bnx: Pack TX mbuf and dmamap together; improve cache utilization
[dragonfly.git] / sys / netinet / ip_output.c
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      @(#)ip_output.c 8.3 (Berkeley) 1/21/94
30  * $FreeBSD: src/sys/netinet/ip_output.c,v 1.99.2.37 2003/04/15 06:44:45 silby Exp $
31  */
32
33 #define _IP_VHL
34
35 #include "opt_ipdn.h"
36 #include "opt_ipdivert.h"
37 #include "opt_ipsec.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mpls.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/sysctl.h>
52 #include <sys/in_cksum.h>
53 #include <sys/lock.h>
54
55 #include <sys/thread2.h>
56 #include <sys/mplock2.h>
57 #include <sys/msgport2.h>
58
59 #include <net/if.h>
60 #include <net/netisr.h>
61 #include <net/pfil.h>
62 #include <net/route.h>
63
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70
71 #include <netproto/mpls/mpls_var.h>
72
73 static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
74
75 #ifdef IPSEC
76 #include <netinet6/ipsec.h>
77 #include <netproto/key/key.h>
78 #ifdef IPSEC_DEBUG
79 #include <netproto/key/key_debug.h>
80 #else
81 #define KEYDEBUG(lev,arg)
82 #endif
83 #endif /*IPSEC*/
84
85 #ifdef FAST_IPSEC
86 #include <netproto/ipsec/ipsec.h>
87 #include <netproto/ipsec/xform.h>
88 #include <netproto/ipsec/key.h>
89 #endif /*FAST_IPSEC*/
90
91 #include <net/ipfw/ip_fw.h>
92 #include <net/dummynet/ip_dummynet.h>
93
94 #define print_ip(x, a, y)        kprintf("%s %d.%d.%d.%d%s",\
95                                 x, (ntohl(a.s_addr)>>24)&0xFF,\
96                                   (ntohl(a.s_addr)>>16)&0xFF,\
97                                   (ntohl(a.s_addr)>>8)&0xFF,\
98                                   (ntohl(a.s_addr))&0xFF, y);
99
100 u_short ip_id;
101
102 #ifdef MBUF_STRESS_TEST
103 int mbuf_frag_size = 0;
104 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
105         &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
106 #endif
107
108 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
109 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
110 static void     ip_mloopback
111         (struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
112 static int      ip_getmoptions
113         (struct sockopt *, struct ip_moptions *);
114 static int      ip_pcbopts(int, struct mbuf **, struct mbuf *);
115 static int      ip_setmoptions
116         (struct sockopt *, struct ip_moptions **);
117
118 int     ip_optcopy(struct ip *, struct ip *);
119
120 extern  int route_assert_owner_access;
121
122 extern  struct protosw inetsw[];
123
124 static int
125 ip_localforward(struct mbuf *m, const struct sockaddr_in *dst, int hlen)
126 {
127         struct in_ifaddr_container *iac;
128
129         /*
130          * We need to figure out if we have been forwarded to a local
131          * socket.  If so, then we should somehow "loop back" to
132          * ip_input(), and get directed to the PCB as if we had received
133          * this packet.  This is because it may be difficult to identify
134          * the packets you want to forward until they are being output
135          * and have selected an interface (e.g. locally initiated
136          * packets).  If we used the loopback inteface, we would not be
137          * able to control what happens as the packet runs through
138          * ip_input() as it is done through a ISR.
139          */
140         LIST_FOREACH(iac, INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
141                 /*
142                  * If the addr to forward to is one of ours, we pretend
143                  * to be the destination for this packet.
