fa209d394f980e58b26cfd5b77ce01f25f3686b6
[dragonfly.git] / sys / dev / netif / sk / if_sk.c
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $OpenBSD: if_sk.c,v 1.129 2006/10/16 12:30:08 tom Exp $
33  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
34  */
35
36 /*
37  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
38  *
39  * Permission to use, copy, modify, and distribute this software for any
40  * purpose with or without fee is hereby granted, provided that the above
41  * copyright notice and this permission notice appear in all copies.
42  *
43  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
44  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
46  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
47  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
48  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
49  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
50  */
51
52 /*
53  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
54  * the SK-984x series adapters, both single port and dual port.
55  * References:
56  *      The XaQti XMAC II datasheet,
57  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
58  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
59  *
60  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
61  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
62  * convenience to others until Vitesse corrects this problem:
63  *
64  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
65  *
66  * Written by Bill Paul <wpaul@ee.columbia.edu>
67  * Department of Electrical Engineering
68  * Columbia University, New York City
69  */
70
71 /*
72  * The SysKonnect gigabit ethernet adapters consist of two main
73  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
74  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
75  * components and a PHY while the GEnesis controller provides a PCI
76  * interface with DMA support. Each card may have between 512K and
77  * 2MB of SRAM on board depending on the configuration.
78  *
79  * The SysKonnect GEnesis controller can have either one or two XMAC
80  * chips connected to it, allowing single or dual port NIC configurations.
81  * SysKonnect has the distinction of being the only vendor on the market
82  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
83  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
84  * XMAC registers. This driver takes advantage of these features to allow
85  * both XMACs to operate as independent interfaces.
86  */
87  
88 #include <sys/param.h>
89 #include <sys/bus.h>
90 #include <sys/endian.h>
91 #include <sys/in_cksum.h>
92 #include <sys/kernel.h>
93 #include <sys/interrupt.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/queue.h>
97 #include <sys/rman.h>
98 #include <sys/serialize.h>
99 #include <sys/socket.h>
100 #include <sys/sockio.h>
101 #include <sys/sysctl.h>
102
103 #include <net/bpf.h>
104 #include <net/ethernet.h>
105 #include <net/if.h>
106 #include <net/if_arp.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/ifq_var.h>
110 #include <net/vlan/if_vlan_var.h>
111
112 #include <netinet/ip.h>
113 #include <netinet/udp.h>
114
115 #include <dev/netif/mii_layer/mii.h>
116 #include <dev/netif/mii_layer/miivar.h>
117 #include <dev/netif/mii_layer/brgphyreg.h>
118
119 #include <bus/pci/pcireg.h>
120 #include <bus/pci/pcivar.h>
121 #include "pcidevs.h"
122
123 #include <dev/netif/sk/if_skreg.h>
124 #include <dev/netif/sk/yukonreg.h>
125 #include <dev/netif/sk/xmaciireg.h>
126 #include <dev/netif/sk/if_skvar.h>
127
128 #include "miibus_if.h"
129
130 #if 0
131 #define SK_DEBUG
132 #endif
133
134 #if 0
135 #define SK_RXCSUM
136 #endif
137
138 /* supported device vendors */
139 static const struct skc_type {
140         uint16_t        skc_vid;
141         uint16_t        skc_did;
142         const char      *skc_name;
143 } skc_devs[] = {
144         { PCI_VENDOR_3COM,              PCI_PRODUCT_3COM_3C940,
145           "3Com 3C940" },
146         { PCI_VENDOR_3COM,              PCI_PRODUCT_3COM_3C940B,
147           "3Com 3C940B" },
148
149         { PCI_VENDOR_CNET,              PCI_PRODUCT_CNET_GIGACARD,
150           "CNet GigaCard" },
151
152         { PCI_VENDOR_DLINK,             PCI_PRODUCT_DLINK_DGE530T_A1,
153           "D-Link DGE-530T A1" },
154         { PCI_VENDOR_DLINK,             PCI_PRODUCT_DLINK_DGE530T_B1,
155           "D-Link DGE-530T B1" },
156
157         { PCI_VENDOR_LINKSYS,           PCI_PRODUCT_LINKSYS_EG1032,
158           "Linksys EG1032 v2" },
159         { PCI_VENDOR_LINKSYS,           PCI_PRODUCT_LINKSYS_EG1064,
160           "Linksys EG1064" },
161
162         { PCI_VENDOR_MARVELL,           PCI_PRODUCT_MARVELL_YUKON,
163           "Marvell Yukon 88E8001/8003/8010" },
164         { PCI_VENDOR_MARVELL,           PCI_PRODUCT_MARVELL_YUKON_BELKIN,
165           "Belkin F5D5005" },
166
167         { PCI_VENDOR_SCHNEIDERKOCH,     PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE,
168           "SysKonnect SK-NET" },
169         { PCI_VENDOR_SCHNEIDERKOCH,     PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2,
170           "SysKonnect SK9821 v2" },
171
172         { 0, 0, NULL }
173 };
174
175 static int      skc_probe(device_t);
176 static int      skc_attach(device_t);
177 static int      skc_detach(device_t);
178 static void     skc_shutdown(device_t);
179 static int      skc_sysctl_imtime(SYSCTL_HANDLER_ARGS);
180
181 static int      sk_probe(device_t);
182 static int      sk_attach(device_t);
183 static int      sk_detach(device_t);
184 static void     sk_tick(void *);
185 static void     sk_yukon_tick(void *);
186 static void     sk_intr(void *);
187 static void     sk_intr_bcom(struct sk_if_softc *);
188 static void     sk_intr_xmac(struct sk_if_softc *);
189 static void     sk_intr_yukon(struct sk_if_softc *);
190 static void     sk_rxeof(struct sk_if_softc *);
191 static void     sk_txeof(struct sk_if_softc *);
192 static int      sk_encap(struct sk_if_softc *, struct mbuf **, uint32_t *);
193 static void     sk_start(struct ifnet *, struct ifaltq_subque *);
194 static int      sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
195 static void     sk_init(void *);
196 static void     sk_init_xmac(struct sk_if_softc *);
197 static void     sk_init_yukon(struct sk_if_softc *);
198 static void     sk_stop(struct sk_if_softc *);
199 static void     sk_watchdog(struct ifnet *);
200 static int      sk_ifmedia_upd(struct ifnet *);
201 static void     sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202 static void     sk_reset(struct sk_softc *);
203 static int      sk_newbuf_jumbo(struct sk_if_softc *, int, int);
204 static int      sk_newbuf_std(struct sk_if_softc *, int, int);
205 static int      sk_jpool_alloc(device_t);
206 static void     sk_jpool_free(struct sk_if_softc *);
207 static struct sk_jpool_entry
208                 *sk_jalloc(struct sk_if_softc *);
209 static void     sk_jfree(void *);
210 static void     sk_jref(void *);
211 static int      sk_init_rx_ring(struct sk_if_softc *);
212 static int      sk_init_tx_ring(struct sk_if_softc *);
213
214 static int      sk_miibus_readreg(device_t, int, int);
215 static int      sk_miibus_writereg(device_t, int, int, int);
216 static void     sk_miibus_statchg(device_t);
217
218 static int      sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
219 static int      sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
220 static void     sk_xmac_miibus_statchg(struct sk_if_softc *);
221
222 static int      sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
223 static int      sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
224 static void     sk_marv_miibus_statchg(struct sk_if_softc *);
225
226 static void     sk_setfilt(struct sk_if_softc *, caddr_t, int);
227 static void     sk_setmulti(struct sk_if_softc *);
228 static void     sk_setpromisc(struct sk_if_softc *);
229
230 #ifdef SK_RXCSUM
231 static void     sk_rxcsum(struct ifnet *, struct mbuf *, const uint16_t,
232                           const uint16_t);
233 #endif
234 static int      sk_dma_alloc(device_t);
235 static void     sk_dma_free(device_t);
236
237 #ifdef SK_DEBUG
238 #define DPRINTF(x)      if (skdebug) kprintf x
239 #define DPRINTFN(n,x)   if (skdebug >= (n)) kprintf x
240 static int      skdebug = 2;
241
242 static void     sk_dump_txdesc(struct sk_tx_desc *, int);
243 static void     sk_dump_mbuf(struct mbuf *);
244 static void     sk_dump_bytes(const char *, int);
245 #else
246 #define DPRINTF(x)
247 #define DPRINTFN(n,x)
248 #endif
249
250 /* Interrupt moderation time. */
251 static int      skc_imtime = SK_IMTIME_DEFAULT;
252 TUNABLE_INT("hw.skc.imtime", &skc_imtime);
253
254 /*
255  * Note that we have newbus methods for both the GEnesis controller
256  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
257  * the miibus code is a child of the XMACs. We need to do it this way
258  * so that the miibus drivers can access the PHY registers on the
259  * right PHY. It's not quite what I had in mind, but it's the only
260  * design that achieves the desired effect.
261  */
262 static device_method_t skc_methods[] = {
263         /* Device interface */
264         DEVMETHOD(device_probe,         skc_probe),
265         DEVMETHOD(device_attach,        skc_attach),
266         DEVMETHOD(device_detach,        skc_detach),
267         DEVMETHOD(device_shutdown,      skc_shutdown),
268
269         /* bus interface */
270         DEVMETHOD(bus_print_child,      bus_generic_print_child),
271         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
272
273         DEVMETHOD_END
274 };
275
276 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
277 static devclass_t skc_devclass;
278
279 static device_method_t sk_methods[] = {
280         /* Device interface */
281         DEVMETHOD(device_probe,         sk_probe),
282         DEVMETHOD(device_attach,        sk_attach),
283         DEVMETHOD(device_detach,        sk_detach),
284         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
285
286         /* bus interface */
287         DEVMETHOD(bus_print_child,      bus_generic_print_child),
288         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
289
290         /* MII interface */
291         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
292         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
293         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
294
295         DEVMETHOD_END
296 };
297
298 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
299 static devclass_t sk_devclass;
300
301 DECLARE_DUMMY_MODULE(if_sk);
302 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, NULL, NULL);
303 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, NULL, NULL);
304 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
305
306 static __inline uint32_t
307 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
308 {
309         return CSR_READ_4(sc, reg);
310 }
311
312 static __inline uint16_t
313 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
314 {
315         return CSR_READ_2(sc, reg);
316 }
317
318 static __inline uint8_t
319 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
320 {
321         return CSR_READ_1(sc, reg);
322 }
323
324 static __inline void
325 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
326 {
327         CSR_WRITE_4(sc, reg, x);
328 }
329
330 static __inline void
331 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
332 {
333         CSR_WRITE_2(sc, reg, x);
334 }
335
336 static __inline void
337 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
338 {
339         CSR_WRITE_1(sc, reg, x);
340 }
341
342 static __inline int
343 sk_newbuf(struct sk_if_softc *sc_if, int idx, int wait)
344 {
345         int ret;
346
347         if (sc_if->sk_use_jumbo)
348                 ret = sk_newbuf_jumbo(sc_if, idx, wait);
349         else
350                 ret = sk_newbuf_std(sc_if, idx, wait);
351         return ret;
352 }
353
354 static int
355 sk_miibus_readreg(device_t dev, int phy, int reg)
356 {
357         struct sk_if_softc *sc_if = device_get_softc(dev);
358
359         if (SK_IS_GENESIS(sc_if->sk_softc))
360                 return sk_xmac_miibus_readreg(sc_if, phy, reg);
361         else
362                 return sk_marv_miibus_readreg(sc_if, phy, reg);
363 }
364
365 static int
366 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
367 {
368         struct sk_if_softc *sc_if = device_get_softc(dev);
369
370         if (SK_IS_GENESIS(sc_if->sk_softc))
371                 return sk_xmac_miibus_writereg(sc_if, phy, reg, val);
372         else
373                 return sk_marv_miibus_writereg(sc_if, phy, reg, val);
374 }
375
376 static void
377 sk_miibus_statchg(device_t dev)
378 {
379         struct sk_if_softc *sc_if = device_get_softc(dev);
380
381         if (SK_IS_GENESIS(sc_if->sk_softc))
382                 sk_xmac_miibus_statchg(sc_if);
383         else
384                 sk_marv_miibus_statchg(sc_if);
385 }
386
387 static int
388 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
389 {
390         int i;
391
392         DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
393
394         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
395                 return(0);
396
397         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
398         SK_XM_READ_2(sc_if, XM_PHY_DATA);
399         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
400                 for (i = 0; i < SK_TIMEOUT; i++) {
401                         DELAY(1);
402                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
403                             XM_MMUCMD_PHYDATARDY)
404                                 break;
405                 }
406
407                 if (i == SK_TIMEOUT) {
408                         if_printf(&sc_if->arpcom.ac_if,
409                                   "phy failed to come ready\n");
410                         return(0);
411                 }
412         }
413         DELAY(1);
414         return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
415 }
416
417 static int
418 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
419 {
420         int i;
421
422         DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
423
424         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
425         for (i = 0; i < SK_TIMEOUT; i++) {
426                 if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
427                         break;
428         }
429
430         if (i == SK_TIMEOUT) {
431                 if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
432                 return(ETIMEDOUT);
433         }
434
435         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
436         for (i = 0; i < SK_TIMEOUT; i++) {
437                 DELAY(1);
438                 if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
439                         break;
440         }
441
442         if (i == SK_TIMEOUT)
443                 if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
444         return(0);
445 }
446
447 static void
448 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
449 {
450         struct mii_data *mii;
451
452         mii = device_get_softc(sc_if->sk_miibus);
453         DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
454
455         /*
456          * If this is a GMII PHY, manually set the XMAC's
457          * duplex mode accordingly.
