 
650                          * to swap when needed.
651                          */
652                         if (map_generation == fs.map->timestamp &&
653                                 /*
654                                  * Only one shadow object
655                                  */
656                                 (fs.object->shadow_count == 1) &&
657                                 /*
658                                  * No COW refs, except us
659                                  */
660                                 (fs.object->ref_count == 1) &&
661                                 /*
662                                  * No one else can look this object up
663                                  */
664                                 (fs.object->handle == NULL) &&
665                                 /*
666                                  * No other ways to look the object up
667                                  */
668                                 ((fs.object->type == OBJT_DEFAULT) ||
669                                  (fs.object->type == OBJT_SWAP)) &&
670                                 /*
671                                  * We don't chase down the shadow chain
672                                  */
673                                 (fs.object == fs.first_object->backing_object) &&
674
675                                 /*
676                                  * grab the lock if we need to
677                                  */
678                                 (fs.lookup_still_valid ||
679                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, NULL, curthread) == 0)
680                             ) {
681                                 
682                                 fs.lookup_still_valid = 1;
683                                 /*
684                                  * get rid of the unnecessary page
685                                  */
686                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
687                                 vm_page_free(fs.first_m);
688                                 fs.first_m = NULL;
689
690                                 /*
691                                  * grab the page and put it into the 
692                                  * process'es object.  The page is 
693                                  * automatically made dirty.
694                                  */
695                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
696                                 fs.first_m = fs.m;
697                                 vm_page_busy(fs.first_m);
698                                 fs.m = NULL;
699                                 mycpu->gd_cnt.v_cow_optim++;
700                         } else {
701                                 /*
702                                  * Oh, well, lets copy it.
703                                  */
704                                 vm_page_copy(fs.m, fs.first_m);
705                         }
706
707                         if (fs.m) {
708                                 /*
709                                  * We no longer need the old page or object.
710                                  */
711                                 release_page(&fs);
712                         }
713
714                         /*
715                          * fs.object != fs.first_object due to above 
716                          * conditional
717                          */
718
719                         vm_object_pip_wakeup(fs.object);
720
721                         /*
722                          * Only use the new page below...
723                          */
724
725                         mycpu->gd_cnt.v_cow_faults++;
726                         fs.m = fs.first_m;
727                         fs.object = fs.first_object;
728                         fs.pindex = fs.first_pindex;
729
730                 } else {
731                         prot &= ~VM_PROT_WRITE;
732                 }
733         }
734
735         /*
736          * We must verify that the maps have not changed since our last
737          * lookup.
738          */
739
740         if (!fs.lookup_still_valid &&
741                 (fs.map->timestamp != map_generation)) {
742                 vm_object_t retry_object;
743                 vm_pindex_t retry_pindex;
744                 vm_prot_t retry_prot;
745
746                 /*
747                  * Since map entries may be pageable, make sure we can take a
748                  * page fault on them.
749                  */
750
751                 /*
752                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
753                  * avoid a deadlock between the inode and exec_map that can
754                  * occur due to locks being obtained in different orders.
755                  */
756
757                 if (fs.vp != NULL) {
758                         vput(fs.vp);
759                         fs.vp = NULL;
760                 }
761                 
762                 if (fs.map->infork) {
763                         release_page(&fs);
764                         unlock_and_deallocate(&fs);
765                         goto RetryFault;
766                 }
767
768                 /*
769                  * To avoid trying to write_lock the map while another process
770                  * has it read_locked (in vm_map_wire), we do not try for
771                  * write permission.  If the page is still writable, we will
772                  * get write permission.  If it is not, or has been marked
773                  * needs_copy, we enter the mapping without write permission,
774                  * and will merely take another fault.
775                  */
776                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
777                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
778                 map_generation = fs.map->timestamp;
779
780                 /*
781                  * If we don't need the page any longer, put it on the active
782                  * list (the easiest thing to do here).  If no one needs it,
783                  * pageout will grab it eventually.
784                  */
785
786                 if (result != KERN_SUCCESS) {
787                         release_page(&fs);
788                         unlock_and_deallocate(&fs);
789                         return (result);
790                 }
791                 fs.lookup_still_valid = TRUE;
792
793                 if ((retry_object != fs.first_object) ||
794                     (retry_pindex != fs.first_pindex)) {
795                         release_page(&fs);
796                         unlock_and_deallocate(&fs);
797                         goto RetryFault;
798                 }
799                 /*
800                  * Check whether the protection has changed or the object has
801                  * been copied while we left the map unlocked. Changing from
802                  * read to write permission is OK - we leave the page
803                  * write-protected, and catch the write fault. Changing from
804                  * write to read permission means that we can't mark the page
805                  * write-enabled after all.
