Merge remote branch 'crater/vendor/MDOCML' into HEAD
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.111 2008/10/22 14:24:24 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include "opt_polling.h"
76
77 #include <sys/param.h>
78 #include <sys/bus.h>
79 #include <sys/endian.h>
80 #include <sys/kernel.h>
81 #include <sys/ktr.h>
82 #include <sys/interrupt.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/queue.h>
86 #include <sys/rman.h>
87 #include <sys/serialize.h>
88 #include <sys/socket.h>
89 #include <sys/sockio.h>
90 #include <sys/sysctl.h>
91
92 #include <net/bpf.h>
93 #include <net/ethernet.h>
94 #include <net/if.h>
95 #include <net/if_arp.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_types.h>
99 #include <net/ifq_var.h>
100 #include <net/vlan/if_vlan_var.h>
101 #include <net/vlan/if_vlan_ether.h>
102
103 #include <dev/netif/mii_layer/mii.h>
104 #include <dev/netif/mii_layer/miivar.h>
105 #include <dev/netif/mii_layer/brgphyreg.h>
106
107 #include <bus/pci/pcidevs.h>
108 #include <bus/pci/pcireg.h>
109 #include <bus/pci/pcivar.h>
110
111 #include <dev/netif/bge/if_bgereg.h>
112
113 /* "device miibus" required.  See GENERIC if you get errors here. */
114 #include "miibus_if.h"
115
116 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
117 #define BGE_MIN_FRAME           60
118
119 static const struct bge_type bge_devs[] = {
120         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
121                 "3COM 3C996 Gigabit Ethernet" },
122
123         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
124                 "Alteon BCM5700 Gigabit Ethernet" },
125         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
126                 "Alteon BCM5701 Gigabit Ethernet" },
127
128         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
129                 "Altima AC1000 Gigabit Ethernet" },
130         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
131                 "Altima AC1002 Gigabit Ethernet" },
132         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
133                 "Altima AC9100 Gigabit Ethernet" },
134
135         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
136                 "Apple BCM5701 Gigabit Ethernet" },
137
138         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
139                 "Broadcom BCM5700 Gigabit Ethernet" },
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
141                 "Broadcom BCM5701 Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
143                 "Broadcom BCM5702 Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
145                 "Broadcom BCM5702X Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
147                 "Broadcom BCM5702 Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
149                 "Broadcom BCM5703 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
151                 "Broadcom BCM5703X Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
153                 "Broadcom BCM5703 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
155                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
157                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
159                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
161                 "Broadcom BCM5705 Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
163                 "Broadcom BCM5705F Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
165                 "Broadcom BCM5705K Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
167                 "Broadcom BCM5705M Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
169                 "Broadcom BCM5705M Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
171                 "Broadcom BCM5714C Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
173                 "Broadcom BCM5714S Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
175                 "Broadcom BCM5715 Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
177                 "Broadcom BCM5715S Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
179                 "Broadcom BCM5720 Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
181                 "Broadcom BCM5721 Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
183                 "Broadcom BCM5722 Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
185                 "Broadcom BCM5750 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
187                 "Broadcom BCM5750M Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
189                 "Broadcom BCM5751 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
191                 "Broadcom BCM5751F Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
193                 "Broadcom BCM5751M Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
195                 "Broadcom BCM5752 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
197                 "Broadcom BCM5752M Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
199                 "Broadcom BCM5753 Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
201                 "Broadcom BCM5753F Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
203                 "Broadcom BCM5753M Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
205                 "Broadcom BCM5754 Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
207                 "Broadcom BCM5754M Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
209                 "Broadcom BCM5755 Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
211                 "Broadcom BCM5755M Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
213                 "Broadcom BCM5756 Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
215                 "Broadcom BCM5780 Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
217                 "Broadcom BCM5780S Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
219                 "Broadcom BCM5781 Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
221                 "Broadcom BCM5782 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
223                 "Broadcom BCM5786 Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
225                 "Broadcom BCM5787 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
227                 "Broadcom BCM5787F Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
229                 "Broadcom BCM5787M Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
231                 "Broadcom BCM5788 Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
233                 "Broadcom BCM5789 Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
235                 "Broadcom BCM5901 Fast Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
237                 "Broadcom BCM5901A2 Fast Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
239                 "Broadcom BCM5903M Fast Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
241                 "Broadcom BCM5906 Fast Ethernet"},
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
243                 "Broadcom BCM5906M Fast Ethernet"},
244
245         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
246                 "SysKonnect Gigabit Ethernet" },
247
248         { 0, 0, NULL }
249 };
250
251 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
252 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
253 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
254 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
255 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
256
257 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
258
259 static int      bge_probe(device_t);
260 static int      bge_attach(device_t);
261 static int      bge_detach(device_t);
262 static void     bge_txeof(struct bge_softc *);
263 static void     bge_rxeof(struct bge_softc *);
264
265 static void     bge_tick(void *);
266 static void     bge_stats_update(struct bge_softc *);
267 static void     bge_stats_update_regs(struct bge_softc *);
268 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
269
270 #ifdef DEVICE_POLLING
271 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
272 #endif
273 static void     bge_intr(void *);
274 static void     bge_enable_intr(struct bge_softc *);
275 static void     bge_disable_intr(struct bge_softc *);
276 static void     bge_start(struct ifnet *);
277 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
278 static void     bge_init(void *);
279 static void     bge_stop(struct bge_softc *);
280 static void     bge_watchdog(struct ifnet *);
281 static void     bge_shutdown(device_t);
282 static int      bge_suspend(device_t);
283 static int      bge_resume(device_t);
284 static int      bge_ifmedia_upd(struct ifnet *);
285 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
286
287 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
288 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
289
290 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
291 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
292
293 static void     bge_setmulti(struct bge_softc *);
294 static void     bge_setpromisc(struct bge_softc *);
295
296 static int      bge_alloc_jumbo_mem(struct bge_softc *);
297 static void     bge_free_jumbo_mem(struct bge_softc *);
298 static struct bge_jslot
299                 *bge_jalloc(struct bge_softc *);
300 static void     bge_jfree(void *);
301 static void     bge_jref(void *);
302 static int      bge_newbuf_std(struct bge_softc *, int, int);
303 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
304 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
305 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
306 static int      bge_init_rx_ring_std(struct bge_softc *);
307 static void     bge_free_rx_ring_std(struct bge_softc *);
308 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
309 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
310 static void     bge_free_tx_ring(struct bge_softc *);
311 static int      bge_init_tx_ring(struct bge_softc *);
312
313 static int      bge_chipinit(struct bge_softc *);
314 static int      bge_blockinit(struct bge_softc *);
315
316 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
317 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
318 #ifdef notdef
319 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
320 #endif
321 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
322 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
323 static void     bge_writembx(struct bge_softc *, int, int);
324
325 static int      bge_miibus_readreg(device_t, int, int);
326 static int      bge_miibus_writereg(device_t, int, int, int);
327 static void     bge_miibus_statchg(device_t);
328 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
329 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
330 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
331
332 static void     bge_reset(struct bge_softc *);
333
334 static int      bge_dma_alloc(struct bge_softc *);
335 static void     bge_dma_free(struct bge_softc *);
336 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
337                                     bus_dma_tag_t *, bus_dmamap_t *,
338                                     void **, bus_addr_t *);
339 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
340
341 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
342 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
343 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
344 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
345
346 static void     bge_coal_change(struct bge_softc *);
347 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
348 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
349 static int      bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
350 static int      bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
351 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
352
353 /*
354  * Set following tunable to 1 for some IBM blade servers with the DNLK
355  * switch module. Auto negotiation is broken for those configurations.
356  */
357 static int      bge_fake_autoneg = 0;
358 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
359
360 /* Interrupt moderation control variables. */
361 static int      bge_rx_coal_ticks = 100;        /* usec */
362 static int      bge_tx_coal_ticks = 1023;       /* usec */
363 static int      bge_rx_max_coal_bds = 80;
364 static int      bge_tx_max_coal_bds = 128;
365
366 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
367 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
368 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
369 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
370
371 #if !defined(KTR_IF_BGE)
372 #define KTR_IF_BGE      KTR_ALL
373 #endif
374 KTR_INFO_MASTER(if_bge);
375 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
376 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
377 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
378 #define logif(name)     KTR_LOG(if_bge_ ## name)
379
380 static device_method_t bge_methods[] = {
381         /* Device interface */
382         DEVMETHOD(device_probe,         bge_probe),
383         DEVMETHOD(device_attach,        bge_attach),
384         DEVMETHOD(device_detach,        bge_detach),
385         DEVMETHOD(device_shutdown,      bge_shutdown),
386         DEVMETHOD(device_suspend,       bge_suspend),
387         DEVMETHOD(device_resume,        bge_resume),
388
389         /* bus interface */
390         DEVMETHOD(bus_print_child,      bus_generic_print_child),
391         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
392
393         /* MII interface */
394         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
395         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
396         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
397
398         { 0, 0 }
399 };
400
401 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
402 static devclass_t bge_devclass;
403
404 DECLARE_DUMMY_MODULE(if_bge);
405 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
406 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
407
408 static uint32_t
409 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
410 {
411         device_t dev = sc->bge_dev;
412         uint32_t val;
413
414         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
415         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
416         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
417         return (val);
418 }
419
420 static void
421 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
422 {
423         device_t dev = sc->bge_dev;
424
425         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
426         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
427         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
428 }
429
430 #ifdef notdef
431 static uint32_t
432 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
433 {
434         device_t dev = sc->bge_dev;
435
436         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
437         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
438 }
439 #endif
440
441 static void
442 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
443 {
444         device_t dev = sc->bge_dev;
445
446         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
447         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
448 }
449
450 static void
451 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
452 {
453         CSR_WRITE_4(sc, off, val);
454 }
455
456 static void
457 bge_writembx(struct bge_softc *sc, int off, int val)
458 {
459         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
460                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
461
462         CSR_WRITE_4(sc, off, val);
463 }
464
465 static uint8_t
466 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
467 {
468         uint32_t access, byte = 0;
469         int i;
470
471         /* Lock. */
472         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
473         for (i = 0; i < 8000; i++) {
474                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
475                         break;
476                 DELAY(20);
477         }
478         if (i == 8000)
479                 return (1);
480
481         /* Enable access. */
482         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
483         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
484
485         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
486         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
487         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
488                 DELAY(10);
489                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
490                         DELAY(10);
491                         break;
492                 }
493         }
494
495         if (i == BGE_TIMEOUT * 10) {
496                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
497                 return (1);
498         }
499
500         /* Get result. */
501         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
502
503         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
504
505         /* Disable access. */
506         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
507
508         /* Unlock. */
509         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
510         CSR_READ_4(sc, BGE_NVRAM_SWARB);
511
512         return (0);
513 }
514
515 /*
516  * Read a sequence of bytes from NVRAM.
517  */
518 static int
519 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
520 {
521         int err = 0, i;
522         uint8_t byte = 0;
523
524         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
525                 return (1);
526
527         for (i = 0; i < cnt; i++) {
528                 err = bge_nvram_getbyte(sc, off + i, &byte);
529                 if (err)
530                         break;
531                 *(dest + i) = byte;
532         }
533
534         return (err ? 1 : 0);
535 }
536
537 /*
538  * Read a byte of data stored in the EEPROM at address 'addr.' The
539  * BCM570x supports both the traditional bitbang interface and an
540  * auto access interface for reading the EEPROM. We use the auto
541  * access method.
542  */
543 static uint8_t
544 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
545 {
546         int i;
547         uint32_t byte = 0;
548
549         /*
550          * Enable use of auto EEPROM access so we can avoid
551          * having to use the bitbang method.
552          */
553         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
554
555         /* Reset the EEPROM, load the clock period. */
556         CSR_WRITE_4(sc, BGE_EE_ADDR,
557             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
558         DELAY(20);
559
560         /* Issue the read EEPROM command. */
561         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
562
563         /* Wait for completion */
564         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
565                 DELAY(10);
566                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
567                         break;
568         }
569
570         if (i == BGE_TIMEOUT) {
571                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
572                 return(1);
573         }
574
575         /* Get result. */
576         byte = CSR_READ_4(sc, BGE_EE_DATA);
577
578         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
579
580         return(0);
581 }
582
583 /*
584  * Read a sequence of bytes from the EEPROM.
585  */
586 static int
587 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
588 {
589         size_t i;
590         int err;
591         uint8_t byte;
592
593         for (byte = 0, err = 0, i = 0; i < len; i++) {
594                 err = bge_eeprom_getbyte(sc, off + i, &byte);
595                 if (err)
596                         break;
597                 *(dest + i) = byte;
598         }
599
600         return(err ? 1 : 0);
601 }
602
603 static int
604 bge_miibus_readreg(device_t dev, int phy, int reg)
605 {
606         struct bge_softc *sc = device_get_softc(dev);
607         struct ifnet *ifp = &sc->arpcom.ac_if;
608         uint32_t val, autopoll;
609         int i;
610
611         /*
612          * Broadcom's own driver always assumes the internal
613          * PHY is at GMII address 1. On some chips, the PHY responds
614          * to accesses at all addresses, which could cause us to
615          * bogusly attach the PHY 32 times at probe type. Always
616          * restricting the lookup to address 1 is simpler than
617          * trying to figure out which chips revisions should be
618          * special-cased.
