Merge from vendor branch OPENSSL:
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  * 
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  * 
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  * 
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  * 
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  * 
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  * 
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  * 
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  * 
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.80 2008/09/17 08:51:29 sephe Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.  
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input 
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 #include "opt_serializer.h"
99
100 #include <sys/param.h>
101 #include <sys/bus.h>
102 #include <sys/endian.h>
103 #include <sys/interrupt.h>
104 #include <sys/kernel.h>
105 #include <sys/ktr.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/module.h>
109 #include <sys/rman.h>
110 #include <sys/serialize.h>
111 #include <sys/socket.h>
112 #include <sys/sockio.h>
113 #include <sys/sysctl.h>
114
115 #include <net/bpf.h>
116 #include <net/ethernet.h>
117 #include <net/if.h>
118 #include <net/if_arp.h>
119 #include <net/if_dl.h>
120 #include <net/if_media.h>
121 #include <net/if_types.h>
122 #include <net/ifq_var.h>
123 #include <net/vlan/if_vlan_var.h>
124 #include <net/vlan/if_vlan_ether.h>
125
126 #ifdef INET
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip.h>
131 #include <netinet/tcp.h>
132 #include <netinet/udp.h>
133 #endif
134
135 #include <dev/netif/em/if_em_hw.h>
136 #include <dev/netif/em/if_em.h>
137
138 #define EM_X60_WORKAROUND
139
140 /*********************************************************************
141  *  Set this to one to display debug statistics
142  *********************************************************************/
143 int     em_display_debug_stats = 0;
144
145 /*********************************************************************
146  *  Driver version
147  *********************************************************************/
148
149 char em_driver_version[] = "6.2.9";
150
151
152 /*********************************************************************
153  *  PCI Device ID Table
154  *
155  *  Used by probe to select devices to load on
156  *  Last field stores an index into em_strings
157  *  Last entry must be all 0s
158  *
159  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
160  *********************************************************************/
161
162 static em_vendor_info_t em_vendor_info_array[] =
163 {
164         /* Intel(R) PRO/1000 Network Connection */
165         { 0x8086, E1000_DEV_ID_82540EM,         PCI_ANY_ID, PCI_ANY_ID, 0},
166         { 0x8086, E1000_DEV_ID_82540EM_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
167         { 0x8086, E1000_DEV_ID_82540EP,         PCI_ANY_ID, PCI_ANY_ID, 0},
168         { 0x8086, E1000_DEV_ID_82540EP_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
169         { 0x8086, E1000_DEV_ID_82540EP_LP,      PCI_ANY_ID, PCI_ANY_ID, 0},
170
171         { 0x8086, E1000_DEV_ID_82541EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
172         { 0x8086, E1000_DEV_ID_82541ER,         PCI_ANY_ID, PCI_ANY_ID, 0},
173         { 0x8086, E1000_DEV_ID_82541ER_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
174         { 0x8086, E1000_DEV_ID_82541EI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
175         { 0x8086, E1000_DEV_ID_82541GI,         PCI_ANY_ID, PCI_ANY_ID, 0},
176         { 0x8086, E1000_DEV_ID_82541GI_LF,      PCI_ANY_ID, PCI_ANY_ID, 0},
177         { 0x8086, E1000_DEV_ID_82541GI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
178
179         { 0x8086, E1000_DEV_ID_82542,           PCI_ANY_ID, PCI_ANY_ID, 0},
180
181         { 0x8086, E1000_DEV_ID_82543GC_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
182         { 0x8086, E1000_DEV_ID_82543GC_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
183
184         { 0x8086, E1000_DEV_ID_82544EI_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
185         { 0x8086, E1000_DEV_ID_82544EI_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
186         { 0x8086, E1000_DEV_ID_82544GC_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
187         { 0x8086, E1000_DEV_ID_82544GC_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
188
189         { 0x8086, E1000_DEV_ID_82545EM_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
190         { 0x8086, E1000_DEV_ID_82545EM_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
191         { 0x8086, E1000_DEV_ID_82545GM_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
192         { 0x8086, E1000_DEV_ID_82545GM_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
193         { 0x8086, E1000_DEV_ID_82545GM_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
194
195         { 0x8086, E1000_DEV_ID_82546EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
196         { 0x8086, E1000_DEV_ID_82546EB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
197         { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
198         { 0x8086, E1000_DEV_ID_82546GB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
199         { 0x8086, E1000_DEV_ID_82546GB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
200         { 0x8086, E1000_DEV_ID_82546GB_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
201         { 0x8086, E1000_DEV_ID_82546GB_PCIE,    PCI_ANY_ID, PCI_ANY_ID, 0},
202         { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
203         { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
204                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
205
206         { 0x8086, E1000_DEV_ID_82547EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
207         { 0x8086, E1000_DEV_ID_82547EI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
208         { 0x8086, E1000_DEV_ID_82547GI,         PCI_ANY_ID, PCI_ANY_ID, 0},
209
210         { 0x8086, E1000_DEV_ID_82571EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
211         { 0x8086, E1000_DEV_ID_82571EB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
212         { 0x8086, E1000_DEV_ID_82571EB_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
213         { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
214                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
215         { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
216                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
217
218         { 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
219                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
220         { 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
221                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
222         { 0x8086, E1000_DEV_ID_82572EI_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
223         { 0x8086, E1000_DEV_ID_82572EI_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
224         { 0x8086, E1000_DEV_ID_82572EI_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
225         { 0x8086, E1000_DEV_ID_82572EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
226
227         { 0x8086, E1000_DEV_ID_82573E,          PCI_ANY_ID, PCI_ANY_ID, 0},
228         { 0x8086, E1000_DEV_ID_82573E_IAMT,     PCI_ANY_ID, PCI_ANY_ID, 0},
229         { 0x8086, E1000_DEV_ID_82573L,          PCI_ANY_ID, PCI_ANY_ID, 0},
230
231         { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
232                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
233         { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
234                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
235         { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
236                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
237         { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
238                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
239
240         { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,  PCI_ANY_ID, PCI_ANY_ID, 0},
241         { 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,    PCI_ANY_ID, PCI_ANY_ID, 0},
242         { 0x8086, E1000_DEV_ID_ICH8_IGP_C,      PCI_ANY_ID, PCI_ANY_ID, 0},
243         { 0x8086, E1000_DEV_ID_ICH8_IFE,        PCI_ANY_ID, PCI_ANY_ID, 0},
244         { 0x8086, E1000_DEV_ID_ICH8_IFE_GT,     PCI_ANY_ID, PCI_ANY_ID, 0},
245         { 0x8086, E1000_DEV_ID_ICH8_IFE_G,      PCI_ANY_ID, PCI_ANY_ID, 0},
246         { 0x8086, E1000_DEV_ID_ICH8_IGP_M,      PCI_ANY_ID, PCI_ANY_ID, 0},
247
248         { 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,    PCI_ANY_ID, PCI_ANY_ID, 0},
249         { 0x8086, E1000_DEV_ID_ICH9_IGP_C,      PCI_ANY_ID, PCI_ANY_ID, 0},
250         { 0x8086, E1000_DEV_ID_ICH9_IFE,        PCI_ANY_ID, PCI_ANY_ID, 0},
251         { 0x8086, E1000_DEV_ID_ICH9_IFE_GT,     PCI_ANY_ID, PCI_ANY_ID, 0},
252         { 0x8086, E1000_DEV_ID_ICH9_IFE_G,      PCI_ANY_ID, PCI_ANY_ID, 0},
253
254         { 0x8086, E1000_DEV_ID_82575EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
255         { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
256                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
257         { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
258                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
259         { 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
260         { 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
261         /* required last entry */
262         { 0, 0, 0, 0, 0}
263 };
264
265 /*********************************************************************
266  *  Table of branding strings for all supported NICs.
267  *********************************************************************/
268
269 static const char *em_strings[] = {
270         "Intel(R) PRO/1000 Network Connection"
271 };
272
273 /*********************************************************************
274  *  Function prototypes
275  *********************************************************************/
276 static int      em_probe(device_t);
277 static int      em_attach(device_t);
278 static int      em_detach(device_t);
279 static int      em_shutdown(device_t);
280 static void     em_intr(void *);
281 static int      em_suspend(device_t);
282 static int      em_resume(device_t);
283 static void     em_start(struct ifnet *);
284 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
285 static void     em_watchdog(struct ifnet *);
286 static void     em_init(void *);
287 static void     em_stop(void *);
288 static void     em_media_status(struct ifnet *, struct ifmediareq *);
289 static int      em_media_change(struct ifnet *);
290 static void     em_identify_hardware(struct adapter *);
291 static int      em_allocate_pci_resources(device_t);
292 static void     em_free_pci_resources(device_t);
293 static void     em_local_timer(void *);
294 static int      em_hardware_init(struct adapter *);
295 static void     em_setup_interface(device_t, struct adapter *);
296 static int      em_setup_transmit_structures(struct adapter *);
297 static void     em_initialize_transmit_unit(struct adapter *);
298 static int      em_setup_receive_structures(struct adapter *);
299 static void     em_initialize_receive_unit(struct adapter *);
300 static void     em_enable_intr(struct adapter *);
301 static void     em_disable_intr(struct adapter *);
302 static void     em_free_transmit_structures(struct adapter *);
303 static void     em_free_receive_structures(struct adapter *);
304 static void     em_update_stats_counters(struct adapter *);
305 static void     em_txeof(struct adapter *);
306 static int      em_allocate_receive_structures(struct adapter *);
307 static void     em_rxeof(struct adapter *, int);
308 static void     em_receive_checksum(struct adapter *, struct em_rx_desc *,
309                                     struct mbuf *);
310 static void     em_transmit_checksum_setup(struct adapter *, struct mbuf *,
311                                            uint32_t *, uint32_t *);
312 static void     em_set_promisc(struct adapter *);
313 static void     em_disable_promisc(struct adapter *);
314 static void     em_set_multi(struct adapter *);
315 static void     em_print_hw_stats(struct adapter *);
316 static void     em_update_link_status(struct adapter *);
317 static int      em_get_buf(int i, struct adapter *, struct mbuf *, int how);
318 static void     em_enable_vlans(struct adapter *);
319 static void     em_disable_vlans(struct adapter *) __unused;
320 static int      em_encap(struct adapter *, struct mbuf *);
321 static void     em_smartspeed(struct adapter *);
322 static int      em_82547_fifo_workaround(struct adapter *, int);
323 static void     em_82547_update_fifo_head(struct adapter *, int);
324 static int      em_82547_tx_fifo_reset(struct adapter *);
325 static void     em_82547_move_tail(void *);
326 static void     em_82547_move_tail_serialized(struct adapter *);
327 static int      em_dma_malloc(struct adapter *, bus_size_t,
328                               struct em_dma_alloc *);
329 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
330 static void     em_print_debug_info(struct adapter *);
331 static int      em_is_valid_ether_addr(uint8_t *);
332 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
333 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
334 static uint32_t em_fill_descriptors(bus_addr_t address, uint32_t length, 
335                                    PDESC_ARRAY desc_array);
336 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
337 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
338 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
339                                         const char *,
340                                         struct em_int_delay_info *, int, int);
341
342 /*********************************************************************
343  *  FreeBSD Device Interface Entry Points
344  *********************************************************************/
345
346 static device_method_t em_methods[] = {
347         /* Device interface */
348         DEVMETHOD(device_probe, em_probe),
349         DEVMETHOD(device_attach, em_attach),
350         DEVMETHOD(device_detach, em_detach),
351         DEVMETHOD(device_shutdown, em_shutdown),
352         DEVMETHOD(device_suspend, em_suspend),
353         DEVMETHOD(device_resume, em_resume),
354         {0, 0}
355 };
356
357 static driver_t em_driver = {
358         "em", em_methods, sizeof(struct adapter),
359 };
360
361 static devclass_t em_devclass;
362
363 DECLARE_DUMMY_MODULE(if_em);
364 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
365
366 /*********************************************************************
367  *  Tunable default values.
368  *********************************************************************/
369
370 #define E1000_TICKS_TO_USECS(ticks)     ((1024 * (ticks) + 500) / 1000)
371 #define E1000_USECS_TO_TICKS(usecs)     ((1000 * (usecs) + 512) / 1024)
372
373 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
374 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
375 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
376 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
377 static int em_int_throttle_ceil = 10000;
378 static int em_rxd = EM_DEFAULT_RXD;
379 static int em_txd = EM_DEFAULT_TXD;
380 static int em_smart_pwr_down = FALSE;
381
382 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
383 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
384 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
385 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
386 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
387 TUNABLE_INT("hw.em.rxd", &em_rxd);
388 TUNABLE_INT("hw.em.txd", &em_txd);
389 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
390
391 /*
392  * Kernel trace for characterization of operations
393  */
394 #if !defined(KTR_IF_EM)
395 #define KTR_IF_EM       KTR_ALL
396 #endif
397 KTR_INFO_MASTER(if_em);
398 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
399 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
400 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
401 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
403 #define logif(name)     KTR_LOG(if_em_ ## name)
404
405 /*********************************************************************
406  *  Device identification routine
407  *
408  *  em_probe determines if the driver should be loaded on
409  *  adapter based on PCI vendor/device id of the adapter.
410  *
411  *  return 0 on success, positive on failure
412  *********************************************************************/
413
414 static int
415 em_probe(device_t dev)
416 {
417         em_vendor_info_t *ent;
418
419         uint16_t pci_vendor_id = 0;
420         uint16_t pci_device_id = 0;
421         uint16_t pci_subvendor_id = 0;
422         uint16_t pci_subdevice_id = 0;
423         char adapter_name[60];
424
425         INIT_DEBUGOUT("em_probe: begin");
426
427         pci_vendor_id = pci_get_vendor(dev);
428         if (pci_vendor_id != EM_VENDOR_ID)
429                 return (ENXIO);
430
431         pci_device_id = pci_get_device(dev);
432         pci_subvendor_id = pci_get_subvendor(dev);
433         pci_subdevice_id = pci_get_subdevice(dev);
434
435         ent = em_vendor_info_array;
436         while (ent->vendor_id != 0) {
437                 if ((pci_vendor_id == ent->vendor_id) &&
438                     (pci_device_id == ent->device_id) &&
439
440                     ((pci_subvendor_id == ent->subvendor_id) ||
441                      (ent->subvendor_id == PCI_ANY_ID)) &&
442
443                     ((pci_subdevice_id == ent->subdevice_id) ||
444                      (ent->subdevice_id == PCI_ANY_ID))) {
445                         ksnprintf(adapter_name, sizeof(adapter_name),
446                                  "%s, Version - %s",  em_strings[ent->index], 
447                                  em_driver_version);
448                         device_set_desc_copy(dev, adapter_name);
449                         device_set_async_attach(dev, TRUE);
450                         return (0);
451                 }
452                 ent++;
453         }
454
455         return (ENXIO);
456 }
457
458 /*********************************************************************
459  *  Device initialization routine
460  *
461  *  The attach entry point is called when the driver is being loaded.
