Merge from vendor branch OPENSSH:
[dragonfly.git] / sys / dev / netif / nfe / if_nfe.c
1 /*      $OpenBSD: if_nfe.c,v 1.63 2006/06/17 18:00:43 brad Exp $        */
2 /*      $DragonFly: src/sys/dev/netif/nfe/if_nfe.c,v 1.3 2006/09/16 06:37:11 sephe Exp $        */
3
4 /*
5  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
6  * 
7  * This code is derived from software contributed to The DragonFly Project
8  * by Sepherosa Ziehau <sepherosa@gmail.com> and
9  * Matthew Dillon <dillon@apollo.backplane.com>
10  * 
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  * 
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38
39 /*
40  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
41  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
42  *
43  * Permission to use, copy, modify, and distribute this software for any
44  * purpose with or without fee is hereby granted, provided that the above
45  * copyright notice and this permission notice appear in all copies.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  */
55
56 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
57
58 #include "opt_polling.h"
59
60 #include <sys/param.h>
61 #include <sys/endian.h>
62 #include <sys/kernel.h>
63 #include <sys/bus.h>
64 #include <sys/proc.h>
65 #include <sys/rman.h>
66 #include <sys/serialize.h>
67 #include <sys/socket.h>
68 #include <sys/sockio.h>
69 #include <sys/sysctl.h>
70
71 #include <machine/bus.h>
72 #include <machine/resource.h>
73
74 #include <net/ethernet.h>
75 #include <net/if.h>
76 #include <net/bpf.h>
77 #include <net/if_arp.h>
78 #include <net/if_dl.h>
79 #include <net/if_media.h>
80 #include <net/ifq_var.h>
81 #include <net/if_types.h>
82 #include <net/if_var.h>
83 #include <net/vlan/if_vlan_var.h>
84
85 #include <bus/pci/pcireg.h>
86 #include <bus/pci/pcivar.h>
87 #include <bus/pci/pcidevs.h>
88
89 #include <dev/netif/mii_layer/mii.h>
90 #include <dev/netif/mii_layer/miivar.h>
91
92 #include "miibus_if.h"
93
94 #include "if_nfereg.h"
95 #include "if_nfevar.h"
96
97 static int      nfe_probe(device_t);
98 static int      nfe_attach(device_t);
99 static int      nfe_detach(device_t);
100 static void     nfe_shutdown(device_t);
101 static int      nfe_resume(device_t);
102 static int      nfe_suspend(device_t);
103
104 static int      nfe_miibus_readreg(device_t, int, int);
105 static void     nfe_miibus_writereg(device_t, int, int, int);
106 static void     nfe_miibus_statchg(device_t);
107
108 #ifdef DEVICE_POLLING
109 static void     nfe_poll(struct ifnet *, enum poll_cmd, int);
110 #endif
111 static void     nfe_intr(void *);
112 static int      nfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
113 static void     nfe_rxeof(struct nfe_softc *);
114 static void     nfe_txeof(struct nfe_softc *);
115 static int      nfe_encap(struct nfe_softc *, struct nfe_tx_ring *,
116                           struct mbuf *);
117 static void     nfe_start(struct ifnet *);
118 static void     nfe_watchdog(struct ifnet *);
119 static void     nfe_init(void *);
120 static void     nfe_stop(struct nfe_softc *);
121 static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
122 static void     nfe_jfree(void *);
123 static void     nfe_jref(void *);
124 static int      nfe_jpool_alloc(struct nfe_softc *, struct nfe_rx_ring *);
125 static void     nfe_jpool_free(struct nfe_softc *, struct nfe_rx_ring *);
126 static int      nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
127 static void     nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
128 static int      nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
129 static void     nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
130 static int      nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
131 static void     nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
132 static int      nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
133 static void     nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
134 static int      nfe_ifmedia_upd(struct ifnet *);
135 static void     nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136 static void     nfe_setmulti(struct nfe_softc *);
137 static void     nfe_get_macaddr(struct nfe_softc *, uint8_t *);
138 static void     nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
139 static void     nfe_tick(void *);
140 static void     nfe_ring_dma_addr(void *, bus_dma_segment_t *, int, int);
141 static void     nfe_buf_dma_addr(void *, bus_dma_segment_t *, int, bus_size_t,
142                                  int);
143 static void     nfe_set_paddr_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
144                                      int, bus_addr_t);
145 static void     nfe_set_ready_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
146                                      int);
147 static int      nfe_newbuf_std(struct nfe_softc *, struct nfe_rx_ring *, int,
148                                int);
149 static int      nfe_newbuf_jumbo(struct nfe_softc *, struct nfe_rx_ring *, int,
150                                  int);
151
152 #define NFE_DEBUG
153 #ifdef NFE_DEBUG
154
155 static int      nfe_debug = 0;
156
157 SYSCTL_NODE(_hw, OID_AUTO, nfe, CTLFLAG_RD, 0, "nVidia GigE parameters");
158 SYSCTL_INT(_hw_nfe, OID_AUTO, debug, CTLFLAG_RW, &nfe_debug, 0,
159            "control debugging printfs");
160
161 #define DPRINTF(sc, fmt, ...) do {              \
162         if (nfe_debug) {                        \
163                 if_printf(&(sc)->arpcom.ac_if,  \
164                           fmt, __VA_ARGS__);    \
165         }                                       \
166 } while (0)
167
168 #define DPRINTFN(sc, lv, fmt, ...) do {         \
169         if (nfe_debug >= (lv)) {                \
170                 if_printf(&(sc)->arpcom.ac_if,  \
171                           fmt, __VA_ARGS__);    \
172         }                                       \
173 } while (0)
174
175 #else   /* !NFE_DEBUG */
176
177 #define DPRINTF(sc, fmt, ...)
178 #define DPRINTFN(sc, lv, fmt, ...)
179
180 #endif  /* NFE_DEBUG */
181
182 struct nfe_dma_ctx {
183         int                     nsegs;
184         bus_dma_segment_t       *segs;
185 };
186
187 static const struct nfe_dev {
188         uint16_t        vid;
189         uint16_t        did;
190         const char      *desc;
191 } nfe_devices[] = {
192         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
193           "NVIDIA nForce Gigabit Ethernet" },
194
195         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
196           "NVIDIA nForce2 Gigabit Ethernet" },
197
198         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
199           "NVIDIA nForce3 Gigabit Ethernet" },
200
201         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2,
202           "NVIDIA nForce3 Gigabit Ethernet" },
203
204         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3,
205           "NVIDIA nForce3 Gigabit Ethernet" },
206
207         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
208           "NVIDIA nForce3 Gigabit Ethernet" },
209
210         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5,
211           "NVIDIA nForce3 Gigabit Ethernet" },
212
213         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1,
214           "NVIDIA CK804 Gigabit Ethernet" },
215
216         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2,
217           "NVIDIA CK804 Gigabit Ethernet" },
218
219         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
220           "NVIDIA MCP04 Gigabit Ethernet" },
221
222         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
223           "NVIDIA MCP04 Gigabit Ethernet" },
224
225         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1,
226           "NVIDIA MCP51 Gigabit Ethernet" },
227
228         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2,
229           "NVIDIA MCP51 Gigabit Ethernet" },
230
231         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
232           "NVIDIA MCP55 Gigabit Ethernet" },
233
234         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
235           "NVIDIA MCP55 Gigabit Ethernet" },
236
237         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
238           "NVIDIA MCP61 Gigabit Ethernet" },
239
240         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
241           "NVIDIA MCP61 Gigabit Ethernet" },
242
243         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
244           "NVIDIA MCP61 Gigabit Ethernet" },
245
246         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
247           "NVIDIA MCP61 Gigabit Ethernet" },
248
249         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
250           "NVIDIA MCP65 Gigabit Ethernet" },
251
252         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
253           "NVIDIA MCP65 Gigabit Ethernet" },
254
255         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