458          */
459         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
460                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
461                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
462                 else
463                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
464         }
465 }
466
467 static int
468 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
469 {
470         uint16_t val;
471         int i;
472
473         if (phy != 0 ||
474             (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
475              sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
476                 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
477                              phy, reg));
478                 return(0);
479         }
480
481         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
482                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
483         
484         for (i = 0; i < SK_TIMEOUT; i++) {
485                 DELAY(1);
486                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
487                 if (val & YU_SMICR_READ_VALID)
488                         break;
489         }
490
491         if (i == SK_TIMEOUT) {
492                 if_printf(&sc_if->arpcom.ac_if, "phy failed to come ready\n");
493                 return(0);
494         }
495         
496         DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
497                      SK_TIMEOUT));
498
499         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
500
501         DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
502                      phy, reg, val));
503
504         return(val);
505 }
506
507 static int
508 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
509 {
510         int i;
511
512         DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
513                      phy, reg, val));
514
515         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
516         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
517                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
518
519         for (i = 0; i < SK_TIMEOUT; i++) {
520                 DELAY(1);
521                 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
522                         break;
523         }
524
525         if (i == SK_TIMEOUT)
526                 if_printf(&sc_if->arpcom.ac_if, "phy write timed out\n");
527
528         return(0);
529 }
530
531 static void
532 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
533 {
534         DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
535                      SK_YU_READ_2(sc_if, YUKON_GPCR)));
536 }
537
538 #define HASH_BITS       6
539   
540 static uint32_t
541 sk_xmac_hash(caddr_t addr)
542 {
543         uint32_t crc;
544
545         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
546         return (~crc & ((1 << HASH_BITS) - 1));
547 }
548
549 static uint32_t
550 sk_yukon_hash(caddr_t addr)
551 {
552         uint32_t crc;
553
554         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
555         return (crc & ((1 << HASH_BITS) - 1));
556 }
557
558 static void
559 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
560 {
561         int base;
562
563         base = XM_RXFILT_ENTRY(slot);
564
565         SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
566         SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
567         SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
568 }
569
570 static void
571 sk_setmulti(struct sk_if_softc *sc_if)
572 {
573         struct sk_softc *sc = sc_if->sk_softc;
574         struct ifnet *ifp = &sc_if->arpcom.ac_if;
575         uint32_t hashes[2] = { 0, 0 };
576         int h = 0, i;
577         struct ifmultiaddr *ifma;
578         uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
579
580         /* First, zot all the existing filters. */
581         switch(sc->sk_type) {
582         case SK_GENESIS:
583                 for (i = 1; i < XM_RXFILT_MAX; i++)
584                         sk_setfilt(sc_if, (caddr_t)&dummy, i);
585
586                 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
587                 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
588                 break;
589         case SK_YUKON:
590         case SK_YUKON_LITE:
591         case SK_YUKON_LP:
592                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
593                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
594                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
595                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
596                 break;
597         }
598
599         /* Now program new ones. */
600         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
601                 hashes[0] = 0xFFFFFFFF;
602                 hashes[1] = 0xFFFFFFFF;
603         } else {
604                 i = 1;
605                 /* First find the tail of the list. */
606                 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
607                     ifma_link) {
608                         caddr_t maddr;
609
610                         if (ifma->ifma_addr->sa_family != AF_LINK)
611                                 continue;
612
613                         maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
614
615                         /*
616                          * Program the first XM_RXFILT_MAX multicast groups
617                          * into the perfect filter. For all others,
618                          * use the hash table.
619                          */
620                         if (SK_IS_GENESIS(sc) && i < XM_RXFILT_MAX) {
621                                 sk_setfilt(sc_if, maddr, i);
622                                 i++;
623                                 continue;
624                         }
625
626                         switch(sc->sk_type) {
627                         case SK_GENESIS:
628                                 h = sk_xmac_hash(maddr);
629                                 break;
630                                 
631                         case SK_YUKON:
632                         case SK_YUKON_LITE:
633                         case SK_YUKON_LP:
634                                 h = sk_yukon_hash(maddr);
635                                 break;
636                         }
637                         if (h < 32)
638                                 hashes[0] |= (1 << h);
639                         else
640                                 hashes[1] |= (1 << (h - 32));
641                 }
642         }
643
644         switch(sc->sk_type) {
645         case SK_GENESIS:
646                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
647                                XM_MODE_RX_USE_PERFECT);
648                 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
649                 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
650                 break;
651         case SK_YUKON:
652         case SK_YUKON_LITE:
653         case SK_YUKON_LP:
654                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
655                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
656                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
657                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
658                 break;
659         }
660 }
661
662 static void
663 sk_setpromisc(struct sk_if_softc *sc_if)
664 {
665         struct sk_softc *sc = sc_if->sk_softc;
666         struct ifnet *ifp = &sc_if->arpcom.ac_if;
667
668         switch(sc->sk_type) {
669         case SK_GENESIS:
670                 if (ifp->if_flags & IFF_PROMISC)
671                         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
672                 else
673                         SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
674                 break;
675         case SK_YUKON:
676         case SK_YUKON_LITE:
677         case SK_YUKON_LP:
678                 if (ifp->if_flags & IFF_PROMISC) {
679                         SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
680                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
681                 } else {
682                         SK_YU_SETBIT_2(sc_if, YUKON_RCR,
683                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
684                 }
685                 break;
686         }
687 }
688
689 static int
690 sk_init_rx_ring(struct sk_if_softc *sc_if)
691 {
692         struct sk_chain_data *cd = &sc_if->sk_cdata;
693         struct sk_ring_data *rd = &sc_if->sk_rdata;
694         int i, nexti, error;
695
696         bzero(rd->sk_rx_ring, SK_RX_RING_SIZE);
697
698         for (i = 0; i < SK_RX_RING_CNT; i++) {
699                 bus_addr_t paddr;
700
701                 if (i == (SK_RX_RING_CNT - 1))
702                         nexti = 0;
703                 else
704                         nexti = i + 1;
705                 paddr = rd->sk_rx_ring_paddr +
706                         (nexti * sizeof(struct sk_rx_desc));
707
708                 rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(paddr));
709                 rd->sk_rx_ring[i].sk_csum1_start = htole16(ETHER_HDR_LEN);
710                 rd->sk_rx_ring[i].sk_csum2_start =
711                         htole16(ETHER_HDR_LEN + sizeof(struct ip));
712
713                 error = sk_newbuf(sc_if, i, 1);
714                 if (error) {
715                         if_printf(&sc_if->arpcom.ac_if,
716                                   "failed alloc of %dth mbuf\n", i);
717                         return error;
718                 }
719         }
720
721         cd->sk_rx_prod = 0;
722         cd->sk_rx_cons = 0;
723
724         return (0);
725 }
726
727 static int
728 sk_init_tx_ring(struct sk_if_softc *sc_if)
729 {
730         struct sk_ring_data *rd = &sc_if->sk_rdata;
731         int i, nexti;
732
733         bzero(rd->sk_tx_ring, SK_TX_RING_SIZE);
734
735         for (i = 0; i < SK_TX_RING_CNT; i++) {
736                 bus_addr_t paddr;
737
738                 if (i == (SK_TX_RING_CNT - 1))
739                         nexti = 0;
740                 else
741                         nexti = i + 1;
742                 paddr = rd->sk_tx_ring_paddr +
743                         (nexti * sizeof(struct sk_tx_desc));
744
745                 rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(paddr));
746         }
747
748         sc_if->sk_cdata.sk_tx_prod = 0;
749         sc_if->sk_cdata.sk_tx_cons = 0;
750         sc_if->sk_cdata.sk_tx_cnt = 0;
751
752         return (0);
753 }
754
755 static int
756 sk_newbuf_jumbo(struct sk_if_softc *sc_if, int idx, int wait)
757 {
758         struct sk_jpool_entry *entry;
759         struct mbuf *m_new = NULL;
760         struct sk_rx_desc *r;
761         bus_addr_t paddr;
762
763         KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
764
765         MGETHDR(m_new, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
766         if (m_new == NULL)
767                 return ENOBUFS;
768
769         /* Allocate the jumbo buffer */
770         entry = sk_jalloc(sc_if);
771         if (entry == NULL) {
772                 m_freem(m_new);
773                 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
774                     "dropped!\n", sc_if->arpcom.ac_if.if_xname));
775                 return ENOBUFS;
776         }
777
778         m_new->m_ext.ext_arg = entry;
779         m_new->m_ext.ext_buf = entry->buf;
780         m_new->m_ext.ext_free = sk_jfree;
781         m_new->m_ext.ext_ref = sk_jref;
782         m_new->m_ext.ext_size = SK_JLEN;
783
784         m_new->m_flags |= M_EXT;
785
786         m_new->m_data = m_new->m_ext.ext_buf;
787         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
788
789         paddr = entry->paddr;
790
791         /*
792          * Adjust alignment so packet payload begins on a
793          * longword boundary. Mandatory for Alpha, useful on
794          * x86 too.
795          */
796         m_adj(m_new, ETHER_ALIGN);
797         paddr += ETHER_ALIGN;
798
799         sc_if->sk_cdata.sk_rx_mbuf[idx] = m_new;
800
801         r = &sc_if->sk_rdata.sk_rx_ring[idx];
802         r->sk_data_lo = htole32(SK_ADDR_LO(paddr));
803         r->sk_data_hi = htole32(SK_ADDR_HI(paddr));
804         r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
805
806         return 0;
807 }
808
809 static int
810 sk_newbuf_std(struct sk_if_softc *sc_if, int idx, int wait)
811 {
812         struct mbuf *m_new = NULL;
813         struct sk_chain_data *cd = &sc_if->sk_cdata;
814         struct sk_rx_desc *r;
815         bus_dma_segment_t seg;
816         bus_dmamap_t map;
817         int error, nseg;
818
819         KKASSERT(idx < SK_RX_RING_CNT && idx >= 0);
820
821         m_new = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
822         if (m_new == NULL)
823                 return ENOBUFS;
824
825         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
826
827         /*
828          * Adjust alignment so packet payload begins on a
829          * longword boundary. Mandatory for Alpha, useful on
830          * x86 too.
831          */
832         m_adj(m_new, ETHER_ALIGN);
833
834         error = bus_dmamap_load_mbuf_segment(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp,
835                         m_new, &seg, 1, &nseg, BUS_DMA_NOWAIT);
836         if (error) {
837                 m_freem(m_new);
838                 if (wait) {
839                         if_printf(&sc_if->arpcom.ac_if,
840                                   "could not map RX mbuf\n");
841                 }
842                 return error;
843         }
844
845         /* Unload originally mapped mbuf */
846         if (cd->sk_rx_mbuf[idx] != NULL) {
847                 bus_dmamap_sync(cd->sk_rx_dtag, cd->sk_rx_dmap[idx],
848                                 BUS_DMASYNC_POSTREAD);
849                 bus_dmamap_unload(cd->sk_rx_dtag, cd->sk_rx_dmap[idx]);
850         }
851
852         /* Switch DMA map with tmp DMA map */
853         map = cd->sk_rx_dmap_tmp;
854         cd->sk_rx_dmap_tmp = cd->sk_rx_dmap[idx];
855         cd->sk_rx_dmap[idx] = map;
856
857         cd->sk_rx_mbuf[idx] = m_new;
858
859         r = &sc_if->sk_rdata.sk_rx_ring[idx];
860         r->sk_data_lo = htole32(SK_ADDR_LO(seg.ds_addr));
861         r->sk_data_hi = htole32(SK_ADDR_HI(seg.ds_addr));
862         r->sk_ctl = htole32(m_new->m_pkthdr.len | SK_RXSTAT);
863
864         return 0;
865 }
866
867 /*
868  * Allocate a jumbo buffer.
869  */
870 struct sk_jpool_entry *
871 sk_jalloc(struct sk_if_softc *sc_if)
872 {
873         struct sk_chain_data *cd = &sc_if->sk_cdata;
874         struct sk_jpool_entry *entry;
875
876         lwkt_serialize_enter(&cd->sk_jpool_serializer);
877
878         entry = SLIST_FIRST(&cd->sk_jpool_free_ent);
879         if (entry != NULL) {
880                 SLIST_REMOVE_HEAD(&cd->sk_jpool_free_ent, entry_next);
881                 entry->inuse = 1;
882         } else {
883                 DPRINTF(("no free jumbo buffer\n"));
884         }
885
886         lwkt_serialize_exit(&cd->sk_jpool_serializer);
887         return entry;
888 }
889
890 /*
891  * Release a jumbo buffer.
892  */
893 void
894 sk_jfree(void *arg)
895 {
896         struct sk_jpool_entry *entry = arg;
897         struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
898
899         if (&cd->sk_jpool_ent[entry->slot] != entry)
900                 panic("%s: free wrong jumbo buffer", __func__);
901         else if (entry->inuse == 0)
902                 panic("%s: jumbo buffer already freed", __func__);
903
904         lwkt_serialize_enter(&cd->sk_jpool_serializer);
905
906         atomic_subtract_int(&entry->inuse, 1);
907         if (entry->inuse == 0)
908                 SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
909
910         lwkt_serialize_exit(&cd->sk_jpool_serializer);
911 }
912
913 static void
914 sk_jref(void *arg)
915 {
916         struct sk_jpool_entry *entry = arg;
917         struct sk_chain_data *cd = &entry->sc_if->sk_cdata;
918
919         if (&cd->sk_jpool_ent[entry->slot] != entry)
920                 panic("%s: free wrong jumbo buffer", __func__);
921         else if (entry->inuse == 0)
922                 panic("%s: jumbo buffer already freed", __func__);
923
924         atomic_add_int(&entry->inuse, 1);
925 }
926
927 /*
928  * Set media options.