619          */
620         if (phy != 1)
621                 return(0);
622
623         /* Reading with autopolling on may trigger PCI errors */
624         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
625         if (autopoll & BGE_MIMODE_AUTOPOLL) {
626                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
627                 DELAY(40);
628         }
629
630         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
631             BGE_MIPHY(phy)|BGE_MIREG(reg));
632
633         for (i = 0; i < BGE_TIMEOUT; i++) {
634                 DELAY(10);
635                 val = CSR_READ_4(sc, BGE_MI_COMM);
636                 if (!(val & BGE_MICOMM_BUSY))
637                         break;
638         }
639
640         if (i == BGE_TIMEOUT) {
641                 if_printf(ifp, "PHY read timed out "
642                           "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
643                 val = 0;
644                 goto done;
645         }
646
647         DELAY(5);
648         val = CSR_READ_4(sc, BGE_MI_COMM);
649
650 done:
651         if (autopoll & BGE_MIMODE_AUTOPOLL) {
652                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
653                 DELAY(40);
654         }
655
656         if (val & BGE_MICOMM_READFAIL)
657                 return(0);
658
659         return(val & 0xFFFF);
660 }
661
662 static int
663 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
664 {
665         struct bge_softc *sc = device_get_softc(dev);
666         uint32_t autopoll;
667         int i;
668
669         /*
670          * See the related comment in bge_miibus_readreg()
671          */
672         if (phy != 1)
673                 return(0);
674
675         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
676             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
677                return(0);
678
679         /* Reading with autopolling on may trigger PCI errors */
680         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
681         if (autopoll & BGE_MIMODE_AUTOPOLL) {
682                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
683                 DELAY(40);
684         }
685
686         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
687             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
688
689         for (i = 0; i < BGE_TIMEOUT; i++) {
690                 DELAY(10);
691                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
692                         DELAY(5);
693                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
694                         break;
695                 }
696         }
697
698         if (autopoll & BGE_MIMODE_AUTOPOLL) {
699                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
700                 DELAY(40);
701         }
702
703         if (i == BGE_TIMEOUT) {
704                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
705                           "(phy %d, reg %d, val %d)\n", phy, reg, val);
706                 return(0);
707         }
708
709         return(0);
710 }
711
712 static void
713 bge_miibus_statchg(device_t dev)
714 {
715         struct bge_softc *sc;
716         struct mii_data *mii;
717
718         sc = device_get_softc(dev);
719         mii = device_get_softc(sc->bge_miibus);
720
721         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
722         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
723                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
724         } else {
725                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
726         }
727
728         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
729                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
730         } else {
731                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
732         }
733 }
734
735 /*
736  * Memory management for jumbo frames.
737  */
738 static int
739 bge_alloc_jumbo_mem(struct bge_softc *sc)
740 {
741         struct ifnet *ifp = &sc->arpcom.ac_if;
742         struct bge_jslot *entry;
743         uint8_t *ptr;
744         bus_addr_t paddr;
745         int i, error;
746
747         /*
748          * Create tag for jumbo mbufs.
749          * This is really a bit of a kludge. We allocate a special
750          * jumbo buffer pool which (thanks to the way our DMA
751          * memory allocation works) will consist of contiguous
752          * pages. This means that even though a jumbo buffer might
753          * be larger than a page size, we don't really need to
754          * map it into more than one DMA segment. However, the
755          * default mbuf tag will result in multi-segment mappings,
756          * so we have to create a special jumbo mbuf tag that
757          * lets us get away with mapping the jumbo buffers as
758          * a single segment. I think eventually the driver should
759          * be changed so that it uses ordinary mbufs and cluster
760          * buffers, i.e. jumbo frames can span multiple DMA
761          * descriptors. But that's a project for another day.
762          */
763
764         /*
765          * Create DMA stuffs for jumbo RX ring.
766          */
767         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
768                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
769                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
770                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
771                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
772         if (error) {
773                 if_printf(ifp, "could not create jumbo RX ring\n");
774                 return error;
775         }
776
777         /*
778          * Create DMA stuffs for jumbo buffer block.
779          */
780         error = bge_dma_block_alloc(sc, BGE_JMEM,
781                                     &sc->bge_cdata.bge_jumbo_tag,
782                                     &sc->bge_cdata.bge_jumbo_map,
783                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
784                                     &paddr);
785         if (error) {
786                 if_printf(ifp, "could not create jumbo buffer\n");
787                 return error;
788         }
789
790         SLIST_INIT(&sc->bge_jfree_listhead);
791
792         /*
793          * Now divide it up into 9K pieces and save the addresses
794          * in an array. Note that we play an evil trick here by using
795          * the first few bytes in the buffer to hold the the address
796          * of the softc structure for this interface. This is because
797          * bge_jfree() needs it, but it is called by the mbuf management
798          * code which will not pass it to us explicitly.
799          */
800         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
801                 entry = &sc->bge_cdata.bge_jslots[i];
802                 entry->bge_sc = sc;
803                 entry->bge_buf = ptr;
804                 entry->bge_paddr = paddr;
805                 entry->bge_inuse = 0;
806                 entry->bge_slot = i;
807                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
808
809                 ptr += BGE_JLEN;
810                 paddr += BGE_JLEN;
811         }
812         return 0;
813 }
814
815 static void
816 bge_free_jumbo_mem(struct bge_softc *sc)
817 {
818         /* Destroy jumbo RX ring. */
819         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
820                            sc->bge_cdata.bge_rx_jumbo_ring_map,
821                            sc->bge_ldata.bge_rx_jumbo_ring);
822
823         /* Destroy jumbo buffer block. */
824         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
825                            sc->bge_cdata.bge_jumbo_map,
826                            sc->bge_ldata.bge_jumbo_buf);
827 }
828
829 /*
830  * Allocate a jumbo buffer.
831  */
832 static struct bge_jslot *
833 bge_jalloc(struct bge_softc *sc)
834 {
835         struct bge_jslot *entry;
836
837         lwkt_serialize_enter(&sc->bge_jslot_serializer);
838         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
839         if (entry) {
840                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
841                 entry->bge_inuse = 1;
842         } else {
843                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
844         }
845         lwkt_serialize_exit(&sc->bge_jslot_serializer);
846         return(entry);
847 }
848
849 /*
850  * Adjust usage count on a jumbo buffer.
851  */
852 static void
853 bge_jref(void *arg)
854 {
855         struct bge_jslot *entry = (struct bge_jslot *)arg;
856         struct bge_softc *sc = entry->bge_sc;
857
858         if (sc == NULL)
859                 panic("bge_jref: can't find softc pointer!");
860
861         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
862                 panic("bge_jref: asked to reference buffer "
863                     "that we don't manage!");
864         } else if (entry->bge_inuse == 0) {
865                 panic("bge_jref: buffer already free!");
866         } else {
867                 atomic_add_int(&entry->bge_inuse, 1);
868         }
869 }
870
871 /*
872  * Release a jumbo buffer.
873  */
874 static void
875 bge_jfree(void *arg)
876 {
877         struct bge_jslot *entry = (struct bge_jslot *)arg;
878         struct bge_softc *sc = entry->bge_sc;
879
880         if (sc == NULL)
881                 panic("bge_jfree: can't find softc pointer!");
882
883         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
884                 panic("bge_jfree: asked to free buffer that we don't manage!");
885         } else if (entry->bge_inuse == 0) {
886                 panic("bge_jfree: buffer already free!");
887         } else {
888                 /*
889                  * Possible MP race to 0, use the serializer.  The atomic insn
890                  * is still needed for races against bge_jref().
891                  */
892                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
893                 atomic_subtract_int(&entry->bge_inuse, 1);
894                 if (entry->bge_inuse == 0) {
895                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
896                                           entry, jslot_link);
897                 }
898                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
899         }
900 }
901
902
903 /*
904  * Intialize a standard receive ring descriptor.
905  */
906 static int
907 bge_newbuf_std(struct bge_softc *sc, int i, int init)
908 {
909         struct mbuf *m_new = NULL;
910         bus_dma_segment_t seg;
911         bus_dmamap_t map;
912         int error, nsegs;
913
914         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
915         if (m_new == NULL)
916                 return ENOBUFS;
917         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
918
919         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
920                 m_adj(m_new, ETHER_ALIGN);
921
922         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
923                         sc->bge_cdata.bge_rx_tmpmap, m_new,
924                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
925         if (error) {
926                 m_freem(m_new);
927                 return error;
928         }
929
930         if (!init) {
931                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
932                                 sc->bge_cdata.bge_rx_std_dmamap[i],
933                                 BUS_DMASYNC_POSTREAD);
934                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
935                         sc->bge_cdata.bge_rx_std_dmamap[i]);
936         }
937
938         map = sc->bge_cdata.bge_rx_tmpmap;
939         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
940         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
941
942         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
943         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
944
945         bge_setup_rxdesc_std(sc, i);
946         return 0;
947 }
948
949 static void
950 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
951 {
952         struct bge_rxchain *rc;
953         struct bge_rx_bd *r;
954
955         rc = &sc->bge_cdata.bge_rx_std_chain[i];
956         r = &sc->bge_ldata.bge_rx_std_ring[i];
957
958         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
959         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
960         r->bge_len = rc->bge_mbuf->m_len;
961         r->bge_idx = i;
962         r->bge_flags = BGE_RXBDFLAG_END;
963 }
964
965 /*
966  * Initialize a jumbo receive ring descriptor. This allocates
967  * a jumbo buffer from the pool managed internally by the driver.
968  */
969 static int
970 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
971 {
972         struct mbuf *m_new = NULL;
973         struct bge_jslot *buf;
974         bus_addr_t paddr;
975
976         /* Allocate the mbuf. */
977         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
978         if (m_new == NULL)
979                 return ENOBUFS;
980
981         /* Allocate the jumbo buffer */
982         buf = bge_jalloc(sc);
983         if (buf == NULL) {
984                 m_freem(m_new);
985                 return ENOBUFS;
986         }
987
988         /* Attach the buffer to the mbuf. */
989         m_new->m_ext.ext_arg = buf;
990         m_new->m_ext.ext_buf = buf->bge_buf;
991         m_new->m_ext.ext_free = bge_jfree;
992         m_new->m_ext.ext_ref = bge_jref;
993         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
994
995         m_new->m_flags |= M_EXT;
996
997         m_new->m_data = m_new->m_ext.ext_buf;
998         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
999
1000         paddr = buf->bge_paddr;
1001         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1002                 m_adj(m_new, ETHER_ALIGN);
1003                 paddr += ETHER_ALIGN;
1004         }
1005
1006         /* Save necessary information */
1007         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1008         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1009
1010         /* Set up the descriptor. */
1011         bge_setup_rxdesc_jumbo(sc, i);
1012         return 0;
1013 }
1014
1015 static void
1016 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1017 {
1018         struct bge_rx_bd *r;
1019         struct bge_rxchain *rc;
1020
1021         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1022         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1023
1024         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1025         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1026         r->bge_len = rc->bge_mbuf->m_len;
1027         r->bge_idx = i;
1028         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1029 }
1030
1031 static int
1032 bge_init_rx_ring_std(struct bge_softc *sc)
1033 {
1034         int i, error;
1035
1036         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1037                 error = bge_newbuf_std(sc, i, 1);
1038                 if (error)
1039                         return error;
1040         };
1041
1042         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1043         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1044
1045         return(0);
1046 }
1047
1048 static void
1049 bge_free_rx_ring_std(struct bge_softc *sc)
1050 {
1051         int i;
1052
1053         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1054                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1055
1056                 if (rc->bge_mbuf != NULL) {
1057                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1058                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1059                         m_freem(rc->bge_mbuf);
1060                         rc->bge_mbuf = NULL;
1061                 }
1062                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1063                     sizeof(struct bge_rx_bd));
1064         }
1065 }
1066
1067 static int
1068 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1069 {
1070         struct bge_rcb *rcb;
1071         int i, error;
1072
1073         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1074                 error = bge_newbuf_jumbo(sc, i, 1);
1075                 if (error)
1076                         return error;
1077         };
1078
1079         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1080
1081         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1082         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1083         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1084
1085         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1086
1087         return(0);
1088 }
1089
1090 static void
1091 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1092 {
1093         int i;
1094
1095         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1096                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1097
1098                 if (rc->bge_mbuf != NULL) {
1099                         m_freem(rc->bge_mbuf);
1100                         rc->bge_mbuf = NULL;
1101                 }
1102                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1103                     sizeof(struct bge_rx_bd));
1104         }
1105 }
1106
1107 static void
1108 bge_free_tx_ring(struct bge_softc *sc)
1109 {
1110         int i;
1111
1112         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1113                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1114                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1115                                           sc->bge_cdata.bge_tx_dmamap[i]);
1116                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1117                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1118                 }
1119                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1120                     sizeof(struct bge_tx_bd));
1121         }
1122 }
1123
1124 static int
1125 bge_init_tx_ring(struct bge_softc *sc)
1126 {
1127         sc->bge_txcnt = 0;
1128         sc->bge_tx_saved_considx = 0;
1129         sc->bge_tx_prodidx = 0;
1130
1131         /* Initialize transmit producer index for host-memory send ring. */
1132         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1133
1134         /* 5700 b2 errata */
1135         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1136                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1137
1138         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1139         /* 5700 b2 errata */
1140         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1141                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1142
1143         return(0);
1144 }
1145
1146 static void
1147 bge_setmulti(struct bge_softc *sc)
1148 {
1149         struct ifnet *ifp;
1150         struct ifmultiaddr *ifma;
1151         uint32_t hashes[4] = { 0, 0, 0, 0 };
1152         int h, i;
1153
1154         ifp = &sc->arpcom.ac_if;
1155
1156         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1157                 for (i = 0; i < 4; i++)
1158                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1159                 return;
1160         }
1161
1162         /* First, zot all the existing filters. */
1163         for (i = 0; i < 4; i++)
1164                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1165
1166         /* Now program new ones. */
1167         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1168                 if (ifma->ifma_addr->sa_family != AF_LINK)
1169                         continue;
1170                 h = ether_crc32_le(
1171                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1172                     ETHER_ADDR_LEN) & 0x7f;
1173                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1174         }
1175
1176         for (i = 0; i < 4; i++)
1177                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1178 }
1179
1180 /*
1181  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1182  * self-test results.