256           "NVIDIA MCP65 Gigabit Ethernet" },
257
258         { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
259           "NVIDIA MCP65 Gigabit Ethernet" }
260 };
261
262 static device_method_t nfe_methods[] = {
263         /* Device interface */
264         DEVMETHOD(device_probe,         nfe_probe),
265         DEVMETHOD(device_attach,        nfe_attach),
266         DEVMETHOD(device_detach,        nfe_detach),
267         DEVMETHOD(device_suspend,       nfe_suspend),
268         DEVMETHOD(device_resume,        nfe_resume),
269         DEVMETHOD(device_shutdown,      nfe_shutdown),
270
271         /* Bus interface */
272         DEVMETHOD(bus_print_child,      bus_generic_print_child),
273         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
274
275         /* MII interface */
276         DEVMETHOD(miibus_readreg,       nfe_miibus_readreg),
277         DEVMETHOD(miibus_writereg,      nfe_miibus_writereg),
278         DEVMETHOD(miibus_statchg,       nfe_miibus_statchg),
279
280         { 0, 0 }
281 };
282
283 static driver_t nfe_driver = {
284         "nfe",
285         nfe_methods,
286         sizeof(struct nfe_softc)
287 };
288
289 static devclass_t       nfe_devclass;
290
291 DECLARE_DUMMY_MODULE(if_nfe);
292 MODULE_DEPEND(if_nfe, miibus, 1, 1, 1);
293 DRIVER_MODULE(if_nfe, pci, nfe_driver, nfe_devclass, 0, 0);
294 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
295
296 static int
297 nfe_probe(device_t dev)
298 {
299         const struct nfe_dev *n;
300         uint16_t vid, did;
301
302         vid = pci_get_vendor(dev);
303         did = pci_get_device(dev);
304         for (n = nfe_devices; n->desc != NULL; ++n) {
305                 if (vid == n->vid && did == n->did) {
306                         struct nfe_softc *sc = device_get_softc(dev);
307
308                         switch (did) {
309                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
310                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
311                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
312                         case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
313                                 sc->sc_flags = NFE_JUMBO_SUP |
314                                                NFE_HW_CSUM;
315                                 break;
316                         case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
317                         case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
318                         case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
319                         case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
320                         case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
321                         case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
322                                 sc->sc_flags = NFE_40BIT_ADDR;
323                                 break;
324                         case PCI_PRODUCT_NVIDIA_CK804_LAN1:
325                         case PCI_PRODUCT_NVIDIA_CK804_LAN2:
326                         case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
327                         case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
328                         case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
329                         case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
330                         case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
331                         case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
332                                 sc->sc_flags = NFE_JUMBO_SUP |
333                                                NFE_40BIT_ADDR |
334                                                NFE_HW_CSUM;
335                                 break;
336                         case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
337                         case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
338                                 sc->sc_flags = NFE_JUMBO_SUP |
339                                                NFE_40BIT_ADDR |
340                                                NFE_HW_CSUM |
341                                                NFE_HW_VLAN;
342                                 break;
343                         }
344
345                         /* Enable jumbo frames for adapters that support it */
346                         if (sc->sc_flags & NFE_JUMBO_SUP)
347                                 sc->sc_flags |= NFE_USE_JUMBO;
348
349                         device_set_desc(dev, n->desc);
350                         return 0;
351                 }
352         }
353         return ENXIO;
354 }
355
356 static int
357 nfe_attach(device_t dev)
358 {
359         struct nfe_softc *sc = device_get_softc(dev);
360         struct ifnet *ifp = &sc->arpcom.ac_if;
361         uint8_t eaddr[ETHER_ADDR_LEN];
362         int error;
363
364         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
365         lwkt_serialize_init(&sc->sc_jbuf_serializer);
366
367         sc->sc_mem_rid = PCIR_BAR(0);
368
369 #ifndef BURN_BRIDGES
370         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
371                 uint32_t mem, irq;
372
373                 mem = pci_read_config(dev, sc->sc_mem_rid, 4);
374                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
375
376                 device_printf(dev, "chip is in D%d power mode "
377                     "-- setting to D0\n", pci_get_powerstate(dev));
378
379                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
380
381                 pci_write_config(dev, sc->sc_mem_rid, mem, 4);
382                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
383         }
384 #endif  /* !BURN_BRIDGE */
385
386         /* Enable bus mastering */
387         pci_enable_busmaster(dev);
388
389         /* Allocate IO memory */
390         sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
391                                                 &sc->sc_mem_rid, RF_ACTIVE);
392         if (sc->sc_mem_res == NULL) {
393                 device_printf(dev, "cound not allocate io memory\n");
394                 return ENXIO;
395         }
396         sc->sc_memh = rman_get_bushandle(sc->sc_mem_res);
397         sc->sc_memt = rman_get_bustag(sc->sc_mem_res);
398
399         /* Allocate IRQ */
400         sc->sc_irq_rid = 0;
401         sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
402                                                 &sc->sc_irq_rid,
403                                                 RF_SHAREABLE | RF_ACTIVE);
404         if (sc->sc_irq_res == NULL) {
405                 device_printf(dev, "could not allocate irq\n");
406                 error = ENXIO;
407                 goto fail;
408         }
409
410         nfe_get_macaddr(sc, eaddr);
411
412         /*
413          * Allocate Tx and Rx rings.
414          */
415         error = nfe_alloc_tx_ring(sc, &sc->txq);
416         if (error) {
417                 device_printf(dev, "could not allocate Tx ring\n");
418                 goto fail;
419         }
420
421         error = nfe_alloc_rx_ring(sc, &sc->rxq);
422         if (error) {
423                 device_printf(dev, "could not allocate Rx ring\n");
424                 goto fail;
425         }
426
427         error = mii_phy_probe(dev, &sc->sc_miibus, nfe_ifmedia_upd,
428                               nfe_ifmedia_sts);
429         if (error) {
430                 device_printf(dev, "MII without any phy\n");
431                 goto fail;
432         }
433
434         ifp->if_softc = sc;
435         ifp->if_mtu = ETHERMTU;
436         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
437         ifp->if_ioctl = nfe_ioctl;
438         ifp->if_start = nfe_start;
439 #ifdef DEVICE_POLLING
440         ifp->if_poll = nfe_poll;
441 #endif
442         ifp->if_watchdog = nfe_watchdog;
443         ifp->if_init = nfe_init;
444         ifq_set_maxlen(&ifp->if_snd, NFE_IFQ_MAXLEN);
445         ifq_set_ready(&ifp->if_snd);
446
447         ifp->if_capabilities = IFCAP_VLAN_MTU;
448
449 #if 0
450         if (sc->sc_flags & NFE_USE_JUMBO)
451                 ifp->if_hardmtu = NFE_JUMBO_MTU;
452 #endif
453
454         if (sc->sc_flags & NFE_HW_VLAN)
455                 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
456
457 #ifdef NFE_CSUM
458         if (sc->sc_flags & NFE_HW_CSUM) {
459 #if 0
460                 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
461                     IFCAP_CSUM_UDPv4;
462 #else
463                 ifp->if_capabilities = IFCAP_HWCSUM;
464                 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
465 #endif
466         }
467 #endif
468         ifp->if_capenable = ifp->if_capabilities;
469
470         callout_init(&sc->sc_tick_ch);
471
472         ether_ifattach(ifp, eaddr, NULL);
473
474         error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, nfe_intr, sc,