144                  */
145                 if (IA_SIN(iac->ia)->sin_addr.s_addr == dst->sin_addr.s_addr)
146                         break;
147         }
148         if (iac != NULL) {
149                 struct ip *ip;
150
151                 if (m->m_pkthdr.rcvif == NULL)
152                         m->m_pkthdr.rcvif = ifunit("lo0");
153                 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
154                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
155                                                   CSUM_PSEUDO_HDR;
156                         m->m_pkthdr.csum_data = 0xffff;
157                 }
158                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
159
160                 /*
161                  * Make sure that the IP header is in one mbuf,
162                  * required by ip_input
163                  */
164                 if (m->m_len < hlen) {
165                         m = m_pullup(m, hlen);
166                         if (m == NULL) {
167                                 /* The packet was freed; we are done */
168                                 return 1;
169                         }
170                 }
171                 ip = mtod(m, struct ip *);
172
173                 ip->ip_len = htons(ip->ip_len);
174                 ip->ip_off = htons(ip->ip_off);
175                 ip_input(m);
176
177                 return 1; /* The packet gets forwarded locally */
178         }
179         return 0;
180 }
181
182 /*
183  * IP output.  The packet in mbuf chain m contains a skeletal IP
184  * header (with len, off, ttl, proto, tos, src, dst).
185  * The mbuf chain containing the packet will be freed.
186  * The mbuf opt, if present, will not be freed.
187  */
188 int
189 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
190           int flags, struct ip_moptions *imo, struct inpcb *inp)
191 {
192         struct ip *ip;
193         struct ifnet *ifp = NULL;       /* keep compiler happy */
194         struct mbuf *m;
195         int hlen = sizeof(struct ip);
196         int len, error = 0;
197         struct sockaddr_in *dst = NULL; /* keep compiler happy */
198         struct in_ifaddr *ia = NULL;
199         int isbroadcast, sw_csum;
200         struct in_addr pkt_dst;
201         struct route iproute;
202         struct m_tag *mtag;
203 #ifdef IPSEC
204         struct secpolicy *sp = NULL;
205         struct socket *so = inp ? inp->inp_socket : NULL;
206 #endif
207 #ifdef FAST_IPSEC
208         struct secpolicy *sp = NULL;
209         struct tdb_ident *tdbi;
210 #endif /* FAST_IPSEC */
211         struct sockaddr_in *next_hop = NULL;
212         int src_was_INADDR_ANY = 0;     /* as the name says... */
213
214         m = m0;
215         M_ASSERTPKTHDR(m);
216
217         if (ro == NULL) {
218                 ro = &iproute;
219                 bzero(ro, sizeof *ro);
220         } else if (ro->ro_rt != NULL && ro->ro_rt->rt_cpuid != mycpuid) {
221                 if (flags & IP_DEBUGROUTE) {
222                         if (route_assert_owner_access) {
223                                 panic("ip_output: "
224                                       "rt rt_cpuid %d accessed on cpu %d\n",
225                                       ro->ro_rt->rt_cpuid, mycpuid);
226                         } else {
227                                 kprintf("ip_output: "
228                                         "rt rt_cpuid %d accessed on cpu %d\n",
229                                         ro->ro_rt->rt_cpuid, mycpuid);
230                                 print_backtrace(-1);
231                         }
232                 }
233
234                 /*
235                  * XXX
236                  * If the cached rtentry's owner CPU is not the current CPU,
237                  * then don't touch the cached rtentry (remote free is too
238                  * expensive in this context); just relocate the route.
239                  */
240                 ro = &iproute;
241                 bzero(ro, sizeof *ro);
242         }
243
244         if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
245                 /* Next hop */
246                 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
247                 KKASSERT(mtag != NULL);
248                 next_hop = m_tag_data(mtag);
249         }
250
251         if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
252                 struct dn_pkt *dn_pkt;
253
254                 /* Extract info from dummynet tag */
255                 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
256                 KKASSERT(mtag != NULL);
257                 dn_pkt = m_tag_data(mtag);
258
259                 /*
260                  * The packet was already tagged, so part of the
261                  * processing was already done, and we need to go down.
262                  * Get the calculated parameters from the tag.
263                  */
264                 ifp = dn_pkt->ifp;
265
266                 KKASSERT(ro == &iproute);
267                 *ro = dn_pkt->ro; /* structure copy */
268                 KKASSERT(ro->ro_rt == NULL || ro->ro_rt->rt_cpuid == mycpuid);
269
270                 dst = dn_pkt->dn_dst;
271                 if (dst == (struct sockaddr_in *)&(dn_pkt->ro.ro_dst)) {
272                         /* If 'dst' points into dummynet tag, adjust it */
273                         dst = (struct sockaddr_in *)&(ro->ro_dst);
274                 }
275
276                 ip = mtod(m, struct ip *);
277                 hlen = IP_VHL_HL(ip->ip_vhl) << 2 ;
278                 if (ro->ro_rt)
279                         ia = ifatoia(ro->ro_rt->rt_ifa);
280                 goto sendit;
281         }
282
283         if (opt) {
284                 len = 0;
285                 m = ip_insertoptions(m, opt, &len);
286                 if (len != 0)
287                         hlen = len;
288         }
289         ip = mtod(m, struct ip *);
290
291         /*
292          * Fill in IP header.