462  *  This routine identifies the type of hardware, allocates all resources
463  *  and initializes the hardware.
464  *
465  *  return 0 on success, positive on failure
466  *********************************************************************/
467
468 static int
469 em_attach(device_t dev)
470 {
471         struct adapter *adapter;
472         struct ifnet *ifp;
473         int tsize, rsize;
474         int error = 0;
475
476         INIT_DEBUGOUT("em_attach: begin");
477
478         adapter = device_get_softc(dev);
479         ifp = &adapter->interface_data.ac_if;
480
481         callout_init(&adapter->timer);
482         callout_init(&adapter->tx_fifo_timer);
483
484         adapter->dev = dev;
485         adapter->osdep.dev = dev;
486
487         /* SYSCTL stuff */
488         sysctl_ctx_init(&adapter->sysctl_ctx);
489         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
490                                                SYSCTL_STATIC_CHILDREN(_hw),
491                                                OID_AUTO, 
492                                                device_get_nameunit(dev),
493                                                CTLFLAG_RD,
494                                                0, "");
495
496         if (adapter->sysctl_tree == NULL) {
497                 device_printf(dev, "Unable to create sysctl tree\n");
498                 return EIO;
499         }
500
501         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,  
502                         SYSCTL_CHILDREN(adapter->sysctl_tree),
503                         OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, 
504                         (void *)adapter, 0,
505                         em_sysctl_debug_info, "I", "Debug Information");
506
507         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,  
508                         SYSCTL_CHILDREN(adapter->sysctl_tree),
509                         OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, 
510                         (void *)adapter, 0,
511                         em_sysctl_stats, "I", "Statistics");
512
513         /* Determine hardware revision */
514         em_identify_hardware(adapter);
515
516         /* Set up some sysctls for the tunable interrupt delays */
517         em_add_int_delay_sysctl(adapter, "rx_int_delay",
518                                 "receive interrupt delay in usecs",
519                                 &adapter->rx_int_delay,
520                                 E1000_REG_OFFSET(&adapter->hw, RDTR),
521                                 em_rx_int_delay_dflt);
522         em_add_int_delay_sysctl(adapter, "tx_int_delay",
523                                 "transmit interrupt delay in usecs",
524                                 &adapter->tx_int_delay,
525                                 E1000_REG_OFFSET(&adapter->hw, TIDV),
526                                 em_tx_int_delay_dflt);
527         if (adapter->hw.mac_type >= em_82540) {
528                 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
529                                         "receive interrupt delay limit in usecs",
530                                         &adapter->rx_abs_int_delay,
531                                         E1000_REG_OFFSET(&adapter->hw, RADV),
532                                         em_rx_abs_int_delay_dflt);
533                 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
534                                         "transmit interrupt delay limit in usecs",
535                                         &adapter->tx_abs_int_delay,
536                                         E1000_REG_OFFSET(&adapter->hw, TADV),
537                                         em_tx_abs_int_delay_dflt);
538                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
539                         SYSCTL_CHILDREN(adapter->sysctl_tree),
540                         OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
541                         adapter, 0, em_sysctl_int_throttle, "I", NULL);
542         }
543
544         /*
545          * Validate number of transmit and receive descriptors. It
546          * must not exceed hardware maximum, and must be multiple
547          * of EM_DBA_ALIGN.
548          */
549         if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
550             (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
551             (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
552             (em_txd < EM_MIN_TXD)) {
553                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
554                               EM_DEFAULT_TXD, em_txd);
555                 adapter->num_tx_desc = EM_DEFAULT_TXD;
556         } else {
557                 adapter->num_tx_desc = em_txd;
558         }
559  
560         if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
561             (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
562             (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
563             (em_rxd < EM_MIN_RXD)) {
564                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
565                               EM_DEFAULT_RXD, em_rxd);
566                 adapter->num_rx_desc = EM_DEFAULT_RXD;
567         } else {
568                 adapter->num_rx_desc = em_rxd;
569         }
570
571         SYSCTL_ADD_INT(&adapter->sysctl_ctx,
572                        SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "rxd",
573                        CTLFLAG_RD, &adapter->num_rx_desc, 0, NULL);
574         SYSCTL_ADD_INT(&adapter->sysctl_ctx,
575                        SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "txd",
576                        CTLFLAG_RD, &adapter->num_tx_desc, 0, NULL);
577
578         adapter->hw.autoneg = DO_AUTO_NEG;
579         adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
580         adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
581         adapter->hw.tbi_compatibility_en = TRUE;
582         adapter->rx_buffer_len = EM_RXBUFFER_2048;
583
584         adapter->hw.phy_init_script = 1;
585         adapter->hw.phy_reset_disable = FALSE;
586
587 #ifndef EM_MASTER_SLAVE
588         adapter->hw.master_slave = em_ms_hw_default;
589 #else
590         adapter->hw.master_slave = EM_MASTER_SLAVE;
591 #endif
592
593         /*
594          * Set the max frame size assuming standard ethernet
595          * sized frames.
596          */   
597         adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
598
599         adapter->hw.min_frame_size =
600             MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
601
602         /*
603          * This controls when hardware reports transmit completion
604          * status.
605          */
606         adapter->hw.report_tx_early = 1;
607
608         error = em_allocate_pci_resources(dev);
609         if (error)
610                 goto fail;
611
612         /* Initialize eeprom parameters */
613         em_init_eeprom_params(&adapter->hw);
614
615         tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
616                          EM_DBA_ALIGN);
617
618         /* Allocate Transmit Descriptor ring */
619         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
620         if (error) {
621                 device_printf(dev, "Unable to allocate TxDescriptor memory\n");
622                 goto fail;
623         }
624         adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
625
626         rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
627                          EM_DBA_ALIGN);
628
629         /* Allocate Receive Descriptor ring */
630         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
631         if (error) {
632                 device_printf(dev, "Unable to allocate rx_desc memory\n");
633                 goto fail;
634         }
635         adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
636
637         /* Initialize the hardware */
638         if (em_hardware_init(adapter)) {
639                 device_printf(dev, "Unable to initialize the hardware\n");
640                 error = EIO;
641                 goto fail;
642         }
643
644         /* Copy the permanent MAC address out of the EEPROM */
645         if (em_read_mac_addr(&adapter->hw) < 0) {
646                 device_printf(dev,
647                               "EEPROM read error while reading MAC address\n");
648                 error = EIO;
649                 goto fail;
650         }
651
652         if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
653                 device_printf(dev, "Invalid MAC address\n");
654                 error = EIO;
655                 goto fail;
656         }
657
658         /* Setup OS specific network interface */
659         em_setup_interface(dev, adapter);
660
661         /* Initialize statistics */
662         em_clear_hw_cntrs(&adapter->hw);
663         em_update_stats_counters(adapter);
664         adapter->hw.get_link_status = 1;
665         em_update_link_status(adapter);
666
667         /* Indicate SOL/IDER usage */
668         if (em_check_phy_reset_block(&adapter->hw)) {
669                 device_printf(dev, "PHY reset is blocked due to "
670                               "SOL/IDER session.\n");
671         }
672  
673         /* Identify 82544 on PCIX */
674         em_get_bus_info(&adapter->hw);
675         if (adapter->hw.bus_type == em_bus_type_pcix &&
676             adapter->hw.mac_type == em_82544)
677                 adapter->pcix_82544 = TRUE;
678         else
679                 adapter->pcix_82544 = FALSE;
680
681         error = bus_setup_intr(dev, adapter->res_interrupt, INTR_MPSAFE,
682                            em_intr, adapter,
683                            &adapter->int_handler_tag, ifp->if_serializer);
684         if (error) {
685                 device_printf(dev, "Error registering interrupt handler!\n");
686                 ether_ifdetach(ifp);
687                 goto fail;
688         }
689
690         ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->res_interrupt));
691         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
692         INIT_DEBUGOUT("em_attach: end");
693         return(0);
694
695 fail:
696         em_detach(dev);
697         return(error);
698 }
699
700 /*********************************************************************
701  *  Device removal routine
702  *
703  *  The detach entry point is called when the driver is being removed.
704  *  This routine stops the adapter and deallocates all the resources
705  *  that were allocated for driver operation.
706  *
707  *  return 0 on success, positive on failure
708  *********************************************************************/
709
710 static int
711 em_detach(device_t dev)
712 {
713         struct adapter *adapter = device_get_softc(dev);
714
715         INIT_DEBUGOUT("em_detach: begin");
716
717         if (device_is_attached(dev)) {
718                 struct ifnet *ifp = &adapter->interface_data.ac_if;
719
720                 lwkt_serialize_enter(ifp->if_serializer);
721                 adapter->in_detach = 1;
722                 em_stop(adapter);
723                 em_phy_hw_reset(&adapter->hw);
724                 bus_teardown_intr(dev, adapter->res_interrupt, 
725                                   adapter->int_handler_tag);
726                 lwkt_serialize_exit(ifp->if_serializer);
727
728                 ether_ifdetach(ifp);
729         }
730         bus_generic_detach(dev);
731
732         em_free_pci_resources(dev);
733
734         /* Free Transmit Descriptor ring */
735         if (adapter->tx_desc_base != NULL) {
736                 em_dma_free(adapter, &adapter->txdma);
737                 adapter->tx_desc_base = NULL;
738         }
739
740         /* Free Receive Descriptor ring */
741         if (adapter->rx_desc_base != NULL) {
742                 em_dma_free(adapter, &adapter->rxdma);
743                 adapter->rx_desc_base = NULL;
744         }
745
746         /* Free sysctl tree */
747         if (adapter->sysctl_tree != NULL) {
748                 adapter->sysctl_tree = NULL;
749                 sysctl_ctx_free(&adapter->sysctl_ctx);
750         }
751
752         return (0);
753 }
754
755 /*********************************************************************
756  *
757  *  Shutdown entry point
758  *
759  **********************************************************************/
760
761 static int
762 em_shutdown(device_t dev)
763 {
764         struct adapter *adapter = device_get_softc(dev);
765         struct ifnet *ifp = &adapter->interface_data.ac_if;
766
767         lwkt_serialize_enter(ifp->if_serializer);
768         em_stop(adapter);
769         lwkt_serialize_exit(ifp->if_serializer);
770
771         return (0);
772 }
773
774 /*
775  * Suspend/resume device methods.
776  */
777 static int
778 em_suspend(device_t dev)
779 {
780         struct adapter *adapter = device_get_softc(dev);
781         struct ifnet *ifp = &adapter->interface_data.ac_if;
782
783         lwkt_serialize_enter(ifp->if_serializer);
784         em_stop(adapter);
785         lwkt_serialize_exit(ifp->if_serializer);
786         return (0);
787 }
788
789 static int
790 em_resume(device_t dev)
791 {
792         struct adapter *adapter = device_get_softc(dev);
793         struct ifnet *ifp = &adapter->interface_data.ac_if;
794
795         lwkt_serialize_enter(ifp->if_serializer);
796         ifp->if_flags &= ~IFF_RUNNING;
797         em_init(adapter);
798         if_devstart(ifp);
799         lwkt_serialize_exit(ifp->if_serializer);
800
801         return bus_generic_resume(dev);
802 }
803
804 /*********************************************************************
805  *  Transmit entry point
806  *
807  *  em_start is called by the stack to initiate a transmit.
808  *  The driver will remain in this routine as long as there are
809  *  packets to transmit and transmit resources are available.
810  *  In case resources are not available stack is notified and
811  *  the packet is requeued.
812  **********************************************************************/
813
814 static void
815 em_start(struct ifnet *ifp)
816 {
817         struct mbuf *m_head;
818         struct adapter *adapter = ifp->if_softc;
819
820         ASSERT_SERIALIZED(ifp->if_serializer);
821
822         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
823                 return;
824         if (!adapter->link_active) {
825                 ifq_purge(&ifp->if_snd);
826                 return;
827         }
828         while (!ifq_is_empty(&ifp->if_snd)) {
829                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
830                 if (m_head == NULL)
831                         break;
832
833                 logif(pkt_txqueue);
834                 if (em_encap(adapter, m_head)) {
835                         ifp->if_flags |= IFF_OACTIVE;
836                         ifq_prepend(&ifp->if_snd, m_head);
837                         break;
838                 }
839
840                 /* Send a copy of the frame to the BPF listener */
841                 ETHER_BPF_MTAP(ifp, m_head);
842
843                 /* Set timeout in case hardware has problems transmitting. */
844                 ifp->if_timer = EM_TX_TIMEOUT;
845         }
846 }
847
848 /*********************************************************************
849  *  Ioctl entry point
850  *
851  *  em_ioctl is called when the user wants to configure the
852  *  interface.
853  *
854  *  return 0 on success, positive on failure
855  **********************************************************************/
856
857 static int
858 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
859 {
860         int max_frame_size, mask, error = 0, reinit = 0;
861         struct ifreq *ifr = (struct ifreq *) data;
862         struct adapter *adapter = ifp->if_softc;
863         uint16_t eeprom_data = 0;
864
865         ASSERT_SERIALIZED(ifp->if_serializer);
866
867         if (adapter->in_detach)
868                 return 0;
869
870         switch (command) {
871         case SIOCSIFMTU:
872                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
873                 switch (adapter->hw.mac_type) {
874                 case em_82573:
875                         /*
876                          * 82573 only supports jumbo frames
877                          * if ASPM is disabled.