806                  */
807                 prot &= retry_prot;
808         }
809
810         /*
811          * Put this page into the physical map. We had to do the unlock above
812          * because pmap_enter may cause other faults.   We don't put the page
813          * back on the active queue until later so that the page-out daemon
814          * won't find us (yet).
815          */
816
817         if (prot & VM_PROT_WRITE) {
818                 vm_page_flag_set(fs.m, PG_WRITEABLE);
819                 vm_object_set_writeable_dirty(fs.m->object);
820
821                 /*
822                  * If the fault is a write, we know that this page is being
823                  * written NOW so dirty it explicitly to save on 
824                  * pmap_is_modified() calls later.
825                  *
826                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
827                  * if the page is already dirty to prevent data written with
828                  * the expectation of being synced from not being synced.
829                  * Likewise if this entry does not request NOSYNC then make
830                  * sure the page isn't marked NOSYNC.  Applications sharing
831                  * data should use the same flags to avoid ping ponging.
832                  *
833                  * Also tell the backing pager, if any, that it should remove
834                  * any swap backing since the page is now dirty.
835                  */
836                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
837                         if (fs.m->dirty == 0)
838                                 vm_page_flag_set(fs.m, PG_NOSYNC);
839                 } else {
840                         vm_page_flag_clear(fs.m, PG_NOSYNC);
841                 }
842                 if (fault_flags & VM_FAULT_DIRTY) {
843                         int s;
844                         vm_page_dirty(fs.m);
845                         s = splvm();
846                         vm_pager_page_unswapped(fs.m);
847                         splx(s);
848                 }
849         }
850
851         /*
852          * Page had better still be busy
853          */
854
855         KASSERT(fs.m->flags & PG_BUSY,
856                 ("vm_fault: page %p not busy!", fs.m));
857
858         unlock_things(&fs);
859
860         /*
861          * Sanity check: page must be completely valid or it is not fit to
862          * map into user space.  vm_pager_get_pages() ensures this.
863          */
864
865         if (fs.m->valid != VM_PAGE_BITS_ALL) {
866                 vm_page_zero_invalid(fs.m, TRUE);
867                 printf("Warning: page %p partially invalid on fault\n", fs.m);
868         }
869
870         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
871
872         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
873                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
874         }
875
876         vm_page_flag_clear(fs.m, PG_ZERO);
877         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
878         if (fault_flags & VM_FAULT_HOLD)
879                 vm_page_hold(fs.m);
880
881         /*
882          * If the page is not wired down, then put it where the pageout daemon
883          * can find it.
884          */
885
886         if (fault_flags & VM_FAULT_WIRE_MASK) {
887                 if (wired)
888                         vm_page_wire(fs.m);
889                 else
890                         vm_page_unwire(fs.m, 1);
891         } else {
892                 vm_page_activate(fs.m);
893         }
894
895         if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
896                 if (hardfault) {
897                         curproc->p_stats->p_ru.ru_majflt++;
898                 } else {
899                         curproc->p_stats->p_ru.ru_minflt++;
900                 }
901         }
902
903         /*
904          * Unlock everything, and return
905          */
906
907         vm_page_wakeup(fs.m);
908         vm_object_deallocate(fs.first_object);
909
910         return (KERN_SUCCESS);
911
912 }
913
914 /*
915  * quick version of vm_fault
916  */
917 int
918 vm_fault_quick(caddr_t v, int prot)
919 {
920         int r;
921
922         if (prot & VM_PROT_WRITE)
923                 r = subyte(v, fubyte(v));
924         else
925                 r = fubyte(v);
926         return(r);
927 }
928
929 /*
930  *      vm_fault_wire:
931  *
932  *      Wire down a range of virtual addresses in a map.
933  */
934 int
935 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end)
936 {
937
938         vm_offset_t va;
939         pmap_t pmap;
940         int rv;
941
942         pmap = vm_map_pmap(map);
943
944         /*
945          * Inform the physical mapping system that the range of addresses may
946          * not fault, so that page tables and such can be locked down as well.
947          */
948
949         pmap_pageable(pmap, start, end, FALSE);
950
951         /*
952          * We simulate a fault to get the page and enter it in the physical
953          * map.