293          */
294         if (!(flags & (IP_FORWARDING|IP_RAWOUTPUT))) {
295                 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
296                 ip->ip_off &= IP_DF;
297                 ip->ip_id = ip_newid();
298                 ipstat.ips_localout++;
299         } else {
300                 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
301         }
302
303 reroute:
304         pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
305
306         dst = (struct sockaddr_in *)&ro->ro_dst;
307         /*
308          * If there is a cached route,
309          * check that it is to the same destination
310          * and is still up.  If not, free it and try again.
311          * The address family should also be checked in case of sharing the
312          * cache with IPv6.
313          */
314         if (ro->ro_rt &&
315             (!(ro->ro_rt->rt_flags & RTF_UP) ||
316              dst->sin_family != AF_INET ||
317              dst->sin_addr.s_addr != pkt_dst.s_addr)) {
318                 rtfree(ro->ro_rt);
319                 ro->ro_rt = NULL;
320         }
321         if (ro->ro_rt == NULL) {
322                 bzero(dst, sizeof *dst);
323                 dst->sin_family = AF_INET;
324                 dst->sin_len = sizeof *dst;
325                 dst->sin_addr = pkt_dst;
326         }
327         /*
328          * If routing to interface only,
329          * short circuit routing lookup.
330          */
331         if (flags & IP_ROUTETOIF) {
332                 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
333                     (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
334                         ipstat.ips_noroute++;
335                         error = ENETUNREACH;
336                         goto bad;
337                 }
338                 ifp = ia->ia_ifp;
339                 ip->ip_ttl = 1;
340                 isbroadcast = in_broadcast(dst->sin_addr, ifp);
341         } else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
342                    imo != NULL && imo->imo_multicast_ifp != NULL) {
343                 /*
344                  * Bypass the normal routing lookup for multicast
345                  * packets if the interface is specified.
346                  */
347                 ifp = imo->imo_multicast_ifp;
348                 ia = IFP_TO_IA(ifp);
349                 isbroadcast = 0;        /* fool gcc */
350         } else {
351                 /*
352                  * If this is the case, we probably don't want to allocate
353                  * a protocol-cloned route since we didn't get one from the
354                  * ULP.  This lets TCP do its thing, while not burdening
355                  * forwarding or ICMP with the overhead of cloning a route.
356                  * Of course, we still want to do any cloning requested by
357                  * the link layer, as this is probably required in all cases
358                  * for correct operation (as it is for ARP).
359                  */
360                 if (ro->ro_rt == NULL)
361                         rtalloc_ign(ro, RTF_PRCLONING);
362                 if (ro->ro_rt == NULL) {
363                         ipstat.ips_noroute++;
364                         error = EHOSTUNREACH;
365                         goto bad;
366                 }
367                 ia = ifatoia(ro->ro_rt->rt_ifa);
368                 ifp = ro->ro_rt->rt_ifp;
369                 ro->ro_rt->rt_use++;
370                 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
371                         dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
372                 if (ro->ro_rt->rt_flags & RTF_HOST)
373                         isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
374                 else
375                         isbroadcast = in_broadcast(dst->sin_addr, ifp);
376         }
377         if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
378                 struct in_multi *inm;
379
380                 m->m_flags |= M_MCAST;
381                 /*
382                  * IP destination address is multicast.  Make sure "dst"
383                  * still points to the address in "ro".  (It may have been
384                  * changed to point to a gateway address, above.)
385                  */
386                 dst = (struct sockaddr_in *)&ro->ro_dst;
387                 /*
388                  * See if the caller provided any multicast options
389                  */
390                 if (imo != NULL) {
391                         ip->ip_ttl = imo->imo_multicast_ttl;
392                         if (imo->imo_multicast_vif != -1) {
393                                 ip->ip_src.s_addr =
394                                     ip_mcast_src ?
