Merge branch 'devel'
[dragonfly.git] / sys / kern / kern_slaballoc.c
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C     - Kernel SLAB memory allocator
5  * 
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  * 
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  * 
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  * 
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *      Alloc Size      Chunking        Number of zones
68  *      0-127           8               16
69  *      128-255         16              8
70  *      256-511         32              8
71  *      512-1023        64              8
72  *      1024-2047       128             8
73  *      2048-4095       256             8
74  *      4096-8191       512             8
75  *      8192-16383      1024            8
76  *      16384-32767     2048            8
77  *      (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *      Allocations >= ZoneLimit go directly to kmem.
80  *
81  *                      API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91
92 #include "opt_vm.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115
116 #include <machine/cpu.h>
117
118 #include <sys/thread2.h>
119
120 #define btokup(z)       (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
121
122 #define MEMORY_STRING   "ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) +   \
124                         sizeof(int))
125
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY      KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
131 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
136 #ifdef SMP
137 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
139 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
140 #endif
141 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
142 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
143
144 #define logmemory(name, ptr, type, size, flags)                         \
145         KTR_LOG(memory_ ## name, ptr, type, size, flags)
146 #define logmemory_quick(name)                                           \
147         KTR_LOG(memory_ ## name)
148
149 /*
150  * Fixed globals (not per-cpu)
151  */
152 static int ZoneSize;
153 static int ZoneLimit;
154 static int ZonePageCount;
155 static uintptr_t ZoneMask;
156 static int ZoneBigAlloc;                /* in KB */
157 static int ZoneGenAlloc;                /* in KB */
158 struct malloc_type *kmemstatistics;     /* exported to vmstat */
159 static int32_t weirdary[16];
160
161 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
162 static void kmem_slab_free(void *ptr, vm_size_t bytes);
163
164 #if defined(INVARIANTS)
165 static void chunk_mark_allocated(SLZone *z, void *chunk);
166 static void chunk_mark_free(SLZone *z, void *chunk);
167 #else
168 #define chunk_mark_allocated(z, chunk)
169 #define chunk_mark_free(z, chunk)
170 #endif
171
172 /*
173  * Misc constants.  Note that allocations that are exact multiples of 
174  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
175  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
176  */
177 #define MIN_CHUNK_SIZE          8               /* in bytes */
178 #define MIN_CHUNK_MASK          (MIN_CHUNK_SIZE - 1)
179 #define ZONE_RELS_THRESH        32              /* threshold number of zones */
180 #define IN_SAME_PAGE_MASK       (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
181
182 /*
183  * The WEIRD_ADDR is used as known text to copy into free objects to
184  * try to create deterministic failure cases if the data is accessed after
185  * free.
186  */    
187 #define WEIRD_ADDR      0xdeadc0de
188 #define MAX_COPY        sizeof(weirdary)
189 #define ZERO_LENGTH_PTR ((void *)-8)
190
191 /*
192  * Misc global malloc buckets
193  */
194
195 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
196 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
197 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
198  
199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
201
202 /*
203  * Initialize the slab memory allocator.  We have to choose a zone size based
204  * on available physical memory.  We choose a zone side which is approximately
205  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
206  * 128K.  The zone size is limited to the bounds set in slaballoc.h
207  * (typically 32K min, 128K max). 
208  */
209 static void kmeminit(void *dummy);
210
211 char *ZeroPage;
212
213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
214
215 #ifdef INVARIANTS
216 /*
217  * If enabled any memory allocated without M_ZERO is initialized to -1.
218  */
219 static int  use_malloc_pattern;
220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
221     &use_malloc_pattern, 0,
222     "Initialize memory to -1 if M_ZERO not specified");
223 #endif
224
225 static int ZoneRelsThresh = ZONE_RELS_THRESH;
226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
228 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
229
230 /*
231  * Returns the kernel memory size limit for the purposes of initializing
232  * various subsystem caches.  The smaller of available memory and the KVM
233  * memory space is returned.
234  *
235  * The size in megabytes is returned.
236  */
237 size_t
238 kmem_lim_size(void)
239 {
240     size_t limsize;
241
242     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
243     if (limsize > KvaSize)
244         limsize = KvaSize;
245     return (limsize / (1024 * 1024));
246 }
247
248 static void
249 kmeminit(void *dummy)
250 {
251     size_t limsize;
252     int usesize;
253     int i;
254
255     limsize = kmem_lim_size();
256     usesize = (int)(limsize * 1024);    /* convert to KB */
257
258     /*
259      * If the machine has a large KVM space and more than 8G of ram,
260      * double the zone release threshold to reduce SMP invalidations.
261      * If more than 16G of ram, do it again.
262      *
263      * The BIOS eats a little ram so add some slop.  We want 8G worth of
264      * memory sticks to trigger the first adjustment.
265      */
266     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
267             if (limsize >= 7 * 1024)
268                     ZoneRelsThresh *= 2;
269             if (limsize >= 15 * 1024)
270                     ZoneRelsThresh *= 2;
271     }
272
273     /*
274      * Calculate the zone size.  This typically calculates to
275      * ZALLOC_MAX_ZONE_SIZE
276      */
277     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
278     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
279         ZoneSize <<= 1;
280     ZoneLimit = ZoneSize / 4;
281     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
282         ZoneLimit = ZALLOC_ZONE_LIMIT;
283     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
284     ZonePageCount = ZoneSize / PAGE_SIZE;
285
286     for (i = 0; i < NELEM(weirdary); ++i)
287         weirdary[i] = WEIRD_ADDR;
288
289     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
290
291     if (bootverbose)
292         kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
293 }
294
295 /*
296  * Initialize a malloc type tracking structure.