1183  */
1184 static int
1185 bge_chipinit(struct bge_softc *sc)
1186 {
1187         int i;
1188         uint32_t dma_rw_ctl;
1189
1190         /* Set endian type before we access any non-PCI registers. */
1191         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1192
1193         /* Clear the MAC control register */
1194         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1195
1196         /*
1197          * Clear the MAC statistics block in the NIC's
1198          * internal memory.
1199          */
1200         for (i = BGE_STATS_BLOCK;
1201             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1202                 BGE_MEMWIN_WRITE(sc, i, 0);
1203
1204         for (i = BGE_STATUS_BLOCK;
1205             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1206                 BGE_MEMWIN_WRITE(sc, i, 0);
1207
1208         /* Set up the PCI DMA control register. */
1209         if (sc->bge_flags & BGE_FLAG_PCIE) {
1210                 /* PCI Express */
1211                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1212                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1213                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1214         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1215                 /* PCI-X bus */
1216                 if (BGE_IS_5714_FAMILY(sc)) {
1217                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1218                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1219                         /* XXX magic values, Broadcom-supplied Linux driver */
1220                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1221                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1222                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1223                         } else {
1224                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1225                         }
1226                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1227                         /*
1228                          * The 5704 uses a different encoding of read/write
1229                          * watermarks.
1230                          */
1231                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1232                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1233                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1234                 } else {
1235                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1236                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1237                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1238                             (0x0F);
1239                 }
1240
1241                 /*
1242                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1243                  * for hardware bugs.
1244                  */
1245                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1246                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1247                         uint32_t tmp;
1248
1249                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1250                         if (tmp == 0x6 || tmp == 0x7)
1251                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1252                 }
1253         } else {
1254                 /* Conventional PCI bus */
1255                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1256                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1257                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1258                     (0x0F);
1259         }
1260
1261         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1262             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1263             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1264                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1265         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1266
1267         /*
1268          * Set up general mode register.
1269          */
1270         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1271             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1272             BGE_MODECTL_TX_NO_PHDR_CSUM);
1273
1274         /*
1275          * Disable memory write invalidate.  Apparently it is not supported
1276          * properly by these devices.
1277          */
1278         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1279
1280         /* Set the timer prescaler (always 66Mhz) */
1281         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1282
1283         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1284                 DELAY(40);      /* XXX */
1285
1286                 /* Put PHY into ready state */
1287                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1288                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1289                 DELAY(40);
1290         }
1291
1292         return(0);
1293 }
1294
1295 static int
1296 bge_blockinit(struct bge_softc *sc)
1297 {
1298         struct bge_rcb *rcb;
1299         bus_size_t vrcb;
1300         bge_hostaddr taddr;
1301         uint32_t val;
1302         int i;
1303
1304         /*
1305          * Initialize the memory window pointer register so that
1306          * we can access the first 32K of internal NIC RAM. This will
1307          * allow us to set up the TX send ring RCBs and the RX return
1308          * ring RCBs, plus other things which live in NIC memory.
1309          */
1310         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1311
1312         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1313
1314         if (!BGE_IS_5705_PLUS(sc)) {
1315                 /* Configure mbuf memory pool */
1316                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1317                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1318                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1319                 else
1320                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1321
1322                 /* Configure DMA resource pool */
1323                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1324                     BGE_DMA_DESCRIPTORS);
1325                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1326         }
1327
1328         /* Configure mbuf pool watermarks */
1329         if (!BGE_IS_5705_PLUS(sc)) {
1330                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1331                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1332                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1333         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1334                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1335                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1336                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1337         } else {
1338                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1339                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1340                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1341         }
1342
1343         /* Configure DMA resource watermarks */
1344         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1345         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1346
1347         /* Enable buffer manager */
1348         if (!BGE_IS_5705_PLUS(sc)) {
1349                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1350                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1351
1352                 /* Poll for buffer manager start indication */
1353                 for (i = 0; i < BGE_TIMEOUT; i++) {
1354                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1355                                 break;
1356                         DELAY(10);
1357                 }
1358
1359                 if (i == BGE_TIMEOUT) {
1360                         if_printf(&sc->arpcom.ac_if,
1361                                   "buffer manager failed to start\n");
1362                         return(ENXIO);
1363                 }
1364         }
1365
1366         /* Enable flow-through queues */
1367         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1368         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1369
1370         /* Wait until queue initialization is complete */
1371         for (i = 0; i < BGE_TIMEOUT; i++) {
1372                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1373                         break;
1374                 DELAY(10);
1375         }
1376
1377         if (i == BGE_TIMEOUT) {
1378                 if_printf(&sc->arpcom.ac_if,
1379                           "flow-through queue init failed\n");
1380                 return(ENXIO);
1381         }
1382
1383         /* Initialize the standard RX ring control block */
1384         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1385         rcb->bge_hostaddr.bge_addr_lo =
1386             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1387         rcb->bge_hostaddr.bge_addr_hi =
1388             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1389         if (BGE_IS_5705_PLUS(sc))
1390                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1391         else
1392                 rcb->bge_maxlen_flags =
1393                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1394         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1395         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1396         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1397         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1398         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1399
1400         /*
1401          * Initialize the jumbo RX ring control block
1402          * We set the 'ring disabled' bit in the flags
1403          * field until we're actually ready to start
1404          * using this ring (i.e. once we set the MTU
1405          * high enough to require it).
1406          */
1407         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1408                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1409
1410                 rcb->bge_hostaddr.bge_addr_lo =
1411                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1412                 rcb->bge_hostaddr.bge_addr_hi =
1413                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1414                 rcb->bge_maxlen_flags =
1415                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1416                     BGE_RCB_FLAG_RING_DISABLED);
1417                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1418                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1419                     rcb->bge_hostaddr.bge_addr_hi);
1420                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1421                     rcb->bge_hostaddr.bge_addr_lo);
1422                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1423                     rcb->bge_maxlen_flags);
1424                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1425
1426                 /* Set up dummy disabled mini ring RCB */
1427                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1428                 rcb->bge_maxlen_flags =
1429                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1430                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1431                     rcb->bge_maxlen_flags);
1432         }
1433
1434         /*
1435          * Set the BD ring replentish thresholds. The recommended
1436          * values are 1/8th the number of descriptors allocated to
1437          * each ring.
1438          */
1439         if (BGE_IS_5705_PLUS(sc))
1440                 val = 8;
1441         else
1442                 val = BGE_STD_RX_RING_CNT / 8;
1443         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1444         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1445
1446         /*
1447          * Disable all unused send rings by setting the 'ring disabled'
1448          * bit in the flags field of all the TX send ring control blocks.
1449          * These are located in NIC memory.
1450          */
1451         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1452         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1453                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1454                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1455                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1456                 vrcb += sizeof(struct bge_rcb);
1457         }
1458
1459         /* Configure TX RCB 0 (we use only the first ring) */
1460         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1461         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1462         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1463         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1464         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1465             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1466         if (!BGE_IS_5705_PLUS(sc)) {
1467                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1468                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1469         }
1470
1471         /* Disable all unused RX return rings */
1472         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1473         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1474                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1475                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1476                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1477                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1478                     BGE_RCB_FLAG_RING_DISABLED));
1479                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1480                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1481                     (i * (sizeof(uint64_t))), 0);
1482                 vrcb += sizeof(struct bge_rcb);
1483         }
1484
1485         /* Initialize RX ring indexes */
1486         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1487         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1488         bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1489
1490         /*
1491          * Set up RX return ring 0
1492          * Note that the NIC address for RX return rings is 0x00000000.
1493          * The return rings live entirely within the host, so the
1494          * nicaddr field in the RCB isn't used.
1495          */
1496         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1497         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1498         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1499         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1500         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1501         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1502             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1503
1504         /* Set random backoff seed for TX */
1505         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1506             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1507             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1508             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1509             BGE_TX_BACKOFF_SEED_MASK);
1510
1511         /* Set inter-packet gap */
1512         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1513
1514         /*
1515          * Specify which ring to use for packets that don't match
1516          * any RX rules.
1517          */
1518         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1519
1520         /*
1521          * Configure number of RX lists. One interrupt distribution
1522          * list, sixteen active lists, one bad frames class.
1523          */
1524         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1525
1526         /* Inialize RX list placement stats mask. */
1527         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1528         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1529
1530         /* Disable host coalescing until we get it set up */
1531         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1532
1533         /* Poll to make sure it's shut down. */
1534         for (i = 0; i < BGE_TIMEOUT; i++) {
1535                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1536                         break;
1537                 DELAY(10);
1538         }
1539
1540         if (i == BGE_TIMEOUT) {
1541                 if_printf(&sc->arpcom.ac_if,
1542                           "host coalescing engine failed to idle\n");
1543                 return(ENXIO);
1544         }
1545
1546         /* Set up host coalescing defaults */
1547         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1548         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1549         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1550         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1551         if (!BGE_IS_5705_PLUS(sc)) {
1552                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1553                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1554         }
1555         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1556         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1557
1558         /* Set up address of statistics block */
1559         if (!BGE_IS_5705_PLUS(sc)) {
1560                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1561                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1562                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1563                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1564
1565                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1566                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1567                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1568         }
1569
1570         /* Set up address of status block */
1571         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1572             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1573         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1574             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1575         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1576         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1577
1578         /* Turn on host coalescing state machine */
1579         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1580
1581         /* Turn on RX BD completion state machine and enable attentions */
1582         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1583             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1584
1585         /* Turn on RX list placement state machine */
1586         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1587
1588         /* Turn on RX list selector state machine. */
1589         if (!BGE_IS_5705_PLUS(sc))
1590                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1591
1592         /* Turn on DMA, clear stats */
1593         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1594             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1595             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1596             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1597             ((sc->bge_flags & BGE_FLAG_TBI) ?
1598              BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1599
1600         /* Set misc. local control, enable interrupts on attentions */
1601         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1602
1603 #ifdef notdef
1604         /* Assert GPIO pins for PHY reset */
1605         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1606             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1607         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1608             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1609 #endif
1610
1611         /* Turn on DMA completion state machine */
1612         if (!BGE_IS_5705_PLUS(sc))
1613                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1614
1615         /* Turn on write DMA state machine */
1616         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1617         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1618             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1619                 val |= (1 << 29);       /* Enable host coalescing bug fix. */
1620         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1621         DELAY(40);
1622
1623         /* Turn on read DMA state machine */
1624         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1625         if (sc->bge_flags & BGE_FLAG_PCIE)
1626                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1627         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1628         DELAY(40);
1629
1630         /* Turn on RX data completion state machine */
1631         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1632
1633         /* Turn on RX BD initiator state machine */
1634         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1635
1636         /* Turn on RX data and RX BD initiator state machine */
1637         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1638
1639         /* Turn on Mbuf cluster free state machine */
1640         if (!BGE_IS_5705_PLUS(sc))
1641                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1642
1643         /* Turn on send BD completion state machine */
1644         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1645
1646         /* Turn on send data completion state machine */
1647         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1648
1649         /* Turn on send data initiator state machine */
1650         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1651
1652         /* Turn on send BD initiator state machine */
1653         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1654
1655         /* Turn on send BD selector state machine */
1656         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1657
1658         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1659         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1660             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1661
1662         /* ack/clear link change events */
1663         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1664             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1665             BGE_MACSTAT_LINK_CHANGED);
1666         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1667
1668         /* Enable PHY auto polling (for MII/GMII only) */
1669         if (sc->bge_flags & BGE_FLAG_TBI) {
1670                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1671         } else {
1672                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1673                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1674                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1675                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1676                             BGE_EVTENB_MI_INTERRUPT);
1677                 }
1678         }
1679
1680         /*
1681          * Clear any pending link state attention.
1682          * Otherwise some link state change events may be lost until attention
1683          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1684          * It's not necessary on newer BCM chips - perhaps enabling link
1685          * state change attentions implies clearing pending attention.