395                                     ip_mcast_src(imo->imo_multicast_vif) :
396                                     INADDR_ANY;
397                         }
398                 } else {
399                         ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
400                 }
401                 /*
402                  * Confirm that the outgoing interface supports multicast.
403                  */
404                 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
405                         if (!(ifp->if_flags & IFF_MULTICAST)) {
406                                 ipstat.ips_noroute++;
407                                 error = ENETUNREACH;
408                                 goto bad;
409                         }
410                 }
411                 /*
412                  * If source address not specified yet, use address
413                  * of outgoing interface.
414                  */
415                 if (ip->ip_src.s_addr == INADDR_ANY) {
416                         /* Interface may have no addresses. */
417                         if (ia != NULL)
418                                 ip->ip_src = IA_SIN(ia)->sin_addr;
419                 }
420
421                 IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
422                 if (inm != NULL &&
423                     (imo == NULL || imo->imo_multicast_loop)) {
424                         /*
425                          * If we belong to the destination multicast group
426                          * on the outgoing interface, and the caller did not
427                          * forbid loopback, loop back a copy.
428                          */
429                         ip_mloopback(ifp, m, dst, hlen);
430                 } else {
431                         /*
432                          * If we are acting as a multicast router, perform
433                          * multicast forwarding as if the packet had just
434                          * arrived on the interface to which we are about
435                          * to send.  The multicast forwarding function
436                          * recursively calls this function, using the
437                          * IP_FORWARDING flag to prevent infinite recursion.
438                          *
439                          * Multicasts that are looped back by ip_mloopback(),
440                          * above, will be forwarded by the ip_input() routine,
441                          * if necessary.
442                          */
443                         if (ip_mrouter && !(flags & IP_FORWARDING)) {
444                                 /*
445                                  * If rsvp daemon is not running, do not
446                                  * set ip_moptions. This ensures that the packet
447                                  * is multicast and not just sent down one link
448                                  * as prescribed by rsvpd.
449                                  */
450                                 if (!rsvp_on)
451                                         imo = NULL;
452                                 if (ip_mforward) {
453                                         get_mplock();
454                                         if (ip_mforward(ip, ifp, m, imo) != 0) {
455                                                 m_freem(m);
456                                                 rel_mplock();
457                                                 goto done;
458                                         }
459                                         rel_mplock();
460                                 }
461                         }
462                 }
463
464                 /*
465                  * Multicasts with a time-to-live of zero may be looped-
466                  * back, above, but must not be transmitted on a network.
467                  * Also, multicasts addressed to the loopback interface
468                  * are not sent -- the above call to ip_mloopback() will
469                  * loop back a copy if this host actually belongs to the
470                  * destination group on the loopback interface.
471                  */
472                 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
473                         m_freem(m);
474                         goto done;
475                 }
476
477                 goto sendit;
478         } else {
479                 m->m_flags &= ~M_MCAST;
480         }
481
482         /*
483          * If the source address is not specified yet, use the address
484          * of the outoing interface. In case, keep note we did that, so
485          * if the the firewall changes the next-hop causing the output
486          * interface to change, we can fix that.
487          */
488         if (ip->ip_src.s_addr == INADDR_ANY || src_was_INADDR_ANY) {
489                 /* Interface may have no addresses. */
490                 if (ia != NULL) {
491                         ip->ip_src = IA_SIN(ia)->sin_addr;
492                         src_was_INADDR_ANY = 1;
493                 }
494         }
495
496         /*
497          * Look for broadcast address and
498          * verify user is allowed to send
499          * such a packet.