475                                &sc->sc_ih, ifp->if_serializer);
476         if (error) {
477                 device_printf(dev, "could not setup intr\n");
478                 ether_ifdetach(ifp);
479                 goto fail;
480         }
481
482         return 0;
483 fail:
484         nfe_detach(dev);
485         return error;
486 }
487
488 static int
489 nfe_detach(device_t dev)
490 {
491         struct nfe_softc *sc = device_get_softc(dev);
492
493         if (device_is_attached(dev)) {
494                 struct ifnet *ifp = &sc->arpcom.ac_if;
495
496                 lwkt_serialize_enter(ifp->if_serializer);
497                 nfe_stop(sc);
498                 bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_ih);
499                 lwkt_serialize_exit(ifp->if_serializer);
500
501                 ether_ifdetach(ifp);
502         }
503
504         if (sc->sc_miibus != NULL)
505                 device_delete_child(dev, sc->sc_miibus);
506         bus_generic_detach(dev);
507
508         if (sc->sc_irq_res != NULL) {
509                 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
510                                      sc->sc_irq_res);
511         }
512
513         if (sc->sc_mem_res != NULL) {
514                 bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
515                                      sc->sc_mem_res);
516         }
517
518         nfe_free_tx_ring(sc, &sc->txq);
519         nfe_free_rx_ring(sc, &sc->rxq);
520
521         return 0;
522 }
523
524 static void
525 nfe_shutdown(device_t dev)
526 {
527         struct nfe_softc *sc = device_get_softc(dev);
528         struct ifnet *ifp = &sc->arpcom.ac_if;
529
530         lwkt_serialize_enter(ifp->if_serializer);
531         nfe_stop(sc);
532         lwkt_serialize_exit(ifp->if_serializer);
533 }
534
535 static int
536 nfe_suspend(device_t dev)
537 {
538         struct nfe_softc *sc = device_get_softc(dev);
539         struct ifnet *ifp = &sc->arpcom.ac_if;
540
541         lwkt_serialize_enter(ifp->if_serializer);
542         nfe_stop(sc);
543         lwkt_serialize_exit(ifp->if_serializer);
544
545         return 0;
546 }
547
548 static int
549 nfe_resume(device_t dev)
550 {
551         struct nfe_softc *sc = device_get_softc(dev);
552         struct ifnet *ifp = &sc->arpcom.ac_if;
553
554         lwkt_serialize_enter(ifp->if_serializer);
555         if (ifp->if_flags & IFF_UP) {
556                 nfe_init(ifp);
557                 if (ifp->if_flags & IFF_RUNNING)
558                         ifp->if_start(ifp);
559         }
560         lwkt_serialize_exit(ifp->if_serializer);
561
562         return 0;
563 }
564
565 static void
566 nfe_miibus_statchg(device_t dev)
567 {
568         struct nfe_softc *sc = device_get_softc(dev);
569         struct mii_data *mii = device_get_softc(sc->sc_miibus);
570         uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
571
572         phy = NFE_READ(sc, NFE_PHY_IFACE);
573         phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
574
575         seed = NFE_READ(sc, NFE_RNDSEED);
576         seed &= ~NFE_SEED_MASK;
577
578         if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
579                 phy  |= NFE_PHY_HDX;    /* half-duplex */
580                 misc |= NFE_MISC1_HDX;
581         }
582
583         switch (IFM_SUBTYPE(mii->mii_media_active)) {
584         case IFM_1000_T:        /* full-duplex only */
585                 link |= NFE_MEDIA_1000T;
586                 seed |= NFE_SEED_1000T;
587                 phy  |= NFE_PHY_1000T;
588                 break;
589         case IFM_100_TX:
590                 link |= NFE_MEDIA_100TX;
591                 seed |= NFE_SEED_100TX;
592                 phy  |= NFE_PHY_100TX;
593                 break;
594         case IFM_10_T:
595                 link |= NFE_MEDIA_10T;
596                 seed |= NFE_SEED_10T;
597                 break;
598         }
599
600         NFE_WRITE(sc, NFE_RNDSEED, seed);       /* XXX: gigabit NICs only? */
601
602         NFE_WRITE(sc, NFE_PHY_IFACE, phy);
603         NFE_WRITE(sc, NFE_MISC1, misc);
604         NFE_WRITE(sc, NFE_LINKSPEED, link);
605 }
606
607 static int
608 nfe_miibus_readreg(device_t dev, int phy, int reg)
609 {
610         struct nfe_softc *sc = device_get_softc(dev);
611         uint32_t val;
612         int ntries;
613
614         NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
615
616         if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
617                 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
618                 DELAY(100);
619         }
620
621         NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
622
623         for (ntries = 0; ntries < 1000; ntries++) {
624                 DELAY(100);
625                 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
626                         break;
627         }
628         if (ntries == 1000) {
629                 DPRINTFN(sc, 2, "timeout waiting for PHY %s\n", "");
630                 return 0;
631         }
632
633         if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
634                 DPRINTFN(sc, 2, "could not read PHY %s\n", "");
635                 return 0;
636         }
637
638         val = NFE_READ(sc, NFE_PHY_DATA);
639         if (val != 0xffffffff && val != 0)
640                 sc->mii_phyaddr = phy;
641
642         DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
643
644         return val;
645 }
646
647 static void
648 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
649 {
650         struct nfe_softc *sc = device_get_softc(dev);
651         uint32_t ctl;
652         int ntries;
653
654         NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
655
656         if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
657                 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
658                 DELAY(100);
659         }
660
661         NFE_WRITE(sc, NFE_PHY_DATA, val);
662         ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
663         NFE_WRITE(sc, NFE_PHY_CTL, ctl);
664
665         for (ntries = 0; ntries < 1000; ntries++) {
666                 DELAY(100);
667                 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
668                         break;
669         }
670
671 #ifdef NFE_DEBUG
672         if (ntries == 1000)
673                 DPRINTFN(sc, 2, "could not write to PHY %s\n", "");
674 #endif
675 }
676
677 #ifdef DEVICE_POLLING
678
679 static void
680 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
681 {
682         struct nfe_softc *sc = ifp->if_softc;
683
684         switch(cmd) {
685         case POLL_REGISTER:
686                 /* Disable interrupts */
687                 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
688                 break;
689         case POLL_DEREGISTER:
690                 /* enable interrupts */
691                 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
692                 break;
693         case POLL_AND_CHECK_STATUS:
694                 /* fall through */
695         case POLL_ONLY:
696                 if (ifp->if_flags & IFF_RUNNING) {
697                         nfe_rxeof(sc);
698                         nfe_txeof(sc);
699                 }
700                 break;
701         }
702 }
703
704 #endif
705
706 static void
707 nfe_intr(void *arg)
708 {
709         struct nfe_softc *sc = arg;
710         struct ifnet *ifp = &sc->arpcom.ac_if;
711         uint32_t r;
712
713         r = NFE_READ(sc, NFE_IRQ_STATUS);
714         if (r == 0)
715                 return; /* not for us */
716         NFE_WRITE(sc, NFE_IRQ_STATUS, r);
717
718         DPRINTFN(sc, 5, "%s: interrupt register %x\n", __func__, r);
719
720         if (r & NFE_IRQ_LINK) {
721                 NFE_READ(sc, NFE_PHY_STATUS);
722                 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
723                 DPRINTF(sc, "link state changed %s\n", "");
724         }
725
726         if (ifp->if_flags & IFF_RUNNING) {
727                 /* check Rx ring */
728                 nfe_rxeof(sc);
729
730                 /* check Tx ring */
731                 nfe_txeof(sc);
732         }
733 }
734
735 static int
736 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
737 {
738         struct nfe_softc *sc = ifp->if_softc;
739         struct ifreq *ifr = (struct ifreq *)data;
740         struct mii_data *mii;
741         int error = 0, mask;
742
743         switch (cmd) {
744         case SIOCSIFMTU:
745                 /* XXX NFE_USE_JUMBO should be set here */
746                 break;
747         case SIOCSIFFLAGS:
748                 if (ifp->if_flags & IFF_UP) {
749                         /*
750                          * If only the PROMISC or ALLMULTI flag changes, then
751                          * don't do a full re-init of the chip, just update
752                          * the Rx filter.