878                          */
879                         em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
880                             1, &eeprom_data);
881                         if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
882                                 max_frame_size = ETHER_MAX_LEN;
883                                 break;
884                         }
885                         /* Allow Jumbo frames */
886                         /* FALLTHROUGH */
887                 case em_82571:
888                 case em_82572:
889                 case em_ich9lan:
890                 case em_80003es2lan:    /* Limit Jumbo Frame size */
891                         max_frame_size = 9234;
892                         break;
893                 case em_ich8lan:
894                         /* ICH8 does not support jumbo frames */
895                         max_frame_size = ETHER_MAX_LEN;
896                         break;
897                 default:
898                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
899                         break;
900                 }
901                 if (ifr->ifr_mtu >
902                         max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
903                         error = EINVAL;
904                 } else {
905                         ifp->if_mtu = ifr->ifr_mtu;
906                         adapter->hw.max_frame_size = 
907                         ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
908                         ifp->if_flags &= ~IFF_RUNNING;
909                         em_init(adapter);
910                 }
911                 break;
912         case SIOCSIFFLAGS:
913                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
914                                "(Set Interface Flags)");
915                 if (ifp->if_flags & IFF_UP) {
916                         if (!(ifp->if_flags & IFF_RUNNING)) {
917                                 em_init(adapter);
918                         } else if ((ifp->if_flags ^ adapter->if_flags) &
919                                    (IFF_PROMISC | IFF_ALLMULTI)) {
920                                 em_disable_promisc(adapter);
921                                 em_set_promisc(adapter);
922                         }
923                 } else {
924                         if (ifp->if_flags & IFF_RUNNING)
925                                 em_stop(adapter);
926                 }
927                 adapter->if_flags = ifp->if_flags;
928                 break;
929         case SIOCADDMULTI:
930         case SIOCDELMULTI:
931                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
932                 if (ifp->if_flags & IFF_RUNNING) {
933                         em_disable_intr(adapter);
934                         em_set_multi(adapter);
935                         if (adapter->hw.mac_type == em_82542_rev2_0)
936                                 em_initialize_receive_unit(adapter);
937 #ifdef DEVICE_POLLING
938                         /* Do not enable interrupt if polling(4) is enabled */
939                         if ((ifp->if_flags & IFF_POLLING) == 0)
940 #endif
941                         em_enable_intr(adapter);
942                 }
943                 break;
944         case SIOCSIFMEDIA:
945                 /* Check SOL/IDER usage */
946                 if (em_check_phy_reset_block(&adapter->hw)) {
947                         if_printf(ifp, "Media change is blocked due to "
948                                   "SOL/IDER session.\n");
949                         break;
950                 }
951                 /* FALLTHROUGH */
952         case SIOCGIFMEDIA:
953                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
954                                "(Get/Set Interface Media)");
955                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
956                 break;
957         case SIOCSIFCAP:
958                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
959                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
960                 if (mask & IFCAP_HWCSUM) {
961                         ifp->if_capenable ^= IFCAP_HWCSUM;
962                         reinit = 1;
963                 }
964                 if (mask & IFCAP_VLAN_HWTAGGING) {
965                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
966                         reinit = 1;
967                 }
968                 if (reinit && (ifp->if_flags & IFF_RUNNING)) {
969                         ifp->if_flags &= ~IFF_RUNNING;
970                         em_init(adapter);
971                 }
972                 break;
973         default:
974                 error = ether_ioctl(ifp, command, data);
975                 break;
976         }
977
978         return (error);
979 }
980
981 /*********************************************************************
982  *  Watchdog entry point
983  *
984  *  This routine is called whenever hardware quits transmitting.
985  *
986  **********************************************************************/
987
988 static void
989 em_watchdog(struct ifnet *ifp)
990 {
991         struct adapter *adapter = ifp->if_softc;
992
993         /*
994          * If we are in this routine because of pause frames, then
995          * don't reset the hardware.
996          */
997         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
998                 ifp->if_timer = EM_TX_TIMEOUT;
999                 return;
1000         }
1001
1002         if (em_check_for_link(&adapter->hw) == 0)
1003                 if_printf(ifp, "watchdog timeout -- resetting\n");
1004
1005         ifp->if_flags &= ~IFF_RUNNING;
1006         em_init(adapter);
1007
1008         adapter->watchdog_timeouts++;
1009 }
1010
1011 /*********************************************************************
1012  *  Init entry point
1013  *
1014  *  This routine is used in two ways. It is used by the stack as
1015  *  init entry point in network interface structure. It is also used
1016  *  by the driver as a hw/sw initialization routine to get to a
1017  *  consistent state.
1018  *
1019  *  return 0 on success, positive on failure
1020  **********************************************************************/
1021
1022 static void
1023 em_init(void *arg)
1024 {
1025         struct adapter *adapter = arg;
1026         uint32_t pba;
1027         struct ifnet *ifp = &adapter->interface_data.ac_if;
1028
1029         ASSERT_SERIALIZED(ifp->if_serializer);
1030
1031         INIT_DEBUGOUT("em_init: begin");
1032
1033         if (ifp->if_flags & IFF_RUNNING)
1034                 return;
1035
1036         em_stop(adapter);
1037
1038         /*
1039          * Packet Buffer Allocation (PBA)
1040          * Writing PBA sets the receive portion of the buffer
1041          * the remainder is used for the transmit buffer.
1042          *
1043          * Devices before the 82547 had a Packet Buffer of 64K.
1044          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1045          * After the 82547 the buffer was reduced to 40K.
1046          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1047          *   Note: default does not leave enough room for Jumbo Frame >10k.
1048          */
1049         switch (adapter->hw.mac_type) {
1050         case em_82547:
1051         case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1052                 if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1053                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1054                 else
1055                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1056
1057                 adapter->tx_fifo_head = 0;
1058                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1059                 adapter->tx_fifo_size =
1060                         (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1061                 break;
1062         /* Total Packet Buffer on these is 48K */
1063         case em_82571:
1064         case em_82572:
1065         case em_80003es2lan:
1066                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1067                 break;
1068         case em_82573: /* 82573: Total Packet Buffer is 32K */
1069                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1070                 break;
1071         case em_ich8lan:
1072                 pba = E1000_PBA_8K;
1073                 break;
1074         case em_ich9lan:
1075 #define E1000_PBA_10K   0x000A
1076                 pba = E1000_PBA_10K;
1077                 break;
1078         default:
1079                 /* Devices before 82547 had a Packet Buffer of 64K.   */
1080                 if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1081                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1082                 else
1083                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1084         }
1085
1086         INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1087         E1000_WRITE_REG(&adapter->hw, PBA, pba);
1088
1089         /* Get the latest mac address, User can use a LAA */
1090         bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1091               ETHER_ADDR_LEN);
1092
1093         /* Initialize the hardware */
1094         if (em_hardware_init(adapter)) {
1095                 if_printf(ifp, "Unable to initialize the hardware\n");
1096                 return;
1097         }
1098         em_update_link_status(adapter);
1099
1100         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1101                 em_enable_vlans(adapter);
1102
1103         /* Set hardware offload abilities */
1104         if (adapter->hw.mac_type >= em_82543) {
1105                 if (ifp->if_capenable & IFCAP_TXCSUM)
1106                         ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1107                 else
1108                         ifp->if_hwassist = 0;
1109         }
1110
1111         /* Prepare transmit descriptors and buffers */
1112         if (em_setup_transmit_structures(adapter)) {
1113                 if_printf(ifp, "Could not setup transmit structures\n");
1114                 em_stop(adapter);
1115                 return;
1116         }
1117         em_initialize_transmit_unit(adapter);
1118
1119         /* Setup Multicast table */
1120         em_set_multi(adapter);
1121
1122         /* Prepare receive descriptors and buffers */
1123         if (em_setup_receive_structures(adapter)) {
1124                 if_printf(ifp, "Could not setup receive structures\n");
1125                 em_stop(adapter);
1126                 return;
1127         }
1128         em_initialize_receive_unit(adapter);
1129
1130         /* Don't lose promiscuous settings */
1131         em_set_promisc(adapter);
1132
1133         ifp->if_flags |= IFF_RUNNING;
1134         ifp->if_flags &= ~IFF_OACTIVE;
1135
1136         callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1137         em_clear_hw_cntrs(&adapter->hw);
1138
1139 #ifdef DEVICE_POLLING
1140         /* Do not enable interrupt if polling(4) is enabled */
1141         if (ifp->if_flags & IFF_POLLING)
1142                 em_disable_intr(adapter);
1143         else
1144 #endif
1145         em_enable_intr(adapter);
1146
1147         /* Don't reset the phy next time init gets called */
1148         adapter->hw.phy_reset_disable = TRUE;
1149 }
1150
1151 #ifdef DEVICE_POLLING
1152
1153 static void
1154 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1155 {
1156         struct adapter *adapter = ifp->if_softc;
1157         uint32_t reg_icr;
1158
1159         ASSERT_SERIALIZED(ifp->if_serializer);
1160
1161         switch(cmd) {
1162         case POLL_REGISTER:
1163                 em_disable_intr(adapter);
1164                 break;
1165         case POLL_DEREGISTER:
1166                 em_enable_intr(adapter);
1167                 break;
1168         case POLL_AND_CHECK_STATUS:
1169                 reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1170                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1171                         callout_stop(&adapter->timer);
1172                         adapter->hw.get_link_status = 1;
1173                         em_check_for_link(&adapter->hw);
1174                         em_update_link_status(adapter);
1175                         callout_reset(&adapter->timer, hz, em_local_timer,
1176                                       adapter);
1177                 }
1178                 /* fall through */
1179         case POLL_ONLY:
1180                 if (ifp->if_flags & IFF_RUNNING) {
1181                         em_rxeof(adapter, count);
1182                         em_txeof(adapter);
1183
1184                         if (!ifq_is_empty(&ifp->if_snd))
1185                                 if_devstart(ifp);
1186                 }
1187                 break;
1188         }
1189 }
1190
1191 #endif /* DEVICE_POLLING */
1192
1193 /*********************************************************************
1194  *
1195  *  Interrupt Service routine
1196  *
1197  *********************************************************************/
1198 static void
1199 em_intr(void *arg)
1200 {
1201         uint32_t reg_icr;
1202         struct ifnet *ifp;
1203         struct adapter *adapter = arg;
1204
1205         ifp = &adapter->interface_data.ac_if;  
1206
1207         logif(intr_beg);
1208         ASSERT_SERIALIZED(ifp->if_serializer);
1209
1210         reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1211         if ((adapter->hw.mac_type >= em_82571 &&
1212              (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1213             reg_icr == 0) {
1214                 logif(intr_end);
1215                 return;
1216         }
1217
1218         /*
1219          * XXX: some laptops trigger several spurious interrupts on em(4)
1220          * when in the resume cycle. The ICR register reports all-ones
1221          * value in this case. Processing such interrupts would lead to
1222          * a freeze. I don't know why.
1223          */
1224         if (reg_icr == 0xffffffff) {
1225                 logif(intr_end);
1226                 return;
1227         }
1228
1229         /*
1230          * note: do not attempt to improve efficiency by looping.  This 
1231          * only results in unnecessary piecemeal collection of received
1232          * packets and unnecessary piecemeal cleanups of the transmit ring.
1233          */
1234         if (ifp->if_flags & IFF_RUNNING) {
1235                 em_rxeof(adapter, -1);
1236                 em_txeof(adapter);
1237         }
1238
1239         /* Link status change */
1240         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1241                 callout_stop(&adapter->timer);
1242                 adapter->hw.get_link_status = 1;
1243                 em_check_for_link(&adapter->hw);
1244                 em_update_link_status(adapter);
1245                 callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1246         }
1247
1248         if (reg_icr & E1000_ICR_RXO)
1249                 adapter->rx_overruns++;
1250
1251         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1252                 if_devstart(ifp);
1253
1254         logif(intr_end);
1255 }
1256
1257 /*********************************************************************
1258  *
1259  *  Media Ioctl callback
1260  *
1261  *  This routine is called whenever the user queries the status of
1262  *  the interface using ifconfig.
1263  *
1264  **********************************************************************/
1265 static void
1266 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1267 {
1268         struct adapter *adapter = ifp->if_softc;
1269         u_char fiber_type = IFM_1000_SX;
1270
1271         INIT_DEBUGOUT("em_media_status: begin");
1272
1273         ASSERT_SERIALIZED(ifp->if_serializer);
1274
1275         em_check_for_link(&adapter->hw);
1276         em_update_link_status(adapter);
1277
1278         ifmr->ifm_status = IFM_AVALID;
1279         ifmr->ifm_active = IFM_ETHER;
1280
1281         if (!adapter->link_active)
1282                 return;
1283
1284         ifmr->ifm_status |= IFM_ACTIVE;
1285
1286         if (adapter->hw.media_type == em_media_type_fiber ||
1287             adapter->hw.media_type == em_media_type_internal_serdes) {
1288                 if (adapter->hw.mac_type == em_82545)
1289                         fiber_type = IFM_1000_LX;
1290                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1291         } else {
1292                 switch (adapter->link_speed) {
1293                 case 10:
1294                         ifmr->ifm_active |= IFM_10_T;
1295                         break;
1296                 case 100:
1297                         ifmr->ifm_active |= IFM_100_TX;
1298                         break;
1299                 case 1000:
1300                         ifmr->ifm_active |= IFM_1000_T;
1301                         break;
1302                 }
1303                 if (adapter->link_duplex == FULL_DUPLEX)
1304                         ifmr->ifm_active |= IFM_FDX;
1305                 else
1306                         ifmr->ifm_active |= IFM_HDX;
1307         }
1308 }
1309
1310 /*********************************************************************
1311  *
1312  *  Media Ioctl callback
1313  *
1314  *  This routine is called when the user changes speed/duplex using
1315  *  media/mediopt option with ifconfig.
1316  *
1317  **********************************************************************/
1318 static int
1319 em_media_change(struct ifnet *ifp)
1320 {
1321         struct adapter *adapter = ifp->if_softc;
1322         struct ifmedia *ifm = &adapter->media;
1323
1324         INIT_DEBUGOUT("em_media_change: begin");
1325
1326         ASSERT_SERIALIZED(ifp->if_serializer);
1327
1328         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1329                 return (EINVAL);
1330
1331         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1332         case IFM_AUTO:
1333                 adapter->hw.autoneg = DO_AUTO_NEG;
1334                 adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1335                 break;
1336         case IFM_1000_LX:
1337         case IFM_1000_SX:
1338         case IFM_1000_T:
1339                 adapter->hw.autoneg = DO_AUTO_NEG;
1340                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1341                 break;
1342         case IFM_100_TX:
1343                 adapter->hw.autoneg = FALSE;
1344                 adapter->hw.autoneg_advertised = 0;
1345                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1346                         adapter->hw.forced_speed_duplex = em_100_full;
1347                 else
1348                         adapter->hw.forced_speed_duplex = em_100_half;
1349                 break;
1350         case IFM_10_T:
1351                 adapter->hw.autoneg = FALSE;
1352                 adapter->hw.autoneg_advertised = 0;
1353                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1354                         adapter->hw.forced_speed_duplex = em_10_full;
1355                 else
1356                         adapter->hw.forced_speed_duplex = em_10_half;
1357                 break;
1358         default:
1359                 if_printf(ifp, "Unsupported media type\n");
1360         }
1361         /*
1362          * As the speed/duplex settings may have changed we need to
1363          * reset the PHY.