929  */
930 static int
931 sk_ifmedia_upd(struct ifnet *ifp)
932 {
933         struct sk_if_softc *sc_if = ifp->if_softc;
934         struct mii_data *mii;
935
936         mii = device_get_softc(sc_if->sk_miibus);
937         sk_init(sc_if);
938         mii_mediachg(mii);
939
940         return(0);
941 }
942
943 /*
944  * Report current media status.
945  */
946 static void
947 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
948 {
949         struct sk_if_softc *sc_if;
950         struct mii_data *mii;
951
952         sc_if = ifp->if_softc;
953         mii = device_get_softc(sc_if->sk_miibus);
954
955         mii_pollstat(mii);
956         ifmr->ifm_active = mii->mii_media_active;
957         ifmr->ifm_status = mii->mii_media_status;
958 }
959
960 static int
961 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
962 {
963         struct sk_if_softc *sc_if = ifp->if_softc;
964         struct ifreq *ifr = (struct ifreq *)data;
965         struct mii_data *mii;
966         int error = 0;
967
968         ASSERT_SERIALIZED(ifp->if_serializer);
969
970         switch(command) {
971         case SIOCSIFMTU:
972                 if (ifr->ifr_mtu > SK_JUMBO_MTU)
973                         error = EINVAL;
974                 else {
975                         ifp->if_mtu = ifr->ifr_mtu;
976                         ifp->if_flags &= ~IFF_RUNNING;
977                         sk_init(sc_if);
978                 }
979                 break;
980         case SIOCSIFFLAGS:
981                 if (ifp->if_flags & IFF_UP) {
982                         if (ifp->if_flags & IFF_RUNNING) {
983                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
984                                     & IFF_PROMISC) {
985                                         sk_setpromisc(sc_if);
986                                         sk_setmulti(sc_if);
987                                 }
988                         } else
989                                 sk_init(sc_if);
990                 } else {
991                         if (ifp->if_flags & IFF_RUNNING)
992                                 sk_stop(sc_if);
993                 }
994                 sc_if->sk_if_flags = ifp->if_flags;
995                 break;
996         case SIOCADDMULTI:
997         case SIOCDELMULTI:
998                 sk_setmulti(sc_if);
999                 break;
1000         case SIOCGIFMEDIA:
1001         case SIOCSIFMEDIA:
1002                 mii = device_get_softc(sc_if->sk_miibus);
1003                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1004                 break;
1005         default:
1006                 error = ether_ioctl(ifp, command, data);
1007                 break;
1008         }
1009
1010         return(error);
1011 }
1012
1013 /*
1014  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1015  * IDs against our list and return a device name if we find a match.
1016  */
1017 static int
1018 skc_probe(device_t dev)
1019 {
1020         const struct skc_type *t;
1021         uint16_t vid, did;
1022
1023         vid = pci_get_vendor(dev);
1024         did = pci_get_device(dev);
1025
1026         /*
1027          * Only attach to rev.2 of the Linksys EG1032 adapter.
1028          * Rev.3 is supported by re(4).
1029          */
1030         if (vid == PCI_VENDOR_LINKSYS &&
1031             did == PCI_PRODUCT_LINKSYS_EG1032 &&
1032             pci_get_subdevice(dev) != SUBDEVICEID_LINKSYS_EG1032_REV2)
1033                 return ENXIO;
1034
1035         for (t = skc_devs; t->skc_name != NULL; t++) {
1036                 if (vid == t->skc_vid && did == t->skc_did) {
1037                         device_set_desc(dev, t->skc_name);
1038                         return 0;
1039                 }
1040         }
1041         return ENXIO;
1042 }
1043
1044 /*
1045  * Force the GEnesis into reset, then bring it out of reset.
1046  */
1047 static void
1048 sk_reset(struct sk_softc *sc)
1049 {
1050         DPRINTFN(2, ("sk_reset\n"));
1051
1052         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1053         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1054         if (SK_IS_YUKON(sc))
1055                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1056
1057         DELAY(1000);
1058         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1059         DELAY(2);
1060         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1061         if (SK_IS_YUKON(sc))
1062                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1063
1064         DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1065         DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1066                      CSR_READ_2(sc, SK_LINK_CTRL)));
1067
1068         if (SK_IS_GENESIS(sc)) {
1069                 /* Configure packet arbiter */
1070                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1071                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1072                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1073                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1074                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1075         }
1076
1077         /* Enable RAM interface */
1078         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1079
1080         /*
1081          * Configure interrupt moderation. The moderation timer
1082          * defers interrupts specified in the interrupt moderation
1083          * timer mask based on the timeout specified in the interrupt
1084          * moderation timer init register. Each bit in the timer
1085          * register represents one tick, so to specify a timeout in
1086          * microseconds, we have to multiply by the correct number of
1087          * ticks-per-microsecond.
1088          */
1089         KKASSERT(sc->sk_imtimer_ticks != 0 && sc->sk_imtime != 0);
1090         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc, sc->sk_imtime));
1091         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1092             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1093         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1094 }
1095
1096 static int
1097 sk_probe(device_t dev)
1098 {
1099         struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1100         const char *revstr = "", *name = NULL;
1101         char devname[80];
1102
1103         switch (sc->sk_type) {
1104         case SK_GENESIS:
1105                 name = "SysKonnect GEnesis";
1106                 break;
1107         case SK_YUKON:
1108                 name = "Marvell Yukon";
1109                 break;
1110         case SK_YUKON_LITE:
1111                 name = "Marvell Yukon Lite";
1112                 switch (sc->sk_rev) {
1113                 case SK_YUKON_LITE_REV_A0:
1114                         revstr = " rev.A0";
1115                         break;
1116                 case SK_YUKON_LITE_REV_A1:
1117                         revstr = " rev.A1";
1118                         break;
1119                 case SK_YUKON_LITE_REV_A3:
1120                         revstr = " rev.A3";
1121                         break;
1122                 }
1123                 break;
1124         case SK_YUKON_LP:
1125                 name = "Marvell Yukon LP";
1126                 break;
1127         default:
1128                 return ENXIO;
1129         }
1130
1131         ksnprintf(devname, sizeof(devname), "%s%s (0x%x)",
1132                  name, revstr, sc->sk_rev);
1133         device_set_desc_copy(dev, devname);
1134         return 0;
1135 }
1136
1137 /*
1138  * Each XMAC chip is attached as a separate logical IP interface.
1139  * Single port cards will have only one logical interface of course.
1140  */
1141 static int
1142 sk_attach(device_t dev)
1143 {
1144         struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1145         struct sk_if_softc *sc_if = device_get_softc(dev);
1146         struct ifnet *ifp = &sc_if->arpcom.ac_if;
1147         int i, error, if_attached = 0;
1148
1149         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1150
1151         sc_if->sk_port = *(int *)device_get_ivars(dev);
1152         KKASSERT(sc_if->sk_port == SK_PORT_A || sc_if->sk_port == SK_PORT_B);
1153
1154         sc_if->sk_softc = sc;
1155         sc->sk_if[sc_if->sk_port] = sc_if;
1156
1157         kfree(device_get_ivars(dev), M_DEVBUF);
1158         device_set_ivars(dev, NULL);
1159
1160         if (sc_if->sk_port == SK_PORT_A)
1161                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1162         if (sc_if->sk_port == SK_PORT_B)
1163                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1164
1165         DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1166
1167         /*
1168          * Get station address for this interface. Note that
1169          * dual port cards actually come with three station
1170          * addresses: one for each port, plus an extra. The
1171          * extra one is used by the SysKonnect driver software
1172          * as a 'virtual' station address for when both ports
1173          * are operating in failover mode. Currently we don't
1174          * use this extra address.
1175          */
1176         for (i = 0; i < ETHER_ADDR_LEN; i++) {
1177                 /* XXX */
1178                 sc_if->arpcom.ac_enaddr[i] =
1179                     sk_win_read_1(sc, SK_MAC0_0 + (sc_if->sk_port * 8) + i);
1180         }
1181
1182         /*
1183          * Set up RAM buffer addresses. The NIC will have a certain
1184          * amount of SRAM on it, somewhere between 512K and 2MB. We
1185          * need to divide this up a) between the transmitter and
1186          * receiver and b) between the two XMACs, if this is a
1187          * dual port NIC. Our algorithm is to divide up the memory
1188          * evenly so that everyone gets a fair share.
1189          */
1190         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1191                 uint32_t chunk, val;
1192
1193                 chunk = sc->sk_ramsize / 2;
1194                 val = sc->sk_rboff / sizeof(uint64_t);
1195                 sc_if->sk_rx_ramstart = val;
1196                 val += (chunk / sizeof(uint64_t));
1197                 sc_if->sk_rx_ramend = val - 1;
1198                 sc_if->sk_tx_ramstart = val;
1199                 val += (chunk / sizeof(uint64_t));
1200                 sc_if->sk_tx_ramend = val - 1;
1201         } else {
1202                 uint32_t chunk, val;
1203
1204                 chunk = sc->sk_ramsize / 4;
1205                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1206                     sizeof(uint64_t);
1207                 sc_if->sk_rx_ramstart = val;
1208                 val += (chunk / sizeof(uint64_t));
1209                 sc_if->sk_rx_ramend = val - 1;
1210                 sc_if->sk_tx_ramstart = val;
1211                 val += (chunk / sizeof(uint64_t));
1212                 sc_if->sk_tx_ramend = val - 1;
1213         }
1214
1215         DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1216                      "           tx_ramstart=%#x tx_ramend=%#x\n",
1217                      sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1218                      sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1219
1220         /* Read and save PHY type */
1221         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1222
1223         /* Set PHY address */
1224         if (SK_IS_GENESIS(sc)) {
1225                 switch (sc_if->sk_phytype) {
1226                 case SK_PHYTYPE_XMAC:
1227                         sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1228                         break;
1229                 case SK_PHYTYPE_BCOM:
1230                         sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1231                         break;
1232                 default:
1233                         device_printf(dev, "unsupported PHY type: %d\n",
1234                             sc_if->sk_phytype);
1235                         error = ENXIO;
1236                         goto fail;
1237                 }
1238         }
1239
1240         if (SK_IS_YUKON(sc)) {
1241                 if ((sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
1242                     sc->sk_pmd != 'L' && sc->sk_pmd != 'S')) {
1243                         /* not initialized, punt */
1244                         sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
1245                         sc->sk_coppertype = 1;
1246                 }
1247
1248                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1249
1250                 if (!(sc->sk_coppertype))
1251                         sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
1252         }
1253
1254         error = sk_dma_alloc(dev);
1255         if (error)
1256                 goto fail;
1257
1258         ifp->if_softc = sc_if;
1259         ifp->if_mtu = ETHERMTU;
1260         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1261         ifp->if_ioctl = sk_ioctl;
1262         ifp->if_start = sk_start;
1263         ifp->if_watchdog = sk_watchdog;
1264         ifp->if_init = sk_init;
1265         ifp->if_baudrate = 1000000000;
1266         ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1267         ifq_set_ready(&ifp->if_snd);
1268
1269         ifp->if_capabilities = IFCAP_VLAN_MTU;
1270
1271         /* Don't use jumbo buffers by default */
1272         sc_if->sk_use_jumbo = 0;
1273
1274         /*
1275          * Call MI attach routines.
1276          *
1277          * NOTE:
1278          * This must be done before following sk_init_xxx(), in which
1279          * if_multiaddrs will be used.
1280          */
1281         ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sc->sk_serializer);
1282         if_attached = 1;
1283
1284         /*
1285          * Do miibus setup.
1286          */
1287         switch (sc->sk_type) {
1288         case SK_GENESIS:
1289                 sk_init_xmac(sc_if);
1290                 break;
1291         case SK_YUKON:
1292         case SK_YUKON_LITE:
1293         case SK_YUKON_LP:
1294                 sk_init_yukon(sc_if);
1295                 break;
1296         default:
1297                 device_printf(dev, "unknown device type %d\n", sc->sk_type);
1298                 error = ENXIO;
1299                 goto fail;
1300         }
1301
1302         DPRINTFN(2, ("sk_attach: 1\n"));
1303
1304         error = mii_phy_probe(dev, &sc_if->sk_miibus,
1305                               sk_ifmedia_upd, sk_ifmedia_sts);
1306         if (error) {
1307                 device_printf(dev, "no PHY found!\n");
1308                 goto fail;
1309         }
1310
1311         callout_init(&sc_if->sk_tick_timer);
1312
1313         DPRINTFN(2, ("sk_attach: end\n"));
1314         return 0;
1315 fail:
1316         if (if_attached)
1317                 ether_ifdetach(ifp);
1318         sk_detach(dev);
1319         sc->sk_if[sc_if->sk_port] = NULL;
1320         return error;
1321 }
1322
1323 /*
1324  * Attach the interface. Allocate softc structures, do ifmedia
1325  * setup and ethernet/BPF attach.