753                          */
754                         if ((ifp->if_flags & IFF_RUNNING) &&
755                             ((ifp->if_flags ^ sc->sc_if_flags) &
756                              (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
757                                 nfe_setmulti(sc);
758                         } else {
759                                 if (!(ifp->if_flags & IFF_RUNNING))
760                                         nfe_init(sc);
761                         }
762                 } else {
763                         if (ifp->if_flags & IFF_RUNNING)
764                                 nfe_stop(sc);
765                 }
766                 sc->sc_if_flags = ifp->if_flags;
767                 break;
768         case SIOCADDMULTI:
769         case SIOCDELMULTI:
770                 if (ifp->if_flags & IFF_RUNNING)
771                         nfe_setmulti(sc);
772                 break;
773         case SIOCSIFMEDIA:
774         case SIOCGIFMEDIA:
775                 mii = device_get_softc(sc->sc_miibus);
776                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
777                 break;
778         case SIOCSIFCAP:
779                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
780                 if (mask & IFCAP_HWCSUM) {
781                         if (IFCAP_HWCSUM & ifp->if_capenable)
782                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
783                         else
784                                 ifp->if_capenable |= IFCAP_HWCSUM;
785                 }
786                 break;
787         default:
788                 error = ether_ioctl(ifp, cmd, data);
789                 break;
790         }
791         return error;
792 }
793
794 static void
795 nfe_rxeof(struct nfe_softc *sc)
796 {
797         struct ifnet *ifp = &sc->arpcom.ac_if;
798         struct nfe_rx_ring *ring = &sc->rxq;
799         int reap;
800
801         reap = 0;
802         bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_POSTREAD);
803
804         for (;;) {
805                 struct nfe_rx_data *data = &ring->data[ring->cur];
806                 struct mbuf *m;
807                 uint16_t flags;
808                 int len, error;
809
810                 if (sc->sc_flags & NFE_40BIT_ADDR) {
811                         struct nfe_desc64 *desc64 = &ring->desc64[ring->cur];
812
813                         flags = le16toh(desc64->flags);
814                         len = le16toh(desc64->length) & 0x3fff;
815                 } else {
816                         struct nfe_desc32 *desc32 = &ring->desc32[ring->cur];
817
818                         flags = le16toh(desc32->flags);
819                         len = le16toh(desc32->length) & 0x3fff;
820                 }
821
822                 if (flags & NFE_RX_READY)
823                         break;
824
825                 reap = 1;
826
827                 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
828                         if (!(flags & NFE_RX_VALID_V1))
829                                 goto skip;
830
831                         if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
832                                 flags &= ~NFE_RX_ERROR;
833                                 len--;  /* fix buffer length */
834                         }
835                 } else {
836                         if (!(flags & NFE_RX_VALID_V2))
837                                 goto skip;
838
839                         if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
840                                 flags &= ~NFE_RX_ERROR;
841                                 len--;  /* fix buffer length */
842                         }
843                 }
844
845                 if (flags & NFE_RX_ERROR) {
846                         ifp->if_ierrors++;
847                         goto skip;
848                 }
849
850                 m = data->m;
851
852                 if (sc->sc_flags & NFE_USE_JUMBO)
853                         error = nfe_newbuf_jumbo(sc, ring, ring->cur, 0);
854                 else
855                         error = nfe_newbuf_std(sc, ring, ring->cur, 0);
856                 if (error) {
857                         ifp->if_ierrors++;
858                         goto skip;
859                 }
860
861                 /* finalize mbuf */
862                 m->m_pkthdr.len = m->m_len = len;
863                 m->m_pkthdr.rcvif = ifp;
864
865 #ifdef notyet
866                 if (sc->sc_flags & NFE_HW_CSUM) {
867                         if (flags & NFE_RX_IP_CSUMOK)
868                                 m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
869                         if (flags & NFE_RX_UDP_CSUMOK)
870                                 m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
871                         if (flags & NFE_RX_TCP_CSUMOK)
872                                 m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
873                 }
874 #elif defined(NFE_CSUM)
875                 if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
876                         m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
877 #endif
878
879                 ifp->if_ipackets++;
880                 ifp->if_input(ifp, m);
881 skip:
882                 nfe_set_ready_rxdesc(sc, ring, ring->cur);
883                 sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
884         }
885
886         if (reap)
887                 bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
888 }
889
890 static void
891 nfe_txeof(struct nfe_softc *sc)
892 {
893         struct ifnet *ifp = &sc->arpcom.ac_if;
894         struct nfe_tx_ring *ring = &sc->txq;
895         struct nfe_tx_data *data = NULL;
896
897         bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_POSTREAD);
898         while (ring->next != ring->cur) {
899                 uint16_t flags;
900
901                 if (sc->sc_flags & NFE_40BIT_ADDR)
902                         flags = le16toh(ring->desc64[ring->next].flags);
903                 else
904                         flags = le16toh(ring->desc32[ring->next].flags);
905
906                 if (flags & NFE_TX_VALID)
907                         break;
908
909                 data = &ring->data[ring->next];
910
911                 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
912                         if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
913                                 goto skip;
914
915                         if ((flags & NFE_TX_ERROR_V1) != 0) {
916                                 if_printf(ifp, "tx v1 error 0x%4b\n", flags,
917                                           NFE_V1_TXERR);
918                                 ifp->if_oerrors++;
919                         } else {
920                                 ifp->if_opackets++;
921                         }
922                 } else {
923                         if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
924                                 goto skip;
925
926                         if ((flags & NFE_TX_ERROR_V2) != 0) {
927                                 if_printf(ifp, "tx v2 error 0x%4b\n", flags,
928                                           NFE_V2_TXERR);
929                                 ifp->if_oerrors++;
930                         } else {
931                                 ifp->if_opackets++;
932                         }
933                 }
934
935                 if (data->m == NULL) {  /* should not get there */
936                         if_printf(ifp,
937                                   "last fragment bit w/o associated mbuf!\n");
938                         goto skip;
939                 }
940
941                 /* last fragment of the mbuf chain transmitted */
942                 bus_dmamap_sync(ring->data_tag, data->map,
943                                 BUS_DMASYNC_POSTWRITE);
944                 bus_dmamap_unload(ring->data_tag, data->map);
945                 m_freem(data->m);
946                 data->m = NULL;
947
948                 ifp->if_timer = 0;
949 skip:
950                 ring->queued--;
951                 KKASSERT(ring->queued >= 0);
952                 ring->next = (ring->next + 1) % NFE_TX_RING_COUNT;
953         }
954
955         if (data != NULL) {     /* at least one slot freed */
956                 ifp->if_flags &= ~IFF_OACTIVE;
957                 ifp->if_start(ifp);
958         }
959 }
960
961 static int
962 nfe_encap(struct nfe_softc *sc, struct nfe_tx_ring *ring, struct mbuf *m0)
963 {
964         struct nfe_dma_ctx ctx;
965         bus_dma_segment_t segs[NFE_MAX_SCATTER];
966         struct nfe_tx_data *data, *data_map;
967         bus_dmamap_t map;
968         struct nfe_desc64 *desc64 = NULL;
969         struct nfe_desc32 *desc32 = NULL;
970         uint16_t flags = 0;
971         uint32_t vtag = 0;
972         int error, i, j;
973
974         data = &ring->data[ring->cur];
975         map = data->map;
976         data_map = data;        /* Remember who owns the DMA map */
977
978         ctx.nsegs = NFE_MAX_SCATTER;
979         ctx.segs = segs;
980         error = bus_dmamap_load_mbuf(ring->data_tag, map, m0,
981                                      nfe_buf_dma_addr, &ctx, BUS_DMA_NOWAIT);
982         if (error && error != EFBIG) {
983                 if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
984                 goto back;
985         }
986
987         if (error) {    /* error == EFBIG */
988                 struct mbuf *m_new;
989
990                 m_new = m_defrag(m0, MB_DONTWAIT);
991                 if (m_new == NULL) {
992                         if_printf(&sc->arpcom.ac_if,
993                                   "could not defrag TX mbuf\n");
994                         error = ENOBUFS;
995                         goto back;
996                 } else {
997                         m0 = m_new;
998                 }
999
1000                 ctx.nsegs = NFE_MAX_SCATTER;
1001                 ctx.segs = segs;
1002                 error = bus_dmamap_load_mbuf(ring->data_tag, map, m0,
1003                                              nfe_buf_dma_addr, &ctx,
1004                                              BUS_DMA_NOWAIT);
1005                 if (error) {
1006                         if_printf(&sc->arpcom.ac_if,
1007                                   "could not map defraged TX mbuf\n");
1008                         goto back;
1009                 }
1010         }
1011
1012         error = 0;
1013
1014         if (ring->queued + ctx.nsegs >= NFE_TX_RING_COUNT - 1) {
1015                 bus_dmamap_unload(ring->data_tag, map);
1016                 error = ENOBUFS;
1017                 goto back;
1018         }
1019
1020         /* setup h/w VLAN tagging */
1021         if ((m0->m_flags & (M_PROTO1 | M_PKTHDR)) == (M_PROTO1 | M_PKTHDR) &&
1022             m0->m_pkthdr.rcvif != NULL &&
1023             m0->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1024                 struct ifvlan *ifv = m0->m_pkthdr.rcvif->if_softc;
1025
1026                 if (ifv != NULL)
1027                         vtag = NFE_TX_VTAG | htons(ifv->ifv_tag);
1028         }
1029
1030 #ifdef NFE_CSUM
1031         if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1032                 flags |= NFE_TX_IP_CSUM;
1033         if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
1034                 flags |= NFE_TX_TCP_CSUM;
1035 #endif
1036
1037         /*
1038          * XXX urm. somebody is unaware of how hardware works.  You 
1039          * absolutely CANNOT set NFE_TX_VALID on the next descriptor in
1040          * the ring until the entire chain is actually *VALID*.  Otherwise
1041          * the hardware may encounter a partially initialized chain that
1042          * is marked as being ready to go when it in fact is not ready to
1043          * go.