1686          */
1687         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1688             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1689             BGE_MACSTAT_LINK_CHANGED);
1690
1691         /* Enable link state change attentions. */
1692         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1693
1694         return(0);
1695 }
1696
1697 /*
1698  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1699  * against our list and return its name if we find a match. Note
1700  * that since the Broadcom controller contains VPD support, we
1701  * can get the device name string from the controller itself instead
1702  * of the compiled-in string. This is a little slow, but it guarantees
1703  * we'll always announce the right product name.
1704  */
1705 static int
1706 bge_probe(device_t dev)
1707 {
1708         const struct bge_type *t;
1709         uint16_t product, vendor;
1710
1711         product = pci_get_device(dev);
1712         vendor = pci_get_vendor(dev);
1713
1714         for (t = bge_devs; t->bge_name != NULL; t++) {
1715                 if (vendor == t->bge_vid && product == t->bge_did)
1716                         break;
1717         }
1718         if (t->bge_name == NULL)
1719                 return(ENXIO);
1720
1721         device_set_desc(dev, t->bge_name);
1722         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL) {
1723                 struct bge_softc *sc = device_get_softc(dev);
1724                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1725         }
1726         return(0);
1727 }
1728
1729 static int
1730 bge_attach(device_t dev)
1731 {
1732         struct ifnet *ifp;
1733         struct bge_softc *sc;
1734         uint32_t hwcfg = 0;
1735         int error = 0, rid;
1736         uint8_t ether_addr[ETHER_ADDR_LEN];
1737
1738         sc = device_get_softc(dev);
1739         sc->bge_dev = dev;
1740         callout_init(&sc->bge_stat_timer);
1741         lwkt_serialize_init(&sc->bge_jslot_serializer);
1742
1743 #ifndef BURN_BRIDGES
1744         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1745                 uint32_t irq, mem;
1746
1747                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1748                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1749
1750                 device_printf(dev, "chip is in D%d power mode "
1751                     "-- setting to D0\n", pci_get_powerstate(dev));
1752
1753                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1754
1755                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1756                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1757         }
1758 #endif  /* !BURN_BRIDGE */
1759
1760         /*
1761          * Map control/status registers.
1762          */
1763         pci_enable_busmaster(dev);
1764
1765         rid = BGE_PCI_BAR0;
1766         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1767             RF_ACTIVE);
1768
1769         if (sc->bge_res == NULL) {
1770                 device_printf(dev, "couldn't map memory\n");
1771                 return ENXIO;
1772         }
1773
1774         sc->bge_btag = rman_get_bustag(sc->bge_res);
1775         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1776
1777         /* Save various chip information */
1778         sc->bge_chipid =
1779             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1780             BGE_PCIMISCCTL_ASICREV;
1781         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1782         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1783
1784         /* Save chipset family. */
1785         switch (sc->bge_asicrev) {
1786         case BGE_ASICREV_BCM5700:
1787         case BGE_ASICREV_BCM5701:
1788         case BGE_ASICREV_BCM5703:
1789         case BGE_ASICREV_BCM5704:
1790                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1791                 break;
1792
1793         case BGE_ASICREV_BCM5714_A0:
1794         case BGE_ASICREV_BCM5780:
1795         case BGE_ASICREV_BCM5714:
1796                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1797                 /* Fall through */
1798
1799         case BGE_ASICREV_BCM5750:
1800         case BGE_ASICREV_BCM5752:
1801         case BGE_ASICREV_BCM5755:
1802         case BGE_ASICREV_BCM5787:
1803         case BGE_ASICREV_BCM5906:
1804                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1805                 /* Fall through */
1806
1807         case BGE_ASICREV_BCM5705:
1808                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1809                 break;
1810         }
1811
1812         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
1813                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
1814
1815         /*
1816          * Set various quirk flags.
1817          */
1818
1819         sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1820         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1821             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1822              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1823               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1824             sc->bge_asicrev == BGE_ASICREV_BCM5906)
1825                 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1826
1827         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1828             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1829                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1830
1831         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1832             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1833                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1834
1835         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1836                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1837
1838         if (BGE_IS_5705_PLUS(sc)) {
1839                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1840                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1841                         uint32_t product = pci_get_device(dev);
1842
1843                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1844                             product != PCI_PRODUCT_BROADCOM_BCM5756)
1845                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1846                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1847                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1848                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1849                         sc->bge_flags |= BGE_FLAG_BER_BUG;
1850                 }
1851         }
1852
1853         /* Allocate interrupt */
1854         rid = 0;
1855
1856         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1857             RF_SHAREABLE | RF_ACTIVE);
1858
1859         if (sc->bge_irq == NULL) {
1860                 device_printf(dev, "couldn't map interrupt\n");
1861                 error = ENXIO;
1862                 goto fail;
1863         }
1864
1865         /*
1866          * Check if this is a PCI-X or PCI Express device.
1867          */
1868         if (BGE_IS_5705_PLUS(sc)) {
1869                 if (pci_is_pcie(dev)) {
1870                         sc->bge_flags |= BGE_FLAG_PCIE;
1871                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
1872                 }
1873         } else {
1874                 /*
1875                  * Check if the device is in PCI-X Mode.
1876                  * (This bit is not valid on PCI Express controllers.)
1877                  */
1878                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1879                     BGE_PCISTATE_PCI_BUSMODE) == 0)
1880                         sc->bge_flags |= BGE_FLAG_PCIX;
1881         }
1882
1883         device_printf(dev, "CHIP ID 0x%08x; "
1884                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
1885                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
1886                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
1887                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
1888                         "PCI-E" : "PCI"));
1889
1890         ifp = &sc->arpcom.ac_if;
1891         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1892
1893         /* Try to reset the chip. */
1894         bge_reset(sc);
1895
1896         if (bge_chipinit(sc)) {
1897                 device_printf(dev, "chip initialization failed\n");
1898                 error = ENXIO;
1899                 goto fail;
1900         }
1901
1902         /*
1903          * Get station address
1904          */
1905         error = bge_get_eaddr(sc, ether_addr);
1906         if (error) {
1907                 device_printf(dev, "failed to read station address\n");
1908                 goto fail;
1909         }
1910
1911         /* 5705/5750 limits RX return ring to 512 entries. */
1912         if (BGE_IS_5705_PLUS(sc))
1913                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1914         else
1915                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1916
1917         error = bge_dma_alloc(sc);
1918         if (error)
1919                 goto fail;
1920
1921         /* Set default tuneable values. */
1922         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1923         sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1924         sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1925         sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1926         sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1927
1928         /* Set up ifnet structure */
1929         ifp->if_softc = sc;
1930         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1931         ifp->if_ioctl = bge_ioctl;
1932         ifp->if_start = bge_start;
1933 #ifdef DEVICE_POLLING
1934         ifp->if_poll = bge_poll;
1935 #endif
1936         ifp->if_watchdog = bge_watchdog;
1937         ifp->if_init = bge_init;
1938         ifp->if_mtu = ETHERMTU;
1939         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1940         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1941         ifq_set_ready(&ifp->if_snd);
1942
1943         /*
1944          * 5700 B0 chips do not support checksumming correctly due
1945          * to hardware bugs.
1946          */
1947         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1948                 ifp->if_capabilities |= IFCAP_HWCSUM;
1949                 ifp->if_hwassist = BGE_CSUM_FEATURES;
1950         }
1951         ifp->if_capenable = ifp->if_capabilities;
1952
1953         /*
1954          * Figure out what sort of media we have by checking the
1955          * hardware config word in the first 32k of NIC internal memory,
1956          * or fall back to examining the EEPROM if necessary.
1957          * Note: on some BCM5700 cards, this value appears to be unset.
1958          * If that's the case, we have to rely on identifying the NIC
1959          * by its PCI subsystem ID, as we do below for the SysKonnect
1960          * SK-9D41.
1961          */
1962         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1963                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1964         else {
1965                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1966                                     sizeof(hwcfg))) {
1967                         device_printf(dev, "failed to read EEPROM\n");
1968                         error = ENXIO;
1969                         goto fail;
1970                 }
1971                 hwcfg = ntohl(hwcfg);
1972         }
1973
1974         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1975                 sc->bge_flags |= BGE_FLAG_TBI;
1976
1977         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1978         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1979                 sc->bge_flags |= BGE_FLAG_TBI;
1980
1981         if (sc->bge_flags & BGE_FLAG_TBI) {
1982                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1983                     bge_ifmedia_upd, bge_ifmedia_sts);
1984                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1985                 ifmedia_add(&sc->bge_ifmedia,
1986                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1987                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1988                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1989                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1990         } else {
1991                 /*
1992                  * Do transceiver setup.
1993                  */
1994                 if (mii_phy_probe(dev, &sc->bge_miibus,
1995                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1996                         device_printf(dev, "MII without any PHY!\n");
1997                         error = ENXIO;
1998                         goto fail;
1999                 }
2000         }
2001
2002         /*
2003          * When using the BCM5701 in PCI-X mode, data corruption has
2004          * been observed in the first few bytes of some received packets.
2005          * Aligning the packet buffer in memory eliminates the corruption.
2006          * Unfortunately, this misaligns the packet payloads.  On platforms
2007          * which do not support unaligned accesses, we will realign the
2008          * payloads by copying the received packets.
2009          */
2010         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2011             (sc->bge_flags & BGE_FLAG_PCIX))
2012                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2013
2014         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2015             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2016                 sc->bge_link_upd = bge_bcm5700_link_upd;
2017                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2018         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2019                 sc->bge_link_upd = bge_tbi_link_upd;
2020                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2021         } else {
2022                 sc->bge_link_upd = bge_copper_link_upd;
2023                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2024         }
2025
2026         /*
2027          * Create sysctl nodes.
2028          */
2029         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2030         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2031                                               SYSCTL_STATIC_CHILDREN(_hw),
2032                                               OID_AUTO,
2033                                               device_get_nameunit(dev),
2034                                               CTLFLAG_RD, 0, "");
2035         if (sc->bge_sysctl_tree == NULL) {
2036                 device_printf(dev, "can't add sysctl node\n");
2037                 error = ENXIO;
2038                 goto fail;
2039         }
2040
2041         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2042                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2043                         OID_AUTO, "rx_coal_ticks",
2044                         CTLTYPE_INT | CTLFLAG_RW,
2045                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2046                         "Receive coalescing ticks (usec).");
2047         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2048                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2049                         OID_AUTO, "tx_coal_ticks",
2050                         CTLTYPE_INT | CTLFLAG_RW,
2051                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2052                         "Transmit coalescing ticks (usec).");
2053         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2054                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2055                         OID_AUTO, "rx_max_coal_bds",
2056                         CTLTYPE_INT | CTLFLAG_RW,
2057                         sc, 0, bge_sysctl_rx_max_coal_bds, "I",
2058                         "Receive max coalesced BD count.");
2059         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2060                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2061                         OID_AUTO, "tx_max_coal_bds",
2062                         CTLTYPE_INT | CTLFLAG_RW,
2063                         sc, 0, bge_sysctl_tx_max_coal_bds, "I",
2064                         "Transmit max coalesced BD count.");
2065
2066         /*
2067          * Call MI attach routine.
2068          */
2069         ether_ifattach(ifp, ether_addr, NULL);
2070
2071         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE,
2072                                bge_intr, sc, &sc->bge_intrhand, 
2073                                ifp->if_serializer);
2074         if (error) {
2075                 ether_ifdetach(ifp);
2076                 device_printf(dev, "couldn't set up irq\n");
2077                 goto fail;
2078         }
2079
2080         ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->bge_irq));
2081         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2082
2083         return(0);
2084 fail:
2085         bge_detach(dev);
2086         return(error);
2087 }
2088
2089 static int
2090 bge_detach(device_t dev)
2091 {
2092         struct bge_softc *sc = device_get_softc(dev);
2093
2094         if (device_is_attached(dev)) {
2095                 struct ifnet *ifp = &sc->arpcom.ac_if;
2096
2097                 lwkt_serialize_enter(ifp->if_serializer);
2098                 bge_stop(sc);
2099                 bge_reset(sc);
2100                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2101                 lwkt_serialize_exit(ifp->if_serializer);
2102
2103                 ether_ifdetach(ifp);
2104         }
2105
2106         if (sc->bge_flags & BGE_FLAG_TBI)
2107                 ifmedia_removeall(&sc->bge_ifmedia);
2108         if (sc->bge_miibus)
2109                 device_delete_child(dev, sc->bge_miibus);
2110         bus_generic_detach(dev);
2111
2112         if (sc->bge_irq != NULL)
2113                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2114
2115         if (sc->bge_res != NULL)
2116                 bus_release_resource(dev, SYS_RES_MEMORY,
2117                     BGE_PCI_BAR0, sc->bge_res);
2118
2119         if (sc->bge_sysctl_tree != NULL)
2120                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2121
2122         bge_dma_free(sc);
2123
2124         return 0;
2125 }
2126
2127 static void
2128 bge_reset(struct bge_softc *sc)
2129 {
2130         device_t dev;
2131         uint32_t cachesize, command, pcistate, reset;
2132         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2133         int i, val = 0;
2134
2135         dev = sc->bge_dev;
2136
2137         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2138             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2139                 if (sc->bge_flags & BGE_FLAG_PCIE)
2140                         write_op = bge_writemem_direct;
2141                 else
2142                         write_op = bge_writemem_ind;
2143         } else {
2144                 write_op = bge_writereg_ind;
2145         }
2146
2147         /* Save some important PCI state. */
2148         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2149         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2150         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2151
2152         pci_write_config(dev, BGE_PCI_MISC_CTL,
2153             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2154             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2155
2156         /* Disable fastboot on controllers that support it. */
2157         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2158             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2159             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2160                 if (bootverbose)
2161                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2162                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2163         }
2164
2165         /*
2166          * Write the magic number to SRAM at offset 0xB50.