1364          */
1365         adapter->hw.phy_reset_disable = FALSE;
1366
1367         ifp->if_flags &= ~IFF_RUNNING;
1368         em_init(adapter);
1369
1370         return(0);
1371 }
1372
1373 static void
1374 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1375          int error)
1376 {
1377         struct em_q *q = arg;
1378
1379         if (error)
1380                 return;
1381         KASSERT(nsegs <= EM_MAX_SCATTER,
1382                 ("Too many DMA segments returned when mapping tx packet"));
1383         q->nsegs = nsegs;
1384         bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1385 }
1386
1387 /*********************************************************************
1388  *
1389  *  This routine maps the mbufs to tx descriptors.
1390  *
1391  *  return 0 on success, positive on failure
1392  **********************************************************************/
1393 static int
1394 em_encap(struct adapter *adapter, struct mbuf *m_head)
1395 {
1396         uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1397         int i, j, error, last = 0;
1398
1399         struct em_q q;
1400         struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1401         bus_dmamap_t map;
1402         struct em_tx_desc *current_tx_desc = NULL;
1403         struct ifnet *ifp = &adapter->interface_data.ac_if;
1404
1405         /*
1406          * Force a cleanup if number of TX descriptors
1407          * available hits the threshold
1408          */
1409         if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1410                 em_txeof(adapter);
1411                 if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1412                         adapter->no_tx_desc_avail1++;
1413                         return (ENOBUFS);
1414                 }
1415         }
1416
1417         /*
1418          * Capture the first descriptor index, this descriptor will have
1419          * the index of the EOP which is the only one that now gets a
1420          * DONE bit writeback.
1421          */
1422         tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1423
1424         /*
1425          * Map the packet for DMA.
1426          */
1427         map = tx_buffer_first->map;
1428         error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1429                                      &q, BUS_DMA_NOWAIT);
1430         if (error != 0) {
1431                 adapter->no_tx_dma_setup++;
1432                 return (error);
1433         }
1434         KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1435
1436         if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1437                 adapter->no_tx_desc_avail2++;
1438                 error = ENOBUFS;
1439                 goto fail;
1440         }
1441
1442         if (ifp->if_hwassist > 0) {
1443                 em_transmit_checksum_setup(adapter,  m_head,
1444                                            &txd_upper, &txd_lower);
1445         }
1446
1447         i = adapter->next_avail_tx_desc;
1448         if (adapter->pcix_82544)
1449                 txd_saved = i;
1450
1451         /* Set up our transmit descriptors */
1452         for (j = 0; j < q.nsegs; j++) {
1453                 /* If adapter is 82544 and on PCIX bus */
1454                 if(adapter->pcix_82544) {
1455                         DESC_ARRAY desc_array;
1456                         uint32_t array_elements, counter;
1457
1458                         /* 
1459                          * Check the Address and Length combination and
1460                          * split the data accordingly
1461                          */
1462                         array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1463                                                 q.segs[j].ds_len, &desc_array);
1464                         for (counter = 0; counter < array_elements; counter++) {
1465                                 if (txd_used == adapter->num_tx_desc_avail) {
1466                                         adapter->next_avail_tx_desc = txd_saved;
1467                                         adapter->no_tx_desc_avail2++;
1468                                         error = ENOBUFS;
1469                                         goto fail;
1470                                 }
1471                                 tx_buffer = &adapter->tx_buffer_area[i];
1472                                 current_tx_desc = &adapter->tx_desc_base[i];
1473                                 current_tx_desc->buffer_addr = htole64(
1474                                         desc_array.descriptor[counter].address);
1475                                 current_tx_desc->lower.data = htole32(
1476                                         adapter->txd_cmd | txd_lower |
1477                                         (uint16_t)desc_array.descriptor[counter].length);
1478                                 current_tx_desc->upper.data = htole32(txd_upper);
1479
1480                                 last = i;
1481                                 if (++i == adapter->num_tx_desc)
1482                                         i = 0;
1483
1484                                 tx_buffer->m_head = NULL;
1485                                 tx_buffer->next_eop = -1;
1486                                 txd_used++;
1487                         }
1488                 } else {
1489                         tx_buffer = &adapter->tx_buffer_area[i];
1490                         current_tx_desc = &adapter->tx_desc_base[i];
1491
1492                         current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1493                         current_tx_desc->lower.data = htole32(
1494                                 adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1495                         current_tx_desc->upper.data = htole32(txd_upper);
1496
1497                         last = i;
1498                         if (++i == adapter->num_tx_desc)
1499                                 i = 0;
1500
1501                         tx_buffer->m_head = NULL;
1502                         tx_buffer->next_eop = -1;
1503                 }
1504         }
1505
1506         adapter->next_avail_tx_desc = i;
1507         if (adapter->pcix_82544)
1508                 adapter->num_tx_desc_avail -= txd_used;
1509         else
1510                 adapter->num_tx_desc_avail -= q.nsegs;
1511
1512         /* Find out if we are in vlan mode */
1513         if (m_head->m_flags & M_VLANTAG) {
1514                 /* Set the vlan id */
1515                 current_tx_desc->upper.fields.special =
1516                         htole16(m_head->m_pkthdr.ether_vlantag);
1517
1518                 /* Tell hardware to add tag */
1519                 current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1520         }
1521
1522         tx_buffer->m_head = m_head;
1523         tx_buffer_first->map = tx_buffer->map;
1524         tx_buffer->map = map;
1525         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1526
1527         /*
1528          * Last Descriptor of Packet needs End Of Packet (EOP)
1529          * and Report Status (RS)
1530          */
1531         current_tx_desc->lower.data |=
1532                 htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1533
1534         /*
1535          * Keep track in the first buffer which descriptor will be
1536          * written back.
1537          */
1538         tx_buffer_first->next_eop = last;
1539
1540         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1541                         BUS_DMASYNC_PREWRITE);
1542
1543         /* 
1544          * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1545          * that this frame is available to transmit.
1546          */
1547         if (adapter->hw.mac_type == em_82547 &&
1548             adapter->link_duplex == HALF_DUPLEX) {
1549                 em_82547_move_tail_serialized(adapter);
1550         } else {
1551                 E1000_WRITE_REG(&adapter->hw, TDT, i);
1552                 if (adapter->hw.mac_type == em_82547) {
1553                         em_82547_update_fifo_head(adapter,
1554                                                   m_head->m_pkthdr.len);
1555                 }
1556         }
1557
1558         return (0);
1559 fail:
1560         bus_dmamap_unload(adapter->txtag, map);
1561         return error;
1562 }
1563
1564 /*********************************************************************
1565  *
1566  * 82547 workaround to avoid controller hang in half-duplex environment.
1567  * The workaround is to avoid queuing a large packet that would span
1568  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1569  * in this case. We do that only when FIFO is quiescent.
1570  *
1571  **********************************************************************/
1572 static void
1573 em_82547_move_tail(void *arg)
1574 {
1575         struct adapter *adapter = arg;
1576         struct ifnet *ifp = &adapter->interface_data.ac_if;
1577
1578         lwkt_serialize_enter(ifp->if_serializer);
1579         em_82547_move_tail_serialized(adapter);
1580         lwkt_serialize_exit(ifp->if_serializer);
1581 }
1582
1583 static void
1584 em_82547_move_tail_serialized(struct adapter *adapter)
1585 {
1586         uint16_t hw_tdt;
1587         uint16_t sw_tdt;
1588         struct em_tx_desc *tx_desc;
1589         uint16_t length = 0;
1590         boolean_t eop = 0;
1591
1592         hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1593         sw_tdt = adapter->next_avail_tx_desc;
1594
1595         while (hw_tdt != sw_tdt) {
1596                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1597                 length += tx_desc->lower.flags.length;
1598                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1599                 if (++hw_tdt == adapter->num_tx_desc)
1600                         hw_tdt = 0;
1601
1602                 if (eop) {
1603                         if (em_82547_fifo_workaround(adapter, length)) {
1604                                 adapter->tx_fifo_wrk_cnt++;
1605                                 callout_reset(&adapter->tx_fifo_timer, 1,
1606                                         em_82547_move_tail, adapter);
1607                                 break;
1608                         }
1609                         E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1610                         em_82547_update_fifo_head(adapter, length);
1611                         length = 0;
1612                 }
1613         }       
1614 }
1615
1616 static int
1617 em_82547_fifo_workaround(struct adapter *adapter, int len)
1618 {       
1619         int fifo_space, fifo_pkt_len;
1620
1621         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1622
1623         if (adapter->link_duplex == HALF_DUPLEX) {
1624                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1625
1626                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1627                         if (em_82547_tx_fifo_reset(adapter))
1628                                 return (0);
1629                         else
1630                                 return (1);
1631                 }
1632         }
1633
1634         return (0);
1635 }
1636
1637 static void
1638 em_82547_update_fifo_head(struct adapter *adapter, int len)
1639 {
1640         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1641
1642         /* tx_fifo_head is always 16 byte aligned */
1643         adapter->tx_fifo_head += fifo_pkt_len;
1644         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1645                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1646 }
1647
1648 static int
1649 em_82547_tx_fifo_reset(struct adapter *adapter)
1650 {
1651         uint32_t tctl;
1652
1653         if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1654             E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1655             E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1656             E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1657                 /* Disable TX unit */
1658                 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1659                 E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1660
1661                 /* Reset FIFO pointers */
1662                 E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1663                 E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1664                 E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1665                 E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1666
1667                 /* Re-enable TX unit */
1668                 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1669                 E1000_WRITE_FLUSH(&adapter->hw);
1670
1671                 adapter->tx_fifo_head = 0;
1672                 adapter->tx_fifo_reset_cnt++;
1673
1674                 return (TRUE);
1675         } else {
1676                 return (FALSE);
1677         }
1678 }
1679
1680 static void
1681 em_set_promisc(struct adapter *adapter)
1682 {
1683         uint32_t reg_rctl;
1684         struct ifnet *ifp = &adapter->interface_data.ac_if;
1685
1686         reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1687
1688         if (ifp->if_flags & IFF_PROMISC) {
1689                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1690                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1691         } else if (ifp->if_flags & IFF_ALLMULTI) {
1692                 reg_rctl |= E1000_RCTL_MPE;
1693                 reg_rctl &= ~E1000_RCTL_UPE;
1694                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1695         }
1696 }
1697
1698 static void
1699 em_disable_promisc(struct adapter *adapter)
1700 {
1701         uint32_t reg_rctl;
1702
1703         reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1704
1705         reg_rctl &= (~E1000_RCTL_UPE);
1706         reg_rctl &= (~E1000_RCTL_MPE);
1707         E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1708 }
1709
1710 /*********************************************************************
1711  *  Multicast Update
1712  *
1713  *  This routine is called whenever multicast address list is updated.
1714  *
1715  **********************************************************************/
1716
1717 static void
1718 em_set_multi(struct adapter *adapter)
1719 {
1720         uint32_t reg_rctl = 0;
1721         uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1722         struct ifmultiaddr *ifma;
1723         int mcnt = 0;
1724         struct ifnet *ifp = &adapter->interface_data.ac_if;
1725
1726         IOCTL_DEBUGOUT("em_set_multi: begin");
1727
1728         if (adapter->hw.mac_type == em_82542_rev2_0) {
1729                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1730                 if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1731                         em_pci_clear_mwi(&adapter->hw);
1732                 reg_rctl |= E1000_RCTL_RST;
1733                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1734                 msec_delay(5);
1735         }
1736
1737         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1738                 if (ifma->ifma_addr->sa_family != AF_LINK)
1739                         continue;
1740
1741                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1742                         break;
1743
1744                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1745                       &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1746                 mcnt++;
1747         }
1748
1749         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1750                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1751                 reg_rctl |= E1000_RCTL_MPE;
1752                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1753         } else {
1754                 em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1755         }
1756
1757         if (adapter->hw.mac_type == em_82542_rev2_0) {
1758                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1759                 reg_rctl &= ~E1000_RCTL_RST;
1760                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1761                 msec_delay(5);
1762                 if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1763                         em_pci_set_mwi(&adapter->hw);
1764         }
1765 }
1766
1767 /*********************************************************************
1768  *  Timer routine
1769  *
1770  *  This routine checks for link status and updates statistics.
1771  *
1772  **********************************************************************/
1773
1774 static void
1775 em_local_timer(void *arg)
1776 {
1777         struct ifnet *ifp;
1778         struct adapter *adapter = arg;
1779         ifp = &adapter->interface_data.ac_if;
1780
1781         lwkt_serialize_enter(ifp->if_serializer);
1782
1783         em_check_for_link(&adapter->hw);
1784         em_update_link_status(adapter);
1785         em_update_stats_counters(adapter);
1786         if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1787                 em_print_hw_stats(adapter);
1788         em_smartspeed(adapter);
1789
1790         callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1791
1792         lwkt_serialize_exit(ifp->if_serializer);
1793 }
1794
1795 static void
1796 em_update_link_status(struct adapter *adapter)
1797 {
1798         struct ifnet *ifp;
1799         ifp = &adapter->interface_data.ac_if;
1800
1801         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1802                 if (adapter->link_active == 0) {
1803                         em_get_speed_and_duplex(&adapter->hw, 
1804                                                 &adapter->link_speed, 
1805                                                 &adapter->link_duplex);
1806                         /* Check if we may set SPEED_MODE bit on PCI-E */
1807                         if (adapter->link_speed == SPEED_1000 &&
1808                             (adapter->hw.mac_type == em_82571 ||
1809                              adapter->hw.mac_type == em_82572)) {
1810                                 int tarc0;
1811
1812                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1813                                 tarc0 |= SPEED_MODE_BIT;
1814                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1815                         }
1816                         if (bootverbose) {
1817                                 if_printf(&adapter->interface_data.ac_if,
1818                                           "Link is up %d Mbps %s\n",
1819                                           adapter->link_speed,
1820                                           adapter->link_duplex == FULL_DUPLEX ?
1821                                                 "Full Duplex" : "Half Duplex");
1822                         }
1823                         adapter->link_active = 1;
1824                         adapter->smartspeed = 0;
1825                         ifp->if_baudrate = adapter->link_speed * 1000000;
1826                         ifp->if_link_state = LINK_STATE_UP;
1827                         if_link_state_change(ifp);
1828                 }
1829         } else {
1830                 if (adapter->link_active == 1) {
1831                         ifp->if_baudrate = 0;
1832                         adapter->link_speed = 0;
1833                         adapter->link_duplex = 0;
1834                         if (bootverbose) {
1835                                 if_printf(&adapter->interface_data.ac_if,
1836                                           "Link is Down\n");
1837                         }
1838                         adapter->link_active = 0;
1839                         ifp->if_link_state = LINK_STATE_DOWN;
1840                         if_link_state_change(ifp);
1841                 }
1842         }
1843 }
1844
1845 /*********************************************************************
1846  *
1847  *  This routine disables all traffic on the adapter by issuing a
1848  *  global reset on the MAC and deallocates TX/RX buffers.