1044          */
1045
1046         for (i = 0; i < ctx.nsegs; i++) {
1047                 j = (ring->cur + i) % NFE_TX_RING_COUNT;
1048                 data = &ring->data[j];
1049
1050                 if (sc->sc_flags & NFE_40BIT_ADDR) {
1051                         desc64 = &ring->desc64[j];
1052 #if defined(__LP64__)
1053                         desc64->physaddr[0] =
1054                             htole32(segs[i].ds_addr >> 32);
1055 #endif
1056                         desc64->physaddr[1] =
1057                             htole32(segs[i].ds_addr & 0xffffffff);
1058                         desc64->length = htole16(segs[i].ds_len - 1);
1059                         desc64->vtag = htole32(vtag);
1060                         desc64->flags = htole16(flags);
1061                 } else {
1062                         desc32 = &ring->desc32[j];
1063                         desc32->physaddr = htole32(segs[i].ds_addr);
1064                         desc32->length = htole16(segs[i].ds_len - 1);
1065                         desc32->flags = htole16(flags);
1066                 }
1067
1068                 /* csum flags and vtag belong to the first fragment only */
1069                 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
1070                 vtag = 0;
1071
1072                 ring->queued++;
1073                 KKASSERT(ring->queued <= NFE_TX_RING_COUNT);
1074         }
1075
1076         /* the whole mbuf chain has been DMA mapped, fix last descriptor */
1077         if (sc->sc_flags & NFE_40BIT_ADDR) {
1078                 desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
1079         } else {
1080                 if (sc->sc_flags & NFE_JUMBO_SUP)
1081                         flags = NFE_TX_LASTFRAG_V2;
1082                 else
1083                         flags = NFE_TX_LASTFRAG_V1;
1084                 desc32->flags |= htole16(flags);
1085         }
1086
1087         /*
1088          * Set NFE_TX_VALID backwards so the hardware doesn't see the
1089          * whole mess until the first descriptor in the map is flagged.
1090          */
1091         for (i = ctx.nsegs - 1; i >= 0; --i) {
1092                 j = (ring->cur + i) % NFE_TX_RING_COUNT;
1093                 if (sc->sc_flags & NFE_40BIT_ADDR) {
1094                         desc64 = &ring->desc64[j];
1095                         desc64->flags |= htole16(NFE_TX_VALID);
1096                 } else {
1097                         desc32 = &ring->desc32[j];
1098                         desc32->flags |= htole16(NFE_TX_VALID);
1099                 }
1100         }
1101         ring->cur = (ring->cur + ctx.nsegs) % NFE_TX_RING_COUNT;
1102
1103         /* Exchange DMA map */
1104         data_map->map = data->map;
1105         data->map = map;
1106         data->m = m0;
1107
1108         bus_dmamap_sync(ring->data_tag, map, BUS_DMASYNC_PREWRITE);
1109 back:
1110         if (error)
1111                 m_freem(m0);
1112         return error;
1113 }
1114
1115 static void
1116 nfe_start(struct ifnet *ifp)
1117 {
1118         struct nfe_softc *sc = ifp->if_softc;
1119         struct nfe_tx_ring *ring = &sc->txq;
1120         int count = 0;
1121         struct mbuf *m0;
1122
1123         if (ifp->if_flags & IFF_OACTIVE)
1124                 return;
1125
1126         if (ifq_is_empty(&ifp->if_snd))
1127                 return;
1128
1129         for (;;) {
1130                 m0 = ifq_dequeue(&ifp->if_snd, NULL);
1131                 if (m0 == NULL)
1132                         break;
1133
1134                 BPF_MTAP(ifp, m0);
1135
1136                 if (nfe_encap(sc, ring, m0) != 0) {
1137                         ifp->if_flags |= IFF_OACTIVE;
1138                         break;
1139                 }
1140                 ++count;
1141
1142                 /*
1143                  * NOTE:
1144                  * `m0' may be freed in nfe_encap(), so
1145                  * it should not be touched any more.
1146                  */
1147         }
1148         if (count == 0) /* nothing sent */
1149                 return;
1150
1151         /* Sync TX descriptor ring */
1152         bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1153
1154         /* Kick Tx */
1155         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1156
1157         /*
1158          * Set a timeout in case the chip goes out to lunch.
1159          */
1160         ifp->if_timer = 5;
1161 }
1162
1163 static void
1164 nfe_watchdog(struct ifnet *ifp)
1165 {
1166         struct nfe_softc *sc = ifp->if_softc;
1167
1168         if (ifp->if_flags & IFF_RUNNING) {
1169                 if_printf(ifp, "watchdog timeout - lost interrupt recovered\n");
1170                 nfe_txeof(sc);
1171                 return;
1172         }
1173
1174         if_printf(ifp, "watchdog timeout\n");
1175
1176         nfe_init(ifp->if_softc);
1177
1178         ifp->if_oerrors++;
1179
1180         if (!ifq_is_empty(&ifp->if_snd))
1181                 ifp->if_start(ifp);
1182 }
1183
1184 static void
1185 nfe_init(void *xsc)
1186 {
1187         struct nfe_softc *sc = xsc;
1188         struct ifnet *ifp = &sc->arpcom.ac_if;
1189         uint32_t tmp;
1190         int error;
1191
1192         nfe_stop(sc);
1193
1194         error = nfe_init_tx_ring(sc, &sc->txq);
1195         if (error) {
1196                 nfe_stop(sc);
1197                 return;
1198         }
1199
1200         error = nfe_init_rx_ring(sc, &sc->rxq);
1201         if (error) {
1202                 nfe_stop(sc);
1203                 return;
1204         }
1205
1206         NFE_WRITE(sc, NFE_TX_UNK, 0);
1207         NFE_WRITE(sc, NFE_STATUS, 0);
1208
1209         sc->rxtxctl = NFE_RXTX_BIT2;
1210         if (sc->sc_flags & NFE_40BIT_ADDR)
1211                 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1212         else if (sc->sc_flags & NFE_JUMBO_SUP)
1213                 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1214 #ifdef NFE_CSUM
1215         if (sc->sc_flags & NFE_HW_CSUM)
1216                 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1217 #endif
1218
1219         /*
1220          * Although the adapter is capable of stripping VLAN tags from received
1221          * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1222          * purpose.  This will be done in software by our network stack.