1326  */
1327 static int
1328 skc_attach(device_t dev)
1329 {
1330         struct sk_softc *sc = device_get_softc(dev);
1331         uint8_t skrs;
1332         int *port;
1333         int error, cpuid;
1334
1335         DPRINTFN(2, ("begin skc_attach\n"));
1336
1337         sc->sk_dev = dev;
1338         lwkt_serialize_init(&sc->sk_serializer);
1339
1340 #ifndef BURN_BRIDGES
1341         /*
1342          * Handle power management nonsense.
1343          */
1344         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1345                 uint32_t iobase, membase, irq;
1346
1347                 /* Save important PCI config data. */
1348                 iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1349                 membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1350                 irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1351
1352                 /* Reset the power state. */
1353                 device_printf(dev, "chip is in D%d power mode "
1354                               "-- setting to D0\n", pci_get_powerstate(dev));
1355
1356                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1357
1358                 /* Restore PCI config data. */
1359                 pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1360                 pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1361                 pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1362         }
1363 #endif  /* BURN_BRIDGES */
1364
1365         /*
1366          * Map control/status registers.
1367          */
1368         pci_enable_busmaster(dev);
1369
1370         sc->sk_res_rid = SK_PCI_LOMEM;
1371         sc->sk_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1372                                             &sc->sk_res_rid, RF_ACTIVE);
1373         if (sc->sk_res == NULL) {
1374                 device_printf(dev, "couldn't map memory\n");
1375                 error = ENXIO;
1376                 goto fail;
1377         }
1378         sc->sk_btag = rman_get_bustag(sc->sk_res);
1379         sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1380
1381         sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1382         sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1383
1384         /* Bail out here if chip is not recognized */
1385         if (!SK_IS_GENESIS(sc) && !SK_IS_YUKON(sc)) {
1386                 device_printf(dev, "unknown chip type: %d\n", sc->sk_type);
1387                 error = ENXIO;
1388                 goto fail;
1389         }
1390
1391         DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1392
1393         /* Allocate interrupt */
1394         sc->sk_irq_rid = 0;
1395         sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sk_irq_rid,
1396                                             RF_SHAREABLE | RF_ACTIVE);
1397         if (sc->sk_irq == NULL) {
1398                 device_printf(dev, "couldn't map interrupt\n");
1399                 error = ENXIO;
1400                 goto fail;
1401         }
1402
1403         switch (sc->sk_type) {
1404         case SK_GENESIS:
1405                 sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1406                 break;
1407         default:
1408                 sc->sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1409                 break;
1410         }
1411         sc->sk_imtime = skc_imtime;
1412
1413         /* Reset the adapter. */
1414         sk_reset(sc);
1415
1416         skrs = sk_win_read_1(sc, SK_EPROM0);
1417         if (SK_IS_GENESIS(sc)) {
1418                 /* Read and save RAM size and RAMbuffer offset */
1419                 switch(skrs) {
1420                 case SK_RAMSIZE_512K_64:
1421                         sc->sk_ramsize = 0x80000;
1422                         sc->sk_rboff = SK_RBOFF_0;
1423                         break;
1424                 case SK_RAMSIZE_1024K_64:
1425                         sc->sk_ramsize = 0x100000;
1426                         sc->sk_rboff = SK_RBOFF_80000;
1427                         break;
1428                 case SK_RAMSIZE_1024K_128:
1429                         sc->sk_ramsize = 0x100000;
1430                         sc->sk_rboff = SK_RBOFF_0;
1431                         break;
1432                 case SK_RAMSIZE_2048K_128:
1433                         sc->sk_ramsize = 0x200000;
1434                         sc->sk_rboff = SK_RBOFF_0;
1435                         break;
1436                 default:
1437                         device_printf(dev, "unknown ram size: %d\n", skrs);
1438                         error = ENXIO;
1439                         goto fail;
1440                 }
1441         } else {
1442                 if (skrs == 0x00)
1443                         sc->sk_ramsize = 0x20000;
1444                 else
1445                         sc->sk_ramsize = skrs * (1<<12);
1446                 sc->sk_rboff = SK_RBOFF_0;
1447         }
1448
1449         DPRINTFN(2, ("skc_attach: ramsize=%d (%dk), rboff=%d\n",
1450                      sc->sk_ramsize, sc->sk_ramsize / 1024,
1451                      sc->sk_rboff));
1452
1453         /* Read and save physical media type */
1454         sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
1455
1456         if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
1457                 sc->sk_coppertype = 1;
1458         else
1459                 sc->sk_coppertype = 0;
1460
1461         /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1462         if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
1463                 uint32_t flashaddr;
1464                 uint8_t testbyte;
1465
1466                 flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1467
1468                 /* Test Flash-Address Register */
1469                 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1470                 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1471
1472                 if (testbyte != 0) {
1473                         /* This is a Yukon Lite Rev A0 */
1474                         sc->sk_type = SK_YUKON_LITE;
1475                         sc->sk_rev = SK_YUKON_LITE_REV_A0;
1476                         /* Restore Flash-Address Register */
1477                         sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1478                 }
1479         }
1480
1481         /*
1482          * Create sysctl nodes.
1483          */
1484         sysctl_ctx_init(&sc->sk_sysctl_ctx);
1485         sc->sk_sysctl_tree = SYSCTL_ADD_NODE(&sc->sk_sysctl_ctx,
1486                                              SYSCTL_STATIC_CHILDREN(_hw),
1487                                              OID_AUTO,
1488                                              device_get_nameunit(dev),
1489                                              CTLFLAG_RD, 0, "");
1490         if (sc->sk_sysctl_tree == NULL) {
1491                 device_printf(dev, "can't add sysctl node\n");
1492                 error = ENXIO;
1493                 goto fail;
1494         }
1495         SYSCTL_ADD_PROC(&sc->sk_sysctl_ctx,
1496                         SYSCTL_CHILDREN(sc->sk_sysctl_tree),
1497                         OID_AUTO, "imtime", CTLTYPE_INT | CTLFLAG_RW,
1498                         sc, 0, skc_sysctl_imtime, "I",
1499                         "Interrupt moderation time (usec).");
1500
1501         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1502         port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1503         *port = SK_PORT_A;
1504         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1505
1506         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1507                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1508                 port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1509                 *port = SK_PORT_B;
1510                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1511         }
1512
1513         /* Turn on the 'driver is loaded' LED. */
1514         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1515
1516         bus_generic_attach(dev);
1517
1518         cpuid = rman_get_cpuid(sc->sk_irq);
1519         if (sc->sk_if[0] != NULL)
1520                 ifq_set_cpuid(&sc->sk_if[0]->arpcom.ac_if.if_snd, cpuid);
1521         if (sc->sk_if[1] != NULL)
1522                 ifq_set_cpuid(&sc->sk_if[1]->arpcom.ac_if.if_snd, cpuid);
1523
1524         error = bus_setup_intr(dev, sc->sk_irq, INTR_MPSAFE, sk_intr, sc,
1525                                &sc->sk_intrhand, &sc->sk_serializer);
1526         if (error) {
1527                 device_printf(dev, "couldn't set up irq\n");
1528                 goto fail;
1529         }
1530
1531         return 0;
1532 fail:
1533         skc_detach(dev);
1534         return error;
1535 }
1536
1537 static int
1538 sk_detach(device_t dev)
1539 {
1540         struct sk_if_softc *sc_if = device_get_softc(dev);
1541
1542         if (device_is_attached(dev)) {
1543                 struct sk_softc *sc = sc_if->sk_softc;
1544                 struct ifnet *ifp = &sc_if->arpcom.ac_if;
1545
1546                 lwkt_serialize_enter(ifp->if_serializer);
1547
1548                 if (sc->sk_intrhand != NULL) {
1549                         if (sc->sk_if[SK_PORT_A] != NULL)
1550                                 sk_stop(sc->sk_if[SK_PORT_A]);
1551                         if (sc->sk_if[SK_PORT_B] != NULL)
1552                                 sk_stop(sc->sk_if[SK_PORT_B]);
1553
1554                         bus_teardown_intr(sc->sk_dev, sc->sk_irq,
1555                                           sc->sk_intrhand);
1556                         sc->sk_intrhand = NULL;
1557                 }
1558
1559                 lwkt_serialize_exit(ifp->if_serializer);
1560
1561                 ether_ifdetach(ifp);
1562         }
1563
1564         if (sc_if->sk_miibus != NULL)
1565                 device_delete_child(dev, sc_if->sk_miibus);
1566
1567         sk_dma_free(dev);
1568         return 0;
1569 }
1570
1571 static int
1572 skc_detach(device_t dev)
1573 {
1574         struct sk_softc *sc = device_get_softc(dev);
1575         int *port;
1576
1577 #ifdef INVARIANTS
1578         if (device_is_attached(dev)) {
1579                 KASSERT(sc->sk_intrhand == NULL,
1580                         ("intr has not been torn down yet"));
1581         }
1582 #endif
1583
1584         if (sc->sk_devs[SK_PORT_A] != NULL) {
1585                 port = device_get_ivars(sc->sk_devs[SK_PORT_A]);
1586                 if (port != NULL) {
1587                         kfree(port, M_DEVBUF);
1588                         device_set_ivars(sc->sk_devs[SK_PORT_A], NULL);
1589                 }
1590                 device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1591         }
1592         if (sc->sk_devs[SK_PORT_B] != NULL) {
1593                 port = device_get_ivars(sc->sk_devs[SK_PORT_B]);
1594                 if (port != NULL) {
1595                         kfree(port, M_DEVBUF);
1596                         device_set_ivars(sc->sk_devs[SK_PORT_B], NULL);
1597                 }
1598                 device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1599         }
1600
1601         if (sc->sk_irq != NULL) {
1602                 bus_release_resource(dev, SYS_RES_IRQ, sc->sk_irq_rid,
1603                                      sc->sk_irq);
1604         }
1605         if (sc->sk_res != NULL) {
1606                 bus_release_resource(dev, SYS_RES_MEMORY, sc->sk_res_rid,
1607                                      sc->sk_res);
1608         }
1609
1610         if (sc->sk_sysctl_tree != NULL)
1611                 sysctl_ctx_free(&sc->sk_sysctl_ctx);
1612
1613         return 0;
1614 }
1615
1616 static int
1617 sk_encap(struct sk_if_softc *sc_if, struct mbuf **m_head0, uint32_t *txidx)
1618 {
1619         struct sk_chain_data *cd = &sc_if->sk_cdata;
1620         struct sk_ring_data *rd = &sc_if->sk_rdata;
1621         struct sk_tx_desc *f = NULL;
1622         uint32_t frag, cur, sk_ctl;
1623         bus_dma_segment_t segs[SK_NTXSEG];
1624         bus_dmamap_t map;
1625         int i, error, maxsegs, nsegs;
1626
1627         DPRINTFN(2, ("sk_encap\n"));
1628
1629         maxsegs = SK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - SK_NDESC_RESERVE;
1630         KASSERT(maxsegs >= SK_NDESC_SPARE, ("not enough spare TX desc"));
1631         if (maxsegs > SK_NTXSEG)
1632                 maxsegs = SK_NTXSEG;
1633
1634         cur = frag = *txidx;
1635
1636 #ifdef SK_DEBUG
1637         if (skdebug >= 2)
1638                 sk_dump_mbuf(*m_head0);
1639 #endif
1640
1641         map = cd->sk_tx_dmap[*txidx];
1642
1643         error = bus_dmamap_load_mbuf_defrag(cd->sk_tx_dtag, map, m_head0,
1644                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1645         if (error) {
1646                 m_freem(*m_head0);
1647                 *m_head0 = NULL;
1648                 return error;
1649         }
1650
1651         DPRINTFN(2, ("sk_encap: nsegs=%d\n", nsegs));
1652
1653         /* Sync the DMA map. */
1654         bus_dmamap_sync(cd->sk_tx_dtag, map, BUS_DMASYNC_PREWRITE);
1655
1656         for (i = 0; i < nsegs; i++) {
1657                 f = &rd->sk_tx_ring[frag];
1658                 f->sk_data_lo = htole32(SK_ADDR_LO(segs[i].ds_addr));
1659                 f->sk_data_hi = htole32(SK_ADDR_HI(segs[i].ds_addr));
1660                 sk_ctl = segs[i].ds_len | SK_OPCODE_DEFAULT;
1661                 if (i == 0)
1662                         sk_ctl |= SK_TXCTL_FIRSTFRAG;
1663                 else
1664                         sk_ctl |= SK_TXCTL_OWN;
1665                 f->sk_ctl = htole32(sk_ctl);
1666                 cur = frag;
1667                 SK_INC(frag, SK_TX_RING_CNT);
1668         }
1669
1670         cd->sk_tx_mbuf[cur] = *m_head0;
1671         /* Switch DMA map */
1672         cd->sk_tx_dmap[*txidx] = cd->sk_tx_dmap[cur];
1673         cd->sk_tx_dmap[cur] = map;
1674
1675         rd->sk_tx_ring[cur].sk_ctl |=
1676                 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1677         rd->sk_tx_ring[*txidx].sk_ctl |= htole32(SK_TXCTL_OWN);
1678
1679         sc_if->sk_cdata.sk_tx_cnt += nsegs;
1680
1681 #ifdef SK_DEBUG
1682         if (skdebug >= 2) {
1683                 struct sk_tx_desc *desc;
1684                 uint32_t idx;
1685
1686                 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1687                         desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1688                         sk_dump_txdesc(desc, idx);
1689                 }
1690         }
1691 #endif
1692
1693         *txidx = frag;
1694
1695         DPRINTFN(2, ("sk_encap: completed successfully\n"));
1696
1697         return (0);
1698 }
1699
1700 static void
1701 sk_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1702 {
1703         struct sk_if_softc *sc_if = ifp->if_softc;
1704         struct sk_softc *sc = sc_if->sk_softc;
1705         uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1706         int trans = 0;
1707
1708         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1709         DPRINTFN(2, ("sk_start\n"));
1710
1711         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1712                 return;
1713
1714         while (sc_if->sk_cdata.sk_tx_mbuf[idx] == NULL) {
1715                 struct mbuf *m_head;
1716
1717                 if (SK_IS_OACTIVE(sc_if)) {
1718                         ifq_set_oactive(&ifp->if_snd);
1719                         break;
1720                 }
1721
1722                 m_head = ifq_dequeue(&ifp->if_snd);
1723                 if (m_head == NULL)
1724                         break;
1725
1726                 /*
1727                  * Pack the data into the transmit ring. If we
1728                  * don't have room, set the OACTIVE flag and wait
1729                  * for the NIC to drain the ring.