1849  *
1850  **********************************************************************/
1851
1852 static void
1853 em_stop(void *arg)
1854 {
1855         struct ifnet   *ifp;
1856         struct adapter * adapter = arg;
1857         ifp = &adapter->interface_data.ac_if;
1858
1859         ASSERT_SERIALIZED(ifp->if_serializer);
1860
1861         INIT_DEBUGOUT("em_stop: begin");
1862         em_disable_intr(adapter);
1863         em_reset_hw(&adapter->hw);
1864         callout_stop(&adapter->timer);
1865         callout_stop(&adapter->tx_fifo_timer);
1866         em_free_transmit_structures(adapter);
1867         em_free_receive_structures(adapter);
1868
1869         /* Tell the stack that the interface is no longer active */
1870         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1871         ifp->if_timer = 0;
1872 }
1873
1874 /*********************************************************************
1875  *
1876  *  Determine hardware revision.
1877  *
1878  **********************************************************************/
1879 static void
1880 em_identify_hardware(struct adapter *adapter)
1881 {
1882         device_t dev = adapter->dev;
1883
1884         /* Make sure our PCI config space has the necessary stuff set */
1885         adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1886         if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1887               (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1888                 device_printf(dev, "Memory Access and/or Bus Master bits "
1889                               "were not set!\n");
1890                 adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1891                                             PCIM_CMD_MEMEN;
1892                 pci_write_config(dev, PCIR_COMMAND,
1893                                  adapter->hw.pci_cmd_word, 2);
1894         }
1895
1896         /* Save off the information about this board */
1897         adapter->hw.vendor_id = pci_get_vendor(dev);
1898         adapter->hw.device_id = pci_get_device(dev);
1899         adapter->hw.revision_id = pci_get_revid(dev);
1900         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1901         adapter->hw.subsystem_id = pci_get_subdevice(dev);
1902
1903         /* Identify the MAC */
1904         if (em_set_mac_type(&adapter->hw))
1905                 device_printf(dev, "Unknown MAC Type\n");
1906
1907         if (adapter->hw.mac_type == em_82541 ||
1908             adapter->hw.mac_type == em_82541_rev_2 ||
1909             adapter->hw.mac_type == em_82547 ||
1910             adapter->hw.mac_type == em_82547_rev_2)
1911                 adapter->hw.phy_init_script = TRUE;
1912 }
1913
1914 static int
1915 em_allocate_pci_resources(device_t dev)
1916 {
1917         struct adapter *adapter = device_get_softc(dev);
1918         int rid;
1919
1920         rid = PCIR_BAR(0);
1921         adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1922                                                      &rid, RF_ACTIVE);
1923         if (adapter->res_memory == NULL) {
1924                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1925                 return ENXIO;
1926         }
1927         adapter->osdep.mem_bus_space_tag =
1928                 rman_get_bustag(adapter->res_memory);
1929         adapter->osdep.mem_bus_space_handle =
1930             rman_get_bushandle(adapter->res_memory);
1931         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1932
1933         if (adapter->hw.mac_type > em_82543) {
1934                 /* Figure our where our IO BAR is ? */
1935                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1936                         uint32_t val;
1937
1938                         val = pci_read_config(dev, rid, 4);
1939                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1940                                 adapter->io_rid = rid;
1941                                 break;
1942                         }
1943                         rid += 4;
1944                         /* check for 64bit BAR */
1945                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1946                                 rid += 4;
1947                 }
1948                 if (rid >= PCIR_CIS) {
1949                         device_printf(dev, "Unable to locate IO BAR\n");
1950                         return (ENXIO);
1951                 }
1952
1953                 adapter->res_ioport = bus_alloc_resource_any(dev,
1954                     SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1955                 if (!(adapter->res_ioport)) {
1956                         device_printf(dev, "Unable to allocate bus resource: "
1957                                       "ioport\n");
1958                         return ENXIO;
1959                 }
1960                 adapter->hw.io_base = 0;
1961                 adapter->osdep.io_bus_space_tag =
1962                         rman_get_bustag(adapter->res_ioport);
1963                 adapter->osdep.io_bus_space_handle =
1964                         rman_get_bushandle(adapter->res_ioport);
1965         }
1966
1967         /* For ICH8 we need to find the flash memory. */
1968         if ((adapter->hw.mac_type == em_ich8lan) ||
1969             (adapter->hw.mac_type == em_ich9lan)) {
1970                 rid = EM_FLASH;
1971                 adapter->flash_mem = bus_alloc_resource_any(dev,
1972                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
1973                 if (adapter->flash_mem == NULL) {
1974                         device_printf(dev, "Unable to allocate bus resource: "
1975                                       "flash memory\n");
1976                         return ENXIO;
1977                 }
1978                 adapter->osdep.flash_bus_space_tag =
1979                     rman_get_bustag(adapter->flash_mem);
1980                 adapter->osdep.flash_bus_space_handle =
1981                     rman_get_bushandle(adapter->flash_mem);
1982         }
1983
1984         rid = 0x0;
1985         adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1986             &rid, RF_SHAREABLE | RF_ACTIVE);
1987         if (adapter->res_interrupt == NULL) {
1988                 device_printf(dev, "Unable to allocate bus resource: "
1989                               "interrupt\n");
1990                 return ENXIO;
1991         }
1992
1993         adapter->hw.back = &adapter->osdep;
1994
1995         return 0;
1996 }
1997
1998 static void
1999 em_free_pci_resources(device_t dev)
2000 {
2001         struct adapter *adapter = device_get_softc(dev);
2002
2003         if (adapter->res_interrupt != NULL) {
2004                 bus_release_resource(dev, SYS_RES_IRQ, 0, 
2005                                      adapter->res_interrupt);
2006         }
2007         if (adapter->res_memory != NULL) {
2008                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 
2009                                      adapter->res_memory);
2010         }
2011
2012         if (adapter->res_ioport != NULL) {
2013                 bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid, 
2014                                      adapter->res_ioport);
2015         }
2016
2017         if (adapter->flash_mem != NULL) {
2018                 bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2019                                      adapter->flash_mem);
2020         }
2021 }
2022
2023 /*********************************************************************
2024  *
2025  *  Initialize the hardware to a configuration as specified by the
2026  *  adapter structure. The controller is reset, the EEPROM is
2027  *  verified, the MAC address is set, then the shared initialization
2028  *  routines are called.
2029  *
2030  **********************************************************************/
2031 static int
2032 em_hardware_init(struct adapter *adapter)
2033 {
2034         uint16_t        rx_buffer_size;
2035
2036         INIT_DEBUGOUT("em_hardware_init: begin");
2037         /* Issue a global reset */
2038         em_reset_hw(&adapter->hw);
2039
2040         /* When hardware is reset, fifo_head is also reset */
2041         adapter->tx_fifo_head = 0;
2042
2043         /* Make sure we have a good EEPROM before we read from it */
2044         if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2045                 if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2046                         device_printf(adapter->dev,
2047                                       "The EEPROM Checksum Is Not Valid\n");
2048                         return (EIO);
2049                 }
2050         }
2051
2052         if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2053                 device_printf(adapter->dev,
2054                               "EEPROM read error while reading part number\n");
2055                 return (EIO);
2056         }
2057
2058         /* Set up smart power down as default off on newer adapters. */
2059         if (!em_smart_pwr_down &&
2060             (adapter->hw.mac_type == em_82571 ||
2061              adapter->hw.mac_type == em_82572)) {
2062                 uint16_t phy_tmp = 0;
2063
2064                 /* Speed up time to link by disabling smart power down. */
2065                 em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2066                                 &phy_tmp);
2067                 phy_tmp &= ~IGP02E1000_PM_SPD;
2068                 em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2069                                  phy_tmp);
2070         }
2071
2072         /*
2073          * These parameters control the automatic generation (Tx) and
2074          * response (Rx) to Ethernet PAUSE frames.
2075          * - High water mark should allow for at least two frames to be
2076          *   received after sending an XOFF.
2077          * - Low water mark works best when it is very near the high water mark.
2078          *   This allows the receiver to restart by sending XON when it has
2079          *   drained a bit.  Here we use an arbitary value of 1500 which will
2080          *   restart after one full frame is pulled from the buffer.  There
2081          *   could be several smaller frames in the buffer and if so they will
2082          *   not trigger the XON until their total number reduces the buffer
2083          *   by 1500.
2084          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2085          */
2086         rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2087
2088         adapter->hw.fc_high_water =
2089             rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024); 
2090         adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2091         if (adapter->hw.mac_type == em_80003es2lan)
2092                 adapter->hw.fc_pause_time = 0xFFFF;
2093         else
2094                 adapter->hw.fc_pause_time = 1000;
2095         adapter->hw.fc_send_xon = TRUE;
2096         adapter->hw.fc = E1000_FC_FULL;
2097
2098         if (em_init_hw(&adapter->hw) < 0) {
2099                 device_printf(adapter->dev, "Hardware Initialization Failed");
2100                 return (EIO);
2101         }
2102
2103         em_check_for_link(&adapter->hw);
2104
2105         return (0);
2106 }
2107
2108 /*********************************************************************
2109  *
2110  *  Setup networking device structure and register an interface.
2111  *
2112  **********************************************************************/
2113 static void
2114 em_setup_interface(device_t dev, struct adapter *adapter)
2115 {
2116         struct ifnet *ifp;
2117         u_char fiber_type = IFM_1000_SX;        /* default type */
2118         INIT_DEBUGOUT("em_setup_interface: begin");
2119
2120         ifp = &adapter->interface_data.ac_if;
2121         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2122         ifp->if_mtu = ETHERMTU;
2123         ifp->if_baudrate = 1000000000;
2124         ifp->if_init =  em_init;
2125         ifp->if_softc = adapter;
2126         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2127         ifp->if_ioctl = em_ioctl;
2128         ifp->if_start = em_start;
2129 #ifdef DEVICE_POLLING
2130         ifp->if_poll = em_poll;
2131 #endif
2132         ifp->if_watchdog = em_watchdog;
2133         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2134         ifq_set_ready(&ifp->if_snd);
2135
2136         if (adapter->hw.mac_type >= em_82543)
2137                 ifp->if_capabilities |= IFCAP_HWCSUM;
2138
2139         ifp->if_capenable = ifp->if_capabilities;
2140
2141         ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2142
2143 #ifdef PROFILE_SERIALIZER
2144         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2145                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2146                         "serializer_sleep", CTLFLAG_RW,
2147                         &ifp->if_serializer->sleep_cnt, 0, NULL);
2148         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2149                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2150                         "serializer_tryfail", CTLFLAG_RW,
2151                         &ifp->if_serializer->tryfail_cnt, 0, NULL);
2152         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2153                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2154                         "serializer_enter", CTLFLAG_RW,
2155                         &ifp->if_serializer->enter_cnt, 0, NULL);
2156         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2157                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2158                         "serializer_try", CTLFLAG_RW,
2159                         &ifp->if_serializer->try_cnt, 0, NULL);
2160 #endif
2161
2162         /*
2163          * Tell the upper layer(s) we support long frames.
2164          */
2165         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2166         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2167         ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2168
2169         /*
2170          * Specify the media types supported by this adapter and register
2171          * callbacks to update media and link information
2172          */
2173         ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2174                      em_media_status);
2175         if (adapter->hw.media_type == em_media_type_fiber ||
2176             adapter->hw.media_type == em_media_type_internal_serdes) {
2177                 if (adapter->hw.mac_type == em_82545)
2178                         fiber_type = IFM_1000_LX;
2179                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2180                             0, NULL);
2181                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2182         } else {
2183                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2184                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2185                             0, NULL);
2186                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2187                             0, NULL);
2188                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2189                             0, NULL);
2190                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2191                             0, NULL);
2192                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2193         }
2194         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2195         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2196 }
2197
2198 /*********************************************************************
2199  *
2200  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2201  *
2202  **********************************************************************/
2203 static void
2204 em_smartspeed(struct adapter *adapter)
2205 {
2206         uint16_t phy_tmp;
2207
2208         if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2209             !adapter->hw.autoneg ||
2210             !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2211                 return;
2212
2213         if (adapter->smartspeed == 0) {
2214                 /*
2215                  * If Master/Slave config fault is asserted twice,
2216                  * we assume back-to-back.
2217                  */
2218                 em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2219                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2220                         return;
2221                 em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2222                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2223                         em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2224                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2225                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2226                                 em_write_phy_reg(&adapter->hw,
2227                                                  PHY_1000T_CTRL, phy_tmp);
2228                                 adapter->smartspeed++;
2229                                 if (adapter->hw.autoneg &&
2230                                     !em_phy_setup_autoneg(&adapter->hw) &&
2231                                     !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2232                                                      &phy_tmp)) {
2233                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2234                                                     MII_CR_RESTART_AUTO_NEG);
2235                                         em_write_phy_reg(&adapter->hw,
2236                                                          PHY_CTRL, phy_tmp);
2237                                 }
2238                         }
2239                 }
2240                 return;
2241         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2242                 /* If still no link, perhaps using 2/3 pair cable */
2243                 em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2244                 phy_tmp |= CR_1000T_MS_ENABLE;
2245                 em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2246                 if (adapter->hw.autoneg &&
2247                     !em_phy_setup_autoneg(&adapter->hw) &&
2248                     !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2249                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2250                                     MII_CR_RESTART_AUTO_NEG);
2251                         em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2252                 }
2253         }
2254         /* Restart process after EM_SMARTSPEED_MAX iterations */
2255         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2256                 adapter->smartspeed = 0;
2257 }
2258
2259 /*
2260  * Manage DMA'able memory.
2261  */
2262 static void
2263 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2264 {
2265         if (error)
2266                 return;
2267         *(bus_addr_t *)arg = segs->ds_addr;
2268 }
2269
2270 static int
2271 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2272               struct em_dma_alloc *dma)
2273 {
2274         device_t dev = adapter->dev;
2275         int error;
2276
2277         error = bus_dma_tag_create(NULL,                /* parent */
2278                                    EM_DBA_ALIGN, 0,     /* alignment, bounds */
2279                                    BUS_SPACE_MAXADDR,   /* lowaddr */
2280                                    BUS_SPACE_MAXADDR,   /* highaddr */
2281                                    NULL, NULL,          /* filter, filterarg */
2282                                    size,                /* maxsize */
2283                                    1,                   /* nsegments */
2284                                    size,                /* maxsegsize */
2285                                    0,                   /* flags */
2286                                    &dma->dma_tag);
2287         if (error) {
2288                 device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2289                               __func__, error);
2290                 return error;
2291         }
2292
2293         error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2294                                  BUS_DMA_WAITOK, &dma->dma_map);
2295         if (error) {
2296                 device_printf(dev, "%s: bus_dmammem_alloc failed; "
2297                               "size %llu, error %d\n",
2298                               __func__, (uintmax_t)size, error);
2299                 goto fail;
2300         }
2301
2302         error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2303                                 dma->dma_vaddr, size,
2304                                 em_dmamap_cb, &dma->dma_paddr,
2305                                 BUS_DMA_WAITOK);
2306         if (error) {
2307                 device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2308                               __func__, error);
2309                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2310                 goto fail;
2311         }
2312
2313         return 0;
2314 fail:
2315         bus_dma_tag_destroy(dma->dma_tag);
2316         dma->dma_tag = NULL;
2317         return error;
2318 }
2319
2320 static void
2321 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2322 {
2323         if (dma->dma_tag != NULL) {
2324                 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2325                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2326                 bus_dma_tag_destroy(dma->dma_tag);
2327                 dma->dma_tag = NULL;
2328         }
2329 }
2330
2331 /*********************************************************************
2332  *
2333  *  Allocate and initialize transmit structures.