954          */
955
956         for (va = start; va < end; va += PAGE_SIZE) {
957                 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
958                         VM_FAULT_CHANGE_WIRING);
959                 if (rv) {
960                         if (va != start)
961                                 vm_fault_unwire(map, start, va);
962                         return (rv);
963                 }
964         }
965         return (KERN_SUCCESS);
966 }
967
968 /*
969  *      vm_fault_user_wire:
970  *
971  *      Wire down a range of virtual addresses in a map.  This
972  *      is for user mode though, so we only ask for read access
973  *      on currently read only sections.
974  */
975 int
976 vm_fault_user_wire(vm_map_t map, vm_offset_t start, vm_offset_t end)
977 {
978
979         vm_offset_t va;
980         pmap_t pmap;
981         int rv;
982
983         pmap = vm_map_pmap(map);
984
985         /*
986          * Inform the physical mapping system that the range of addresses may
987          * not fault, so that page tables and such can be locked down as well.
988          */
989
990         pmap_pageable(pmap, start, end, FALSE);
991
992         /*
993          * We simulate a fault to get the page and enter it in the physical
994          * map.
995          */
996         for (va = start; va < end; va += PAGE_SIZE) {
997                 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
998                 if (rv) {
999                         if (va != start)
1000                                 vm_fault_unwire(map, start, va);
1001                         return (rv);
1002                 }
1003         }
1004         return (KERN_SUCCESS);
1005 }
1006
1007
1008 /*
1009  *      vm_fault_unwire:
1010  *
1011  *      Unwire a range of virtual addresses in a map.
1012  */
1013 void
1014 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end)
1015 {
1016
1017         vm_offset_t va;
1018         vm_paddr_t pa;
1019         pmap_t pmap;
1020
1021         pmap = vm_map_pmap(map);
1022
1023         /*
1024          * Since the pages are wired down, we must be able to get their
1025          * mappings from the physical map system.
1026          */
1027
1028         for (va = start; va < end; va += PAGE_SIZE) {
1029                 pa = pmap_extract(pmap, va);
1030                 if (pa != 0) {
1031                         pmap_change_wiring(pmap, va, FALSE);
1032                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1033                 }
1034         }
1035
1036         /*
1037          * Inform the physical mapping system that the range of addresses may
1038          * fault, so that page tables and such may be unwired themselves.
1039          */
1040
1041         pmap_pageable(pmap, start, end, TRUE);
1042
1043 }
1044
1045 /*
1046  *      Routine:
1047  *              vm_fault_copy_entry
1048  *      Function:
1049  *              Copy all of the pages from a wired-down map entry to another.
1050  *
1051  *      In/out conditions:
1052  *              The source and destination maps must be locked for write.
1053  *              The source map entry must be wired down (or be a sharing map
1054  *              entry corresponding to a main map entry that is wired down).
1055  */
1056
1057 void
1058 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1059     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1060 {
1061         vm_object_t dst_object;
1062         vm_object_t src_object;
1063         vm_ooffset_t dst_offset;
1064         vm_ooffset_t src_offset;
1065         vm_prot_t prot;
1066         vm_offset_t vaddr;
1067         vm_page_t dst_m;
1068         vm_page_t src_m;
1069
1070 #ifdef  lint
1071         src_map++;
1072 #endif  /* lint */
1073
1074         src_object = src_entry->object.vm_object;
1075         src_offset = src_entry->offset;
1076
1077         /*
1078          * Create the top-level object for the destination entry. (Doesn't
1079          * actually shadow anything - we copy the pages directly.)
1080          */
1081         dst_object = vm_object_allocate(OBJT_DEFAULT,
1082             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1083
1084         dst_entry->object.vm_object = dst_object;
1085         dst_entry->offset = 0;
1086
1087         prot = dst_entry->max_protection;
1088
1089         /*
1090          * Loop through all of the pages in the entry's range, copying each
1091          * one from the source object (it should be there) to the destination
1092          * object.
1093          */
1094         for (vaddr = dst_entry->start, dst_offset = 0;
1095             vaddr < dst_entry->end;
1096             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1097
1098                 /*
1099                  * Allocate a page in the destination object
1100                  */
1101                 do {
1102                         dst_m = vm_page_alloc(dst_object,
1103                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1104                         if (dst_m == NULL) {
1105                                 VM_WAIT;
1106                         }
1107                 } while (dst_m == NULL);
1108
1109                 /*
1110                  * Find the page in the source object, and copy it in.
1111                  * (Because the source is wired down, the page will be in
1112                  * memory.)