2167          * When firmware finishes its initialization it will
2168          * write ~BGE_MAGIC_NUMBER to the same location.
2169          */
2170         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2171
2172         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2173
2174         /* XXX: Broadcom Linux driver. */
2175         if (sc->bge_flags & BGE_FLAG_PCIE) {
2176                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2177                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2178                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2179                         /* Prevent PCIE link training during global reset */
2180                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2181                         reset |= (1<<29);
2182                 }
2183         }
2184
2185         /* 
2186          * Set GPHY Power Down Override to leave GPHY
2187          * powered up in D0 uninitialized.
2188          */
2189         if (BGE_IS_5705_PLUS(sc))
2190                 reset |= 0x04000000;
2191
2192         /* Issue global reset */
2193         write_op(sc, BGE_MISC_CFG, reset);
2194
2195         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2196                 uint32_t status, ctrl;
2197
2198                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2199                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2200                     status | BGE_VCPU_STATUS_DRV_RESET);
2201                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2202                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2203                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2204         }
2205
2206         DELAY(1000);
2207
2208         /* XXX: Broadcom Linux driver. */
2209         if (sc->bge_flags & BGE_FLAG_PCIE) {
2210                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2211                         uint32_t v;
2212
2213                         DELAY(500000); /* wait for link training to complete */
2214                         v = pci_read_config(dev, 0xc4, 4);
2215                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2216                 }
2217                 /*
2218                  * Set PCIE max payload size to 128 bytes and
2219                  * clear error status.
2220                  */
2221                 pci_write_config(dev, 0xd8, 0xf5000, 4);
2222         }
2223
2224         /* Reset some of the PCI state that got zapped by reset */
2225         pci_write_config(dev, BGE_PCI_MISC_CTL,
2226             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2227             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2228         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2229         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2230         write_op(sc, BGE_MISC_CFG, (65 << 1));
2231
2232         /* Enable memory arbiter. */
2233         if (BGE_IS_5714_FAMILY(sc)) {
2234                 uint32_t val;
2235
2236                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2237                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2238         } else {
2239                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2240         }
2241
2242         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2243                 for (i = 0; i < BGE_TIMEOUT; i++) {
2244                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2245                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2246                                 break;
2247                         DELAY(100);
2248                 }
2249                 if (i == BGE_TIMEOUT) {
2250                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2251                         return;
2252                 }
2253         } else {
2254                 /*
2255                  * Poll until we see the 1's complement of the magic number.
2256                  * This indicates that the firmware initialization
2257                  * is complete.
2258                  */
2259                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2260                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2261                         if (val == ~BGE_MAGIC_NUMBER)
2262                                 break;
2263                         DELAY(10);
2264                 }
2265                 if (i == BGE_FIRMWARE_TIMEOUT) {
2266                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2267                                   "timed out, found 0x%08x\n", val);
2268                         return;
2269                 }
2270         }
2271
2272         /*
2273          * XXX Wait for the value of the PCISTATE register to
2274          * return to its original pre-reset state. This is a
2275          * fairly good indicator of reset completion. If we don't
2276          * wait for the reset to fully complete, trying to read
2277          * from the device's non-PCI registers may yield garbage
2278          * results.
2279          */
2280         for (i = 0; i < BGE_TIMEOUT; i++) {
2281                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2282                         break;
2283                 DELAY(10);
2284         }
2285
2286         if (sc->bge_flags & BGE_FLAG_PCIE) {
2287                 reset = bge_readmem_ind(sc, 0x7c00);
2288                 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2289         }
2290
2291         /* Fix up byte swapping */
2292         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2293             BGE_MODECTL_BYTESWAP_DATA);
2294
2295         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2296
2297         /*
2298          * The 5704 in TBI mode apparently needs some special
2299          * adjustment to insure the SERDES drive level is set
2300          * to 1.2V.
2301          */
2302         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2303             (sc->bge_flags & BGE_FLAG_TBI)) {
2304                 uint32_t serdescfg;
2305
2306                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2307                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2308                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2309         }
2310
2311         /* XXX: Broadcom Linux driver. */
2312         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2313             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2314                 uint32_t v;
2315
2316                 v = CSR_READ_4(sc, 0x7c00);
2317                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2318         }
2319
2320         DELAY(10000);
2321 }
2322
2323 /*
2324  * Frame reception handling. This is called if there's a frame
2325  * on the receive return list.
2326  *
2327  * Note: we have to be able to handle two possibilities here:
2328  * 1) the frame is from the jumbo recieve ring
2329  * 2) the frame is from the standard receive ring
2330  */
2331
2332 static void
2333 bge_rxeof(struct bge_softc *sc)
2334 {
2335         struct ifnet *ifp;
2336         int stdcnt = 0, jumbocnt = 0;
2337         struct mbuf_chain chain[MAXCPU];
2338
2339         if (sc->bge_rx_saved_considx ==
2340             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2341                 return;
2342
2343         ether_input_chain_init(chain);
2344
2345         ifp = &sc->arpcom.ac_if;
2346
2347         while (sc->bge_rx_saved_considx !=
2348                sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2349                 struct bge_rx_bd        *cur_rx;
2350                 uint32_t                rxidx;
2351                 struct mbuf             *m = NULL;
2352                 uint16_t                vlan_tag = 0;
2353                 int                     have_tag = 0;
2354
2355                 cur_rx =
2356             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2357
2358                 rxidx = cur_rx->bge_idx;
2359                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2360                 logif(rx_pkt);
2361
2362                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2363                         have_tag = 1;
2364                         vlan_tag = cur_rx->bge_vlan_tag;
2365                 }
2366
2367                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2368                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2369                         jumbocnt++;
2370
2371                         if (rxidx != sc->bge_jumbo) {
2372                                 ifp->if_ierrors++;
2373                                 if_printf(ifp, "sw jumbo index(%d) "
2374                                     "and hw jumbo index(%d) mismatch, drop!\n",
2375                                     sc->bge_jumbo, rxidx);
2376                                 bge_setup_rxdesc_jumbo(sc, rxidx);
2377                                 continue;
2378                         }
2379
2380                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2381                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2382                                 ifp->if_ierrors++;
2383                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2384                                 continue;
2385                         }
2386                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2387                                 ifp->if_ierrors++;
2388                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2389                                 continue;
2390                         }
2391                 } else {
2392                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2393                         stdcnt++;
2394
2395                         if (rxidx != sc->bge_std) {
2396                                 ifp->if_ierrors++;
2397                                 if_printf(ifp, "sw std index(%d) "
2398                                     "and hw std index(%d) mismatch, drop!\n",
2399                                     sc->bge_std, rxidx);
2400                                 bge_setup_rxdesc_std(sc, rxidx);
2401                                 continue;
2402                         }
2403
2404                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2405                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2406                                 ifp->if_ierrors++;
2407                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2408                                 continue;
2409                         }
2410                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2411                                 ifp->if_ierrors++;
2412                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2413                                 continue;
2414                         }
2415                 }
2416
2417                 ifp->if_ipackets++;
2418 #ifndef __i386__
2419                 /*
2420                  * The i386 allows unaligned accesses, but for other
2421                  * platforms we must make sure the payload is aligned.
2422                  */
2423                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2424                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2425                             cur_rx->bge_len);
2426                         m->m_data += ETHER_ALIGN;
2427                 }
2428 #endif
2429                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2430                 m->m_pkthdr.rcvif = ifp;
2431
2432                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2433                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2434                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2435                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2436                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2437                         }
2438                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2439                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2440                                 m->m_pkthdr.csum_data =
2441                                         cur_rx->bge_tcp_udp_csum;
2442                                 m->m_pkthdr.csum_flags |=
2443                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2444                         }
2445                 }
2446
2447                 /*
2448                  * If we received a packet with a vlan tag, pass it
2449                  * to vlan_input() instead of ether_input().
2450                  */
2451                 if (have_tag) {
2452                         m->m_flags |= M_VLANTAG;
2453                         m->m_pkthdr.ether_vlantag = vlan_tag;
2454                         have_tag = vlan_tag = 0;
2455                 }
2456                 ether_input_chain(ifp, m, NULL, chain);
2457         }
2458
2459         ether_input_dispatch(chain);
2460
2461         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2462         if (stdcnt)
2463                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2464         if (jumbocnt)
2465                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2466 }
2467
2468 static void
2469 bge_txeof(struct bge_softc *sc)
2470 {
2471         struct bge_tx_bd *cur_tx = NULL;
2472         struct ifnet *ifp;
2473
2474         if (sc->bge_tx_saved_considx ==
2475             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2476                 return;
2477
2478         ifp = &sc->arpcom.ac_if;
2479
2480         /*
2481          * Go through our tx ring and free mbufs for those
2482          * frames that have been sent.
2483          */
2484         while (sc->bge_tx_saved_considx !=
2485                sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2486                 uint32_t idx = 0;
2487
2488                 idx = sc->bge_tx_saved_considx;
2489                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2490                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2491                         ifp->if_opackets++;
2492                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2493                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
2494                             sc->bge_cdata.bge_tx_dmamap[idx]);
2495                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2496                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2497                 }
2498                 sc->bge_txcnt--;
2499                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2500                 logif(tx_pkt);
2501         }
2502
2503         if (cur_tx != NULL &&
2504             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2505             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2506                 ifp->if_flags &= ~IFF_OACTIVE;
2507
2508         if (sc->bge_txcnt == 0)
2509                 ifp->if_timer = 0;
2510
2511         if (!ifq_is_empty(&ifp->if_snd))
2512                 if_devstart(ifp);
2513 }
2514
2515 #ifdef DEVICE_POLLING
2516
2517 static void
2518 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2519 {
2520         struct bge_softc *sc = ifp->if_softc;
2521         uint32_t status;
2522
2523         switch(cmd) {
2524         case POLL_REGISTER:
2525                 bge_disable_intr(sc);
2526                 break;
2527         case POLL_DEREGISTER:
2528                 bge_enable_intr(sc);
2529                 break;
2530         case POLL_AND_CHECK_STATUS:
2531                 /*
2532                  * Process link state changes.
2533                  */
2534                 status = CSR_READ_4(sc, BGE_MAC_STS);
2535                 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2536                         sc->bge_link_evt = 0;
2537                         sc->bge_link_upd(sc, status);
2538                 }
2539                 /* fall through */
2540         case POLL_ONLY:
2541                 if (ifp->if_flags & IFF_RUNNING) {
2542                         bge_rxeof(sc);
2543                         bge_txeof(sc);
2544                 }
2545                 break;
2546         }
2547 }
2548
2549 #endif
2550
2551 static void
2552 bge_intr(void *xsc)
2553 {
2554         struct bge_softc *sc = xsc;
2555         struct ifnet *ifp = &sc->arpcom.ac_if;
2556         uint32_t status;
2557
2558         logif(intr);
2559
2560         /*
2561          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2562          * disable interrupts by writing nonzero like we used to, since with
2563          * our current organization this just gives complications and
2564          * pessimizations for re-enabling interrupts.  We used to have races
2565          * instead of the necessary complications.  Disabling interrupts
2566          * would just reduce the chance of a status update while we are
2567          * running (by switching to the interrupt-mode coalescence
2568          * parameters), but this chance is already very low so it is more
2569          * efficient to get another interrupt than prevent it.
2570          *
2571          * We do the ack first to ensure another interrupt if there is a
2572          * status update after the ack.  We don't check for the status
2573          * changing later because it is more efficient to get another
2574          * interrupt than prevent it, not quite as above (not checking is
2575          * a smaller optimization than not toggling the interrupt enable,
2576          * since checking doesn't involve PCI accesses and toggling require
2577          * the status check).  So toggling would probably be a pessimization
2578          * even with MSI.  It would only be needed for using a task queue.
2579          */
2580         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
2581
2582         /*
2583          * Process link state changes.