1223          */
1224         if (sc->sc_flags & NFE_HW_VLAN)
1225                 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1226
1227         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1228         DELAY(10);
1229         NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1230
1231         if (sc->sc_flags & NFE_HW_VLAN)
1232                 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1233
1234         NFE_WRITE(sc, NFE_SETUP_R6, 0);
1235
1236         /* set MAC address */
1237         nfe_set_macaddr(sc, sc->arpcom.ac_enaddr);
1238
1239         /* tell MAC where rings are in memory */
1240 #ifdef __LP64__
1241         NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1242 #endif
1243         NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1244 #ifdef __LP64__
1245         NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1246 #endif
1247         NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1248
1249         NFE_WRITE(sc, NFE_RING_SIZE,
1250             (NFE_RX_RING_COUNT - 1) << 16 |
1251             (NFE_TX_RING_COUNT - 1));
1252
1253         NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1254
1255         /* force MAC to wakeup */
1256         tmp = NFE_READ(sc, NFE_PWR_STATE);
1257         NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1258         DELAY(10);
1259         tmp = NFE_READ(sc, NFE_PWR_STATE);
1260         NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1261
1262 #if 1
1263         /* configure interrupts coalescing/mitigation */
1264         NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1265 #else
1266         /* no interrupt mitigation: one interrupt per packet */
1267         NFE_WRITE(sc, NFE_IMTIMER, 970);
1268 #endif
1269
1270         NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1271         NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1272         NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1273
1274         /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1275         NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1276
1277         NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1278         NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1279
1280         sc->rxtxctl &= ~NFE_RXTX_BIT2;
1281         NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1282         DELAY(10);
1283         NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1284
1285         /* set Rx filter */
1286         nfe_setmulti(sc);
1287
1288         nfe_ifmedia_upd(ifp);
1289
1290         /* enable Rx */
1291         NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1292
1293         /* enable Tx */
1294         NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1295
1296         NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1297
1298 #ifdef DEVICE_POLLING
1299         if ((ifp->if_flags & IFF_POLLING) == 0)
1300 #endif
1301         /* enable interrupts */
1302         NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1303
1304         callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1305
1306         ifp->if_flags |= IFF_RUNNING;
1307         ifp->if_flags &= ~IFF_OACTIVE;
1308 }
1309
1310 static void
1311 nfe_stop(struct nfe_softc *sc)
1312 {
1313         struct ifnet *ifp = &sc->arpcom.ac_if;
1314
1315         callout_stop(&sc->sc_tick_ch);
1316
1317         ifp->if_timer = 0;
1318         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1319
1320         /* Abort Tx */
1321         NFE_WRITE(sc, NFE_TX_CTL, 0);
1322
1323         /* Disable Rx */
1324         NFE_WRITE(sc, NFE_RX_CTL, 0);
1325
1326         /* Disable interrupts */
1327         NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1328
1329         /* Reset Tx and Rx rings */
1330         nfe_reset_tx_ring(sc, &sc->txq);
1331         nfe_reset_rx_ring(sc, &sc->rxq);
1332 }
1333
1334 static int
1335 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1336 {
1337         int i, j, error, descsize;
1338         void **desc;
1339
1340         if (sc->sc_flags & NFE_40BIT_ADDR) {
1341                 desc = (void **)&ring->desc64;
1342                 descsize = sizeof(struct nfe_desc64);
1343         } else {
1344                 desc = (void **)&ring->desc32;
1345                 descsize = sizeof(struct nfe_desc32);
1346         }
1347
1348         ring->bufsz = MCLBYTES;
1349         ring->cur = ring->next = 0;
1350
1351         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1352                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1353                                    NULL, NULL,
1354                                    NFE_RX_RING_COUNT * descsize, 1,
1355                                    NFE_RX_RING_COUNT * descsize,
1356                                    0, &ring->tag);
1357         if (error) {
1358                 if_printf(&sc->arpcom.ac_if,
1359                           "could not create desc RX DMA tag\n");
1360                 return error;
1361         }
1362
1363         error = bus_dmamem_alloc(ring->tag, desc, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1364                                  &ring->map);
1365         if (error) {
1366                 if_printf(&sc->arpcom.ac_if,
1367                           "could not allocate RX desc DMA memory\n");
1368                 bus_dma_tag_destroy(ring->tag);
1369                 ring->tag = NULL;
1370                 return error;
1371         }
1372
1373         error = bus_dmamap_load(ring->tag, ring->map, *desc,
1374                                 NFE_RX_RING_COUNT * descsize,
1375                                 nfe_ring_dma_addr, &ring->physaddr,
1376                                 BUS_DMA_WAITOK);
1377         if (error) {
1378                 if_printf(&sc->arpcom.ac_if,
1379                           "could not load RX desc DMA map\n");
1380                 bus_dmamem_free(ring->tag, *desc, ring->map);
1381                 bus_dma_tag_destroy(ring->tag);
1382                 ring->tag = NULL;
1383                 return error;
1384         }
1385
1386         if (sc->sc_flags & NFE_USE_JUMBO) {
1387                 ring->bufsz = NFE_JBYTES;
1388
1389                 error = nfe_jpool_alloc(sc, ring);
1390                 if (error) {
1391                         if_printf(&sc->arpcom.ac_if,
1392                                   "could not allocate jumbo frames\n");
1393                         return error;
1394                 }
1395         }
1396
1397         error = bus_dma_tag_create(NULL, 1, 0,
1398                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1399                                    NULL, NULL,
1400                                    MCLBYTES, 1, MCLBYTES,
1401                                    0, &ring->data_tag);
1402         if (error) {
1403                 if_printf(&sc->arpcom.ac_if,
1404                           "could not create RX mbuf DMA tag\n");
1405                 return error;
1406         }
1407
1408         /* Create a spare RX mbuf DMA map */
1409         error = bus_dmamap_create(ring->data_tag, 0, &ring->data_tmpmap);
1410         if (error) {
1411                 if_printf(&sc->arpcom.ac_if,
1412                           "could not create spare RX mbuf DMA map\n");
1413                 bus_dma_tag_destroy(ring->data_tag);
1414                 ring->data_tag = NULL;
1415                 return error;
1416         }
1417
1418         for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1419                 error = bus_dmamap_create(ring->data_tag, 0,
1420                                           &ring->data[i].map);
1421                 if (error) {
1422                         if_printf(&sc->arpcom.ac_if,
1423                                   "could not create %dth RX mbuf DMA mapn", i);
1424                         goto fail;
1425                 }
1426         }
1427         return 0;
1428 fail:
1429         for (j = 0; j < i; ++j)
1430                 bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1431         bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1432         bus_dma_tag_destroy(ring->data_tag);
1433         ring->data_tag = NULL;
1434         return error;
1435 }
1436
1437 static void
1438 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1439 {
1440         int i;
1441
1442         for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1443                 struct nfe_rx_data *data = &ring->data[i];
1444
1445                 if (data->m != NULL) {
1446                         bus_dmamap_unload(ring->data_tag, data->map);
1447                         m_freem(data->m);
1448                         data->m = NULL;
1449                 }
1450         }
1451         bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1452
1453         ring->cur = ring->next = 0;
1454 }
1455
1456 static int
1457 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1458 {
1459         int i;
1460
1461         for (i = 0; i < NFE_RX_RING_COUNT; ++i) {
1462                 int error;
1463
1464                 /* XXX should use a function pointer */
1465                 if (sc->sc_flags & NFE_USE_JUMBO)
1466                         error = nfe_newbuf_jumbo(sc, ring, i, 1);
1467                 else
1468                         error = nfe_newbuf_std(sc, ring, i, 1);
1469                 if (error) {
1470                         if_printf(&sc->arpcom.ac_if,
1471                                   "could not allocate RX buffer\n");
1472                         return error;
1473                 }
1474
1475                 nfe_set_ready_rxdesc(sc, ring, i);
1476         }
1477         bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1478
1479         return 0;
1480 }
1481
1482 static void
1483 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1484 {
1485         if (ring->data_tag != NULL) {
1486                 struct nfe_rx_data *data;
1487                 int i;
1488
1489                 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1490                         data = &ring->data[i];
1491
1492                         if (data->m != NULL) {
1493                                 bus_dmamap_unload(ring->data_tag, data->map);
1494                                 m_freem(data->m);
1495                         }
1496                         bus_dmamap_destroy(ring->data_tag, data->map);
1497                 }
1498                 bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1499                 bus_dma_tag_destroy(ring->data_tag);
1500         }
1501
1502         nfe_jpool_free(sc, ring);
1503
1504         if (ring->tag != NULL) {
1505                 void *desc;
1506
1507                 if (sc->sc_flags & NFE_40BIT_ADDR)
1508                         desc = ring->desc64;
1509                 else
1510                         desc = ring->desc32;
1511
1512                 bus_dmamap_unload(ring->tag, ring->map);
1513                 bus_dmamem_free(ring->tag, desc, ring->map);
1514                 bus_dma_tag_destroy(ring->tag);
1515         }
1516 }
1517
1518 static struct nfe_jbuf *
1519 nfe_jalloc(struct nfe_softc *sc)
1520 {
1521         struct ifnet *ifp = &sc->arpcom.ac_if;
1522         struct nfe_jbuf *jbuf;
1523
1524         lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1525
1526         jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1527         if (jbuf != NULL) {
1528                 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1529                 jbuf->inuse = 1;
1530         } else {
1531                 if_printf(ifp, "no free jumbo buffer\n");
1532         }
1533
1534         lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1535
1536         return jbuf;
1537 }
1538
1539 static void
1540 nfe_jfree(void *arg)
1541 {
1542         struct nfe_jbuf *jbuf = arg;
1543         struct nfe_softc *sc = jbuf->sc;
1544         struct nfe_rx_ring *ring = jbuf->ring;
1545
1546         if (&ring->jbuf[jbuf->slot] != jbuf)
1547                 panic("%s: free wrong jumbo buffer\n", __func__);
1548         else if (jbuf->inuse == 0)
1549                 panic("%s: jumbo buffer already freed\n", __func__);
1550
1551         lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1552         atomic_subtract_int(&jbuf->inuse, 1);
1553         if (jbuf->inuse == 0)
1554                 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1555         lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1556 }
1557
1558 static void
1559 nfe_jref(void *arg)
1560 {
1561         struct nfe_jbuf *jbuf = arg;
1562         struct nfe_rx_ring *ring = jbuf->ring;
1563
1564         if (&ring->jbuf[jbuf->slot] != jbuf)
1565                 panic("%s: ref wrong jumbo buffer\n", __func__);
1566         else if (jbuf->inuse == 0)
1567                 panic("%s: jumbo buffer already freed\n", __func__);
1568
1569         atomic_add_int(&jbuf->inuse, 1);
1570 }
1571
1572 static int
1573 nfe_jpool_alloc(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1574 {
1575         struct nfe_jbuf *jbuf;
1576         bus_addr_t physaddr;
1577         caddr_t buf;
1578         int i, error;
1579
1580         /*
1581          * Allocate a big chunk of DMA'able memory.