1113                  */
1114                 src_m = vm_page_lookup(src_object,
1115                         OFF_TO_IDX(dst_offset + src_offset));
1116                 if (src_m == NULL)
1117                         panic("vm_fault_copy_wired: page missing");
1118
1119                 vm_page_copy(src_m, dst_m);
1120
1121                 /*
1122                  * Enter it in the pmap...
1123                  */
1124
1125                 vm_page_flag_clear(dst_m, PG_ZERO);
1126                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1127                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1128
1129                 /*
1130                  * Mark it no longer busy, and put it on the active list.
1131                  */
1132                 vm_page_activate(dst_m);
1133                 vm_page_wakeup(dst_m);
1134         }
1135 }
1136
1137
1138 /*
1139  * This routine checks around the requested page for other pages that
1140  * might be able to be faulted in.  This routine brackets the viable
1141  * pages for the pages to be paged in.
1142  *
1143  * Inputs:
1144  *      m, rbehind, rahead
1145  *
1146  * Outputs:
1147  *  marray (array of vm_page_t), reqpage (index of requested page)
1148  *
1149  * Return value:
1150  *  number of pages in marray
1151  */
1152 static int
1153 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1154     vm_page_t *marray, int *reqpage)
1155 {
1156         int i,j;
1157         vm_object_t object;
1158         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1159         vm_page_t rtm;
1160         int cbehind, cahead;
1161
1162         object = m->object;
1163         pindex = m->pindex;
1164
1165         /*
1166          * we don't fault-ahead for device pager
1167          */
1168         if (object->type == OBJT_DEVICE) {
1169                 *reqpage = 0;
1170                 marray[0] = m;
1171                 return 1;
1172         }
1173
1174         /*
1175          * if the requested page is not available, then give up now
1176          */
1177
1178         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1179                 return 0;
1180         }
1181
1182         if ((cbehind == 0) && (cahead == 0)) {
1183                 *reqpage = 0;
1184                 marray[0] = m;
1185                 return 1;
1186         }
1187
1188         if (rahead > cahead) {
1189                 rahead = cahead;
1190         }
1191
1192         if (rbehind > cbehind) {
1193                 rbehind = cbehind;
1194         }
1195
1196         /*
1197          * try to do any readahead that we might have free pages for.
1198          */
1199         if ((rahead + rbehind) >
1200                 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1201                 pagedaemon_wakeup();
1202                 marray[0] = m;
1203                 *reqpage = 0;
1204                 return 1;
1205         }
1206
1207         /*
1208          * scan backward for the read behind pages -- in memory 
1209          *
1210          * Assume that if the page is not found an interrupt will not
1211          * create it.  Theoretically interrupts can only remove (busy)
1212          * pages, not create new associations.
1213          */
1214         if (pindex > 0) {
1215                 if (rbehind > pindex) {
1216                         rbehind = pindex;
1217                         startpindex = 0;
1218                 } else {
1219                         startpindex = pindex - rbehind;
1220                 }
1221
1222                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1223                         if (vm_page_lookup( object, tpindex)) {
1224                                 startpindex = tpindex + 1;
1225                                 break;
1226                         }
1227                         if (tpindex == 0)
1228                                 break;
1229                 }
1230
1231                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1232
1233                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1234                         if (rtm == NULL) {
1235                                 for (j = 0; j < i; j++) {
1236                                         vm_page_free(marray[j]);
1237                                 }
1238                                 marray[0] = m;
1239                                 *reqpage = 0;
1240                                 return 1;
1241                         }
1242
1243                         marray[i] = rtm;
1244                 }
1245         } else {
1246                 startpindex = 0;
1247                 i = 0;
1248         }
1249
1250         marray[i] = m;
1251         /* page offset of the required page */
1252         *reqpage = i;
1253
1254         tpindex = pindex + 1;
1255         i++;
1256
1257         /*
1258          * scan forward for the read ahead pages
1259          */
1260         endpindex = tpindex + rahead;
1261         if (endpindex > object->size)
1262                 endpindex = object->size;
1263
1264         for( ; tpindex < endpindex; i++, tpindex++) {
1265
1266                 if (vm_page_lookup(object, tpindex)) {
1267                         break;
1268                 }
1269
1270                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1271                 if (rtm == NULL) {
1272                         break;
1273                 }
1274
1275                 marray[i] = rtm;
1276         }
1277
1278         /* return number of bytes of pages */
1279         return i;
1280 }