1730                  */
1731                 if (sk_encap(sc_if, &m_head, &idx)) {
1732                         if (sc_if->sk_cdata.sk_tx_cnt == 0) {
1733                                 continue;
1734                         } else {
1735                                 ifq_set_oactive(&ifp->if_snd);
1736                                 break;
1737                         }
1738                 }
1739
1740                 trans = 1;
1741                 BPF_MTAP(ifp, m_head);
1742         }
1743         if (!trans)
1744                 return;
1745
1746         /* Transmit */
1747         if (idx != sc_if->sk_cdata.sk_tx_prod) {
1748                 sc_if->sk_cdata.sk_tx_prod = idx;
1749                 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1750
1751                 /* Set a timeout in case the chip goes out to lunch. */
1752                 ifp->if_timer = 5;
1753         }
1754 }
1755
1756 static void
1757 sk_watchdog(struct ifnet *ifp)
1758 {
1759         struct sk_if_softc *sc_if = ifp->if_softc;
1760
1761         ASSERT_SERIALIZED(ifp->if_serializer);
1762         /*
1763          * Reclaim first as there is a possibility of losing Tx completion
1764          * interrupts.
1765          */
1766         sk_txeof(sc_if);
1767         if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1768                 if_printf(&sc_if->arpcom.ac_if, "watchdog timeout\n");
1769                 IFNET_STAT_INC(ifp, oerrors, 1);
1770                 ifp->if_flags &= ~IFF_RUNNING;
1771                 sk_init(sc_if);
1772         }
1773 }
1774
1775 static void
1776 skc_shutdown(device_t dev)
1777 {
1778         struct sk_softc *sc = device_get_softc(dev);
1779
1780         DPRINTFN(2, ("sk_shutdown\n"));
1781
1782         lwkt_serialize_enter(&sc->sk_serializer);
1783
1784         /* Turn off the 'driver is loaded' LED. */
1785         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1786
1787         /*
1788          * Reset the GEnesis controller. Doing this should also
1789          * assert the resets on the attached XMAC(s).
1790          */
1791         sk_reset(sc);
1792
1793         lwkt_serialize_exit(&sc->sk_serializer);
1794 }
1795
1796 static __inline int
1797 sk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
1798 {
1799         if (sc->sk_type == SK_GENESIS) {
1800                 if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
1801                     XM_RXSTAT_BYTES(stat) != len)
1802                         return (0);
1803         } else {
1804                 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1805                     YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1806                     YU_RXSTAT_JABBER)) != 0 ||
1807                     (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1808                     YU_RXSTAT_BYTES(stat) != len)
1809                         return (0);
1810         }
1811
1812         return (1);
1813 }
1814
1815 static void
1816 sk_rxeof(struct sk_if_softc *sc_if)
1817 {
1818         struct sk_softc *sc = sc_if->sk_softc;
1819         struct ifnet *ifp = &sc_if->arpcom.ac_if;
1820         struct sk_chain_data *cd = &sc_if->sk_cdata;
1821         struct sk_ring_data *rd = &sc_if->sk_rdata;
1822         int i, max_frmlen;
1823
1824         DPRINTFN(2, ("sk_rxeof\n"));
1825
1826         i = cd->sk_rx_prod;
1827
1828         if (sc_if->sk_use_jumbo)
1829                 max_frmlen = SK_JUMBO_FRAMELEN;
1830         else
1831                 max_frmlen = ETHER_MAX_LEN;
1832
1833         for (;;) {
1834                 struct sk_rx_desc *cur_desc;
1835                 uint32_t rxstat, sk_ctl;
1836 #ifdef SK_RXCSUM
1837                 uint16_t csum1, csum2;
1838 #endif
1839                 int cur, total_len;
1840                 struct mbuf *m;
1841
1842                 cur = i;
1843                 cur_desc = &rd->sk_rx_ring[cur];
1844
1845                 sk_ctl = le32toh(cur_desc->sk_ctl);
1846                 if (sk_ctl & SK_RXCTL_OWN) {
1847                         /* Invalidate the descriptor -- it's not ready yet */
1848                         cd->sk_rx_prod = cur;
1849                         break;
1850                 }
1851
1852                 rxstat = le32toh(cur_desc->sk_xmac_rxstat);
1853                 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
1854
1855 #ifdef SK_RXCSUM
1856                 csum1 = le16toh(cur_desc->sk_csum1);
1857                 csum2 = le16toh(cur_desc->sk_csum2);
1858 #endif
1859
1860                 m = cd->sk_rx_mbuf[cur];
1861
1862                 /*
1863                  * Bump 'i' here, so we can keep going, even if the current
1864                  * RX descriptor reaping fails later.  'i' shoult NOT be used
1865                  * in the following processing any more.
1866                  */
1867                 SK_INC(i, SK_RX_RING_CNT);
1868
1869                 if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
1870                     SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
1871                     SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
1872                     total_len < SK_MIN_FRAMELEN || total_len > max_frmlen ||
1873                     sk_rxvalid(sc, rxstat, total_len) == 0) {
1874                         IFNET_STAT_INC(ifp, ierrors, 1);
1875                         cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1876                         continue;
1877                 }
1878
1879                 /*
1880                  * Try to allocate a new RX buffer. If that fails,
1881                  * copy the packet to mbufs and put the RX buffer
1882                  * back in the ring so it can be re-used. If
1883                  * allocating mbufs fails, then we have to drop
1884                  * the packet.
1885                  */
1886                 if (sk_newbuf(sc_if, cur, 0)) {
1887                         IFNET_STAT_INC(ifp, ierrors, 1);
1888                         cur_desc->sk_ctl = htole32(m->m_pkthdr.len | SK_RXSTAT);
1889                         continue;
1890                 } else {
1891                         m->m_pkthdr.rcvif = ifp;
1892                         m->m_pkthdr.len = m->m_len = total_len;
1893                 }
1894
1895 #ifdef SK_RXCSUM
1896                 sk_rxcsum(ifp, m, csum1, csum2);
1897 #endif
1898
1899                 IFNET_STAT_INC(ifp, ipackets, 1);
1900                 ifp->if_input(ifp, m);
1901         }
1902 }
1903
1904 #ifdef SK_RXCSUM
1905 static void
1906 sk_rxcsum(struct ifnet *ifp, struct mbuf *m,
1907           const uint16_t csum1, const uint16_t csum2)
1908 {
1909         struct ether_header *eh;
1910         struct ip *ip;
1911         uint8_t *pp;
1912         int hlen, len, plen;
1913         uint16_t iph_csum, ipo_csum, ipd_csum, csum;
1914
1915         pp = mtod(m, uint8_t *);
1916         plen = m->m_pkthdr.len;
1917         if (plen < sizeof(*eh))
1918                 return;
1919         eh = (struct ether_header *)pp;
1920         iph_csum = in_addword(csum1, (~csum2 & 0xffff));
1921
1922         if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1923                 uint16_t *xp = (uint16_t *)pp;
1924
1925                 xp = (uint16_t *)pp;
1926                 if (xp[1] != htons(ETHERTYPE_IP))
1927                         return;
1928                 iph_csum = in_addword(iph_csum, (~xp[0] & 0xffff));
1929                 iph_csum = in_addword(iph_csum, (~xp[1] & 0xffff));
1930                 xp = (uint16_t *)(pp + sizeof(struct ip));
1931                 iph_csum = in_addword(iph_csum, xp[0]);
1932                 iph_csum = in_addword(iph_csum, xp[1]);
1933                 pp += EVL_ENCAPLEN;
1934         } else if (eh->ether_type != htons(ETHERTYPE_IP)) {
1935                 return;
1936         }
1937
1938         pp += sizeof(*eh);
1939         plen -= sizeof(*eh);
1940
1941         ip = (struct ip *)pp;
1942
1943         if (ip->ip_v != IPVERSION)
1944                 return;
1945
1946         hlen = ip->ip_hl << 2;
1947         if (hlen < sizeof(struct ip))
1948                 return;
1949         if (hlen > ntohs(ip->ip_len))
1950                 return;
1951
1952         /* Don't deal with truncated or padded packets. */
1953         if (plen != ntohs(ip->ip_len))
1954                 return;
1955
1956         len = hlen - sizeof(struct ip);
1957         if (len > 0) {
1958                 uint16_t *p;
1959
1960                 p = (uint16_t *)(ip + 1);
1961                 ipo_csum = 0;
1962                 for (ipo_csum = 0; len > 0; len -= sizeof(*p), p++)
1963                         ipo_csum = in_addword(ipo_csum, *p);
1964                 iph_csum = in_addword(iph_csum, ipo_csum);
1965                 ipd_csum = in_addword(csum2, (~ipo_csum & 0xffff));
1966         } else {
1967                 ipd_csum = csum2;
1968         }
1969
1970         if (iph_csum != 0xffff)
1971                 return;
1972         m->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID;
1973
1974         if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1975                 return;                 /* ip frag, we're done for now */
1976
1977         pp += hlen;
1978
1979         /* Only know checksum protocol for udp/tcp */
1980         if (ip->ip_p == IPPROTO_UDP) {
1981                 struct udphdr *uh = (struct udphdr *)pp;
1982
1983                 if (uh->uh_sum == 0)    /* udp with no checksum */
1984                         return;
1985         } else if (ip->ip_p != IPPROTO_TCP) {
1986                 return;
1987         }
1988
1989         csum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1990             htonl(ntohs(ip->ip_len) - hlen + ip->ip_p) + ipd_csum);
1991         if (csum == 0xffff) {
1992                 m->m_pkthdr.csum_data = csum;
1993                 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1994         }
1995 }
1996 #endif
1997
1998 static void
1999 sk_txeof(struct sk_if_softc *sc_if)
2000 {
2001         struct sk_chain_data *cd = &sc_if->sk_cdata;
2002         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2003         uint32_t idx;
2004
2005         DPRINTFN(2, ("sk_txeof\n"));
2006
2007         /*
2008          * Go through our tx ring and free mbufs for those
2009          * frames that have been sent.
2010          */
2011         idx = cd->sk_tx_cons;
2012         while (idx != cd->sk_tx_prod) {
2013                 struct sk_tx_desc *cur_tx;
2014                 uint32_t sk_ctl;
2015
2016                 cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
2017                 sk_ctl = le32toh(cur_tx->sk_ctl);
2018 #ifdef SK_DEBUG
2019                 if (skdebug >= 2)
2020                         sk_dump_txdesc(cur_tx, idx);
2021 #endif
2022                 if (sk_ctl & SK_TXCTL_OWN)
2023                         break;
2024                 if (sk_ctl & SK_TXCTL_LASTFRAG)
2025                         IFNET_STAT_INC(ifp, opackets, 1);
2026                 if (cd->sk_tx_mbuf[idx] != NULL) {
2027                         bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[idx]);
2028                         m_freem(cd->sk_tx_mbuf[idx]);
2029                         cd->sk_tx_mbuf[idx] = NULL;
2030                 }
2031                 sc_if->sk_cdata.sk_tx_cnt--;
2032                 SK_INC(idx, SK_TX_RING_CNT);
2033         }
2034
2035         if (!SK_IS_OACTIVE(sc_if))
2036                 ifq_clr_oactive(&ifp->if_snd);
2037
2038         if (sc_if->sk_cdata.sk_tx_cnt == 0)
2039                 ifp->if_timer = 0;
2040
2041         sc_if->sk_cdata.sk_tx_cons = idx;
2042 }
2043
2044 static void
2045 sk_tick(void *xsc_if)
2046 {
2047         struct sk_if_softc *sc_if = xsc_if;
2048         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2049         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2050         int i;
2051
2052         DPRINTFN(2, ("sk_tick\n"));
2053
2054         lwkt_serialize_enter(ifp->if_serializer);
2055
2056         if ((ifp->if_flags & IFF_UP) == 0) {
2057                 lwkt_serialize_exit(ifp->if_serializer);
2058                 return;
2059         }
2060
2061         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2062                 sk_intr_bcom(sc_if);
2063                 lwkt_serialize_exit(ifp->if_serializer);
2064                 return;
2065         }
2066
2067         /*
2068          * According to SysKonnect, the correct way to verify that
2069          * the link has come back up is to poll bit 0 of the GPIO
2070          * register three times. This pin has the signal from the
2071          * link sync pin connected to it; if we read the same link
2072          * state 3 times in a row, we know the link is up.