2334  *
2335  **********************************************************************/
2336 static int
2337 em_setup_transmit_structures(struct adapter *adapter)
2338 {
2339         struct em_buffer *tx_buffer;
2340         bus_size_t size;
2341         int error, i;
2342
2343         /*
2344          * Setup DMA descriptor areas.
2345          */
2346         size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2347         if (bus_dma_tag_create(NULL,                    /* parent */
2348                                1, 0,                    /* alignment, bounds */
2349                                BUS_SPACE_MAXADDR,       /* lowaddr */ 
2350                                BUS_SPACE_MAXADDR,       /* highaddr */
2351                                NULL, NULL,              /* filter, filterarg */
2352                                size,                    /* maxsize */
2353                                EM_MAX_SCATTER,          /* nsegments */
2354                                size,                    /* maxsegsize */
2355                                0,                       /* flags */ 
2356                                &adapter->txtag)) {
2357                 device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2358                 return(ENOMEM);
2359         }
2360
2361         adapter->tx_buffer_area =
2362                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2363                         M_DEVBUF, M_WAITOK | M_ZERO);
2364
2365         bzero(adapter->tx_desc_base,
2366               sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2367         tx_buffer = adapter->tx_buffer_area;
2368         for (i = 0; i < adapter->num_tx_desc; i++) {
2369                 error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2370                 if (error) {
2371                         device_printf(adapter->dev,
2372                                       "Unable to create TX DMA map\n");
2373                         goto fail;
2374                 }
2375                 tx_buffer++;
2376         }
2377
2378         adapter->next_avail_tx_desc = 0;
2379         adapter->next_tx_to_clean = 0;
2380
2381         /* Set number of descriptors available */
2382         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2383
2384         /* Set checksum context */
2385         adapter->active_checksum_context = OFFLOAD_NONE;
2386
2387         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2388                         BUS_DMASYNC_PREWRITE);
2389
2390         return (0);
2391 fail:
2392         em_free_transmit_structures(adapter);
2393         return (error);
2394 }
2395
2396 /*********************************************************************
2397  *
2398  *  Enable transmit unit.
2399  *
2400  **********************************************************************/
2401 static void
2402 em_initialize_transmit_unit(struct adapter *adapter)
2403 {
2404         uint32_t reg_tctl;
2405         uint32_t reg_tipg = 0;
2406         uint64_t bus_addr;
2407
2408         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2409
2410         /* Setup the Base and Length of the Tx Descriptor Ring */
2411         bus_addr = adapter->txdma.dma_paddr;
2412         E1000_WRITE_REG(&adapter->hw, TDLEN,
2413                         adapter->num_tx_desc * sizeof(struct em_tx_desc));
2414         E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2415         E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2416
2417         /* Setup the HW Tx Head and Tail descriptor pointers */
2418         E1000_WRITE_REG(&adapter->hw, TDT, 0);
2419         E1000_WRITE_REG(&adapter->hw, TDH, 0);
2420
2421         HW_DEBUGOUT2("Base = %x, Length = %x\n",
2422                      E1000_READ_REG(&adapter->hw, TDBAL),
2423                      E1000_READ_REG(&adapter->hw, TDLEN));
2424
2425         /* Set the default values for the Tx Inter Packet Gap timer */
2426         switch (adapter->hw.mac_type) {
2427         case em_82542_rev2_0:
2428         case em_82542_rev2_1:
2429                 reg_tipg = DEFAULT_82542_TIPG_IPGT;
2430                 reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2431                 reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2432                 break;
2433         case em_80003es2lan:
2434                 reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2435                 reg_tipg |=
2436                     DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2437                 break;
2438         default:
2439                 if (adapter->hw.media_type == em_media_type_fiber ||
2440                     adapter->hw.media_type == em_media_type_internal_serdes)
2441                         reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2442                 else
2443                         reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2444                 reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2445                 reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2446         }
2447
2448         E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2449         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2450         if (adapter->hw.mac_type >= em_82540) {
2451                 E1000_WRITE_REG(&adapter->hw, TADV,
2452                                 adapter->tx_abs_int_delay.value);
2453         }
2454
2455         /* Program the Transmit Control Register */
2456         reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2457                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2458         if (adapter->hw.mac_type >= em_82571)
2459                 reg_tctl |= E1000_TCTL_MULR;
2460         if (adapter->link_duplex == 1)
2461                 reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2462         else
2463                 reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2464
2465         /* This write will effectively turn on the transmit unit. */
2466         E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2467
2468         /* Setup Transmit Descriptor Base Settings */
2469         adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2470
2471         if (adapter->tx_int_delay.value > 0)
2472                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2473 }
2474
2475 /*********************************************************************
2476  *
2477  *  Free all transmit related data structures.
2478  *
2479  **********************************************************************/
2480 static void
2481 em_free_transmit_structures(struct adapter *adapter)
2482 {
2483         struct em_buffer *tx_buffer;
2484         int i;
2485
2486         INIT_DEBUGOUT("free_transmit_structures: begin");
2487
2488         if (adapter->tx_buffer_area != NULL) {
2489                 tx_buffer = adapter->tx_buffer_area;
2490                 for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2491                         if (tx_buffer->m_head != NULL) {
2492                                 bus_dmamap_unload(adapter->txtag,
2493                                                   tx_buffer->map);
2494                                 m_freem(tx_buffer->m_head);
2495                         }
2496
2497                         if (tx_buffer->map != NULL) {
2498                                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2499                                 tx_buffer->map = NULL;
2500                         }
2501                         tx_buffer->m_head = NULL;
2502                 }
2503         }
2504         if (adapter->tx_buffer_area != NULL) {
2505                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2506                 adapter->tx_buffer_area = NULL;
2507         }
2508         if (adapter->txtag != NULL) {
2509                 bus_dma_tag_destroy(adapter->txtag);
2510                 adapter->txtag = NULL;
2511         }
2512 }
2513
2514 /*********************************************************************
2515  *
2516  *  The offload context needs to be set when we transfer the first
2517  *  packet of a particular protocol (TCP/UDP). We change the
2518  *  context only if the protocol type changes.
2519  *
2520  **********************************************************************/
2521 static void
2522 em_transmit_checksum_setup(struct adapter *adapter,
2523                            struct mbuf *mp,
2524                            uint32_t *txd_upper,
2525                            uint32_t *txd_lower) 
2526 {
2527         struct em_context_desc *TXD;
2528         struct em_buffer *tx_buffer;
2529         int curr_txd;
2530
2531         if (mp->m_pkthdr.csum_flags) {
2532                 if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2533                         *txd_upper = E1000_TXD_POPTS_TXSM << 8;
2534                         *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2535                         if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2536                                 return;
2537                         else
2538                                 adapter->active_checksum_context = OFFLOAD_TCP_IP;
2539                 } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2540                         *txd_upper = E1000_TXD_POPTS_TXSM << 8;
2541                         *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2542                         if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2543                                 return;
2544                         else
2545                                 adapter->active_checksum_context = OFFLOAD_UDP_IP;
2546                 } else {
2547                         *txd_upper = 0;
2548                         *txd_lower = 0;
2549                         return;
2550                 }
2551         } else {
2552                 *txd_upper = 0;
2553                 *txd_lower = 0;
2554                 return;
2555         }
2556
2557         /*
2558          * If we reach this point, the checksum offload context
2559          * needs to be reset.
2560          */
2561         curr_txd = adapter->next_avail_tx_desc;
2562         tx_buffer = &adapter->tx_buffer_area[curr_txd];
2563         TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2564
2565         TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2566         TXD->lower_setup.ip_fields.ipcso =
2567             ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2568         TXD->lower_setup.ip_fields.ipcse =
2569             htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2570
2571         TXD->upper_setup.tcp_fields.tucss =
2572             ETHER_HDR_LEN + sizeof(struct ip);
2573         TXD->upper_setup.tcp_fields.tucse = htole16(0);
2574
2575         if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2576                 TXD->upper_setup.tcp_fields.tucso =
2577                         ETHER_HDR_LEN + sizeof(struct ip) +
2578                         offsetof(struct tcphdr, th_sum);
2579         } else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2580                 TXD->upper_setup.tcp_fields.tucso =
2581                         ETHER_HDR_LEN + sizeof(struct ip) +
2582                         offsetof(struct udphdr, uh_sum);
2583         }
2584
2585         TXD->tcp_seg_setup.data = htole32(0);
2586         TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2587
2588         tx_buffer->m_head = NULL;
2589         tx_buffer->next_eop = -1;
2590
2591         if (++curr_txd == adapter->num_tx_desc)
2592                 curr_txd = 0;
2593
2594         adapter->num_tx_desc_avail--;
2595         adapter->next_avail_tx_desc = curr_txd;
2596 }
2597
2598 /**********************************************************************
2599  *
2600  *  Examine each tx_buffer in the used queue. If the hardware is done
2601  *  processing the packet then free associated resources. The
2602  *  tx_buffer is put back on the free queue.
2603  *
2604  **********************************************************************/
2605
2606 static void
2607 em_txeof(struct adapter *adapter)
2608 {
2609         int first, last, done, num_avail;
2610         struct em_buffer *tx_buffer;
2611         struct em_tx_desc *tx_desc, *eop_desc;
2612         struct ifnet *ifp = &adapter->interface_data.ac_if;
2613
2614         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2615                 return;
2616
2617         num_avail = adapter->num_tx_desc_avail; 
2618         first = adapter->next_tx_to_clean;
2619         tx_desc = &adapter->tx_desc_base[first];
2620         tx_buffer = &adapter->tx_buffer_area[first];
2621         last = tx_buffer->next_eop;
2622         KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2623         eop_desc = &adapter->tx_desc_base[last];
2624
2625         /*
2626          * Now caculate the terminating index for the cleanup loop below
2627          */
2628         if (++last == adapter->num_tx_desc)
2629                 last = 0;
2630         done = last;
2631
2632         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2633                         BUS_DMASYNC_POSTREAD);
2634
2635         while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2636                 while (first != done) {
2637                         tx_desc->upper.data = 0;
2638                         tx_desc->lower.data = 0;
2639                         num_avail++;
2640
2641                         logif(pkt_txclean);
2642
2643                         if (tx_buffer->m_head) {
2644                                 ifp->if_opackets++;
2645                                 bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2646                                                 BUS_DMASYNC_POSTWRITE);
2647                                 bus_dmamap_unload(adapter->txtag,
2648                                                   tx_buffer->map);
2649
2650                                 m_freem(tx_buffer->m_head);
2651                                 tx_buffer->m_head = NULL;
2652                         }
2653                         tx_buffer->next_eop = -1;
2654
2655                         if (++first == adapter->num_tx_desc)
2656                                 first = 0;
2657
2658                         tx_buffer = &adapter->tx_buffer_area[first];
2659                         tx_desc = &adapter->tx_desc_base[first];
2660                 }
2661                 /* See if we can continue to the next packet */
2662                 last = tx_buffer->next_eop;
2663                 if (last != -1) {
2664                         KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2665                         eop_desc = &adapter->tx_desc_base[last];
2666                         if (++last == adapter->num_tx_desc)
2667                                 last = 0;
2668                         done = last;
2669                 } else {
2670                         break;
2671                 }
2672         }
2673
2674         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2675                         BUS_DMASYNC_PREWRITE);
2676
2677         adapter->next_tx_to_clean = first;
2678
2679         /*
2680          * If we have enough room, clear IFF_OACTIVE to tell the stack
2681          * that it is OK to send packets.
2682          * If there are no pending descriptors, clear the timeout. Otherwise,
2683          * if some descriptors have been freed, restart the timeout.
2684          */
2685         if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2686                 ifp->if_flags &= ~IFF_OACTIVE;
2687                 if (num_avail == adapter->num_tx_desc)
2688                         ifp->if_timer = 0;
2689                 else if (num_avail == adapter->num_tx_desc_avail)
2690                         ifp->if_timer = EM_TX_TIMEOUT;
2691         }
2692         adapter->num_tx_desc_avail = num_avail;
2693 }
2694
2695 /*********************************************************************
2696  *
2697  *  Get a buffer from system mbuf buffer pool.
2698  *
2699  **********************************************************************/
2700 static int
2701 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2702 {
2703         struct mbuf *mp = nmp;
2704         struct em_buffer *rx_buffer;
2705         struct ifnet *ifp;
2706         bus_addr_t paddr;
2707         int error;
2708
2709         ifp = &adapter->interface_data.ac_if;
2710
2711         if (mp == NULL) {
2712                 mp = m_getcl(how, MT_DATA, M_PKTHDR);
2713                 if (mp == NULL) {
2714                         adapter->mbuf_cluster_failed++;
2715                         return (ENOBUFS);
2716                 }
2717                 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2718         } else {
2719                 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2720                 mp->m_data = mp->m_ext.ext_buf;
2721                 mp->m_next = NULL;
2722         }
2723
2724         if (ifp->if_mtu <= ETHERMTU)
2725                 m_adj(mp, ETHER_ALIGN);
2726
2727         rx_buffer = &adapter->rx_buffer_area[i];
2728
2729         /*
2730          * Using memory from the mbuf cluster pool, invoke the
2731          * bus_dma machinery to arrange the memory mapping.
2732          */
2733         error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2734                                 mtod(mp, void *), mp->m_len,
2735                                 em_dmamap_cb, &paddr, 0);
2736         if (error) {
2737                 m_freem(mp);
2738                 return (error);
2739         }
2740         rx_buffer->m_head = mp;
2741         adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2742         bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2743
2744         return (0);
2745 }
2746
2747 /*********************************************************************
2748  *
2749  *  Allocate memory for rx_buffer structures. Since we use one
2750  *  rx_buffer per received packet, the maximum number of rx_buffer's
2751  *  that we'll need is equal to the number of receive descriptors
2752  *  that we've allocated.