297  */
298 void
299 malloc_init(void *data)
300 {
301     struct malloc_type *type = data;
302     size_t limsize;
303
304     if (type->ks_magic != M_MAGIC)
305         panic("malloc type lacks magic");
306                                            
307     if (type->ks_limit != 0)
308         return;
309
310     if (vmstats.v_page_count == 0)
311         panic("malloc_init not allowed before vm init");
312
313     limsize = kmem_lim_size() * (1024 * 1024);
314     type->ks_limit = limsize / 10;
315
316     type->ks_next = kmemstatistics;
317     kmemstatistics = type;
318 }
319
320 void
321 malloc_uninit(void *data)
322 {
323     struct malloc_type *type = data;
324     struct malloc_type *t;
325 #ifdef INVARIANTS
326     int i;
327     long ttl;
328 #endif
329
330     if (type->ks_magic != M_MAGIC)
331         panic("malloc type lacks magic");
332
333     if (vmstats.v_page_count == 0)
334         panic("malloc_uninit not allowed before vm init");
335
336     if (type->ks_limit == 0)
337         panic("malloc_uninit on uninitialized type");
338
339 #ifdef SMP
340     /* Make sure that all pending kfree()s are finished. */
341     lwkt_synchronize_ipiqs("muninit");
342 #endif
343
344 #ifdef INVARIANTS
345     /*
346      * memuse is only correct in aggregation.  Due to memory being allocated
347      * on one cpu and freed on another individual array entries may be 
348      * negative or positive (canceling each other out).
349      */
350     for (i = ttl = 0; i < ncpus; ++i)
351         ttl += type->ks_memuse[i];
352     if (ttl) {
353         kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
354             ttl, type->ks_shortdesc, i);
355     }
356 #endif
357     if (type == kmemstatistics) {
358         kmemstatistics = type->ks_next;
359     } else {
360         for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
361             if (t->ks_next == type) {
362                 t->ks_next = type->ks_next;
363                 break;
364             }
365         }
366     }
367     type->ks_next = NULL;
368     type->ks_limit = 0;
369 }
370
371 /*
372  * Increase the kmalloc pool limit for the specified pool.  No changes
373  * are the made if the pool would shrink.
374  */
375 void
376 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
377 {
378     if (type->ks_limit == 0)
379         malloc_init(type);
380     if (bytes == 0)
381         bytes = KvaSize;
382     if (type->ks_limit < bytes)
383         type->ks_limit = bytes;
384 }
385
386 /*
387  * Dynamically create a malloc pool.  This function is a NOP if *typep is
388  * already non-NULL.
389  */
390 void
391 kmalloc_create(struct malloc_type **typep, const char *descr)
392 {
393         struct malloc_type *type;
394
395         if (*typep == NULL) {
396                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
397                 type->ks_magic = M_MAGIC;
398                 type->ks_shortdesc = descr;
399                 malloc_init(type);
400                 *typep = type;
401         }
402 }
403
404 /*
405  * Destroy a dynamically created malloc pool.  This function is a NOP if
406  * the pool has already been destroyed.
407  */
408 void
409 kmalloc_destroy(struct malloc_type **typep)
410 {
411         if (*typep != NULL) {
412                 malloc_uninit(*typep);
413                 kfree(*typep, M_TEMP);
414                 *typep = NULL;
415         }
416 }
417
418 /*
419  * Calculate the zone index for the allocation request size and set the
420  * allocation request size to that particular zone's chunk size.
421  */
422 static __inline int
423 zoneindex(unsigned long *bytes)
424 {
425     unsigned int n = (unsigned int)*bytes;      /* unsigned for shift opt */
426     if (n < 128) {
427         *bytes = n = (n + 7) & ~7;
428         return(n / 8 - 1);              /* 8 byte chunks, 16 zones */
429     }
430     if (n < 256) {
431         *bytes = n = (n + 15) & ~15;
432         return(n / 16 + 7);
433     }
434     if (n < 8192) {
435         if (n < 512) {
436             *bytes = n = (n + 31) & ~31;
437             return(n / 32 + 15);
438         }
439         if (n < 1024) {
440             *bytes = n = (n + 63) & ~63;
441             return(n / 64 + 23);
442         } 
443         if (n < 2048) {
444             *bytes = n = (n + 127) & ~127;
445             return(n / 128 + 31);
446         }
447         if (n < 4096) {
448             *bytes = n = (n + 255) & ~255;
449             return(n / 256 + 39);
450         }
451         *bytes = n = (n + 511) & ~511;
452         return(n / 512 + 47);
453     }
454 #if ZALLOC_ZONE_LIMIT > 8192
455     if (n < 16384) {
456         *bytes = n = (n + 1023) & ~1023;
457         return(n / 1024 + 55);
458     }
459 #endif
460 #if ZALLOC_ZONE_LIMIT > 16384
461     if (n < 32768) {
462         *bytes = n = (n + 2047) & ~2047;
463         return(n / 2048 + 63);
464     }
465 #endif
466     panic("Unexpected byte count %d", n);
467     return(0);
468 }
469
470 #ifdef SLAB_DEBUG
471 /*
472  * Used to debug memory corruption issues.  Record up to (typically 32)
473  * allocation sources for this zone (for a particular chunk size).