2073          */
2074         for (i = 0; i < 3; i++) {
2075                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2076                         break;
2077         }
2078
2079         if (i != 3) {
2080                 callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
2081                 lwkt_serialize_exit(ifp->if_serializer);
2082                 return;
2083         }
2084
2085         /* Turn the GP0 interrupt back on. */
2086         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2087         SK_XM_READ_2(sc_if, XM_ISR);
2088         mii_tick(mii);
2089         callout_stop(&sc_if->sk_tick_timer);
2090         lwkt_serialize_exit(ifp->if_serializer);
2091 }
2092
2093 static void
2094 sk_yukon_tick(void *xsc_if)
2095 {
2096         struct sk_if_softc *sc_if = xsc_if;  
2097         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2098         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2099
2100         lwkt_serialize_enter(ifp->if_serializer);
2101         mii_tick(mii);
2102         callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2103         lwkt_serialize_exit(ifp->if_serializer);
2104 }
2105
2106 static void
2107 sk_intr_bcom(struct sk_if_softc *sc_if)
2108 {
2109         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2110         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2111         int status;
2112
2113         DPRINTFN(2, ("sk_intr_bcom\n"));
2114
2115         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2116
2117         /*
2118          * Read the PHY interrupt register to make sure
2119          * we clear any pending interrupts.
2120          */
2121         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2122
2123         if ((ifp->if_flags & IFF_RUNNING) == 0) {
2124                 sk_init_xmac(sc_if);
2125                 return;
2126         }
2127
2128         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2129                 int lstat;
2130
2131                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2132                     BRGPHY_MII_AUXSTS);
2133
2134                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2135                         mii_mediachg(mii);
2136                         /* Turn off the link LED. */
2137                         SK_IF_WRITE_1(sc_if, 0,
2138                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
2139                         sc_if->sk_link = 0;
2140                 } else if (status & BRGPHY_ISR_LNK_CHG) {
2141                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2142                             BRGPHY_MII_IMR, 0xFF00);
2143                         mii_tick(mii);
2144                         sc_if->sk_link = 1;
2145                         /* Turn on the link LED. */
2146                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2147                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2148                             SK_LINKLED_BLINK_OFF);
2149                 } else {
2150                         mii_tick(mii);
2151                         callout_reset(&sc_if->sk_tick_timer, hz,
2152                                       sk_tick, sc_if);
2153                 }
2154         }
2155
2156         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2157 }
2158
2159 static void
2160 sk_intr_xmac(struct sk_if_softc *sc_if)
2161 {
2162         uint16_t status;
2163
2164         status = SK_XM_READ_2(sc_if, XM_ISR);
2165         DPRINTFN(2, ("sk_intr_xmac\n"));
2166
2167         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC &&
2168             (status & (XM_ISR_GP0_SET | XM_ISR_AUTONEG_DONE))) {
2169                 if (status & XM_ISR_GP0_SET)
2170                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2171
2172                 callout_reset(&sc_if->sk_tick_timer, hz,
2173                               sk_tick, sc_if);
2174         }
2175
2176         if (status & XM_IMR_TX_UNDERRUN)
2177                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2178
2179         if (status & XM_IMR_RX_OVERRUN)
2180                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2181 }
2182
2183 static void
2184 sk_intr_yukon(struct sk_if_softc *sc_if)
2185 {
2186         uint8_t status;
2187
2188         status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2189         /* RX overrun */
2190         if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2191                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2192                     SK_RFCTL_RX_FIFO_OVER);
2193         }
2194         /* TX underrun */
2195         if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2196                 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2197                     SK_TFCTL_TX_FIFO_UNDER);
2198         }
2199
2200         DPRINTFN(2, ("sk_intr_yukon status=%#x\n", status));
2201 }
2202
2203 static void
2204 sk_intr(void *xsc)
2205 {
2206         struct sk_softc *sc = xsc;
2207         struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2208         struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2209         struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2210         uint32_t status;
2211
2212         ASSERT_SERIALIZED(&sc->sk_serializer);
2213
2214         status = CSR_READ_4(sc, SK_ISSR);
2215         if (status == 0 || status == 0xffffffff)
2216                 return;
2217
2218         if (sc_if0 != NULL)
2219                 ifp0 = &sc_if0->arpcom.ac_if;
2220         if (sc_if1 != NULL)
2221                 ifp1 = &sc_if1->arpcom.ac_if;
2222
2223         for (; (status &= sc->sk_intrmask) != 0;) {
2224                 /* Handle receive interrupts first. */
2225                 if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2226                         sk_rxeof(sc_if0);
2227                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2228                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2229                 }
2230                 if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2231                         sk_rxeof(sc_if1);
2232                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2233                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2234                 }
2235
2236                 /* Then transmit interrupts. */
2237                 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2238                         sk_txeof(sc_if0);
2239                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2240                             SK_TXBMU_CLR_IRQ_EOF);
2241                 }
2242                 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2243                         sk_txeof(sc_if1);
2244                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2245                             SK_TXBMU_CLR_IRQ_EOF);
2246                 }
2247
2248                 /* Then MAC interrupts. */
2249                 if (sc_if0 && (status & SK_ISR_MAC1) &&
2250                     (ifp0->if_flags & IFF_RUNNING)) {
2251                         if (SK_IS_GENESIS(sc))
2252                                 sk_intr_xmac(sc_if0);
2253                         else
2254                                 sk_intr_yukon(sc_if0);
2255                 }
2256
2257                 if (sc_if1 && (status & SK_ISR_MAC2) &&
2258                     (ifp1->if_flags & IFF_RUNNING)) {
2259                         if (SK_IS_GENESIS(sc))
2260                                 sk_intr_xmac(sc_if1);
2261                         else
2262                                 sk_intr_yukon(sc_if1);
2263                 }
2264
2265                 if (status & SK_ISR_EXTERNAL_REG) {
2266                         if (sc_if0 != NULL &&
2267                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2268                                 sk_intr_bcom(sc_if0);
2269
2270                         if (sc_if1 != NULL &&
2271                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2272                                 sk_intr_bcom(sc_if1);
2273                 }
2274                 status = CSR_READ_4(sc, SK_ISSR);
2275         }
2276
2277         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2278
2279         if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2280                 if_devstart(ifp0);
2281         if (ifp1 != NULL && !ifq_is_empty(&ifp1->if_snd))
2282                 if_devstart(ifp1);
2283 }
2284
2285 static void
2286 sk_init_xmac(struct sk_if_softc *sc_if)
2287 {
2288         struct sk_softc *sc = sc_if->sk_softc;
2289         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2290         static const struct sk_bcom_hack bhack[] = {
2291         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2292         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2293         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2294         { 0, 0 } };
2295
2296         DPRINTFN(2, ("sk_init_xmac\n"));
2297
2298         /* Unreset the XMAC. */
2299         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2300         DELAY(1000);
2301
2302         /* Reset the XMAC's internal state. */
2303         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2304
2305         /* Save the XMAC II revision */
2306         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2307
2308         /*
2309          * Perform additional initialization for external PHYs,
2310          * namely for the 1000baseT cards that use the XMAC's
2311          * GMII mode.
2312          */
2313         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2314                 int i = 0;
2315                 uint32_t val;
2316
2317                 /* Take PHY out of reset. */
2318                 val = sk_win_read_4(sc, SK_GPIO);
2319                 if (sc_if->sk_port == SK_PORT_A)
2320                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2321                 else
2322                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2323                 sk_win_write_4(sc, SK_GPIO, val);
2324
2325                 /* Enable GMII mode on the XMAC. */
2326                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2327
2328                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2329                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2330                 DELAY(10000);
2331                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2332                     BRGPHY_MII_IMR, 0xFFF0);
2333
2334                 /*
2335                  * Early versions of the BCM5400 apparently have
2336                  * a bug that requires them to have their reserved
2337                  * registers initialized to some magic values. I don't
2338                  * know what the numbers do, I'm just the messenger.
2339                  */
2340                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2341                     == 0x6041) {
2342                         while(bhack[i].reg) {
2343                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2344                                     bhack[i].reg, bhack[i].val);
2345                                 i++;
2346                         }
2347                 }
2348         }
2349
2350         /* Set station address */
2351         SK_XM_WRITE_2(sc_if, XM_PAR0,
2352             *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2353         SK_XM_WRITE_2(sc_if, XM_PAR1,
2354             *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2355         SK_XM_WRITE_2(sc_if, XM_PAR2,
2356             *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2357         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2358
2359         if (ifp->if_flags & IFF_BROADCAST)
2360                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2361         else
2362                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2363
2364         /* We don't need the FCS appended to the packet. */
2365         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2366
2367         /* We want short frames padded to 60 bytes. */
2368         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2369
2370         /*
2371          * Enable the reception of all error frames. This is
2372          * a necessary evil due to the design of the XMAC. The
2373          * XMAC's receive FIFO is only 8K in size, however jumbo
2374          * frames can be up to 9000 bytes in length. When bad
2375          * frame filtering is enabled, the XMAC's RX FIFO operates
2376          * in 'store and forward' mode. For this to work, the
2377          * entire frame has to fit into the FIFO, but that means
2378          * that jumbo frames larger than 8192 bytes will be
2379          * truncated. Disabling all bad frame filtering causes
2380          * the RX FIFO to operate in streaming mode, in which
2381          * case the XMAC will start transfering frames out of the
2382          * RX FIFO as soon as the FIFO threshold is reached.
2383          */
2384         if (sc_if->sk_use_jumbo) {
2385                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2386                     XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2387                     XM_MODE_RX_INRANGELEN);
2388         }
2389
2390         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2391
2392         /*
2393          * Bump up the transmit threshold. This helps hold off transmit
2394          * underruns when we're blasting traffic from both ports at once.
2395          */
2396         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2397
2398         /* Set promiscuous mode */
2399         sk_setpromisc(sc_if);
2400
2401         /* Set multicast filter */
2402         sk_setmulti(sc_if);
2403
2404         /* Clear and enable interrupts */
2405         SK_XM_READ_2(sc_if, XM_ISR);
2406         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2407                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2408         else
2409                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2410
2411         /* Configure MAC arbiter */
2412         switch(sc_if->sk_xmac_rev) {
2413         case XM_XMAC_REV_B2:
2414                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2415                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2416                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2417                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2418                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2419                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2420                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2421                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2422                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2423                 break;
2424         case XM_XMAC_REV_C1:
2425                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2426                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2427                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2428                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2429                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2430                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2431                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2432                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2433                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2434                 break;
2435         default:
2436                 break;
2437         }
2438         sk_win_write_2(sc, SK_MACARB_CTL,
2439             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2440
2441         sc_if->sk_link = 1;
2442 }
2443
2444 static void
2445 sk_init_yukon(struct sk_if_softc *sc_if)
2446 {
2447         uint32_t phy, v;
2448         uint16_t reg;
2449         struct sk_softc *sc;
2450         int i;
2451
2452         sc = sc_if->sk_softc;
2453
2454         DPRINTFN(2, ("sk_init_yukon: start: sk_csr=%#x\n",
2455                      CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2456
2457         if (sc->sk_type == SK_YUKON_LITE &&
2458             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2459                 /*
2460                  * Workaround code for COMA mode, set PHY reset.
2461                  * Otherwise it will not correctly take chip out of
2462                  * powerdown (coma)
2463                  */
2464                 v = sk_win_read_4(sc, SK_GPIO);
2465                 v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
2466                 sk_win_write_4(sc, SK_GPIO, v);
2467         }
2468
2469         DPRINTFN(6, ("sk_init_yukon: 1\n"));
2470
2471         /* GMAC and GPHY Reset */
2472         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2473         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2474         DELAY(1000);
2475
2476         DPRINTFN(6, ("sk_init_yukon: 2\n"));
2477
2478         if (sc->sk_type == SK_YUKON_LITE &&
2479             sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2480                 /*
2481                  * Workaround code for COMA mode, clear PHY reset
2482                  */
2483                 v = sk_win_read_4(sc, SK_GPIO);
2484                 v |= SK_GPIO_DIR9;
2485                 v &= ~SK_GPIO_DAT9;
2486                 sk_win_write_4(sc, SK_GPIO, v);
2487         }
2488
2489         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2490                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2491
2492         if (sc->sk_coppertype)
2493                 phy |= SK_GPHY_COPPER;
2494         else
2495                 phy |= SK_GPHY_FIBER;
2496
2497         DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2498
2499         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2500         DELAY(1000);
2501         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2502         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2503                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2504
2505         DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2506                      SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2507
2508         DPRINTFN(6, ("sk_init_yukon: 3\n"));
2509
2510         /* unused read of the interrupt source register */
2511         DPRINTFN(6, ("sk_init_yukon: 4\n"));
2512         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2513
2514         DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2515         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2516         DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2517
2518         /* MIB Counter Clear Mode set */
2519         reg |= YU_PAR_MIB_CLR;
2520         DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2521         DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2522         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2523
2524         /* MIB Counter Clear Mode clear */
2525         DPRINTFN(6, ("sk_init_yukon: 5\n"));
2526         reg &= ~YU_PAR_MIB_CLR;
2527         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2528
2529         /* receive control reg */
2530         DPRINTFN(6, ("sk_init_yukon: 7\n"));
2531         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2532
2533         /* transmit parameter register */
2534         DPRINTFN(6, ("sk_init_yukon: 8\n"));
2535         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2536                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2537
2538         /* serial mode register */
2539         DPRINTFN(6, ("sk_init_yukon: 9\n"));
2540         reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2541         if (sc_if->sk_use_jumbo)
2542                 reg |= YU_SMR_MFL_JUMBO;
2543         SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2544
2545         DPRINTFN(6, ("sk_init_yukon: 10\n"));
2546         /* Setup Yukon's address */
2547         for (i = 0; i < 3; i++) {
2548                 /* Write Source Address 1 (unicast filter) */
2549                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 
2550                               sc_if->arpcom.ac_enaddr[i * 2] |
2551                               sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2552         }
2553
2554         for (i = 0; i < 3; i++) {
2555                 reg = sk_win_read_2(sc_if->sk_softc,
2556                                     SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2557                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2558         }
2559
2560         /* Set promiscuous mode */
2561         sk_setpromisc(sc_if);
2562
2563         /* Set multicast filter */
2564         DPRINTFN(6, ("sk_init_yukon: 11\n"));
2565         sk_setmulti(sc_if);
2566
2567         /* enable interrupt mask for counter overflows */
2568         DPRINTFN(6, ("sk_init_yukon: 12\n"));
2569         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2570         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2571         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2572
2573         /* Configure RX MAC FIFO Flush Mask */
2574         v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2575             YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2576             YU_RXSTAT_JABBER;
2577         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2578
2579         /* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
2580         if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
2581                 v = SK_TFCTL_OPERATION_ON;
2582         else
2583                 v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2584         /* Configure RX MAC FIFO */
2585         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2586         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2587
2588         /* Increase flush threshould to 64 bytes */
2589         SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2590             SK_RFCTL_FIFO_THRESHOLD + 1);
2591
2592         /* Configure TX MAC FIFO */
2593         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2594         SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2595
2596         DPRINTFN(6, ("sk_init_yukon: end\n"));
2597 }
2598
2599 /*
2600  * Note that to properly initialize any part of the GEnesis chip,
2601  * you first have to take it out of reset mode.