2753  *
2754  **********************************************************************/
2755 static int
2756 em_allocate_receive_structures(struct adapter *adapter)
2757 {
2758         int i, error, size;
2759         struct em_buffer *rx_buffer;
2760
2761         size = adapter->num_rx_desc * sizeof(struct em_buffer);
2762         adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2763
2764         error = bus_dma_tag_create(NULL,                /* parent */
2765                                    1, 0,                /* alignment, bounds */
2766                                    BUS_SPACE_MAXADDR,   /* lowaddr */
2767                                    BUS_SPACE_MAXADDR,   /* highaddr */
2768                                    NULL, NULL,          /* filter, filterarg */
2769                                    MCLBYTES,            /* maxsize */
2770                                    1,                   /* nsegments */
2771                                    MCLBYTES,            /* maxsegsize */
2772                                    0,                   /* flags */
2773                                    &adapter->rxtag);
2774         if (error) {
2775                 device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2776                               "error %u\n", __func__, error);
2777                 goto fail;
2778         }
2779  
2780         rx_buffer = adapter->rx_buffer_area;
2781         for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2782                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2783                                           &rx_buffer->map);
2784                 if (error) {
2785                         device_printf(adapter->dev,
2786                                       "%s: bus_dmamap_create failed; "
2787                                       "error %u\n", __func__, error);
2788                         goto fail;
2789                 }
2790         }
2791
2792         for (i = 0; i < adapter->num_rx_desc; i++) {
2793                 error = em_get_buf(i, adapter, NULL, MB_DONTWAIT);
2794                 if (error)
2795                         goto fail;
2796         }
2797
2798         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2799                         BUS_DMASYNC_PREWRITE);
2800
2801         return (0);
2802 fail:
2803         em_free_receive_structures(adapter);
2804         return (error);
2805 }
2806
2807 /*********************************************************************
2808  *
2809  *  Allocate and initialize receive structures.
2810  *
2811  **********************************************************************/
2812 static int
2813 em_setup_receive_structures(struct adapter *adapter)
2814 {
2815         int error;
2816
2817         bzero(adapter->rx_desc_base,
2818               sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2819
2820         error = em_allocate_receive_structures(adapter);
2821         if (error)
2822                 return (error);
2823
2824         /* Setup our descriptor pointers */
2825         adapter->next_rx_desc_to_check = 0;
2826
2827         return (0);
2828 }
2829
2830 /*********************************************************************
2831  *
2832  *  Enable receive unit.
2833  *
2834  **********************************************************************/
2835 static void
2836 em_initialize_receive_unit(struct adapter *adapter)
2837 {
2838         uint32_t reg_rctl;
2839         uint32_t reg_rxcsum;
2840         struct ifnet *ifp;
2841         uint64_t bus_addr;
2842  
2843         INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2844
2845         ifp = &adapter->interface_data.ac_if;
2846
2847         /*
2848          * Make sure receives are disabled while setting
2849          * up the descriptor ring
2850          */
2851         E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2852
2853         /* Set the Receive Delay Timer Register */
2854         E1000_WRITE_REG(&adapter->hw, RDTR, 
2855                         adapter->rx_int_delay.value | E1000_RDT_FPDB);
2856
2857         if(adapter->hw.mac_type >= em_82540) {
2858                 E1000_WRITE_REG(&adapter->hw, RADV,
2859                                 adapter->rx_abs_int_delay.value);
2860
2861                 /* Set the interrupt throttling rate in 256ns increments */  
2862                 if (em_int_throttle_ceil) {
2863                         E1000_WRITE_REG(&adapter->hw, ITR,
2864                                 1000000000 / 256 / em_int_throttle_ceil);
2865                 } else {
2866                         E1000_WRITE_REG(&adapter->hw, ITR, 0);
2867                 }
2868         }
2869
2870         /* Setup the Base and Length of the Rx Descriptor Ring */
2871         bus_addr = adapter->rxdma.dma_paddr;
2872         E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2873                         sizeof(struct em_rx_desc));
2874         E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2875         E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2876
2877         /* Setup the Receive Control Register */
2878         reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2879                    E1000_RCTL_RDMTS_HALF |
2880                    (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2881
2882         if (adapter->hw.tbi_compatibility_on == TRUE)
2883                 reg_rctl |= E1000_RCTL_SBP;
2884
2885         switch (adapter->rx_buffer_len) {
2886         default:
2887         case EM_RXBUFFER_2048:
2888                 reg_rctl |= E1000_RCTL_SZ_2048;
2889                 break;
2890         case EM_RXBUFFER_4096:
2891                 reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2892                             E1000_RCTL_LPE;
2893                 break;            
2894         case EM_RXBUFFER_8192:
2895                 reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2896                             E1000_RCTL_LPE;
2897                 break;
2898         case EM_RXBUFFER_16384:
2899                 reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2900                             E1000_RCTL_LPE;
2901                 break;
2902         }
2903
2904         if (ifp->if_mtu > ETHERMTU)
2905                 reg_rctl |= E1000_RCTL_LPE;
2906
2907         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2908         if ((adapter->hw.mac_type >= em_82543) &&
2909             (ifp->if_capenable & IFCAP_RXCSUM)) {
2910                 reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2911                 reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2912                 E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2913         }
2914
2915 #ifdef EM_X60_WORKAROUND
2916         if (adapter->hw.mac_type == em_82573)
2917                 E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2918 #endif
2919
2920         /* Enable Receives */
2921         E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2922
2923         /* Setup the HW Rx Head and Tail Descriptor Pointers */
2924         E1000_WRITE_REG(&adapter->hw, RDH, 0);
2925         E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2926 }
2927
2928 /*********************************************************************
2929  *
2930  *  Free receive related data structures.
2931  *
2932  **********************************************************************/
2933 static void
2934 em_free_receive_structures(struct adapter *adapter)
2935 {
2936         struct em_buffer *rx_buffer;
2937         int i;
2938
2939         INIT_DEBUGOUT("free_receive_structures: begin");
2940
2941         if (adapter->rx_buffer_area != NULL) {
2942                 rx_buffer = adapter->rx_buffer_area;
2943                 for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2944                         if (rx_buffer->m_head != NULL) {
2945                                 bus_dmamap_unload(adapter->rxtag,
2946                                                   rx_buffer->map);
2947                                 m_freem(rx_buffer->m_head);
2948                                 rx_buffer->m_head = NULL;
2949                         }
2950                         if (rx_buffer->map != NULL) {
2951                                 bus_dmamap_destroy(adapter->rxtag,
2952                                                    rx_buffer->map);
2953                                 rx_buffer->map = NULL;
2954                         }
2955                 }
2956         }
2957         if (adapter->rx_buffer_area != NULL) {
2958                 kfree(adapter->rx_buffer_area, M_DEVBUF);
2959                 adapter->rx_buffer_area = NULL;
2960         }
2961         if (adapter->rxtag != NULL) {
2962                 bus_dma_tag_destroy(adapter->rxtag);
2963                 adapter->rxtag = NULL;
2964         }
2965 }
2966
2967 /*********************************************************************
2968  *
2969  *  This routine executes in interrupt context. It replenishes
2970  *  the mbufs in the descriptor and sends data which has been
2971  *  dma'ed into host memory to upper layer.
2972  *
2973  *  We loop at most count times if count is > 0, or until done if
2974  *  count < 0.
2975  *
2976  *********************************************************************/
2977 static void
2978 em_rxeof(struct adapter *adapter, int count)
2979 {
2980         struct ifnet *ifp;
2981         struct mbuf *mp;
2982         uint8_t accept_frame = 0;
2983         uint8_t eop = 0;
2984         uint16_t len, desc_len, prev_len_adj;
2985         int i;
2986         struct mbuf_chain chain[MAXCPU];
2987
2988         /* Pointer to the receive descriptor being examined. */
2989         struct em_rx_desc *current_desc;
2990
2991         ifp = &adapter->interface_data.ac_if;
2992         i = adapter->next_rx_desc_to_check;
2993         current_desc = &adapter->rx_desc_base[i];
2994
2995         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2996                         BUS_DMASYNC_POSTREAD);
2997
2998         if (!(current_desc->status & E1000_RXD_STAT_DD))
2999                 return;
3000
3001         ether_input_chain_init(chain);
3002
3003         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3004                 logif(pkt_receive);
3005                 mp = adapter->rx_buffer_area[i].m_head;
3006                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3007                                 BUS_DMASYNC_POSTREAD);
3008                 bus_dmamap_unload(adapter->rxtag,
3009                                   adapter->rx_buffer_area[i].map);
3010
3011                 accept_frame = 1;
3012                 prev_len_adj = 0;
3013                 desc_len = le16toh(current_desc->length);
3014                 if (current_desc->status & E1000_RXD_STAT_EOP) {
3015                         count--;
3016                         eop = 1;
3017                         if (desc_len < ETHER_CRC_LEN) {
3018                                 len = 0;
3019                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3020                         } else {
3021                                 len = desc_len - ETHER_CRC_LEN;
3022                         }
3023                 } else {
3024                         eop = 0;
3025                         len = desc_len;
3026                 }
3027
3028                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3029                         uint8_t last_byte;
3030                         uint32_t pkt_len = desc_len;
3031
3032                         if (adapter->fmp != NULL)
3033                                 pkt_len += adapter->fmp->m_pkthdr.len; 
3034
3035                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3036
3037                         if (TBI_ACCEPT(&adapter->hw, current_desc->status, 
3038                                        current_desc->errors, 
3039                                        pkt_len, last_byte)) {
3040                                 em_tbi_adjust_stats(&adapter->hw, 
3041                                                     &adapter->stats, 
3042                                                     pkt_len, 
3043                                                     adapter->hw.mac_addr);
3044                                 if (len > 0)
3045                                         len--;
3046                         } else {
3047                                 accept_frame = 0;
3048                         }
3049                 }
3050
3051                 if (accept_frame) {
3052                         if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3053                                 adapter->dropped_pkts++;
3054                                 em_get_buf(i, adapter, mp, MB_DONTWAIT);
3055                                 if (adapter->fmp != NULL)
3056                                         m_freem(adapter->fmp);
3057                                 adapter->fmp = NULL;
3058                                 adapter->lmp = NULL;
3059                                 goto skip;
3060                         }
3061
3062                         /* Assign correct length to the current fragment */
3063                         mp->m_len = len;
3064
3065                         if (adapter->fmp == NULL) {
3066                                 mp->m_pkthdr.len = len;
3067                                 adapter->fmp = mp;       /* Store the first mbuf */
3068                                 adapter->lmp = mp;
3069                         } else {
3070                                 /* Chain mbuf's together */
3071                                 /* 
3072                                  * Adjust length of previous mbuf in chain if
3073                                  * we received less than 4 bytes in the last
3074                                  * descriptor.
3075                                  */
3076                                 if (prev_len_adj > 0) {
3077                                         adapter->lmp->m_len -= prev_len_adj;
3078                                         adapter->fmp->m_pkthdr.len -= prev_len_adj;
3079                                 }
3080                                 adapter->lmp->m_next = mp;
3081                                 adapter->lmp = adapter->lmp->m_next;
3082                                 adapter->fmp->m_pkthdr.len += len;
3083                         }
3084
3085                         if (eop) {
3086                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3087                                 ifp->if_ipackets++;
3088
3089                                 em_receive_checksum(adapter, current_desc,
3090                                                     adapter->fmp);
3091                                 if (current_desc->status & E1000_RXD_STAT_VP) {
3092                                         adapter->fmp->m_flags |= M_VLANTAG;
3093                                         adapter->fmp->m_pkthdr.ether_vlantag =
3094                                                 (current_desc->special &
3095                                                  E1000_RXD_SPC_VLAN_MASK);
3096                                 }
3097                                 ether_input_chain(ifp, adapter->fmp, chain);
3098                                 adapter->fmp = NULL;
3099                                 adapter->lmp = NULL;
3100                         }
3101                 } else {
3102                         adapter->dropped_pkts++;
3103                         em_get_buf(i, adapter, mp, MB_DONTWAIT);
3104                         if (adapter->fmp != NULL) 
3105                                 m_freem(adapter->fmp);
3106                         adapter->fmp = NULL;
3107                         adapter->lmp = NULL;
3108                 }
3109
3110 skip:
3111                 /* Zero out the receive descriptors status. */
3112                 current_desc->status = 0;
3113
3114                 /* Advance our pointers to the next descriptor. */
3115                 if (++i == adapter->num_rx_desc) {
3116                         i = 0;
3117                         current_desc = adapter->rx_desc_base;
3118                 } else {
3119                         current_desc++;
3120                 }
3121         }
3122
3123         ether_input_dispatch(chain);
3124
3125         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3126                         BUS_DMASYNC_PREWRITE);
3127
3128         adapter->next_rx_desc_to_check = i;
3129
3130         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3131         if (--i < 0)
3132                 i = adapter->num_rx_desc - 1;
3133
3134         E1000_WRITE_REG(&adapter->hw, RDT, i);
3135 }
3136
3137 /*********************************************************************
3138  *
3139  *  Verify that the hardware indicated that the checksum is valid.
3140  *  Inform the stack about the status of checksum so that stack
3141  *  doesn't spend time verifying the checksum.
3142  *
3143  *********************************************************************/
3144 static void
3145 em_receive_checksum(struct adapter *adapter,
3146                     struct em_rx_desc *rx_desc,
3147                     struct mbuf *mp)
3148 {
3149         /* 82543 or newer only */
3150         if ((adapter->hw.mac_type < em_82543) ||
3151             /* Ignore Checksum bit is set */
3152             (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3153                 mp->m_pkthdr.csum_flags = 0;
3154                 return;
3155         }
3156
3157         if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3158                 /* Did it pass? */
3159                 if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3160                         /* IP Checksum Good */
3161                         mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3162                         mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3163                 } else {
3164                         mp->m_pkthdr.csum_flags = 0;
3165                 }
3166         }
3167
3168         if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3169                 /* Did it pass? */
3170                 if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3171                         mp->m_pkthdr.csum_flags |=
3172                         (CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3173                          CSUM_FRAG_NOT_CHECKED);
3174                         mp->m_pkthdr.csum_data = htons(0xffff);
3175                 }
3176         }
3177 }
3178
3179
3180 static void 
3181 em_enable_vlans(struct adapter *adapter)
3182 {
3183         uint32_t ctrl;
3184
3185         E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3186
3187         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3188         ctrl |= E1000_CTRL_VME;
3189         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3190 }
3191
3192 static void
3193 em_disable_vlans(struct adapter *adapter)
3194 {
3195         uint32_t ctrl;
3196
3197         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3198         ctrl &= ~E1000_CTRL_VME;
3199         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3200 }
3201
3202 /*
3203  * note: we must call bus_enable_intr() prior to enabling the hardware
3204  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3205  * in order to avoid handler execution races from scheduled interrupt
3206  * threads.