474  */
475
476 static void
477 slab_record_source(SLZone *z, const char *file, int line)
478 {
479     int i;
480     int b = line & (SLAB_DEBUG_ENTRIES - 1);
481
482     i = b;
483     do {
484         if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
485                 return;
486         if (z->z_Sources[i].file == NULL)
487                 break;
488         i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
489     } while (i != b);
490     z->z_Sources[i].file = file;
491     z->z_Sources[i].line = line;
492 }
493
494 #endif
495
496 /*
497  * kmalloc()    (SLAB ALLOCATOR)
498  *
499  *      Allocate memory via the slab allocator.  If the request is too large,
500  *      or if it page-aligned beyond a certain size, we fall back to the
501  *      KMEM subsystem.  A SLAB tracking descriptor must be specified, use
502  *      &SlabMisc if you don't care.
503  *
504  *      M_RNOWAIT       - don't block.
505  *      M_NULLOK        - return NULL instead of blocking.
506  *      M_ZERO          - zero the returned memory.
507  *      M_USE_RESERVE   - allow greater drawdown of the free list
508  *      M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
509  *
510  * MPSAFE
511  */
512
513 #ifdef SLAB_DEBUG
514 void *
515 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
516               const char *file, int line)
517 #else
518 void *
519 kmalloc(unsigned long size, struct malloc_type *type, int flags)
520 #endif
521 {
522     SLZone *z;
523     SLChunk *chunk;
524 #ifdef SMP
525     SLChunk *bchunk;
526 #endif
527     SLGlobalData *slgd;
528     struct globaldata *gd;
529     int zi;
530 #ifdef INVARIANTS
531     int i;
532 #endif
533
534     logmemory_quick(malloc_beg);
535     gd = mycpu;
536     slgd = &gd->gd_slab;
537
538     /*
539      * XXX silly to have this in the critical path.
540      */
541     if (type->ks_limit == 0) {
542         crit_enter();
543         if (type->ks_limit == 0)
544             malloc_init(type);
545         crit_exit();
546     }
547     ++type->ks_calls;
548
549     /*
550      * Handle the case where the limit is reached.  Panic if we can't return
551      * NULL.  The original malloc code looped, but this tended to
552      * simply deadlock the computer.
553      *
554      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
555      * to determine if a more complete limit check should be done.  The
556      * actual memory use is tracked via ks_memuse[cpu].
557      */
558     while (type->ks_loosememuse >= type->ks_limit) {
559         int i;
560         long ttl;
561
562         for (i = ttl = 0; i < ncpus; ++i)
563             ttl += type->ks_memuse[i];
564         type->ks_loosememuse = ttl;     /* not MP synchronized */
565         if ((ssize_t)ttl < 0)           /* deal with occassional race */
566                 ttl = 0;
567         if (ttl >= type->ks_limit) {
568             if (flags & M_NULLOK) {
569                 logmemory(malloc_end, NULL, type, size, flags);
570                 return(NULL);
571             }
572             panic("%s: malloc limit exceeded", type->ks_shortdesc);
573         }
574     }
575
576     /*
577      * Handle the degenerate size == 0 case.  Yes, this does happen.
578      * Return a special pointer.  This is to maintain compatibility with
579      * the original malloc implementation.  Certain devices, such as the
580      * adaptec driver, not only allocate 0 bytes, they check for NULL and
581      * also realloc() later on.  Joy.
582      */
583     if (size == 0) {
584         logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
585         return(ZERO_LENGTH_PTR);
586     }
587
588     /*
589      * Handle hysteresis from prior frees here in malloc().  We cannot
590      * safely manipulate the kernel_map in free() due to free() possibly
591      * being called via an IPI message or from sensitive interrupt code.
592      *
593      * NOTE: ku_pagecnt must be cleared before we free the slab or we
594      *       might race another cpu allocating the kva and setting
595      *       ku_pagecnt.
596      */
597     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
598         crit_enter();
599         if (slgd->NFreeZones > ZoneRelsThresh) {        /* crit sect race */
600             int *kup;
601
602             z = slgd->FreeZones;
603             slgd->FreeZones = z->z_Next;
604             --slgd->NFreeZones;
605             kup = btokup(z);
606             *kup = 0;
607             kmem_slab_free(z, ZoneSize);        /* may block */
608             atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
609         }
610         crit_exit();
611     }
612
613     /*
614      * XXX handle oversized frees that were queued from kfree().
615      */
616     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
617         crit_enter();
618         if ((z = slgd->FreeOvZones) != NULL) {
619             vm_size_t tsize;
620
621             KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
622             slgd->FreeOvZones = z->z_Next;
623             tsize = z->z_ChunkSize;
624             kmem_slab_free(z, tsize);   /* may block */
625             atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
626         }
627         crit_exit();
628     }
629
630     /*
631      * Handle large allocations directly.  There should not be very many of
632      * these so performance is not a big issue.
633      *
634      * The backend allocator is pretty nasty on a SMP system.   Use the
635      * slab allocator for one and two page-sized chunks even though we lose
636      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
637      */
638     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
639         int *kup;
640
641         size = round_page(size);
642         chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
643         if (chunk == NULL) {
644             logmemory(malloc_end, NULL, type, size, flags);
645             return(NULL);
646         }
647         atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
648         flags &= ~M_ZERO;       /* result already zero'd if M_ZERO was set */
649         flags |= M_PASSIVE_ZERO;
650         kup = btokup(chunk);
651         *kup = size / PAGE_SIZE;
652         crit_enter();
653         goto done;
654     }
655
656     /*
657      * Attempt to allocate out of an existing zone.  First try the free list,
658      * then allocate out of unallocated space.  If we find a good zone move
659      * it to the head of the list so later allocations find it quickly
660      * (we might have thousands of zones in the list).
661      *
662      * Note: zoneindex() will panic of size is too large.