2584          */
2585         status = CSR_READ_4(sc, BGE_MAC_STS);
2586         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2587                 sc->bge_link_evt = 0;
2588                 sc->bge_link_upd(sc, status);
2589         }
2590
2591         if (ifp->if_flags & IFF_RUNNING) {
2592                 /* Check RX return ring producer/consumer */
2593                 bge_rxeof(sc);
2594
2595                 /* Check TX ring producer/consumer */
2596                 bge_txeof(sc);
2597         }
2598
2599         if (sc->bge_coal_chg)
2600                 bge_coal_change(sc);
2601 }
2602
2603 static void
2604 bge_tick(void *xsc)
2605 {
2606         struct bge_softc *sc = xsc;
2607         struct ifnet *ifp = &sc->arpcom.ac_if;
2608
2609         lwkt_serialize_enter(ifp->if_serializer);
2610
2611         if (BGE_IS_5705_PLUS(sc))
2612                 bge_stats_update_regs(sc);
2613         else
2614                 bge_stats_update(sc);
2615
2616         if (sc->bge_flags & BGE_FLAG_TBI) {
2617                 /*
2618                  * Since in TBI mode auto-polling can't be used we should poll
2619                  * link status manually. Here we register pending link event
2620                  * and trigger interrupt.
2621                  */
2622                 sc->bge_link_evt++;
2623                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2624         } else if (!sc->bge_link) {
2625                 mii_tick(device_get_softc(sc->bge_miibus));
2626         }
2627
2628         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2629
2630         lwkt_serialize_exit(ifp->if_serializer);
2631 }
2632
2633 static void
2634 bge_stats_update_regs(struct bge_softc *sc)
2635 {
2636         struct ifnet *ifp = &sc->arpcom.ac_if;
2637         struct bge_mac_stats_regs stats;
2638         uint32_t *s;
2639         int i;
2640
2641         s = (uint32_t *)&stats;
2642         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2643                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2644                 s++;
2645         }
2646
2647         ifp->if_collisions +=
2648            (stats.dot3StatsSingleCollisionFrames +
2649            stats.dot3StatsMultipleCollisionFrames +
2650            stats.dot3StatsExcessiveCollisions +
2651            stats.dot3StatsLateCollisions) -
2652            ifp->if_collisions;
2653 }
2654
2655 static void
2656 bge_stats_update(struct bge_softc *sc)
2657 {
2658         struct ifnet *ifp = &sc->arpcom.ac_if;
2659         bus_size_t stats;
2660
2661         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2662
2663 #define READ_STAT(sc, stats, stat)      \
2664         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2665
2666         ifp->if_collisions +=
2667            (READ_STAT(sc, stats,
2668                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2669             READ_STAT(sc, stats,
2670                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2671             READ_STAT(sc, stats,
2672                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2673             READ_STAT(sc, stats,
2674                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2675            ifp->if_collisions;
2676
2677 #undef READ_STAT
2678
2679 #ifdef notdef
2680         ifp->if_collisions +=
2681            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2682            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2683            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2684            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2685            ifp->if_collisions;
2686 #endif
2687 }
2688
2689 /*
2690  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2691  * pointers to descriptors.
2692  */
2693 static int
2694 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2695 {
2696         struct bge_tx_bd *d = NULL;
2697         uint16_t csum_flags = 0;
2698         bus_dma_segment_t segs[BGE_NSEG_NEW];
2699         bus_dmamap_t map;
2700         int error, maxsegs, nsegs, idx, i;
2701         struct mbuf *m_head = *m_head0;
2702
2703         if (m_head->m_pkthdr.csum_flags) {
2704                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2705                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2706                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2707                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2708                 if (m_head->m_flags & M_LASTFRAG)
2709                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2710                 else if (m_head->m_flags & M_FRAG)
2711                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2712         }
2713
2714         idx = *txidx;
2715         map = sc->bge_cdata.bge_tx_dmamap[idx];
2716
2717         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2718         KASSERT(maxsegs >= BGE_NSEG_SPARE,
2719                 ("not enough segments %d\n", maxsegs));
2720
2721         if (maxsegs > BGE_NSEG_NEW)
2722                 maxsegs = BGE_NSEG_NEW;
2723
2724         /*
2725          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2726          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2727          * but when such padded frames employ the bge IP/TCP checksum
2728          * offload, the hardware checksum assist gives incorrect results
2729          * (possibly from incorporating its own padding into the UDP/TCP
2730          * checksum; who knows).  If we pad such runts with zeros, the
2731          * onboard checksum comes out correct.
2732          */
2733         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2734             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2735                 error = m_devpad(m_head, BGE_MIN_FRAME);
2736                 if (error)
2737                         goto back;
2738         }
2739
2740         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
2741                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2742         if (error)
2743                 goto back;
2744
2745         m_head = *m_head0;
2746         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2747
2748         for (i = 0; ; i++) {
2749                 d = &sc->bge_ldata.bge_tx_ring[idx];
2750
2751                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
2752                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
2753                 d->bge_len = segs[i].ds_len;
2754                 d->bge_flags = csum_flags;
2755
2756                 if (i == nsegs - 1)
2757                         break;
2758                 BGE_INC(idx, BGE_TX_RING_CNT);
2759         }
2760         /* Mark the last segment as end of packet... */
2761         d->bge_flags |= BGE_TXBDFLAG_END;
2762
2763         /* Set vlan tag to the first segment of the packet. */
2764         d = &sc->bge_ldata.bge_tx_ring[*txidx];
2765         if (m_head->m_flags & M_VLANTAG) {
2766                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2767                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
2768         } else {
2769                 d->bge_vlan_tag = 0;
2770         }
2771
2772         /*
2773          * Insure that the map for this transmission is placed at
2774          * the array index of the last descriptor in this chain.
2775          */
2776         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2777         sc->bge_cdata.bge_tx_dmamap[idx] = map;
2778         sc->bge_cdata.bge_tx_chain[idx] = m_head;
2779         sc->bge_txcnt += nsegs;
2780
2781         BGE_INC(idx, BGE_TX_RING_CNT);
2782         *txidx = idx;
2783 back:
2784         if (error) {
2785                 m_freem(*m_head0);
2786                 *m_head0 = NULL;
2787         }
2788         return error;
2789 }
2790
2791 /*
2792  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2793  * to the mbuf data regions directly in the transmit descriptors.
2794  */
2795 static void
2796 bge_start(struct ifnet *ifp)
2797 {
2798         struct bge_softc *sc = ifp->if_softc;
2799         struct mbuf *m_head = NULL;
2800         uint32_t prodidx;
2801         int need_trans;
2802
2803         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2804                 return;
2805
2806         prodidx = sc->bge_tx_prodidx;
2807
2808         need_trans = 0;
2809         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2810                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2811                 if (m_head == NULL)
2812                         break;
2813
2814                 /*
2815                  * XXX
2816                  * The code inside the if() block is never reached since we
2817                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2818                  * requests to checksum TCP/UDP in a fragmented packet.
2819                  * 
2820                  * XXX
2821                  * safety overkill.  If this is a fragmented packet chain
2822                  * with delayed TCP/UDP checksums, then only encapsulate
2823                  * it if we have enough descriptors to handle the entire
2824                  * chain at once.
2825                  * (paranoia -- may not actually be needed)
2826                  */
2827                 if ((m_head->m_flags & M_FIRSTFRAG) &&
2828                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2829                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2830                             m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
2831                                 ifp->if_flags |= IFF_OACTIVE;
2832                                 ifq_prepend(&ifp->if_snd, m_head);
2833                                 break;
2834                         }
2835                 }
2836
2837                 /*
2838                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2839                  * descriptors of the end of the ring.  Also make
2840                  * sure there are BGE_NSEG_SPARE descriptors for
2841                  * jumbo buffers' defragmentation.
2842                  */
2843                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2844                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2845                         ifp->if_flags |= IFF_OACTIVE;
2846                         ifq_prepend(&ifp->if_snd, m_head);
2847                         break;
2848                 }
2849
2850                 /*
2851                  * Pack the data into the transmit ring. If we
2852                  * don't have room, set the OACTIVE flag and wait
2853                  * for the NIC to drain the ring.
2854                  */
2855                 if (bge_encap(sc, &m_head, &prodidx)) {
2856                         ifp->if_flags |= IFF_OACTIVE;
2857                         ifp->if_oerrors++;
2858                         break;
2859                 }
2860                 need_trans = 1;
2861
2862                 ETHER_BPF_MTAP(ifp, m_head);
2863         }
2864
2865         if (!need_trans)
2866                 return;
2867
2868         /* Transmit */
2869         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2870         /* 5700 b2 errata */
2871         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2872                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2873
2874         sc->bge_tx_prodidx = prodidx;
2875
2876         /*
2877          * Set a timeout in case the chip goes out to lunch.
2878          */
2879         ifp->if_timer = 5;
2880 }
2881
2882 static void
2883 bge_init(void *xsc)
2884 {
2885         struct bge_softc *sc = xsc;
2886         struct ifnet *ifp = &sc->arpcom.ac_if;
2887         uint16_t *m;
2888
2889         ASSERT_SERIALIZED(ifp->if_serializer);
2890
2891         if (ifp->if_flags & IFF_RUNNING)
2892                 return;
2893
2894         /* Cancel pending I/O and flush buffers. */
2895         bge_stop(sc);
2896         bge_reset(sc);
2897         bge_chipinit(sc);
2898
2899         /*
2900          * Init the various state machines, ring
2901          * control blocks and firmware.
2902          */
2903         if (bge_blockinit(sc)) {
2904                 if_printf(ifp, "initialization failure\n");
2905                 bge_stop(sc);
2906                 return;
2907         }
2908
2909         /* Specify MTU. */
2910         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2911             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2912
2913         /* Load our MAC address. */
2914         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2915         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2916         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2917
2918         /* Enable or disable promiscuous mode as needed. */
2919         bge_setpromisc(sc);
2920
2921         /* Program multicast filter. */
2922         bge_setmulti(sc);
2923
2924         /* Init RX ring. */
2925         if (bge_init_rx_ring_std(sc)) {
2926                 if_printf(ifp, "RX ring initialization failed\n");
2927                 bge_stop(sc);
2928                 return;
2929         }
2930
2931         /*
2932          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2933          * memory to insure that the chip has in fact read the first
2934          * entry of the ring.
2935          */
2936         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2937                 uint32_t                v, i;
2938                 for (i = 0; i < 10; i++) {
2939                         DELAY(20);
2940                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2941                         if (v == (MCLBYTES - ETHER_ALIGN))
2942                                 break;
2943                 }
2944                 if (i == 10)
2945                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2946         }
2947
2948         /* Init jumbo RX ring. */
2949         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
2950                 if (bge_init_rx_ring_jumbo(sc)) {
2951                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
2952                         bge_stop(sc);
2953                         return;
2954                 }
2955         }
2956
2957         /* Init our RX return ring index */
2958         sc->bge_rx_saved_considx = 0;
2959
2960         /* Init TX ring. */
2961         bge_init_tx_ring(sc);
2962
2963         /* Turn on transmitter */
2964         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2965
2966         /* Turn on receiver */
2967         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2968
2969         /* Tell firmware we're alive. */
2970         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2971
2972         /* Enable host interrupts if polling(4) is not enabled. */
2973         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2974 #ifdef DEVICE_POLLING
2975         if (ifp->if_flags & IFF_POLLING)
2976                 bge_disable_intr(sc);
2977         else
2978 #endif
2979         bge_enable_intr(sc);
2980
2981         bge_ifmedia_upd(ifp);
2982
2983         ifp->if_flags |= IFF_RUNNING;
2984         ifp->if_flags &= ~IFF_OACTIVE;
2985
2986         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2987 }
2988
2989 /*
2990  * Set media options.
2991  */
2992 static int
2993 bge_ifmedia_upd(struct ifnet *ifp)
2994 {
2995         struct bge_softc *sc = ifp->if_softc;
2996
2997         /* If this is a 1000baseX NIC, enable the TBI port. */
2998         if (sc->bge_flags & BGE_FLAG_TBI) {
2999                 struct ifmedia *ifm = &sc->bge_ifmedia;
3000
3001                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3002                         return(EINVAL);
3003
3004                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3005                 case IFM_AUTO:
3006                         /*
3007                          * The BCM5704 ASIC appears to have a special
3008                          * mechanism for programming the autoneg
3009                          * advertisement registers in TBI mode.
3010                          */
3011                         if (!bge_fake_autoneg &&
3012                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3013                                 uint32_t sgdig;
3014
3015                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3016                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3017                                 sgdig |= BGE_SGDIGCFG_AUTO |
3018                                          BGE_SGDIGCFG_PAUSE_CAP |
3019                                          BGE_SGDIGCFG_ASYM_PAUSE;
3020                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3021                                             sgdig | BGE_SGDIGCFG_SEND);
3022                                 DELAY(5);
3023                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3024                         }
3025                         break;
3026                 case IFM_1000_SX:
3027                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3028                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3029                                     BGE_MACMODE_HALF_DUPLEX);
3030                         } else {
3031                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3032                                     BGE_MACMODE_HALF_DUPLEX);
3033                         }
3034                         break;
3035                 default:
3036                         return(EINVAL);
3037                 }
3038         } else {
3039                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3040
3041                 sc->bge_link_evt++;
3042                 sc->bge_link = 0;
3043                 if (mii->mii_instance) {
3044                         struct mii_softc *miisc;
3045
3046                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3047                                 mii_phy_reset(miisc);
3048                 }
3049                 mii_mediachg(mii);
3050         }
3051         return(0);
3052 }
3053
3054 /*
3055  * Report current media status.