1582          */
1583         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1584                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1585                                    NULL, NULL,
1586                                    NFE_JPOOL_SIZE, 1, NFE_JPOOL_SIZE,
1587                                    0, &ring->jtag);
1588         if (error) {
1589                 if_printf(&sc->arpcom.ac_if,
1590                           "could not create jumbo DMA tag\n");
1591                 return error;
1592         }
1593
1594         error = bus_dmamem_alloc(ring->jtag, (void **)&ring->jpool,
1595                                  BUS_DMA_WAITOK, &ring->jmap);
1596         if (error) {
1597                 if_printf(&sc->arpcom.ac_if,
1598                           "could not allocate jumbo DMA memory\n");
1599                 bus_dma_tag_destroy(ring->jtag);
1600                 ring->jtag = NULL;
1601                 return error;
1602         }
1603
1604         error = bus_dmamap_load(ring->jtag, ring->jmap, ring->jpool,
1605                                 NFE_JPOOL_SIZE, nfe_ring_dma_addr, &physaddr,
1606                                 BUS_DMA_WAITOK);
1607         if (error) {
1608                 if_printf(&sc->arpcom.ac_if,
1609                           "could not load jumbo DMA map\n");
1610                 bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1611                 bus_dma_tag_destroy(ring->jtag);
1612                 ring->jtag = NULL;
1613                 return error;
1614         }
1615
1616         /* ..and split it into 9KB chunks */
1617         SLIST_INIT(&ring->jfreelist);
1618
1619         buf = ring->jpool;
1620         for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1621                 jbuf = &ring->jbuf[i];
1622
1623                 jbuf->sc = sc;
1624                 jbuf->ring = ring;
1625                 jbuf->inuse = 0;
1626                 jbuf->slot = i;
1627                 jbuf->buf = buf;
1628                 jbuf->physaddr = physaddr;
1629
1630                 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1631
1632                 buf += NFE_JBYTES;
1633                 physaddr += NFE_JBYTES;
1634         }
1635
1636         return 0;
1637 }
1638
1639 static void
1640 nfe_jpool_free(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1641 {
1642         if (ring->jtag != NULL) {
1643                 bus_dmamap_unload(ring->jtag, ring->jmap);
1644                 bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1645                 bus_dma_tag_destroy(ring->jtag);
1646         }
1647 }
1648
1649 static int
1650 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1651 {
1652         int i, j, error, descsize;
1653         void **desc;
1654
1655         if (sc->sc_flags & NFE_40BIT_ADDR) {
1656                 desc = (void **)&ring->desc64;
1657                 descsize = sizeof(struct nfe_desc64);
1658         } else {
1659                 desc = (void **)&ring->desc32;
1660                 descsize = sizeof(struct nfe_desc32);
1661         }
1662
1663         ring->queued = 0;
1664         ring->cur = ring->next = 0;
1665
1666         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1667                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1668                                    NULL, NULL,
1669                                    NFE_TX_RING_COUNT * descsize, 1,
1670                                    NFE_TX_RING_COUNT * descsize,
1671                                    0, &ring->tag);
1672         if (error) {
1673                 if_printf(&sc->arpcom.ac_if,
1674                           "could not create TX desc DMA map\n");
1675                 return error;
1676         }
1677
1678         error = bus_dmamem_alloc(ring->tag, desc, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1679                                  &ring->map);
1680         if (error) {
1681                 if_printf(&sc->arpcom.ac_if,
1682                           "could not allocate TX desc DMA memory\n");
1683                 bus_dma_tag_destroy(ring->tag);
1684                 ring->tag = NULL;
1685                 return error;
1686         }
1687
1688         error = bus_dmamap_load(ring->tag, ring->map, *desc,
1689                                 NFE_TX_RING_COUNT * descsize,
1690                                 nfe_ring_dma_addr, &ring->physaddr,
1691                                 BUS_DMA_WAITOK);
1692         if (error) {
1693                 if_printf(&sc->arpcom.ac_if,
1694                           "could not load TX desc DMA map\n");
1695                 bus_dmamem_free(ring->tag, *desc, ring->map);
1696                 bus_dma_tag_destroy(ring->tag);
1697                 ring->tag = NULL;
1698                 return error;
1699         }
1700
1701         error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1702                                    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1703                                    NULL, NULL,
1704                                    NFE_JBYTES * NFE_MAX_SCATTER,
1705                                    NFE_MAX_SCATTER, NFE_JBYTES,
1706                                    0, &ring->data_tag);
1707         if (error) {
1708                 if_printf(&sc->arpcom.ac_if,
1709                           "could not create TX buf DMA tag\n");
1710                 return error;
1711         }
1712
1713         for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1714                 error = bus_dmamap_create(ring->data_tag, 0,
1715                                           &ring->data[i].map);
1716                 if (error) {
1717                         if_printf(&sc->arpcom.ac_if,
1718                                   "could not create %dth TX buf DMA map\n", i);
1719                         goto fail;
1720                 }
1721         }
1722
1723         return 0;
1724 fail:
1725         for (j = 0; j < i; ++j)
1726                 bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1727         bus_dma_tag_destroy(ring->data_tag);
1728         ring->data_tag = NULL;
1729         return error;
1730 }
1731
1732 static void
1733 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1734 {
1735         int i;
1736
1737         for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1738                 struct nfe_tx_data *data = &ring->data[i];
1739
1740                 if (sc->sc_flags & NFE_40BIT_ADDR)
1741                         ring->desc64[i].flags = 0;
1742                 else
1743                         ring->desc32[i].flags = 0;
1744
1745                 if (data->m != NULL) {
1746                         bus_dmamap_sync(ring->data_tag, data->map,
1747                                         BUS_DMASYNC_POSTWRITE);
1748                         bus_dmamap_unload(ring->data_tag, data->map);
1749                         m_freem(data->m);
1750                         data->m = NULL;
1751                 }
1752         }
1753         bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1754
1755         ring->queued = 0;
1756         ring->cur = ring->next = 0;
1757 }
1758
1759 static int
1760 nfe_init_tx_ring(struct nfe_softc *sc __unused,
1761                  struct nfe_tx_ring *ring __unused)
1762 {
1763         return 0;
1764 }
1765
1766 static void
1767 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1768 {
1769         if (ring->data_tag != NULL) {
1770                 struct nfe_tx_data *data;
1771                 int i;
1772
1773                 for (i = 0; i < NFE_TX_RING_COUNT; ++i) {
1774                         data = &ring->data[i];
1775
1776                         if (data->m != NULL) {
1777                                 bus_dmamap_unload(ring->data_tag, data->map);
1778                                 m_freem(data->m);
1779                         }
1780                         bus_dmamap_destroy(ring->data_tag, data->map);
1781                 }
1782
1783                 bus_dma_tag_destroy(ring->data_tag);
1784         }
1785
1786         if (ring->tag != NULL) {
1787                 void *desc;
1788
1789                 if (sc->sc_flags & NFE_40BIT_ADDR)
1790                         desc = ring->desc64;
1791                 else
1792                         desc = ring->desc32;
1793
1794                 bus_dmamap_unload(ring->tag, ring->map);
1795                 bus_dmamem_free(ring->tag, desc, ring->map);
1796                 bus_dma_tag_destroy(ring->tag);
1797         }
1798 }
1799
1800 static int
1801 nfe_ifmedia_upd(struct ifnet *ifp)
1802 {
1803         struct nfe_softc *sc = ifp->if_softc;
1804         struct mii_data *mii = device_get_softc(sc->sc_miibus);
1805
1806         if (mii->mii_instance != 0) {