663      */
664     zi = zoneindex(&size);
665     KKASSERT(zi < NZONES);
666     crit_enter();
667
668     if ((z = slgd->ZoneAry[zi]) != NULL) {
669         /*
670          * Locate a chunk - we have to have at least one.  If this is the
671          * last chunk go ahead and do the work to retrieve chunks freed
672          * from remote cpus, and if the zone is still empty move it off
673          * the ZoneAry.
674          */
675         if (--z->z_NFree <= 0) {
676             KKASSERT(z->z_NFree == 0);
677
678 #ifdef SMP
679             /*
680              * WARNING! This code competes with other cpus.  It is ok
681              * for us to not drain RChunks here but we might as well, and
682              * it is ok if more accumulate after we're done.
683              *
684              * Set RSignal before pulling rchunks off, indicating that we
685              * will be moving ourselves off of the ZoneAry.  Remote ends will
686              * read RSignal before putting rchunks on thus interlocking
687              * their IPI signaling.
688              */
689             if (z->z_RChunks == NULL)
690                 atomic_swap_int(&z->z_RSignal, 1);
691
692             while ((bchunk = z->z_RChunks) != NULL) {
693                 cpu_ccfence();
694                 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
695                     *z->z_LChunksp = bchunk;
696                     while (bchunk) {
697                         chunk_mark_free(z, bchunk);
698                         z->z_LChunksp = &bchunk->c_Next;
699                         bchunk = bchunk->c_Next;
700                         ++z->z_NFree;
701                     }
702                     break;
703                 }
704             }
705 #endif
706             /*
707              * Remove from the zone list if no free chunks remain.
708              * Clear RSignal
709              */
710             if (z->z_NFree == 0) {
711                 slgd->ZoneAry[zi] = z->z_Next;
712                 z->z_Next = NULL;
713             } else {
714                 z->z_RSignal = 0;
715             }
716         }
717
718         /*
719          * Fast path, we have chunks available in z_LChunks.
720          */
721         chunk = z->z_LChunks;
722         if (chunk) {
723                 chunk_mark_allocated(z, chunk);
724                 z->z_LChunks = chunk->c_Next;
725                 if (z->z_LChunks == NULL)
726                         z->z_LChunksp = &z->z_LChunks;
727 #ifdef SLAB_DEBUG
728                 slab_record_source(z, file, line);
729 #endif
730                 goto done;
731         }
732
733         /*
734          * No chunks are available in LChunks, the free chunk MUST be
735          * in the never-before-used memory area, controlled by UIndex.
736          *
737          * The consequences are very serious if our zone got corrupted so
738          * we use an explicit panic rather than a KASSERT.
739          */
740         if (z->z_UIndex + 1 != z->z_NMax)
741             ++z->z_UIndex;
742         else
743             z->z_UIndex = 0;
744
745         if (z->z_UIndex == z->z_UEndIndex)
746             panic("slaballoc: corrupted zone");
747
748         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
749         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
750             flags &= ~M_ZERO;
751             flags |= M_PASSIVE_ZERO;
752         }
753         chunk_mark_allocated(z, chunk);
754 #ifdef SLAB_DEBUG
755         slab_record_source(z, file, line);
756 #endif
757         goto done;
758     }
759
760     /*
761      * If all zones are exhausted we need to allocate a new zone for this
762      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
763      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
764      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
765      * we do not pre-zero it because we do not want to mess up the L1 cache.
766      *
767      * At least one subsystem, the tty code (see CROUND) expects power-of-2
768      * allocations to be power-of-2 aligned.  We maintain compatibility by
769      * adjusting the base offset below.
770      */
771     {
772         int off;
773         int *kup;
774
775         if ((z = slgd->FreeZones) != NULL) {
776             slgd->FreeZones = z->z_Next;
777             --slgd->NFreeZones;
778             bzero(z, sizeof(SLZone));
779             z->z_Flags |= SLZF_UNOTZEROD;
780         } else {
781             z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
782             if (z == NULL)
783                 goto fail;
784             atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
785         }
786
787         /*
788          * How big is the base structure?
789          */
790 #if defined(INVARIANTS)
791         /*
792          * Make room for z_Bitmap.  An exact calculation is somewhat more
793          * complicated so don't make an exact calculation.
794          */
795         off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
796         bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
797 #else
798         off = sizeof(SLZone);
799 #endif
800
801         /*
802          * Guarentee power-of-2 alignment for power-of-2-sized chunks.
803          * Otherwise just 8-byte align the data.
804          */
805         if ((size | (size - 1)) + 1 == (size << 1))
806             off = (off + size - 1) & ~(size - 1);
807         else
808             off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
809         z->z_Magic = ZALLOC_SLAB_MAGIC;
810         z->z_ZoneIndex = zi;
811         z->z_NMax = (ZoneSize - off) / size;
812         z->z_NFree = z->z_NMax - 1;
813         z->z_BasePtr = (char *)z + off;
814         z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
815         z->z_ChunkSize = size;
816         z->z_CpuGd = gd;
817         z->z_Cpu = gd->gd_cpuid;
818         z->z_LChunksp = &z->z_LChunks;
819 #ifdef SLAB_DEBUG
820         bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
821         bzero(z->z_Sources, sizeof(z->z_Sources));
822 #endif
823         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
824         z->z_Next = slgd->ZoneAry[zi];
825         slgd->ZoneAry[zi] = z;
826         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
827             flags &= ~M_ZERO;   /* already zero'd */
828             flags |= M_PASSIVE_ZERO;
829         }
830         kup = btokup(z);
831         *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
832         chunk_mark_allocated(z, chunk);
833 #ifdef SLAB_DEBUG
834         slab_record_source(z, file, line);
835 #endif
836
837         /*
838          * Slide the base index for initial allocations out of the next
839          * zone we create so we do not over-weight the lower part of the
840          * cpu memory caches.