3056  */
3057 static void
3058 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3059 {
3060         struct bge_softc *sc = ifp->if_softc;
3061
3062         if (sc->bge_flags & BGE_FLAG_TBI) {
3063                 ifmr->ifm_status = IFM_AVALID;
3064                 ifmr->ifm_active = IFM_ETHER;
3065                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3066                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3067                         ifmr->ifm_status |= IFM_ACTIVE;
3068                 } else {
3069                         ifmr->ifm_active |= IFM_NONE;
3070                         return;
3071                 }
3072
3073                 ifmr->ifm_active |= IFM_1000_SX;
3074                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3075                         ifmr->ifm_active |= IFM_HDX;    
3076                 else
3077                         ifmr->ifm_active |= IFM_FDX;
3078         } else {
3079                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3080
3081                 mii_pollstat(mii);
3082                 ifmr->ifm_active = mii->mii_media_active;
3083                 ifmr->ifm_status = mii->mii_media_status;
3084         }
3085 }
3086
3087 static int
3088 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3089 {
3090         struct bge_softc *sc = ifp->if_softc;
3091         struct ifreq *ifr = (struct ifreq *)data;
3092         int mask, error = 0;
3093
3094         ASSERT_SERIALIZED(ifp->if_serializer);
3095
3096         switch (command) {
3097         case SIOCSIFMTU:
3098                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3099                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3100                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3101                         error = EINVAL;
3102                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3103                         ifp->if_mtu = ifr->ifr_mtu;
3104                         ifp->if_flags &= ~IFF_RUNNING;
3105                         bge_init(sc);
3106                 }
3107                 break;
3108         case SIOCSIFFLAGS:
3109                 if (ifp->if_flags & IFF_UP) {
3110                         if (ifp->if_flags & IFF_RUNNING) {
3111                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3112
3113                                 /*
3114                                  * If only the state of the PROMISC flag
3115                                  * changed, then just use the 'set promisc
3116                                  * mode' command instead of reinitializing
3117                                  * the entire NIC. Doing a full re-init
3118                                  * means reloading the firmware and waiting
3119                                  * for it to start up, which may take a
3120                                  * second or two.  Similarly for ALLMULTI.
3121                                  */
3122                                 if (mask & IFF_PROMISC)
3123                                         bge_setpromisc(sc);
3124                                 if (mask & IFF_ALLMULTI)
3125                                         bge_setmulti(sc);
3126                         } else {
3127                                 bge_init(sc);
3128                         }
3129                 } else {
3130                         if (ifp->if_flags & IFF_RUNNING)
3131                                 bge_stop(sc);
3132                 }
3133                 sc->bge_if_flags = ifp->if_flags;
3134                 break;
3135         case SIOCADDMULTI:
3136         case SIOCDELMULTI:
3137                 if (ifp->if_flags & IFF_RUNNING)
3138                         bge_setmulti(sc);
3139                 break;
3140         case SIOCSIFMEDIA:
3141         case SIOCGIFMEDIA:
3142                 if (sc->bge_flags & BGE_FLAG_TBI) {
3143                         error = ifmedia_ioctl(ifp, ifr,
3144                             &sc->bge_ifmedia, command);
3145                 } else {
3146                         struct mii_data *mii;
3147
3148                         mii = device_get_softc(sc->bge_miibus);
3149                         error = ifmedia_ioctl(ifp, ifr,
3150                                               &mii->mii_media, command);
3151                 }
3152                 break;
3153         case SIOCSIFCAP:
3154                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3155                 if (mask & IFCAP_HWCSUM) {
3156                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3157                         if (IFCAP_HWCSUM & ifp->if_capenable)
3158                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3159                         else
3160                                 ifp->if_hwassist = 0;
3161                 }
3162                 break;
3163         default:
3164                 error = ether_ioctl(ifp, command, data);
3165                 break;
3166         }
3167         return error;
3168 }
3169
3170 static void
3171 bge_watchdog(struct ifnet *ifp)
3172 {
3173         struct bge_softc *sc = ifp->if_softc;
3174
3175         if_printf(ifp, "watchdog timeout -- resetting\n");
3176
3177         ifp->if_flags &= ~IFF_RUNNING;
3178         bge_init(sc);
3179
3180         ifp->if_oerrors++;
3181
3182         if (!ifq_is_empty(&ifp->if_snd))
3183                 if_devstart(ifp);
3184 }
3185
3186 /*
3187  * Stop the adapter and free any mbufs allocated to the
3188  * RX and TX lists.
3189  */
3190 static void
3191 bge_stop(struct bge_softc *sc)
3192 {
3193         struct ifnet *ifp = &sc->arpcom.ac_if;
3194         struct ifmedia_entry *ifm;
3195         struct mii_data *mii = NULL;
3196         int mtmp, itmp;
3197
3198         ASSERT_SERIALIZED(ifp->if_serializer);
3199
3200         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3201                 mii = device_get_softc(sc->bge_miibus);
3202
3203         callout_stop(&sc->bge_stat_timer);
3204
3205         /*
3206          * Disable all of the receiver blocks
3207          */
3208         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3209         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3210         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3211         if (!BGE_IS_5705_PLUS(sc))
3212                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3213         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3214         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3215         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3216
3217         /*
3218          * Disable all of the transmit blocks
3219          */
3220         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3221         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3222         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3223         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3224         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3225         if (!BGE_IS_5705_PLUS(sc))
3226                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3227         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3228
3229         /*
3230          * Shut down all of the memory managers and related
3231          * state machines.
3232          */
3233         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3234         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3235         if (!BGE_IS_5705_PLUS(sc))
3236                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3237         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3238         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3239         if (!BGE_IS_5705_PLUS(sc)) {
3240                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3241                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3242         }
3243
3244         /* Disable host interrupts. */
3245         bge_disable_intr(sc);
3246
3247         /*
3248          * Tell firmware we're shutting down.
3249          */
3250         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3251
3252         /* Free the RX lists. */
3253         bge_free_rx_ring_std(sc);
3254
3255         /* Free jumbo RX list. */
3256         if (BGE_IS_JUMBO_CAPABLE(sc))
3257                 bge_free_rx_ring_jumbo(sc);
3258
3259         /* Free TX buffers. */
3260         bge_free_tx_ring(sc);
3261
3262         /*
3263          * Isolate/power down the PHY, but leave the media selection
3264          * unchanged so that things will be put back to normal when
3265          * we bring the interface back up.
3266          *
3267          * 'mii' may be NULL in the following cases:
3268          * - The device uses TBI.
3269          * - bge_stop() is called by bge_detach().
3270          */
3271         if (mii != NULL) {
3272                 itmp = ifp->if_flags;
3273                 ifp->if_flags |= IFF_UP;
3274                 ifm = mii->mii_media.ifm_cur;
3275                 mtmp = ifm->ifm_media;
3276                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3277                 mii_mediachg(mii);
3278                 ifm->ifm_media = mtmp;
3279                 ifp->if_flags = itmp;
3280         }
3281
3282         sc->bge_link = 0;
3283         sc->bge_coal_chg = 0;
3284
3285         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3286
3287         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3288         ifp->if_timer = 0;
3289 }
3290
3291 /*
3292  * Stop all chip I/O so that the kernel's probe routines don't
3293  * get confused by errant DMAs when rebooting.
3294  */
3295 static void
3296 bge_shutdown(device_t dev)
3297 {
3298         struct bge_softc *sc = device_get_softc(dev);
3299         struct ifnet *ifp = &sc->arpcom.ac_if;
3300
3301         lwkt_serialize_enter(ifp->if_serializer);
3302         bge_stop(sc);
3303         bge_reset(sc);
3304         lwkt_serialize_exit(ifp->if_serializer);
3305 }
3306
3307 static int
3308 bge_suspend(device_t dev)
3309 {
3310         struct bge_softc *sc = device_get_softc(dev);
3311         struct ifnet *ifp = &sc->arpcom.ac_if;
3312
3313         lwkt_serialize_enter(ifp->if_serializer);
3314         bge_stop(sc);
3315         lwkt_serialize_exit(ifp->if_serializer);
3316
3317         return 0;
3318 }
3319
3320 static int
3321 bge_resume(device_t dev)
3322 {
3323         struct bge_softc *sc = device_get_softc(dev);
3324         struct ifnet *ifp = &sc->arpcom.ac_if;
3325
3326         lwkt_serialize_enter(ifp->if_serializer);
3327
3328         if (ifp->if_flags & IFF_UP) {
3329                 bge_init(sc);
3330
3331                 if (!ifq_is_empty(&ifp->if_snd))
3332                         if_devstart(ifp);
3333         }
3334
3335         lwkt_serialize_exit(ifp->if_serializer);
3336
3337         return 0;
3338 }
3339
3340 static void
3341 bge_setpromisc(struct bge_softc *sc)
3342 {
3343         struct ifnet *ifp = &sc->arpcom.ac_if;
3344
3345         if (ifp->if_flags & IFF_PROMISC)
3346                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3347         else
3348                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3349 }
3350
3351 static void
3352 bge_dma_free(struct bge_softc *sc)
3353 {
3354         int i;
3355
3356         /* Destroy RX mbuf DMA stuffs. */
3357         if (sc->bge_cdata.bge_rx_mtag != NULL) {
3358                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3359                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3360                             sc->bge_cdata.bge_rx_std_dmamap[i]);
3361                 }
3362                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3363                                    sc->bge_cdata.bge_rx_tmpmap);
3364                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3365         }
3366
3367         /* Destroy TX mbuf DMA stuffs. */
3368         if (sc->bge_cdata.bge_tx_mtag != NULL) {
3369                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3370                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3371                             sc->bge_cdata.bge_tx_dmamap[i]);
3372                 }
3373                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3374         }
3375
3376         /* Destroy standard RX ring */
3377         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3378                            sc->bge_cdata.bge_rx_std_ring_map,
3379                            sc->bge_ldata.bge_rx_std_ring);
3380
3381         if (BGE_IS_JUMBO_CAPABLE(sc))
3382                 bge_free_jumbo_mem(sc);
3383
3384         /* Destroy RX return ring */
3385         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3386                            sc->bge_cdata.bge_rx_return_ring_map,
3387                            sc->bge_ldata.bge_rx_return_ring);
3388
3389         /* Destroy TX ring */
3390         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3391                            sc->bge_cdata.bge_tx_ring_map,
3392                            sc->bge_ldata.bge_tx_ring);
3393
3394         /* Destroy status block */
3395         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3396                            sc->bge_cdata.bge_status_map,
3397                            sc->bge_ldata.bge_status_block);
3398
3399         /* Destroy statistics block */
3400         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3401                            sc->bge_cdata.bge_stats_map,
3402                            sc->bge_ldata.bge_stats);
3403
3404         /* Destroy the parent tag */
3405         if (sc->bge_cdata.bge_parent_tag != NULL)
3406                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3407 }
3408
3409 static int
3410 bge_dma_alloc(struct bge_softc *sc)
3411 {
3412         struct ifnet *ifp = &sc->arpcom.ac_if;
3413         int i, error;
3414
3415         /*
3416          * Allocate the parent bus DMA tag appropriate for PCI.
3417          */
3418         error = bus_dma_tag_create(NULL, 1, 0,
3419                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3420                                    NULL, NULL,
3421                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3422                                    BUS_SPACE_MAXSIZE_32BIT,
3423                                    0, &sc->bge_cdata.bge_parent_tag);
3424         if (error) {
3425                 if_printf(ifp, "could not allocate parent dma tag\n");
3426                 return error;
3427         }
3428
3429         /*
3430          * Create DMA tag and maps for RX mbufs.
3431          */
3432         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3433                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3434                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
3435                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3436                                    &sc->bge_cdata.bge_rx_mtag);
3437         if (error) {
3438                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
3439                 return error;
3440         }
3441
3442         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3443                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
3444         if (error) {
3445                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3446                 sc->bge_cdata.bge_rx_mtag = NULL;
3447                 return error;
3448         }
3449
3450         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3451                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3452                                           BUS_DMA_WAITOK,
3453                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3454                 if (error) {
3455                         int j;
3456
3457                         for (j = 0; j < i; ++j) {
3458                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3459                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3460                         }
3461                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3462                         sc->bge_cdata.bge_rx_mtag = NULL;
3463
3464                         if_printf(ifp, "could not create DMA map for RX\n");
3465                         return error;
3466                 }
3467         }
3468
3469         /*
3470          * Create DMA tag and maps for TX mbufs.
3471          */
3472         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3473                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3474                                    NULL, NULL,
3475                                    BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES,
3476                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3477                                    BUS_DMA_ONEBPAGE,
3478                                    &sc->bge_cdata.bge_tx_mtag);
3479         if (error) {
3480                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
3481                 return error;
3482         }
3483
3484         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3485                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
3486                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
3487                                           &sc->bge_cdata.bge_tx_dmamap[i]);
3488                 if (error) {
3489                         int j;
3490
3491                         for (j = 0; j < i; ++j) {
3492                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3493                                         sc->bge_cdata.bge_tx_dmamap[j]);
3494                         }
3495                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3496                         sc->bge_cdata.bge_tx_mtag = NULL;
3497
3498                         if_printf(ifp, "could not create DMA map for TX\n");
3499                         return error;
3500                 }
3501         }
3502
3503         /*
3504          * Create DMA stuffs for standard RX ring.