3207  */
3208 static void
3209 em_enable_intr(struct adapter *adapter)
3210 {
3211         struct ifnet *ifp = &adapter->interface_data.ac_if;
3212         
3213         if ((ifp->if_flags & IFF_POLLING) == 0) {
3214                 lwkt_serialize_handler_enable(ifp->if_serializer);
3215                 E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3216         }
3217 }
3218
3219 static void
3220 em_disable_intr(struct adapter *adapter)
3221 {
3222         /*
3223          * The first version of 82542 had an errata where when link was forced
3224          * it would stay up even up even if the cable was disconnected.
3225          * Sequence errors were used to detect the disconnect and then the
3226          * driver would unforce the link.  This code in the in the ISR.  For
3227          * this to work correctly the Sequence error interrupt had to be
3228          * enabled all the time.
3229          */
3230         if (adapter->hw.mac_type == em_82542_rev2_0) {
3231                 E1000_WRITE_REG(&adapter->hw, IMC,
3232                                 (0xffffffff & ~E1000_IMC_RXSEQ));
3233         } else {
3234                 E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3235         }
3236
3237         lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3238 }
3239
3240 static int
3241 em_is_valid_ether_addr(uint8_t *addr)
3242 {
3243         static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3244
3245         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3246                 return (FALSE);
3247         else
3248                 return (TRUE);
3249 }
3250
3251 void
3252 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3253 {
3254         pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3255 }
3256
3257 void
3258 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3259 {
3260         *value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3261 }
3262
3263 void
3264 em_pci_set_mwi(struct em_hw *hw)
3265 {
3266         pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3267                          (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3268 }
3269
3270 void
3271 em_pci_clear_mwi(struct em_hw *hw)
3272 {
3273         pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3274                          (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3275 }
3276
3277 uint32_t
3278 em_io_read(struct em_hw *hw, unsigned long port)
3279 {
3280         struct em_osdep *io = hw->back;
3281
3282         return bus_space_read_4(io->io_bus_space_tag,
3283                                 io->io_bus_space_handle, port);
3284 }
3285
3286 void
3287 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3288 {
3289         struct em_osdep *io = hw->back;
3290
3291         bus_space_write_4(io->io_bus_space_tag,
3292                           io->io_bus_space_handle, port, value);
3293 }
3294
3295 /*
3296  * We may eventually really do this, but its unnecessary 
3297  * for now so we just return unsupported.
3298  */
3299 int32_t
3300 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3301 {
3302         return (0);
3303 }
3304
3305
3306 /*********************************************************************
3307  * 82544 Coexistence issue workaround.
3308  *    There are 2 issues.
3309  *      1. Transmit Hang issue.
3310  *    To detect this issue, following equation can be used...
3311  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3312  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3313  *
3314  *      2. DAC issue.
3315  *    To detect this issue, following equation can be used...
3316  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3317  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3318  *
3319  *
3320  *    WORKAROUND:
3321  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3322  *          9,a,b,c (DAC)
3323  *
3324 *************************************************************************/
3325 static uint32_t
3326 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3327 {
3328         /* Since issue is sensitive to length and address.*/
3329         /* Let us first check the address...*/
3330         uint32_t safe_terminator;
3331         if (length <= 4) {
3332                 desc_array->descriptor[0].address = address;
3333                 desc_array->descriptor[0].length = length;
3334                 desc_array->elements = 1;
3335                 return (desc_array->elements);
3336         }
3337         safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3338         /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */ 
3339         if (safe_terminator == 0 ||
3340             (safe_terminator > 4 && safe_terminator < 9) || 
3341             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3342                 desc_array->descriptor[0].address = address;
3343                 desc_array->descriptor[0].length = length;
3344                 desc_array->elements = 1;
3345                 return (desc_array->elements);
3346         }
3347
3348         desc_array->descriptor[0].address = address;
3349         desc_array->descriptor[0].length = length - 4;
3350         desc_array->descriptor[1].address = address + (length - 4);
3351         desc_array->descriptor[1].length = 4;
3352         desc_array->elements = 2;
3353         return (desc_array->elements);
3354 }
3355
3356 /**********************************************************************
3357  *
3358  *  Update the board statistics counters.
3359  *
3360  **********************************************************************/
3361 static void
3362 em_update_stats_counters(struct adapter *adapter)
3363 {
3364         struct ifnet   *ifp;
3365
3366         if (adapter->hw.media_type == em_media_type_copper ||
3367             (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3368                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3369                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3370         }
3371         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3372         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3373         adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3374         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3375
3376         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3377         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3378         adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3379         adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3380         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3381         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3382         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3383         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3384         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3385         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3386         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3387         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3388         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3389         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3390         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3391         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3392         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3393         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3394         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3395         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3396
3397         /* For the 64-bit byte counters the low dword must be read first. */
3398         /* Both registers clear on the read of the high dword */
3399
3400         adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3401         adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3402         adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3403         adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3404
3405         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3406         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3407         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3408         adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3409         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3410
3411         adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3412         adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3413         adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3414         adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3415
3416         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3417         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3418         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3419         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3420         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3421         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3422         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3423         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3424         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3425         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3426
3427         if (adapter->hw.mac_type >= em_82543) {
3428                 adapter->stats.algnerrc += 
3429                     E1000_READ_REG(&adapter->hw, ALGNERRC);
3430                 adapter->stats.rxerrc += 
3431                     E1000_READ_REG(&adapter->hw, RXERRC);
3432                 adapter->stats.tncrs += 
3433                     E1000_READ_REG(&adapter->hw, TNCRS);
3434                 adapter->stats.cexterr += 
3435                     E1000_READ_REG(&adapter->hw, CEXTERR);
3436                 adapter->stats.tsctc += 
3437                     E1000_READ_REG(&adapter->hw, TSCTC);
3438                 adapter->stats.tsctfc += 
3439                     E1000_READ_REG(&adapter->hw, TSCTFC);
3440         }
3441         ifp = &adapter->interface_data.ac_if;
3442
3443         /* Fill out the OS statistics structure */
3444         ifp->if_collisions = adapter->stats.colc;
3445
3446         /* Rx Errors */
3447         ifp->if_ierrors =
3448                 adapter->dropped_pkts +
3449                 adapter->stats.rxerrc +
3450                 adapter->stats.crcerrs +
3451                 adapter->stats.algnerrc +
3452                 adapter->stats.ruc + adapter->stats.roc +
3453                 adapter->stats.mpc + adapter->stats.cexterr +
3454                 adapter->rx_overruns;
3455
3456         /* Tx Errors */
3457         ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3458                           adapter->watchdog_timeouts;
3459 }
3460
3461
3462 /**********************************************************************
3463  *
3464  *  This routine is called only when em_display_debug_stats is enabled.
3465  *  This routine provides a way to take a look at important statistics
3466  *  maintained by the driver and hardware.
3467  *
3468  **********************************************************************/
3469 static void
3470 em_print_debug_info(struct adapter *adapter)
3471 {
3472         device_t dev= adapter->dev;
3473         uint8_t *hw_addr = adapter->hw.hw_addr;
3474
3475         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3476         device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3477                       E1000_READ_REG(&adapter->hw, CTRL),
3478                       E1000_READ_REG(&adapter->hw, RCTL));
3479         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3480                       ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3481                       (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3482         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3483                       adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3484         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3485                       E1000_READ_REG(&adapter->hw, TIDV),
3486                       E1000_READ_REG(&adapter->hw, TADV));
3487         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3488                       E1000_READ_REG(&adapter->hw, RDTR),
3489                       E1000_READ_REG(&adapter->hw, RADV));
3490         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3491                       (long long)adapter->tx_fifo_wrk_cnt,
3492                       (long long)adapter->tx_fifo_reset_cnt);
3493         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3494                       E1000_READ_REG(&adapter->hw, TDH),
3495                       E1000_READ_REG(&adapter->hw, TDT));
3496         device_printf(dev, "Num Tx descriptors avail = %d\n",
3497                       adapter->num_tx_desc_avail);
3498         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3499                       adapter->no_tx_desc_avail1);
3500         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3501                       adapter->no_tx_desc_avail2);
3502         device_printf(dev, "Std mbuf failed = %ld\n",
3503                       adapter->mbuf_alloc_failed);
3504         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3505                       adapter->mbuf_cluster_failed);
3506         device_printf(dev, "Driver dropped packets = %ld\n",
3507                       adapter->dropped_pkts);
3508 }
3509
3510 static void
3511 em_print_hw_stats(struct adapter *adapter)
3512 {
3513         device_t dev= adapter->dev;
3514
3515         device_printf(dev, "Excessive collisions = %lld\n",
3516                       (long long)adapter->stats.ecol);
3517         device_printf(dev, "Symbol errors = %lld\n",
3518                       (long long)adapter->stats.symerrs);
3519         device_printf(dev, "Sequence errors = %lld\n",
3520                       (long long)adapter->stats.sec);
3521         device_printf(dev, "Defer count = %lld\n",
3522                       (long long)adapter->stats.dc);
3523
3524         device_printf(dev, "Missed Packets = %lld\n",
3525                       (long long)adapter->stats.mpc);
3526         device_printf(dev, "Receive No Buffers = %lld\n",
3527                       (long long)adapter->stats.rnbc);
3528         /* RLEC is inaccurate on some hardware, calculate our own. */
3529         device_printf(dev, "Receive Length errors = %lld\n",
3530                       (long long)adapter->stats.roc +
3531                       (long long)adapter->stats.ruc);
3532         device_printf(dev, "Receive errors = %lld\n",
3533                       (long long)adapter->stats.rxerrc);
3534         device_printf(dev, "Crc errors = %lld\n",
3535                       (long long)adapter->stats.crcerrs);
3536         device_printf(dev, "Alignment errors = %lld\n",
3537                       (long long)adapter->stats.algnerrc);
3538         device_printf(dev, "Carrier extension errors = %lld\n",
3539                       (long long)adapter->stats.cexterr);
3540         device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3541         device_printf(dev, "Watchdog timeouts = %lu\n",
3542                       adapter->watchdog_timeouts);
3543
3544         device_printf(dev, "XON Rcvd = %lld\n",
3545                       (long long)adapter->stats.xonrxc);
3546         device_printf(dev, "XON Xmtd = %lld\n",
3547                       (long long)adapter->stats.xontxc);
3548         device_printf(dev, "XOFF Rcvd = %lld\n",
3549                       (long long)adapter->stats.xoffrxc);
3550         device_printf(dev, "XOFF Xmtd = %lld\n",
3551                       (long long)adapter->stats.xofftxc);
3552
3553         device_printf(dev, "Good Packets Rcvd = %lld\n",
3554                       (long long)adapter->stats.gprc);
3555         device_printf(dev, "Good Packets Xmtd = %lld\n",
3556                       (long long)adapter->stats.gptc);
3557 }
3558
3559 static int
3560 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3561 {
3562         int error;
3563         int result;
3564         struct adapter *adapter;
3565
3566         result = -1;
3567         error = sysctl_handle_int(oidp, &result, 0, req);
3568
3569         if (error || !req->newptr)
3570                 return (error);
3571
3572         if (result == 1) {
3573                 adapter = (struct adapter *)arg1;
3574                 em_print_debug_info(adapter);
3575         }
3576
3577         return (error);
3578 }
3579
3580 static int
3581 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3582 {
3583         int error;
3584         int result;
3585         struct adapter *adapter;
3586
3587         result = -1;
3588         error = sysctl_handle_int(oidp, &result, 0, req);
3589
3590         if (error || !req->newptr)
3591                 return (error);
3592
3593         if (result == 1) {
3594                 adapter = (struct adapter *)arg1;
3595                 em_print_hw_stats(adapter);
3596         }
3597
3598         return (error);
3599 }
3600
3601 static int
3602 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3603 {
3604         struct em_int_delay_info *info;
3605         struct adapter *adapter;
3606         uint32_t regval;
3607         int error;
3608         int usecs;
3609         int ticks;
3610
3611         info = (struct em_int_delay_info *)arg1;
3612         adapter = info->adapter;
3613         usecs = info->value;
3614         error = sysctl_handle_int(oidp, &usecs, 0, req);
3615         if (error != 0 || req->newptr == NULL)
3616                 return (error);
3617         if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3618                 return (EINVAL);
3619         info->value = usecs;
3620         ticks = E1000_USECS_TO_TICKS(usecs);
3621
3622         lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3623         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3624         regval = (regval & ~0xffff) | (ticks & 0xffff);
3625         /* Handle a few special cases. */
3626         switch (info->offset) {
3627         case E1000_RDTR:
3628         case E1000_82542_RDTR:
3629                 regval |= E1000_RDT_FPDB;
3630                 break;
3631         case E1000_TIDV:
3632         case E1000_82542_TIDV:
3633                 if (ticks == 0) {
3634                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3635                         /* Don't write 0 into the TIDV register. */
3636                         regval++;
3637                 } else
3638                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3639                 break;
3640         }
3641         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3642         lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3643         return (0);
3644 }
3645
3646 static void
3647 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3648                         const char *description, struct em_int_delay_info *info,
3649                         int offset, int value)
3650 {
3651         info->adapter = adapter;
3652         info->offset = offset;
3653         info->value = value;
3654         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3655                         SYSCTL_CHILDREN(adapter->sysctl_tree),
3656                         OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3657                         info, 0, em_sysctl_int_delay, "I", description);
3658 }
3659
3660 static int
3661 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3662 {
3663         struct adapter *adapter = (void *)arg1;
3664         int error;
3665         int throttle;
3666
3667         throttle = em_int_throttle_ceil;
3668         error = sysctl_handle_int(oidp, &throttle, 0, req);
3669         if (error || req->newptr == NULL)
3670                 return error;
3671         if (throttle < 0 || throttle > 1000000000 / 256)
3672                 return EINVAL;
3673         if (throttle) {
3674                 /*
3675                  * Set the interrupt throttling rate in 256ns increments,
3676                  * recalculate sysctl value assignment to get exact frequency.
3677                  */
3678                 throttle = 1000000000 / 256 / throttle;
3679                 lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3680                 em_int_throttle_ceil = 1000000000 / 256 / throttle;
3681                 E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3682                 lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3683         } else {
3684                 lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3685                 em_int_throttle_ceil = 0;
3686                 E1000_WRITE_REG(&adapter->hw, ITR, 0);
3687                 lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3688         }
3689         device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n", 
3690                         em_int_throttle_ceil);
3691         return 0;
3692 }