841          */
842         slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
843                                 & (ZALLOC_MAX_ZONE_SIZE - 1);
844     }
845
846 done:
847     ++type->ks_inuse[gd->gd_cpuid];
848     type->ks_memuse[gd->gd_cpuid] += size;
849     type->ks_loosememuse += size;       /* not MP synchronized */
850     crit_exit();
851
852     if (flags & M_ZERO)
853         bzero(chunk, size);
854 #ifdef INVARIANTS
855     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
856         if (use_malloc_pattern) {
857             for (i = 0; i < size; i += sizeof(int)) {
858                 *(int *)((char *)chunk + i) = -1;
859             }
860         }
861         chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
862     }
863 #endif
864     logmemory(malloc_end, chunk, type, size, flags);
865     return(chunk);
866 fail:
867     crit_exit();
868     logmemory(malloc_end, NULL, type, size, flags);
869     return(NULL);
870 }
871
872 /*
873  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
874  *
875  * Generally speaking this routine is not called very often and we do
876  * not attempt to optimize it beyond reusing the same pointer if the
877  * new size fits within the chunking of the old pointer's zone.
878  */
879 #ifdef SLAB_DEBUG
880 void *
881 krealloc_debug(void *ptr, unsigned long size,
882                struct malloc_type *type, int flags,
883                const char *file, int line)
884 #else
885 void *
886 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
887 #endif
888 {
889     unsigned long osize;
890     SLZone *z;
891     void *nptr;
892     int *kup;
893
894     KKASSERT((flags & M_ZERO) == 0);    /* not supported */
895
896     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
897         return(kmalloc_debug(size, type, flags, file, line));
898     if (size == 0) {
899         kfree(ptr, type);
900         return(NULL);
901     }
902
903     /*
904      * Handle oversized allocations.  XXX we really should require that a
905      * size be passed to free() instead of this nonsense.
906      */
907     kup = btokup(ptr);
908     if (*kup > 0) {
909         osize = *kup << PAGE_SHIFT;
910         if (osize == round_page(size))
911             return(ptr);
912         if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
913             return(NULL);
914         bcopy(ptr, nptr, min(size, osize));
915         kfree(ptr, type);
916         return(nptr);
917     }
918
919     /*
920      * Get the original allocation's zone.  If the new request winds up
921      * using the same chunk size we do not have to do anything.
922      */
923     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
924     kup = btokup(z);
925     KKASSERT(*kup < 0);
926     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
927
928     /*
929      * Allocate memory for the new request size.  Note that zoneindex has
930      * already adjusted the request size to the appropriate chunk size, which
931      * should optimize our bcopy().  Then copy and return the new pointer.
932      *
933      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
934      * necessary align the result.
935      *
936      * We can only zoneindex (to align size to the chunk size) if the new
937      * size is not too large.
938      */
939     if (size < ZoneLimit) {
940         zoneindex(&size);
941         if (z->z_ChunkSize == size)
942             return(ptr);
943     }
944     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
945         return(NULL);
946     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
947     kfree(ptr, type);
948     return(nptr);
949 }
950
951 /*
952  * Return the kmalloc limit for this type, in bytes.
953  */
954 long
955 kmalloc_limit(struct malloc_type *type)
956 {
957     if (type->ks_limit == 0) {
958         crit_enter();
959         if (type->ks_limit == 0)
960             malloc_init(type);
961         crit_exit();
962     }
963     return(type->ks_limit);
964 }
965
966 /*
967  * Allocate a copy of the specified string.
968  *
969  * (MP SAFE) (MAY BLOCK)
970  */
971 #ifdef SLAB_DEBUG
972 char *
973 kstrdup_debug(const char *str, struct malloc_type *type,
974               const char *file, int line)
975 #else
976 char *
977 kstrdup(const char *str, struct malloc_type *type)
978 #endif
979 {
980     int zlen;   /* length inclusive of terminating NUL */
981     char *nstr;
982
983     if (str == NULL)
984         return(NULL);
985     zlen = strlen(str) + 1;
986     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
987     bcopy(str, nstr, zlen);
988     return(nstr);
989 }
990
991 #ifdef SMP
992 /*
993  * Notify our cpu that a remote cpu has freed some chunks in a zone that
994  * we own.  RCount will be bumped so the memory should be good, but validate
995  * that it really is.
996  */
997 static
998 void
999 kfree_remote(void *ptr)
1000 {
1001     SLGlobalData *slgd;
1002     SLChunk *bchunk;
1003     SLZone *z;
1004     int nfree;
1005     int *kup;
1006
1007     slgd = &mycpu->gd_slab;
1008     z = ptr;
1009     kup = btokup(z);
1010     KKASSERT(*kup == -((int)mycpuid + 1));
1011     KKASSERT(z->z_RCount > 0);
1012     atomic_subtract_int(&z->z_RCount, 1);
1013
1014     logmemory(free_rem_beg, z, NULL, 0, 0);
1015     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1016     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1017     nfree = z->z_NFree;
1018
1019     /*
1020      * Indicate that we will no longer be off of the ZoneAry by
1021      * clearing RSignal.
1022      */
1023     if (z->z_RChunks)
1024         z->z_RSignal = 0;
1025
1026     /*
1027      * Atomically extract the bchunks list and then process it back
1028      * into the lchunks list.  We want to append our bchunks to the
1029      * lchunks list and not prepend since we likely do not have
1030      * cache mastership of the related data (not that it helps since
1031      * we are using c_Next).