3505          */
3506         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3507                                     &sc->bge_cdata.bge_rx_std_ring_tag,
3508                                     &sc->bge_cdata.bge_rx_std_ring_map,
3509                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
3510                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
3511         if (error) {
3512                 if_printf(ifp, "could not create std RX ring\n");
3513                 return error;
3514         }
3515
3516         /*
3517          * Create jumbo buffer pool.
3518          */
3519         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3520                 error = bge_alloc_jumbo_mem(sc);
3521                 if (error) {
3522                         if_printf(ifp, "could not create jumbo buffer pool\n");
3523                         return error;
3524                 }
3525         }
3526
3527         /*
3528          * Create DMA stuffs for RX return ring.
3529          */
3530         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3531                                     &sc->bge_cdata.bge_rx_return_ring_tag,
3532                                     &sc->bge_cdata.bge_rx_return_ring_map,
3533                                     (void *)&sc->bge_ldata.bge_rx_return_ring,
3534                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
3535         if (error) {
3536                 if_printf(ifp, "could not create RX ret ring\n");
3537                 return error;
3538         }
3539
3540         /*
3541          * Create DMA stuffs for TX ring.
3542          */
3543         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3544                                     &sc->bge_cdata.bge_tx_ring_tag,
3545                                     &sc->bge_cdata.bge_tx_ring_map,
3546                                     (void *)&sc->bge_ldata.bge_tx_ring,
3547                                     &sc->bge_ldata.bge_tx_ring_paddr);
3548         if (error) {
3549                 if_printf(ifp, "could not create TX ring\n");
3550                 return error;
3551         }
3552
3553         /*
3554          * Create DMA stuffs for status block.
3555          */
3556         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3557                                     &sc->bge_cdata.bge_status_tag,
3558                                     &sc->bge_cdata.bge_status_map,
3559                                     (void *)&sc->bge_ldata.bge_status_block,
3560                                     &sc->bge_ldata.bge_status_block_paddr);
3561         if (error) {
3562                 if_printf(ifp, "could not create status block\n");
3563                 return error;
3564         }
3565
3566         /*
3567          * Create DMA stuffs for statistics block.
3568          */
3569         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3570                                     &sc->bge_cdata.bge_stats_tag,
3571                                     &sc->bge_cdata.bge_stats_map,
3572                                     (void *)&sc->bge_ldata.bge_stats,
3573                                     &sc->bge_ldata.bge_stats_paddr);
3574         if (error) {
3575                 if_printf(ifp, "could not create stats block\n");
3576                 return error;
3577         }
3578         return 0;
3579 }
3580
3581 static int
3582 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3583                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3584 {
3585         bus_dmamem_t dmem;
3586         int error;
3587
3588         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3589                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3590                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3591         if (error)
3592                 return error;
3593
3594         *tag = dmem.dmem_tag;
3595         *map = dmem.dmem_map;
3596         *addr = dmem.dmem_addr;
3597         *paddr = dmem.dmem_busaddr;
3598
3599         return 0;
3600 }
3601
3602 static void
3603 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3604 {
3605         if (tag != NULL) {
3606                 bus_dmamap_unload(tag, map);
3607                 bus_dmamem_free(tag, addr, map);
3608                 bus_dma_tag_destroy(tag);
3609         }
3610 }
3611
3612 /*
3613  * Grrr. The link status word in the status block does
3614  * not work correctly on the BCM5700 rev AX and BX chips,
3615  * according to all available information. Hence, we have
3616  * to enable MII interrupts in order to properly obtain
3617  * async link changes. Unfortunately, this also means that
3618  * we have to read the MAC status register to detect link
3619  * changes, thereby adding an additional register access to
3620  * the interrupt handler.
3621  *
3622  * XXX: perhaps link state detection procedure used for
3623  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3624  */
3625 static void
3626 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3627 {
3628         struct ifnet *ifp = &sc->arpcom.ac_if;
3629         struct mii_data *mii = device_get_softc(sc->bge_miibus);
3630
3631         mii_pollstat(mii);
3632
3633         if (!sc->bge_link &&
3634             (mii->mii_media_status & IFM_ACTIVE) &&
3635             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3636                 sc->bge_link++;
3637                 if (bootverbose)
3638                         if_printf(ifp, "link UP\n");
3639         } else if (sc->bge_link &&
3640             (!(mii->mii_media_status & IFM_ACTIVE) ||
3641             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3642                 sc->bge_link = 0;
3643                 if (bootverbose)
3644                         if_printf(ifp, "link DOWN\n");
3645         }
3646
3647         /* Clear the interrupt. */
3648         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3649         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3650         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3651 }
3652
3653 static void
3654 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3655 {
3656         struct ifnet *ifp = &sc->arpcom.ac_if;
3657
3658 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3659
3660         /*
3661          * Sometimes PCS encoding errors are detected in
3662          * TBI mode (on fiber NICs), and for some reason
3663          * the chip will signal them as link changes.
3664          * If we get a link change event, but the 'PCS
3665          * encoding error' bit in the MAC status register
3666          * is set, don't bother doing a link check.
3667          * This avoids spurious "gigabit link up" messages
3668          * that sometimes appear on fiber NICs during
3669          * periods of heavy traffic.
3670          */
3671         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3672                 if (!sc->bge_link) {
3673                         sc->bge_link++;
3674                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3675                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3676                                     BGE_MACMODE_TBI_SEND_CFGS);
3677                         }
3678                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3679
3680                         if (bootverbose)
3681                                 if_printf(ifp, "link UP\n");
3682
3683                         ifp->if_link_state = LINK_STATE_UP;
3684                         if_link_state_change(ifp);
3685                 }
3686         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3687                 if (sc->bge_link) {
3688                         sc->bge_link = 0;
3689
3690                         if (bootverbose)
3691                                 if_printf(ifp, "link DOWN\n");
3692
3693                         ifp->if_link_state = LINK_STATE_DOWN;
3694                         if_link_state_change(ifp);
3695                 }
3696         }
3697
3698 #undef PCS_ENCODE_ERR
3699
3700         /* Clear the attention. */
3701         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3702             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3703             BGE_MACSTAT_LINK_CHANGED);
3704 }
3705
3706 static void
3707 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3708 {
3709         /*
3710          * Check that the AUTOPOLL bit is set before
3711          * processing the event as a real link change.
3712          * Turning AUTOPOLL on and off in the MII read/write
3713          * functions will often trigger a link status
3714          * interrupt for no reason.
3715          */
3716         if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3717                 struct ifnet *ifp = &sc->arpcom.ac_if;
3718                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3719
3720                 mii_pollstat(mii);
3721
3722                 if (!sc->bge_link &&
3723                     (mii->mii_media_status & IFM_ACTIVE) &&
3724                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3725                         sc->bge_link++;
3726                         if (bootverbose)
3727                                 if_printf(ifp, "link UP\n");
3728                 } else if (sc->bge_link &&
3729                     (!(mii->mii_media_status & IFM_ACTIVE) ||
3730                     IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3731                         sc->bge_link = 0;
3732                         if (bootverbose)
3733                                 if_printf(ifp, "link DOWN\n");
3734                 }
3735         }
3736
3737         /* Clear the attention. */
3738         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3739             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3740             BGE_MACSTAT_LINK_CHANGED);
3741 }
3742
3743 static int
3744 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3745 {
3746         struct bge_softc *sc = arg1;
3747
3748         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3749                                    &sc->bge_rx_coal_ticks,
3750                                    BGE_RX_COAL_TICKS_CHG);
3751 }
3752
3753 static int
3754 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3755 {
3756         struct bge_softc *sc = arg1;
3757
3758         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3759                                    &sc->bge_tx_coal_ticks,
3760                                    BGE_TX_COAL_TICKS_CHG);
3761 }
3762
3763 static int
3764 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3765 {
3766         struct bge_softc *sc = arg1;
3767
3768         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3769                                    &sc->bge_rx_max_coal_bds,
3770                                    BGE_RX_MAX_COAL_BDS_CHG);
3771 }
3772
3773 static int
3774 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3775 {
3776         struct bge_softc *sc = arg1;
3777
3778         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3779                                    &sc->bge_tx_max_coal_bds,
3780                                    BGE_TX_MAX_COAL_BDS_CHG);
3781 }
3782
3783 static int
3784 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3785                     uint32_t coal_chg_mask)
3786 {
3787         struct bge_softc *sc = arg1;
3788         struct ifnet *ifp = &sc->arpcom.ac_if;
3789         int error = 0, v;
3790
3791         lwkt_serialize_enter(ifp->if_serializer);
3792
3793         v = *coal;
3794         error = sysctl_handle_int(oidp, &v, 0, req);
3795         if (!error && req->newptr != NULL) {
3796                 if (v < 0) {
3797                         error = EINVAL;
3798                 } else {
3799                         *coal = v;
3800                         sc->bge_coal_chg |= coal_chg_mask;
3801                 }
3802         }
3803
3804         lwkt_serialize_exit(ifp->if_serializer);
3805         return error;
3806 }
3807
3808 static void
3809 bge_coal_change(struct bge_softc *sc)
3810 {
3811         struct ifnet *ifp = &sc->arpcom.ac_if;
3812         uint32_t val;
3813
3814         ASSERT_SERIALIZED(ifp->if_serializer);
3815
3816         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3817                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3818                             sc->bge_rx_coal_ticks);
3819                 DELAY(10);
3820                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3821
3822                 if (bootverbose) {
3823                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3824                                   sc->bge_rx_coal_ticks);
3825                 }
3826         }
3827
3828         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3829                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3830                             sc->bge_tx_coal_ticks);
3831                 DELAY(10);
3832                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3833
3834                 if (bootverbose) {
3835                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3836                                   sc->bge_tx_coal_ticks);
3837                 }
3838         }
3839
3840         if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3841                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3842                             sc->bge_rx_max_coal_bds);
3843                 DELAY(10);
3844                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3845
3846                 if (bootverbose) {
3847                         if_printf(ifp, "rx_max_coal_bds -> %u\n",
3848                                   sc->bge_rx_max_coal_bds);
3849                 }
3850         }
3851
3852         if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3853                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3854                             sc->bge_tx_max_coal_bds);
3855                 DELAY(10);
3856                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3857
3858                 if (bootverbose) {
3859                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
3860                                   sc->bge_tx_max_coal_bds);
3861                 }
3862         }
3863
3864         sc->bge_coal_chg = 0;
3865 }
3866
3867 static void
3868 bge_enable_intr(struct bge_softc *sc)
3869 {
3870         struct ifnet *ifp = &sc->arpcom.ac_if;
3871
3872         lwkt_serialize_handler_enable(ifp->if_serializer);
3873
3874         /*
3875          * Enable interrupt.
3876          */
3877         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3878
3879         /*
3880          * Unmask the interrupt when we stop polling.
3881          */
3882         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3883
3884         /*
3885          * Trigger another interrupt, since above writing
3886          * to interrupt mailbox0 may acknowledge pending
3887          * interrupt.
3888          */
3889         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3890 }
3891
3892 static void
3893 bge_disable_intr(struct bge_softc *sc)
3894 {
3895         struct ifnet *ifp = &sc->arpcom.ac_if;
3896
3897         /*
3898          * Mask the interrupt when we start polling.
3899          */
3900         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3901
3902         /*
3903          * Acknowledge possible asserted interrupt.
3904          */
3905         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3906
3907         lwkt_serialize_handler_disable(ifp->if_serializer);
3908 }
3909
3910 static int
3911 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
3912 {
3913         uint32_t mac_addr;
3914         int ret = 1;
3915
3916         mac_addr = bge_readmem_ind(sc, 0x0c14);
3917         if ((mac_addr >> 16) == 0x484b) {
3918                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
3919                 ether_addr[1] = (uint8_t)mac_addr;
3920                 mac_addr = bge_readmem_ind(sc, 0x0c18);
3921                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
3922                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
3923                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
3924                 ether_addr[5] = (uint8_t)mac_addr;
3925                 ret = 0;
3926         }
3927         return ret;
3928 }
3929
3930 static int
3931 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
3932 {
3933         int mac_offset = BGE_EE_MAC_OFFSET;
3934
3935         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
3936                 mac_offset = BGE_EE_MAC_OFFSET_5906;
3937
3938         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
3939 }
3940
3941 static int
3942 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
3943 {
3944         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
3945                 return 1;
3946
3947         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
3948                                ETHER_ADDR_LEN);
3949 }
3950
3951 static int
3952 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
3953 {
3954         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
3955                 /* NOTE: Order is critical */
3956                 bge_get_eaddr_mem,
3957                 bge_get_eaddr_nvram,
3958                 bge_get_eaddr_eeprom,
3959                 NULL
3960         };
3961         const bge_eaddr_fcn_t *func;
3962
3963         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
3964                 if ((*func)(sc, eaddr) == 0)
3965                         break;
3966         }
3967         return (*func == NULL ? ENXIO : 0);
3968 }