2602  */
2603 static void
2604 sk_init(void *xsc_if)
2605 {
2606         struct sk_if_softc *sc_if = xsc_if;
2607         struct sk_softc *sc = sc_if->sk_softc;
2608         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2609         struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2610
2611         DPRINTFN(2, ("sk_init\n"));
2612
2613         ASSERT_SERIALIZED(ifp->if_serializer);
2614
2615         if (ifp->if_flags & IFF_RUNNING)
2616                 return;
2617
2618         /* Cancel pending I/O and free all RX/TX buffers. */
2619         sk_stop(sc_if);
2620
2621         /*
2622          * NOTE: Change sk_use_jumbo after sk_stop(),
2623          *       but before real initialization.
2624          */
2625         if (ifp->if_mtu > ETHER_MAX_LEN)
2626                 sc_if->sk_use_jumbo = 1;
2627         else
2628                 sc_if->sk_use_jumbo = 0;
2629         DPRINTF(("use jumbo buffer: %s\n", sc_if->sk_use_jumbo ? "YES" : "NO"));
2630
2631         if (SK_IS_GENESIS(sc)) {
2632                 /* Configure LINK_SYNC LED */
2633                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2634                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2635                         SK_LINKLED_LINKSYNC_ON);
2636
2637                 /* Configure RX LED */
2638                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2639                         SK_RXLEDCTL_COUNTER_START);
2640                 
2641                 /* Configure TX LED */
2642                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2643                         SK_TXLEDCTL_COUNTER_START);
2644         }
2645
2646         /*
2647          * Configure descriptor poll timer
2648          *
2649          * SK-NET GENESIS data sheet says that possibility of losing Start
2650          * transmit command due to CPU/cache related interim storage problems
2651          * under certain conditions. The document recommends a polling
2652          * mechanism to send a Start transmit command to initiate transfer
2653          * of ready descriptors regulary. To cope with this issue sk(4) now
2654          * enables descriptor poll timer to initiate descriptor processing
2655          * periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
2656          * issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
2657          * command instead of waiting for next descriptor polling time.
2658          * The same rule may apply to Rx side too but it seems that is not
2659          * needed at the moment.
2660          * Since sk(4) uses descriptor polling as a last resort there is no
2661          * need to set smaller polling time than maximum allowable one.
2662          */
2663         SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
2664
2665         /* Configure I2C registers */
2666
2667         /* Configure XMAC(s) */
2668         switch (sc->sk_type) {
2669         case SK_GENESIS:
2670                 sk_init_xmac(sc_if);
2671                 break;
2672         case SK_YUKON:
2673         case SK_YUKON_LITE:
2674         case SK_YUKON_LP:
2675                 sk_init_yukon(sc_if);
2676                 break;
2677         }
2678         mii_mediachg(mii);
2679
2680         if (SK_IS_GENESIS(sc)) {
2681                 /* Configure MAC FIFOs */
2682                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2683                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2684                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2685
2686                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2687                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2688                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2689         }
2690
2691         /* Configure transmit arbiter(s) */
2692         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2693             SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2694
2695         /* Configure RAMbuffers */
2696         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2697         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2698         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2699         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2700         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2701         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2702
2703         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2704         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2705         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2706         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2707         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2708         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2709         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2710
2711         /* Configure BMUs */
2712         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2713         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2714                       SK_ADDR_LO(sc_if->sk_rdata.sk_rx_ring_paddr));
2715         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
2716                       SK_ADDR_HI(sc_if->sk_rdata.sk_rx_ring_paddr));
2717
2718         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2719         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2720                       SK_ADDR_LO(sc_if->sk_rdata.sk_tx_ring_paddr));
2721         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
2722                       SK_ADDR_HI(sc_if->sk_rdata.sk_tx_ring_paddr));
2723
2724         /* Init descriptors */
2725         if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2726                 if_printf(ifp, "initialization failed: "
2727                           "no memory for rx buffers\n");
2728                 sk_stop(sc_if);
2729                 return;
2730         }
2731
2732         if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2733                 if_printf(ifp, "initialization failed: "
2734                           "no memory for tx buffers\n");
2735                 sk_stop(sc_if);
2736                 return;
2737         }
2738
2739         /* Configure interrupt handling */
2740         CSR_READ_4(sc, SK_ISSR);
2741         if (sc_if->sk_port == SK_PORT_A)
2742                 sc->sk_intrmask |= SK_INTRS1;
2743         else
2744                 sc->sk_intrmask |= SK_INTRS2;
2745
2746         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2747
2748         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2749
2750         /* Start BMUs. */
2751         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2752
2753         if (SK_IS_GENESIS(sc)) {
2754                 /* Enable XMACs TX and RX state machines */
2755                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2756                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2757                                XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2758         }
2759
2760         if (SK_IS_YUKON(sc)) {
2761                 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2762                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2763 #if 0
2764                 /* XXX disable 100Mbps and full duplex mode? */
2765                 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
2766 #endif
2767                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2768         }
2769
2770         /* Activate descriptor polling timer */
2771         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
2772         /* Start transfer of Tx descriptors */
2773         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2774
2775         ifp->if_flags |= IFF_RUNNING;
2776         ifq_clr_oactive(&ifp->if_snd);
2777
2778         if (SK_IS_YUKON(sc))
2779                 callout_reset(&sc_if->sk_tick_timer, hz, sk_yukon_tick, sc_if);
2780 }
2781
2782 static void
2783 sk_stop(struct sk_if_softc *sc_if)
2784 {
2785         struct sk_softc *sc = sc_if->sk_softc;
2786         struct ifnet *ifp = &sc_if->arpcom.ac_if;
2787         struct sk_chain_data *cd = &sc_if->sk_cdata;
2788         uint32_t val;
2789         int i;
2790
2791         ASSERT_SERIALIZED(ifp->if_serializer);
2792
2793         DPRINTFN(2, ("sk_stop\n"));
2794
2795         callout_stop(&sc_if->sk_tick_timer);
2796
2797         ifp->if_flags &= ~IFF_RUNNING;
2798         ifq_clr_oactive(&ifp->if_snd);
2799
2800         /* Stop Tx descriptor polling timer */
2801         SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
2802
2803         /* Stop transfer of Tx descriptors */
2804         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
2805         for (i = 0; i < SK_TIMEOUT; i++) {
2806                 val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
2807                 if (!(val & SK_TXBMU_TX_STOP))
2808                         break;
2809                 DELAY(1);
2810         }
2811         if (i == SK_TIMEOUT)
2812                 if_printf(ifp, "cannot stop transfer of Tx descriptors\n");
2813
2814         /* Stop transfer of Rx descriptors */
2815         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
2816         for (i = 0; i < SK_TIMEOUT; i++) {
2817                 val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
2818                 if (!(val & SK_RXBMU_RX_STOP))
2819                         break;
2820                 DELAY(1);
2821         }
2822         if (i == SK_TIMEOUT)
2823                 if_printf(ifp, "cannot stop transfer of Rx descriptors\n");
2824
2825         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2826                 /* Put PHY back into reset. */
2827                 val = sk_win_read_4(sc, SK_GPIO);
2828                 if (sc_if->sk_port == SK_PORT_A) {
2829                         val |= SK_GPIO_DIR0;
2830                         val &= ~SK_GPIO_DAT0;
2831                 } else {
2832                         val |= SK_GPIO_DIR2;
2833                         val &= ~SK_GPIO_DAT2;
2834                 }
2835                 sk_win_write_4(sc, SK_GPIO, val);
2836         }
2837
2838         /* Turn off various components of this interface. */
2839         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2840         switch (sc->sk_type) {
2841         case SK_GENESIS:
2842                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2843                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2844                 break;
2845         case SK_YUKON:
2846         case SK_YUKON_LITE:
2847         case SK_YUKON_LP:
2848                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2849                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2850                 break;
2851         }
2852         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2853         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2854         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2855         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2856             SK_RBCTL_RESET | SK_RBCTL_OFF);
2857         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2858         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2859         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2860         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2861         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2862
2863         /* Disable interrupts */
2864         if (sc_if->sk_port == SK_PORT_A)
2865                 sc->sk_intrmask &= ~SK_INTRS1;
2866         else
2867                 sc->sk_intrmask &= ~SK_INTRS2;
2868         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2869
2870         SK_XM_READ_2(sc_if, XM_ISR);
2871         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2872
2873         /* Free RX and TX mbufs still in the queues. */
2874         for (i = 0; i < SK_RX_RING_CNT; i++) {
2875                 if (cd->sk_rx_mbuf[i] != NULL) {
2876                         if (!sc_if->sk_use_jumbo) {
2877                                 bus_dmamap_unload(cd->sk_rx_dtag,
2878                                                   cd->sk_rx_dmap[i]);
2879                         }
2880                         m_freem(cd->sk_rx_mbuf[i]);
2881                         cd->sk_rx_mbuf[i] = NULL;
2882                 }
2883         }
2884         for (i = 0; i < SK_TX_RING_CNT; i++) {
2885                 if (cd->sk_tx_mbuf[i] != NULL) {
2886                         bus_dmamap_unload(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
2887                         m_freem(cd->sk_tx_mbuf[i]);
2888                         cd->sk_tx_mbuf[i] = NULL;
2889                 }
2890         }
2891 }
2892
2893 #ifdef SK_DEBUG
2894 static void
2895 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2896 {
2897 #define DESC_PRINT(X)                                   \
2898         if (X)                                  \
2899                 kprintf("txdesc[%d]." #X "=%#x\n",      \
2900                        idx, X);
2901
2902         DESC_PRINT(le32toh(desc->sk_ctl));
2903         DESC_PRINT(le32toh(desc->sk_next));
2904         DESC_PRINT(le32toh(desc->sk_data_lo));
2905         DESC_PRINT(le32toh(desc->sk_data_hi));
2906         DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2907         DESC_PRINT(le16toh(desc->sk_rsvd0));
2908         DESC_PRINT(le16toh(desc->sk_csum_startval));
2909         DESC_PRINT(le16toh(desc->sk_csum_startpos));
2910         DESC_PRINT(le16toh(desc->sk_csum_writepos));
2911         DESC_PRINT(le16toh(desc->sk_rsvd1));
2912 #undef PRINT
2913 }
2914
2915 static void
2916 sk_dump_bytes(const char *data, int len)
2917 {
2918         int c, i, j;
2919
2920         for (i = 0; i < len; i += 16) {
2921                 kprintf("%08x  ", i);
2922                 c = len - i;
2923                 if (c > 16) c = 16;
2924
2925                 for (j = 0; j < c; j++) {
2926                         kprintf("%02x ", data[i + j] & 0xff);
2927                         if ((j & 0xf) == 7 && j > 0)
2928                                 kprintf(" ");
2929                 }
2930                 
2931                 for (; j < 16; j++)
2932                         kprintf("   ");
2933                 kprintf("  ");
2934
2935                 for (j = 0; j < c; j++) {
2936                         int ch = data[i + j] & 0xff;
2937                         kprintf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2938                 }
2939                 
2940                 kprintf("\n");
2941                 
2942                 if (c < 16)
2943                         break;
2944         }
2945 }
2946
2947 static void
2948 sk_dump_mbuf(struct mbuf *m)
2949 {
2950         int count = m->m_pkthdr.len;
2951
2952         kprintf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2953
2954         while (count > 0 && m) {
2955                 kprintf("m=%p, m->m_data=%p, m->m_len=%d\n",
2956                        m, m->m_data, m->m_len);
2957                 sk_dump_bytes(mtod(m, char *), m->m_len);
2958
2959                 count -= m->m_len;
2960                 m = m->m_next;
2961         }
2962 }
2963 #endif
2964
2965 /*
2966  * Allocate jumbo buffer storage. The SysKonnect adapters support
2967  * "jumbograms" (9K frames), although SysKonnect doesn't currently
2968  * use them in their drivers. In order for us to use them, we need
2969  * large 9K receive buffers, however standard mbuf clusters are only
2970  * 2048 bytes in size. Consequently, we need to allocate and manage
2971  * our own jumbo buffer pool. Fortunately, this does not require an
2972  * excessive amount of additional code.