1032      */
1033     while ((bchunk = z->z_RChunks) != NULL) {
1034         cpu_ccfence();
1035         if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
1036             *z->z_LChunksp = bchunk;
1037             while (bchunk) {
1038                     chunk_mark_free(z, bchunk);
1039                     z->z_LChunksp = &bchunk->c_Next;
1040                     bchunk = bchunk->c_Next;
1041                     ++z->z_NFree;
1042             }
1043             break;
1044         }
1045     }
1046     if (z->z_NFree && nfree == 0) {
1047         z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1048         slgd->ZoneAry[z->z_ZoneIndex] = z;
1049     }
1050
1051     /*
1052      * If the zone becomes totally free, and there are other zones we
1053      * can allocate from, move this zone to the FreeZones list.  Since
1054      * this code can be called from an IPI callback, do *NOT* try to mess
1055      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1056      *
1057      * Do not move the zone if there is an IPI inflight, otherwise MP
1058      * races can result in our free_remote code accessing a destroyed
1059      * zone.
1060      */
1061     if (z->z_NFree == z->z_NMax &&
1062         (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1063         z->z_RCount == 0
1064     ) {
1065         SLZone **pz;
1066         int *kup;
1067
1068         for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
1069              z != *pz;
1070              pz = &(*pz)->z_Next) {
1071             ;
1072         }
1073         *pz = z->z_Next;
1074         z->z_Magic = -1;
1075         z->z_Next = slgd->FreeZones;
1076         slgd->FreeZones = z;
1077         ++slgd->NFreeZones;
1078         kup = btokup(z);
1079         *kup = 0;
1080     }
1081     logmemory(free_rem_end, z, bchunk, 0, 0);
1082 }
1083
1084 #endif
1085
1086 /*
1087  * free (SLAB ALLOCATOR)
1088  *
1089  * Free a memory block previously allocated by malloc.  Note that we do not
1090  * attempt to update ks_loosememuse as MP races could prevent us from
1091  * checking memory limits in malloc.
1092  *
1093  * MPSAFE
1094  */
1095 void
1096 kfree(void *ptr, struct malloc_type *type)
1097 {
1098     SLZone *z;
1099     SLChunk *chunk;
1100     SLGlobalData *slgd;
1101     struct globaldata *gd;
1102     int *kup;
1103     unsigned long size;
1104 #ifdef SMP
1105     SLChunk *bchunk;
1106     int rsignal;
1107 #endif
1108
1109     logmemory_quick(free_beg);
1110     gd = mycpu;
1111     slgd = &gd->gd_slab;
1112
1113     if (ptr == NULL)
1114         panic("trying to free NULL pointer");
1115
1116     /*
1117      * Handle special 0-byte allocations
1118      */
1119     if (ptr == ZERO_LENGTH_PTR) {
1120         logmemory(free_zero, ptr, type, -1, 0);
1121         logmemory_quick(free_end);
1122         return;
1123     }
1124
1125     /*
1126      * Panic on bad malloc type
1127      */
1128     if (type->ks_magic != M_MAGIC)
1129         panic("free: malloc type lacks magic");
1130
1131     /*
1132      * Handle oversized allocations.  XXX we really should require that a
1133      * size be passed to free() instead of this nonsense.
1134      *
1135      * This code is never called via an ipi.
1136      */
1137     kup = btokup(ptr);
1138     if (*kup > 0) {
1139         size = *kup << PAGE_SHIFT;
1140         *kup = 0;
1141 #ifdef INVARIANTS
1142         KKASSERT(sizeof(weirdary) <= size);
1143         bcopy(weirdary, ptr, sizeof(weirdary));
1144 #endif
1145         /*
1146          * NOTE: For oversized allocations we do not record the
1147          *           originating cpu.  It gets freed on the cpu calling
1148          *           kfree().  The statistics are in aggregate.
1149          *
1150          * note: XXX we have still inherited the interrupts-can't-block
1151          * assumption.  An interrupt thread does not bump
1152          * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1153          * primarily until we can fix softupdate's assumptions about free().
1154          */
1155         crit_enter();
1156         --type->ks_inuse[gd->gd_cpuid];
1157         type->ks_memuse[gd->gd_cpuid] -= size;
1158         if (mycpu->gd_intr_nesting_level ||
1159             (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1160         {
1161             logmemory(free_ovsz_delayed, ptr, type, size, 0);
1162             z = (SLZone *)ptr;
1163             z->z_Magic = ZALLOC_OVSZ_MAGIC;
1164             z->z_Next = slgd->FreeOvZones;
1165             z->z_ChunkSize = size;
1166             slgd->FreeOvZones = z;
1167             crit_exit();
1168         } else {
1169             crit_exit();
1170             logmemory(free_ovsz, ptr, type, size, 0);
1171             kmem_slab_free(ptr, size);  /* may block */
1172             atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1173         }
1174         logmemory_quick(free_end);
1175         return;
1176     }
1177
1178     /*
1179      * Zone case.  Figure out the zone based on the fact that it is
1180      * ZoneSize aligned. 
1181      */
1182     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1183     kup = btokup(z);
1184     KKASSERT(*kup < 0);
1185     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1186
1187     /*
1188      * If we do not own the zone then use atomic ops to free to the
1189      * remote cpu linked list and notify the target zone using a
1190      * passive message.
1191      *
1192      * The target zone cannot be deallocated while we own a chunk of it,
1193      * so the zone header's storage is stable until the very moment
1194      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1195      *
1196      * (no critical section needed)
1197      */
1198     if (z->z_CpuGd != gd) {
1199 #ifdef SMP
1200         /*
1201          * Making these adjustments now allow us to avoid passing (type)
1202          * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1203          * adjusted on OUR cpu, not the zone cpu, but it should all still
1204          * sum up properly and cancel out.