1807                 struct mii_softc *miisc;
1808
1809                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1810                         mii_phy_reset(miisc);
1811         }
1812         mii_mediachg(mii);
1813
1814         return 0;
1815 }
1816
1817 static void
1818 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1819 {
1820         struct nfe_softc *sc = ifp->if_softc;
1821         struct mii_data *mii = device_get_softc(sc->sc_miibus);
1822
1823         mii_pollstat(mii);
1824         ifmr->ifm_status = mii->mii_media_status;
1825         ifmr->ifm_active = mii->mii_media_active;
1826 }
1827
1828 static void
1829 nfe_setmulti(struct nfe_softc *sc)
1830 {
1831         struct ifnet *ifp = &sc->arpcom.ac_if;
1832         struct ifmultiaddr *ifma;
1833         uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1834         uint32_t filter = NFE_RXFILTER_MAGIC;
1835         int i;
1836
1837         if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1838                 bzero(addr, ETHER_ADDR_LEN);
1839                 bzero(mask, ETHER_ADDR_LEN);
1840                 goto done;
1841         }
1842
1843         bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1844         bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1845
1846         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1847                 caddr_t maddr;
1848
1849                 if (ifma->ifma_addr->sa_family != AF_LINK)
1850                         continue;
1851
1852                 maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1853                 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1854                         addr[i] &= maddr[i];
1855                         mask[i] &= ~maddr[i];
1856                 }
1857         }
1858
1859         for (i = 0; i < ETHER_ADDR_LEN; i++)
1860                 mask[i] |= addr[i];
1861
1862 done:
1863         addr[0] |= 0x01;        /* make sure multicast bit is set */
1864
1865         NFE_WRITE(sc, NFE_MULTIADDR_HI,
1866             addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1867         NFE_WRITE(sc, NFE_MULTIADDR_LO,
1868             addr[5] <<  8 | addr[4]);
1869         NFE_WRITE(sc, NFE_MULTIMASK_HI,
1870             mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1871         NFE_WRITE(sc, NFE_MULTIMASK_LO,
1872             mask[5] <<  8 | mask[4]);
1873
1874         filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1875         NFE_WRITE(sc, NFE_RXFILTER, filter);
1876 }
1877
1878 static void
1879 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1880 {
1881         uint32_t tmp;
1882
1883         tmp = NFE_READ(sc, NFE_MACADDR_LO);
1884         addr[0] = (tmp >> 8) & 0xff;
1885         addr[1] = (tmp & 0xff);
1886
1887         tmp = NFE_READ(sc, NFE_MACADDR_HI);
1888         addr[2] = (tmp >> 24) & 0xff;
1889         addr[3] = (tmp >> 16) & 0xff;
1890         addr[4] = (tmp >>  8) & 0xff;
1891         addr[5] = (tmp & 0xff);
1892 }
1893
1894 static void
1895 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1896 {
1897         NFE_WRITE(sc, NFE_MACADDR_LO,
1898             addr[5] <<  8 | addr[4]);
1899         NFE_WRITE(sc, NFE_MACADDR_HI,
1900             addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1901 }
1902
1903 static void
1904 nfe_tick(void *arg)
1905 {
1906         struct nfe_softc *sc = arg;
1907         struct ifnet *ifp = &sc->arpcom.ac_if;
1908         struct mii_data *mii = device_get_softc(sc->sc_miibus);
1909
1910         lwkt_serialize_enter(ifp->if_serializer);
1911
1912         mii_tick(mii);
1913         callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1914
1915         lwkt_serialize_exit(ifp->if_serializer);
1916 }
1917
1918 static void
1919 nfe_ring_dma_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1920 {
1921         if (error)
1922                 return;
1923
1924         KASSERT(nseg == 1, ("too many segments, should be 1\n"));
1925
1926         *((uint32_t *)arg) = seg->ds_addr;
1927 }
1928
1929 static void
1930 nfe_buf_dma_addr(void *arg, bus_dma_segment_t *segs, int nsegs,
1931                  bus_size_t mapsz __unused, int error)
1932 {
1933         struct nfe_dma_ctx *ctx = arg;
1934         int i;
1935
1936         if (error)
1937                 return;
1938
1939         KASSERT(nsegs <= ctx->nsegs,
1940                 ("too many segments(%d), should be <= %d\n",
1941                  nsegs, ctx->nsegs));
1942
1943         ctx->nsegs = nsegs;
1944         for (i = 0; i < nsegs; ++i)
1945                 ctx->segs[i] = segs[i];
1946 }
1947
1948 static int
1949 nfe_newbuf_std(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
1950                int wait)
1951 {
1952         struct nfe_rx_data *data = &ring->data[idx];
1953         struct nfe_dma_ctx ctx;
1954         bus_dma_segment_t seg;
1955         bus_dmamap_t map;
1956         struct mbuf *m;
1957         int error;
1958
1959         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1960         if (m == NULL)
1961                 return ENOBUFS;
1962         m->m_len = m->m_pkthdr.len = MCLBYTES;
1963
1964         ctx.nsegs = 1;
1965         ctx.segs = &seg;
1966         error = bus_dmamap_load_mbuf(ring->data_tag, ring->data_tmpmap,
1967                                      m, nfe_buf_dma_addr, &ctx,
1968                                      wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
1969         if (error) {
1970                 m_freem(m);
1971                 if_printf(&sc->arpcom.ac_if, "could map RX mbuf %d\n", error);
1972                 return error;
1973         }
1974
1975         /* Unload originally mapped mbuf */
1976         bus_dmamap_unload(ring->data_tag, data->map);
1977
1978         /* Swap this DMA map with tmp DMA map */
1979         map = data->map;
1980         data->map = ring->data_tmpmap;
1981         ring->data_tmpmap = map;
1982
1983         /* Caller is assumed to have collected the old mbuf */
1984         data->m = m;
1985
1986         nfe_set_paddr_rxdesc(sc, ring, idx, seg.ds_addr);
1987
1988         bus_dmamap_sync(ring->data_tag, data->map, BUS_DMASYNC_PREREAD);
1989         return 0;
1990 }
1991
1992 static int
1993 nfe_newbuf_jumbo(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
1994                  int wait)
1995 {
1996         struct nfe_rx_data *data = &ring->data[idx];
1997         struct nfe_jbuf *jbuf;
1998         struct mbuf *m;
1999
2000         MGETHDR(m, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2001         if (m == NULL)
2002                 return ENOBUFS;
2003
2004         jbuf = nfe_jalloc(sc);
2005         if (jbuf == NULL) {
2006                 m_freem(m);
2007                 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
2008                     "-- packet dropped!\n");
2009                 return ENOBUFS;
2010         }
2011
2012         m->m_ext.ext_arg = jbuf;
2013         m->m_ext.ext_buf = jbuf->buf;
2014         m->m_ext.ext_free = nfe_jfree;
2015         m->m_ext.ext_ref = nfe_jref;
2016         m->m_ext.ext_size = NFE_JBYTES;
2017
2018         m->m_data = m->m_ext.ext_buf;
2019         m->m_flags |= M_EXT;
2020         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2021
2022         /* Caller is assumed to have collected the old mbuf */
2023         data->m = m;
2024
2025         nfe_set_paddr_rxdesc(sc, ring, idx, jbuf->physaddr);
2026
2027         bus_dmamap_sync(ring->jtag, ring->jmap, BUS_DMASYNC_PREREAD);
2028         return 0;
2029 }
2030
2031 static void
2032 nfe_set_paddr_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2033                      bus_addr_t physaddr)
2034 {
2035         if (sc->sc_flags & NFE_40BIT_ADDR) {
2036                 struct nfe_desc64 *desc64 = &ring->desc64[idx];
2037
2038 #if defined(__LP64__)
2039                 desc64->physaddr[0] = htole32(physaddr >> 32);
2040 #endif
2041                 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
2042         } else {
2043                 struct nfe_desc32 *desc32 = &ring->desc32[idx];
2044
2045                 desc32->physaddr = htole32(physaddr);
2046         }
2047 }
2048
2049 static void
2050 nfe_set_ready_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx)
2051 {
2052         if (sc->sc_flags & NFE_40BIT_ADDR) {
2053                 struct nfe_desc64 *desc64 = &ring->desc64[idx];
2054
2055                 desc64->length = htole16(ring->bufsz);
2056                 desc64->flags = htole16(NFE_RX_READY);
2057         } else {
2058                 struct nfe_desc32 *desc32 = &ring->desc32[idx];
2059
2060                 desc32->length = htole16(ring->bufsz);
2061                 desc32->flags = htole16(NFE_RX_READY);
2062         }
2063 }