2973  */
2974 static int
2975 sk_jpool_alloc(device_t dev)
2976 {
2977         struct sk_if_softc *sc_if = device_get_softc(dev);
2978         struct sk_chain_data *cd = &sc_if->sk_cdata;
2979         bus_dmamem_t dmem;
2980         bus_addr_t paddr;
2981         caddr_t buf;
2982         int error, i;
2983
2984         lwkt_serialize_init(&cd->sk_jpool_serializer);
2985
2986         error = bus_dmamem_coherent(cd->sk_buf_dtag, PAGE_SIZE /* XXX */, 0,
2987                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2988                                     SK_JMEM, BUS_DMA_WAITOK, &dmem);
2989         if (error) {
2990                 device_printf(dev, "can't allocate jumbo frame pool\n");
2991                 return error;
2992         }
2993         cd->sk_jpool_dtag = dmem.dmem_tag;
2994         cd->sk_jpool_dmap = dmem.dmem_map;
2995         cd->sk_jpool = dmem.dmem_addr;
2996         paddr = dmem.dmem_busaddr;
2997
2998         SLIST_INIT(&cd->sk_jpool_free_ent);
2999         buf = cd->sk_jpool;
3000
3001         /*
3002          * Now divide it up into SK_JLEN pieces.
3003          */
3004         for (i = 0; i < SK_JSLOTS; i++) {
3005                 struct sk_jpool_entry *entry = &cd->sk_jpool_ent[i];
3006
3007                 entry->sc_if = sc_if;
3008                 entry->inuse = 0;
3009                 entry->slot = i;
3010                 entry->buf = buf;
3011                 entry->paddr = paddr;
3012
3013                 SLIST_INSERT_HEAD(&cd->sk_jpool_free_ent, entry, entry_next);
3014
3015                 buf += SK_JLEN;
3016                 paddr += SK_JLEN;
3017         }
3018         return 0;
3019 }
3020
3021 static void
3022 sk_jpool_free(struct sk_if_softc *sc_if)
3023 {
3024         struct sk_chain_data *cd = &sc_if->sk_cdata;
3025
3026         if (cd->sk_jpool_dtag != NULL) {
3027                 bus_dmamap_unload(cd->sk_jpool_dtag, cd->sk_jpool_dmap);
3028                 bus_dmamem_free(cd->sk_jpool_dtag, cd->sk_jpool,
3029                                 cd->sk_jpool_dmap);
3030                 bus_dma_tag_destroy(cd->sk_jpool_dtag);
3031                 cd->sk_jpool_dtag = NULL;
3032         }
3033 }
3034
3035 static int
3036 sk_dma_alloc(device_t dev)
3037 {
3038         struct sk_if_softc *sc_if = device_get_softc(dev);
3039         struct sk_chain_data *cd = &sc_if->sk_cdata;
3040         struct sk_ring_data *rd = &sc_if->sk_rdata;
3041         bus_dmamem_t dmem;
3042         int i, j, error;
3043
3044         /* Create parent DMA tag */
3045         error = bus_dma_tag_create(NULL, 1, 0,
3046                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3047                                    NULL, NULL,
3048                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3049                                    BUS_SPACE_MAXSIZE_32BIT,
3050                                    0, &sc_if->sk_parent_dtag);
3051         if (error) {
3052                 device_printf(dev, "can't create parent DMA tag\n");
3053                 return error;
3054         }
3055
3056         /* Create top level ring DMA tag */
3057         error = bus_dma_tag_create(sc_if->sk_parent_dtag,
3058                                    1, SK_RING_BOUNDARY,
3059                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3060                                    NULL, NULL,
3061                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3062                                    BUS_SPACE_MAXSIZE_32BIT,
3063                                    0, &rd->sk_ring_dtag);
3064         if (error) {
3065                 device_printf(dev, "can't create ring DMA tag\n");
3066                 return error;
3067         }
3068
3069         /* Create top level buffer DMA tag */
3070         error = bus_dma_tag_create(sc_if->sk_parent_dtag, 1, 0,
3071                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3072                                    NULL, NULL,
3073                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3074                                    BUS_SPACE_MAXSIZE_32BIT,
3075                                    0, &cd->sk_buf_dtag);
3076         if (error) {
3077                 device_printf(dev, "can't create buf DMA tag\n");
3078                 return error;
3079         }
3080
3081         /* Allocate the TX descriptor queue. */
3082         error = bus_dmamem_coherent(rd->sk_ring_dtag, SK_RING_ALIGN, 0,
3083                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3084                                     SK_TX_RING_SIZE,
3085                                     BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3086         if (error) {
3087                 device_printf(dev, "can't allocate TX ring\n");
3088                 return error;
3089         }
3090         rd->sk_tx_ring_dtag = dmem.dmem_tag;
3091         rd->sk_tx_ring_dmap = dmem.dmem_map;
3092         rd->sk_tx_ring = dmem.dmem_addr;
3093         rd->sk_tx_ring_paddr = dmem.dmem_busaddr;
3094
3095         /* Allocate the RX descriptor queue. */
3096         error = bus_dmamem_coherent(rd->sk_ring_dtag, SK_RING_ALIGN, 0,
3097                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3098                                     SK_RX_RING_SIZE,
3099                                     BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3100         if (error) {
3101                 device_printf(dev, "can't allocate TX ring\n");
3102                 return error;
3103         }
3104         rd->sk_rx_ring_dtag = dmem.dmem_tag;
3105         rd->sk_rx_ring_dmap = dmem.dmem_map;
3106         rd->sk_rx_ring = dmem.dmem_addr;
3107         rd->sk_rx_ring_paddr = dmem.dmem_busaddr;
3108
3109         /* Try to allocate memory for jumbo buffers. */
3110         error = sk_jpool_alloc(dev);
3111         if (error) {
3112                 device_printf(dev, "jumbo buffer allocation failed\n");
3113                 return error;
3114         }
3115
3116         /* Create DMA tag for TX. */
3117         error = bus_dma_tag_create(cd->sk_buf_dtag, 1, 0,
3118                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3119                                    NULL, NULL,
3120                                    SK_JLEN, SK_NTXSEG, SK_JLEN,
3121                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3122                                    BUS_DMA_ONEBPAGE,
3123                                    &cd->sk_tx_dtag);
3124         if (error) {
3125                 device_printf(dev, "can't create TX DMA tag\n");
3126                 return error;
3127         }
3128
3129         /* Create DMA maps for TX. */
3130         for (i = 0; i < SK_TX_RING_CNT; i++) {
3131                 error = bus_dmamap_create(cd->sk_tx_dtag,
3132                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
3133                                           &cd->sk_tx_dmap[i]);
3134                 if (error) {
3135                         device_printf(dev, "can't create %dth TX DMA map\n", i);
3136
3137                         for (j = 0; j < i; ++j) {
3138                                 bus_dmamap_destroy(cd->sk_tx_dtag,
3139                                                    cd->sk_tx_dmap[i]);
3140                         }
3141                         bus_dma_tag_destroy(cd->sk_tx_dtag);
3142                         cd->sk_tx_dtag = NULL;
3143                         return error;
3144                 }
3145         }
3146
3147         /* Create DMA tag for RX. */
3148         error = bus_dma_tag_create(cd->sk_buf_dtag, 1, 0,
3149                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3150                                    NULL, NULL,
3151                                    MCLBYTES, 1, MCLBYTES,
3152                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3153                                    &cd->sk_rx_dtag);
3154         if (error) {
3155                 device_printf(dev, "can't create RX DMA tag\n");
3156                 return error;
3157         }
3158
3159         /* Create a spare RX DMA map. */
3160         error = bus_dmamap_create(cd->sk_rx_dtag, BUS_DMA_WAITOK,
3161                                   &cd->sk_rx_dmap_tmp);
3162         if (error) {
3163                 device_printf(dev, "can't create spare RX DMA map\n");
3164                 bus_dma_tag_destroy(cd->sk_rx_dtag);
3165                 cd->sk_rx_dtag = NULL;
3166                 return error;
3167         }
3168
3169         /* Create DMA maps for RX. */
3170         for (i = 0; i < SK_RX_RING_CNT; ++i) {
3171                 error = bus_dmamap_create(cd->sk_rx_dtag, BUS_DMA_WAITOK,
3172                                           &cd->sk_rx_dmap[i]);
3173                 if (error) {
3174                         device_printf(dev, "can't create %dth RX DMA map\n", i);
3175
3176                         for (j = 0; j < i; ++j) {
3177                                 bus_dmamap_destroy(cd->sk_rx_dtag,
3178                                                    cd->sk_rx_dmap[i]);
3179                         }
3180                         bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3181                         bus_dma_tag_destroy(cd->sk_rx_dtag);
3182                         cd->sk_rx_dtag = NULL;
3183                         return error;
3184                 }
3185         }
3186         return 0;
3187 }
3188
3189 static void
3190 sk_dma_free(device_t dev)
3191 {
3192         struct sk_if_softc *sc_if = device_get_softc(dev);
3193         struct sk_chain_data *cd = &sc_if->sk_cdata;
3194         struct sk_ring_data *rd = &sc_if->sk_rdata;
3195         int i;
3196
3197         if (cd->sk_tx_dtag != NULL) {
3198                 for (i = 0; i < SK_TX_RING_CNT; ++i) {
3199                         KASSERT(cd->sk_tx_mbuf[i] == NULL,
3200                                 ("sk_stop() is not called before %s()",
3201                                  __func__));
3202                         bus_dmamap_destroy(cd->sk_tx_dtag, cd->sk_tx_dmap[i]);
3203                 }
3204                 bus_dma_tag_destroy(cd->sk_tx_dtag);
3205         }
3206
3207         if (cd->sk_rx_dtag != NULL) {
3208                 for (i = 0; i < SK_RX_RING_CNT; ++i) {
3209                         KASSERT(cd->sk_rx_mbuf[i] == NULL,
3210                                 ("sk_stop() is not called before %s()",
3211                                  __func__));
3212                         bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap[i]);
3213                 }
3214                 bus_dmamap_destroy(cd->sk_rx_dtag, cd->sk_rx_dmap_tmp);
3215                 bus_dma_tag_destroy(cd->sk_rx_dtag);
3216         }
3217
3218         sk_jpool_free(sc_if);
3219
3220         if (rd->sk_rx_ring_dtag != NULL) {
3221                 bus_dmamap_unload(rd->sk_rx_ring_dtag, rd->sk_rx_ring_dmap);
3222                 bus_dmamem_free(rd->sk_rx_ring_dtag, rd->sk_rx_ring,
3223                                 rd->sk_rx_ring_dmap);
3224                 bus_dma_tag_destroy(rd->sk_rx_ring_dtag);
3225         }
3226
3227         if (rd->sk_tx_ring_dtag != NULL) {
3228                 bus_dmamap_unload(rd->sk_tx_ring_dtag, rd->sk_tx_ring_dmap);
3229                 bus_dmamem_free(rd->sk_tx_ring_dtag, rd->sk_tx_ring,
3230                                 rd->sk_tx_ring_dmap);
3231                 bus_dma_tag_destroy(rd->sk_tx_ring_dtag);
3232         }
3233
3234         if (rd->sk_ring_dtag != NULL)
3235                 bus_dma_tag_destroy(rd->sk_ring_dtag);
3236         if (cd->sk_buf_dtag != NULL)
3237                 bus_dma_tag_destroy(cd->sk_buf_dtag);
3238         if (sc_if->sk_parent_dtag != NULL)
3239                 bus_dma_tag_destroy(sc_if->sk_parent_dtag);
3240 }
3241
3242 static int
3243 skc_sysctl_imtime(SYSCTL_HANDLER_ARGS)
3244 {
3245         struct sk_softc *sc = arg1;
3246         struct lwkt_serialize *slize = &sc->sk_serializer;
3247         int error = 0, v;
3248
3249         lwkt_serialize_enter(slize);
3250
3251         v = sc->sk_imtime;
3252         error = sysctl_handle_int(oidp, &v, 0, req);
3253         if (error || req->newptr == NULL)
3254                 goto back;
3255         if (v <= 0) {
3256                 error = EINVAL;
3257                 goto back;
3258         }
3259
3260         if (sc->sk_imtime != v) {
3261                 sc->sk_imtime = v;
3262                 sk_win_write_4(sc, SK_IMTIMERINIT,
3263                                SK_IM_USECS(sc, sc->sk_imtime));
3264
3265                 /*
3266                  * Force interrupt moderation timer to
3267                  * reload new value.
3268                  */
3269                 sk_win_write_4(sc, SK_IMTIMER, 0);
3270         }
3271 back:
3272         lwkt_serialize_exit(slize);
3273         return error;
3274 }