500          */
501         if (isbroadcast) {
502                 if (!(ifp->if_flags & IFF_BROADCAST)) {
503                         error = EADDRNOTAVAIL;
504                         goto bad;
505                 }
506                 if (!(flags & IP_ALLOWBROADCAST)) {
507                         error = EACCES;
508                         goto bad;
509                 }
510                 /* don't allow broadcast messages to be fragmented */
511                 if (ip->ip_len > ifp->if_mtu) {
512                         error = EMSGSIZE;
513                         goto bad;
514                 }
515                 m->m_flags |= M_BCAST;
516         } else {
517                 m->m_flags &= ~M_BCAST;
518         }
519
520 sendit:
521 #ifdef IPSEC
522         /* get SP for this packet */
523         if (so == NULL)
524                 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
525         else
526                 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
527
528         if (sp == NULL) {
529                 ipsecstat.out_inval++;
530                 goto bad;
531         }
532
533         error = 0;
534
535         /* check policy */
536         switch (sp->policy) {
537         case IPSEC_POLICY_DISCARD:
538                 /*
539                  * This packet is just discarded.
540                  */
541                 ipsecstat.out_polvio++;
542                 goto bad;
543
544         case IPSEC_POLICY_BYPASS:
545         case IPSEC_POLICY_NONE:
546         case IPSEC_POLICY_TCP:
547                 /* no need to do IPsec. */
548                 goto skip_ipsec;
549
550         case IPSEC_POLICY_IPSEC:
551                 if (sp->req == NULL) {
552                         /* acquire a policy */
553                         error = key_spdacquire(sp);
554                         goto bad;
555                 }
556                 break;
557
558         case IPSEC_POLICY_ENTRUST:
559         default:
560                 kprintf("ip_output: Invalid policy found. %d\n", sp->policy);
561         }
562     {
563         struct ipsec_output_state state;
564         bzero(&state, sizeof state);
565         state.m = m;
566         if (flags & IP_ROUTETOIF) {
567                 state.ro = &iproute;
568                 bzero(&iproute, sizeof iproute);
569         } else
570                 state.ro = ro;
571         state.dst = (struct sockaddr *)dst;
572
573         ip->ip_sum = 0;
574
575         /*
576          * XXX
577          * delayed checksums are not currently compatible with IPsec
578          */
579         if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
580                 in_delayed_cksum(m);
581                 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
582         }
583
584         ip->ip_len = htons(ip->ip_len);
585         ip->ip_off = htons(ip->ip_off);
586
587         error = ipsec4_output(&state, sp, flags);
588
589         m = state.m;
590         if (flags & IP_ROUTETOIF) {
591                 /*
592                  * if we have tunnel mode SA, we may need to ignore
593                  * IP_ROUTETOIF.
594                  */
595                 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
596                         flags &= ~IP_ROUTETOIF;
597                         ro = state.ro;
598                 }
599         } else
600                 ro = state.ro;
601         dst = (struct sockaddr_in *)state.dst;
602         if (error) {
603                 /* mbuf is already reclaimed in ipsec4_output. */
604                 m0 = NULL;
605                 switch (error) {
606                 case EHOSTUNREACH:
607                 case ENETUNREACH:
608                 case EMSGSIZE:
609                 case ENOBUFS:
610                 case ENOMEM:
611                         break;
612                 default:
613                         kprintf("ip4_output (ipsec): error code %d\n", error);
614                         /*fall through*/
615                 case ENOENT:
616                         /* don't show these error codes to the user */
617                         error = 0;
618                         break;
619                 }
620                 goto bad;
621         }
622     }
623
624         /* be sure to update variables that are affected by ipsec4_output() */
625         ip = mtod(m, struct ip *);
626 #ifdef _IP_VHL
627         hlen = IP_VHL_HL(ip->ip_vhl) << 2;
628 #else
629         hlen = ip->ip_hl << 2;
630 #endif
631         if (ro->ro_rt == NULL) {
632                 if (!(flags & IP_ROUTETOIF)) {
633                         kprintf("ip_output: "
634                                 "can't update route after IPsec processing\n");
635                         error = EHOSTUNREACH;   /*XXX*/
636                         goto bad;
637                 }
638         } else {
639                 ia = ifatoia(ro->ro_rt->rt_ifa);
640                 ifp = ro->ro_rt->rt_ifp;
641         }
642
643         /* make it flipped, again. */
644         ip->ip_len = ntohs(ip->ip_len);
645         ip->ip_off = ntohs(ip->ip_off);
646 skip_ipsec:
647 #endif /*IPSEC*/
648 #ifdef FAST_IPSEC
649         /*
650          * Check the security policy (SP) for the packet and, if
651          * required, do IPsec-related processing.  There are two
652          * cases here; the first time a packet is sent through
653          * it will be untagged and handled by ipsec4_checkpolicy.