1205          */
1206         crit_enter();
1207         --type->ks_inuse[gd->gd_cpuid];
1208         type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1209         crit_exit();
1210
1211         /*
1212          * WARNING! This code competes with other cpus.  Once we
1213          *          successfully link the chunk to RChunks the remote
1214          *          cpu can rip z's storage out from under us.
1215          *
1216          *          Bumping RCount prevents z's storage from getting
1217          *          ripped out.
1218          */
1219         rsignal = z->z_RSignal;
1220         cpu_lfence();
1221         if (rsignal)
1222                 atomic_add_int(&z->z_RCount, 1);
1223
1224         chunk = ptr;
1225         for (;;) {
1226             bchunk = z->z_RChunks;
1227             cpu_ccfence();
1228             chunk->c_Next = bchunk;
1229             cpu_sfence();
1230
1231             if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1232                 break;
1233         }
1234
1235         /*
1236          * We have to signal the remote cpu if our actions will cause
1237          * the remote zone to be placed back on ZoneAry so it can
1238          * move the zone back on.
1239          *
1240          * We only need to deal with NULL->non-NULL RChunk transitions
1241          * and only if z_RSignal is set.  We interlock by reading rsignal
1242          * before adding our chunk to RChunks.  This should result in
1243          * virtually no IPI traffic.
1244          *
1245          * We can use a passive IPI to reduce overhead even further.
1246          */
1247         if (bchunk == NULL && rsignal) {
1248             logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1249             lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1250             /* z can get ripped out from under us from this point on */
1251         } else if (rsignal) {
1252             atomic_subtract_int(&z->z_RCount, 1);
1253             /* z can get ripped out from under us from this point on */
1254         }
1255 #else
1256         panic("Corrupt SLZone");
1257 #endif
1258         logmemory_quick(free_end);
1259         return;
1260     }
1261
1262     /*
1263      * kfree locally
1264      */
1265     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1266
1267     crit_enter();
1268     chunk = ptr;
1269     chunk_mark_free(z, chunk);
1270
1271     /*
1272      * Put weird data into the memory to detect modifications after freeing,
1273      * illegal pointer use after freeing (we should fault on the odd address),
1274      * and so forth.  XXX needs more work, see the old malloc code.
1275      */
1276 #ifdef INVARIANTS
1277     if (z->z_ChunkSize < sizeof(weirdary))
1278         bcopy(weirdary, chunk, z->z_ChunkSize);
1279     else
1280         bcopy(weirdary, chunk, sizeof(weirdary));
1281 #endif
1282
1283     /*
1284      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1285      * to the front of the linked list so it is more likely to be
1286      * reallocated, since it is already in our L1 cache.
1287      */
1288 #ifdef INVARIANTS
1289     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1290         panic("BADFREE %p", chunk);
1291 #endif
1292     chunk->c_Next = z->z_LChunks;
1293     z->z_LChunks = chunk;
1294     if (chunk->c_Next == NULL)
1295             z->z_LChunksp = &chunk->c_Next;
1296
1297 #ifdef INVARIANTS
1298     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1299         panic("BADFREE2");
1300 #endif
1301
1302     /*
1303      * Bump the number of free chunks.  If it becomes non-zero the zone
1304      * must be added back onto the appropriate list.
1305      */
1306     if (z->z_NFree++ == 0) {
1307         z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1308         slgd->ZoneAry[z->z_ZoneIndex] = z;
1309     }
1310
1311     --type->ks_inuse[z->z_Cpu];
1312     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1313
1314     /*
1315      * If the zone becomes totally free, and there are other zones we
1316      * can allocate from, move this zone to the FreeZones list.  Since
1317      * this code can be called from an IPI callback, do *NOT* try to mess
1318      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1319      */
1320     if (z->z_NFree == z->z_NMax && 
1321         (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1322         z->z_RCount == 0
1323     ) {
1324         SLZone **pz;
1325         int *kup;
1326
1327         for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1328             ;
1329         *pz = z->z_Next;
1330         z->z_Magic = -1;
1331         z->z_Next = slgd->FreeZones;
1332         slgd->FreeZones = z;
1333         ++slgd->NFreeZones;
1334         kup = btokup(z);
1335         *kup = 0;
1336     }
1337     logmemory_quick(free_end);
1338     crit_exit();
1339 }
1340
1341 #if defined(INVARIANTS)
1342
1343 /*
1344  * Helper routines for sanity checks
1345  */
1346 static
1347 void
1348 chunk_mark_allocated(SLZone *z, void *chunk)
1349 {
1350     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1351     __uint32_t *bitptr;
1352
1353     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1354     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1355             ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1356     bitptr = &z->z_Bitmap[bitdex >> 5];
1357     bitdex &= 31;
1358     KASSERT((*bitptr & (1 << bitdex)) == 0,
1359             ("memory chunk %p is already allocated!", chunk));
1360     *bitptr |= 1 << bitdex;
1361 }
1362
1363 static
1364 void
1365 chunk_mark_free(SLZone *z, void *chunk)
1366 {
1367     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1368     __uint32_t *bitptr;
1369
1370     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1371     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1372             ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1373     bitptr = &z->z_Bitmap[bitdex >> 5];
1374     bitdex &= 31;
1375     KASSERT((*bitptr & (1 << bitdex)) != 0,
1376             ("memory chunk %p is already free!", chunk));
1377     *bitptr &= ~(1 << bitdex);
1378 }
1379
1380 #endif
1381
1382 /*
1383  * kmem_slab_alloc()
1384  *
1385  *      Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1386  *      specified alignment.  M_* flags are expected in the flags field.
1387  *
1388  *      Alignment must be a multiple of PAGE_SIZE.