654          * If the packet is resubmitted to ip_output (e.g. after
655          * AH, ESP, etc. processing), there will be a tag to bypass
656          * the lookup and related policy checking.
657          */
658         mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
659         crit_enter();
660         if (mtag != NULL) {
661                 tdbi = (struct tdb_ident *)m_tag_data(mtag);
662                 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
663                 if (sp == NULL)
664                         error = -EINVAL;        /* force silent drop */
665                 m_tag_delete(m, mtag);
666         } else {
667                 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
668                                         &error, inp);
669         }
670         /*
671          * There are four return cases:
672          *    sp != NULL                    apply IPsec policy
673          *    sp == NULL, error == 0        no IPsec handling needed
674          *    sp == NULL, error == -EINVAL  discard packet w/o error
675          *    sp == NULL, error != 0        discard packet, report error
676          */
677         if (sp != NULL) {
678                 /* Loop detection, check if ipsec processing already done */
679                 KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
680                 for (mtag = m_tag_first(m); mtag != NULL;
681                      mtag = m_tag_next(m, mtag)) {
682                         if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
683                                 continue;
684                         if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
685                             mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
686                                 continue;
687                         /*
688                          * Check if policy has an SA associated with it.
689                          * This can happen when an SP has yet to acquire
690                          * an SA; e.g. on first reference.  If it occurs,
691                          * then we let ipsec4_process_packet do its thing.
692                          */
693                         if (sp->req->sav == NULL)
694                                 break;
695                         tdbi = (struct tdb_ident *)m_tag_data(mtag);
696                         if (tdbi->spi == sp->req->sav->spi &&
697                             tdbi->proto == sp->req->sav->sah->saidx.proto &&
698                             bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
699                                  sizeof(union sockaddr_union)) == 0) {
700                                 /*
701                                  * No IPsec processing is needed, free
702                                  * reference to SP.
703                                  *
704                                  * NB: null pointer to avoid free at
705                                  *     done: below.
706                                  */
707                                 KEY_FREESP(&sp), sp = NULL;
708                                 crit_exit();
709                                 goto spd_done;
710                         }
711                 }
712
713                 /*
714                  * Do delayed checksums now because we send before
715                  * this is done in the normal processing path.
716                  */
717                 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
718                         in_delayed_cksum(m);
719                         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
720                 }
721
722                 ip->ip_len = htons(ip->ip_len);
723                 ip->ip_off = htons(ip->ip_off);
724
725                 /* NB: callee frees mbuf */
726                 error = ipsec4_process_packet(m, sp->req, flags, 0);
727                 /*
728                  * Preserve KAME behaviour: ENOENT can be returned
729                  * when an SA acquire is in progress.  Don't propagate
730                  * this to user-level; it confuses applications.
731                  *
732                  * XXX this will go away when the SADB is redone.
733                  */
734                 if (error == ENOENT)
735                         error = 0;
736                 crit_exit();
737                 goto done;
738         } else {
739                 crit_exit();
740
741                 if (error != 0) {
742                         /*
743                          * Hack: -EINVAL is used to signal that a packet
744                          * should be silently discarded.  This is typically
745                          * because we asked key management for an SA and
746                          * it was delayed (e.g. kicked up to IKE).
747                          */
748                         if (error == -EINVAL)
749                                 error = 0;
750                         goto bad;
751                 } else {
752                         /* No IPsec processing for this packet. */
753                 }
754 #ifdef notyet
755                 /*
756                  * If deferred crypto processing is needed, check that
757                  * the interface supports it.
758                  */
759                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
760                 if (mtag != NULL && !(ifp->if_capenable & IFCAP_IPSEC)) {
761                         /* notify IPsec to do its own crypto */
762                         ipsp_skipcrypto_unmark((struct tdb_ident *)m_tag_data(mtag));
763                         error = EHOSTUNREACH;
764                         goto bad;
765                 }
766 #endif
767         }
768 spd_done:
769 #endif /* FAST_IPSEC */
770
771         /* We are already being fwd'd from a firewall. */
772         if (next_hop != NULL)
773                 goto pass;
774
775         /* No pfil hooks */
776         if (!pfil_has_hooks(&inet_pfil_hook)) {
777                 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
778                         /*
779                          * Strip dummynet tags from stranded packets
780                          */
781                         mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
782                         KKASSERT(mtag != NULL);
783                         m_tag_delete(m, mtag);
784                         m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
785                 }
786                 goto pass;
787         }
788
789         /*
790          * IpHack's section.
791          * - Xlate: translate packet's addr/port (NAT).
792          * - Firewall: deny/allow/etc.
793          * - Wrap: fake packet's addr/port <unimpl.>
794          * - Encapsulate: put it in another IP and send out. <unimp.>
795          */
796
797         /*
798          * Run through list of hooks for output packets.
799          */
800         error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
801         if (error != 0 || m == NULL)
802                 goto done;
803         ip = mtod(m, struct ip *);
804
805         if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
806                 /*
807                  * Check dst to make sure it is directly reachable on the
808                  * interface we previously thought it was.
809                  * If it isn't (which may be likely in some situations) we have
810                  * to re-route it (ie, find a route for the next-hop and the
811                  * associated interface) and set them here. This is nested
812                  * forwarding which in most cases is undesirable, except where
813                  * such control is nigh impossible. So we do it here.
814                  * And I'm babbling.
815                  */
816                 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
817                 KKASSERT(mtag != NULL);
818                 next_hop = m_tag_data(mtag);
819
820                 /*
821                  * Try local forwarding first
822                  */
823                 if (ip_localforward(m, next_hop, hlen))
824                         goto done;
825
826                 /*
827                  * Relocate the route based on next_hop.
828                  * If the current route is inp's cache, keep it untouched.
829                  */
830                 if (ro == &iproute && ro->ro_rt != NULL) {
831                         RTFREE(ro->ro_rt);
832                         ro->ro_rt = NULL;
833                 }
834                 ro = &iproute;
835                 bzero(ro, sizeof *ro);
836
837                 /*
838                  * Forwarding to broadcast address is not allowed.
839                  * XXX Should we follow IP_ROUTETOIF?
840                  */
841                 flags &= ~(IP_ALLOWBROADCAST | IP_ROUTETOIF);
842
843                 /* We are doing forwarding now */
844                 flags |= IP_FORWARDING;
845
846                 goto reroute;
847         }
848
849         if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
850                 struct dn_pkt *dn_pkt;
851
852                 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
853                 KKASSERT(mtag != NULL);
854                 dn_pkt = m_tag_data(mtag);
855
856                 /*
857                  * Under certain cases it is not possible to recalculate
858                  * 'ro' and 'dst', let alone 'flags', so just save them in
859                  * dummynet tag and avoid the possible wrong reculcalation
860                  * when we come back to ip_output() again.
861                  *
862                  * All other parameters have been already used and so they
863                  * are not needed anymore.
864                  * XXX if the ifp is deleted while a pkt is in dummynet,
865                  * we are in trouble! (TODO use ifnet_detach_event)
866                  *
867                  * We need to copy *ro because for ICMP pkts (and maybe
868                  * others) the caller passed a pointer into the stack;
869                  * dst might also be a pointer into *ro so it needs to
870                  * be updated.
871                  */
872                 dn_pkt->ro = *ro;
873                 if (ro->ro_rt)
874                         ro->ro_rt->rt_refcnt++;
875                 if (dst == (struct sockaddr_in *)&ro->ro_dst) {
876                         /* 'dst' points into 'ro' */
877                         dst = (struct sockaddr_in *)&(dn_pkt->ro.ro_dst);
878                 }
879                 dn_pkt->dn_dst = dst;
880                 dn_pkt->flags = flags;
881
882                 ip_dn_queue(m);
883                 goto done;
884         }
885 pass:
886         /* 127/8 must not appear on wire - RFC1122. */
887         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
888             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
889                 if (!(ifp->if_flags & IFF_LOOPBACK)) {
890                         ipstat.ips_badaddr++;
891                         error = EADDRNOTAVAIL;
892                         goto bad;
893                 }
894         }
895
896         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
897                 m->m_pkthdr.csum_flags |= CSUM_IP;
898                 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
899                 if (sw_csum & CSUM_DELAY_DATA) {
900                         in_delayed_cksum(m);
901                         sw_csum &= ~CSUM_DELAY_DATA;
902                 }
903                 m->m_pkthdr.csum_flags &= ifp->if_hwassist;
904         } else {
905                 sw_csum = 0;
906         }
907         m->m_pkthdr.csum_iphlen = hlen;
908
909         /*
910          * If small enough for interface, or the interface will take
911          * care of the fragmentation or segmentation for us, can just
912          * send directly.