1389  *
1390  *      NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1391  *      but when we move zalloc() over to use this function as its backend
1392  *      we will have to switch to kreserve/krelease and call reserve(0)
1393  *      after the new space is made available.
1394  *
1395  *      Interrupt code which has preempted other code is not allowed to
1396  *      use PQ_CACHE pages.  However, if an interrupt thread is run
1397  *      non-preemptively or blocks and then runs non-preemptively, then
1398  *      it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1399  */
1400 static void *
1401 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1402 {
1403     vm_size_t i;
1404     vm_offset_t addr;
1405     int count, vmflags, base_vmflags;
1406     vm_page_t mbase = NULL;
1407     vm_page_t m;
1408     thread_t td;
1409
1410     size = round_page(size);
1411     addr = vm_map_min(&kernel_map);
1412
1413     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1414     crit_enter();
1415     vm_map_lock(&kernel_map);
1416     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1417         vm_map_unlock(&kernel_map);
1418         if ((flags & M_NULLOK) == 0)
1419             panic("kmem_slab_alloc(): kernel_map ran out of space!");
1420         vm_map_entry_release(count);
1421         crit_exit();
1422         return(NULL);
1423     }
1424
1425     /*
1426      * kernel_object maps 1:1 to kernel_map.
1427      */
1428     vm_object_hold(&kernel_object);
1429     vm_object_reference_locked(&kernel_object);
1430     vm_map_insert(&kernel_map, &count, 
1431                     &kernel_object, addr, addr, addr + size,
1432                     VM_MAPTYPE_NORMAL,
1433                     VM_PROT_ALL, VM_PROT_ALL,
1434                     0);
1435     vm_object_drop(&kernel_object);
1436     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1437     vm_map_unlock(&kernel_map);
1438
1439     td = curthread;
1440
1441     base_vmflags = 0;
1442     if (flags & M_ZERO)
1443         base_vmflags |= VM_ALLOC_ZERO;
1444     if (flags & M_USE_RESERVE)
1445         base_vmflags |= VM_ALLOC_SYSTEM;
1446     if (flags & M_USE_INTERRUPT_RESERVE)
1447         base_vmflags |= VM_ALLOC_INTERRUPT;
1448     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1449         panic("kmem_slab_alloc: bad flags %08x (%p)",
1450               flags, ((int **)&size)[-1]);
1451     }
1452
1453     /*
1454      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
1455      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
1456      *
1457      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1458      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1459      * implied in this case), though I'm not sure if we really need to
1460      * do that.
1461      */
1462     vmflags = base_vmflags;
1463     if (flags & M_WAITOK) {
1464         if (td->td_preempted)
1465             vmflags |= VM_ALLOC_SYSTEM;
1466         else
1467             vmflags |= VM_ALLOC_NORMAL;
1468     }
1469
1470     vm_object_hold(&kernel_object);
1471     for (i = 0; i < size; i += PAGE_SIZE) {
1472         m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1473         if (i == 0)
1474                 mbase = m;
1475
1476         /*
1477          * If the allocation failed we either return NULL or we retry.
1478          *
1479          * If M_WAITOK is specified we wait for more memory and retry.
1480          * If M_WAITOK is specified from a preemption we yield instead of
1481          * wait.  Livelock will not occur because the interrupt thread
1482          * will not be preempting anyone the second time around after the
1483          * yield.
1484          */
1485         if (m == NULL) {
1486             if (flags & M_WAITOK) {
1487                 if (td->td_preempted) {
1488                     lwkt_switch();
1489                 } else {
1490                     vm_wait(0);
1491                 }
1492                 i -= PAGE_SIZE; /* retry */
1493                 continue;
1494             }
1495             break;
1496         }
1497     }
1498
1499     /*
1500      * Check and deal with an allocation failure
1501      */
1502     if (i != size) {
1503         while (i != 0) {
1504             i -= PAGE_SIZE;
1505             m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1506             /* page should already be busy */
1507             vm_page_free(m);
1508         }
1509         vm_map_lock(&kernel_map);
1510         vm_map_delete(&kernel_map, addr, addr + size, &count);
1511         vm_map_unlock(&kernel_map);
1512         vm_object_drop(&kernel_object);
1513
1514         vm_map_entry_release(count);
1515         crit_exit();
1516         return(NULL);
1517     }
1518
1519     /*
1520      * Success!
1521      *
1522      * NOTE: The VM pages are still busied.  mbase points to the first one
1523      *       but we have to iterate via vm_page_next()
1524      */
1525     vm_object_drop(&kernel_object);
1526     crit_exit();
1527
1528     /*
1529      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1530      */
1531     m = mbase;
1532     i = 0;
1533
1534     while (i < size) {
1535         /*
1536          * page should already be busy
1537          */
1538         m->valid = VM_PAGE_BITS_ALL;
1539         vm_page_wire(m);
1540         pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC, 1);
1541         if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1542             bzero((char *)addr + i, PAGE_SIZE);
1543         vm_page_flag_clear(m, PG_ZERO);
1544         KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1545         vm_page_flag_set(m, PG_REFERENCED);
1546         vm_page_wakeup(m);
1547
1548         i += PAGE_SIZE;
1549         vm_object_hold(&kernel_object);
1550         m = vm_page_next(m);
1551         vm_object_drop(&kernel_object);
1552     }
1553     smp_invltlb();
1554     vm_map_entry_release(count);
1555     return((void *)addr);
1556 }
1557
1558 /*
1559  * kmem_slab_free()
1560  */
1561 static void
1562 kmem_slab_free(void *ptr, vm_size_t size)
1563 {
1564     crit_enter();
1565     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1566     crit_exit();
1567 }
1568