913          */
914         if (ip->ip_len <= ifp->if_mtu ||
915             ((ifp->if_hwassist & CSUM_FRAGMENT) && !(ip->ip_off & IP_DF)) ||
916             (m->m_pkthdr.csum_flags & CSUM_TSO)) {
917                 ip->ip_len = htons(ip->ip_len);
918                 ip->ip_off = htons(ip->ip_off);
919                 ip->ip_sum = 0;
920                 if (sw_csum & CSUM_DELAY_IP) {
921                         if (ip->ip_vhl == IP_VHL_BORING)
922                                 ip->ip_sum = in_cksum_hdr(ip);
923                         else
924                                 ip->ip_sum = in_cksum(m, hlen);
925                 }
926
927                 /* Record statistics for this interface address. */
928                 if (!(flags & IP_FORWARDING) && ia) {
929                         IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
930                         IFA_STAT_INC(&ia->ia_ifa, obytes, m->m_pkthdr.len);
931                 }
932
933 #ifdef IPSEC
934                 /* clean ipsec history once it goes out of the node */
935                 ipsec_delaux(m);
936 #endif
937
938 #ifdef MBUF_STRESS_TEST
939                 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
940                         struct mbuf *m1, *m2;
941                         int length, tmp;
942
943                         tmp = length = m->m_pkthdr.len;
944
945                         while ((length -= mbuf_frag_size) >= 1) {
946                                 m1 = m_split(m, length, MB_DONTWAIT);
947                                 if (m1 == NULL)
948                                         break;
949                                 m2 = m;
950                                 while (m2->m_next != NULL)
951                                         m2 = m2->m_next;
952                                 m2->m_next = m1;
953                         }
954                         m->m_pkthdr.len = tmp;
955                 }
956 #endif
957
958 #ifdef MPLS
959                 if (!mpls_output_process(m, ro->ro_rt))
960                         goto done;
961 #endif
962                 error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
963                                        ro->ro_rt);
964                 goto done;
965         }
966
967         if (ip->ip_off & IP_DF) {
968                 error = EMSGSIZE;
969                 /*
970                  * This case can happen if the user changed the MTU
971                  * of an interface after enabling IP on it.  Because
972                  * most netifs don't keep track of routes pointing to
973                  * them, there is no way for one to update all its
974                  * routes when the MTU is changed.
975                  */
976                 if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
977                     !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
978                     (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
979                         ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
980                 }
981                 ipstat.ips_cantfrag++;
982                 goto bad;
983         }
984
985         /*
986          * Too large for interface; fragment if possible. If successful,
987          * on return, m will point to a list of packets to be sent.
988          */
989         error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
990         if (error)
991                 goto bad;
992         for (; m; m = m0) {
993                 m0 = m->m_nextpkt;
994                 m->m_nextpkt = NULL;
995 #ifdef IPSEC
996                 /* clean ipsec history once it goes out of the node */
997                 ipsec_delaux(m);
998 #endif
999                 if (error == 0) {
1000                         /* Record statistics for this interface address. */
1001                         if (ia != NULL) {
1002                                 IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
1003                                 IFA_STAT_INC(&ia->ia_ifa, obytes,
1004                                     m->m_pkthdr.len);
1005                         }
1006 #ifdef MPLS
1007                         if (!mpls_output_process(m, ro->ro_rt))
1008                                 continue;
1009 #endif
1010                         error = ifp->if_output(ifp, m, (struct sockaddr *)dst,
1011                                                ro->ro_rt);
1012                 } else {
1013                         m_freem(m);
1014                 }
1015         }
1016
1017         if (error == 0)
1018                 ipstat.ips_fragmented++;
1019
1020 done:
1021         if (ro == &iproute && ro->ro_rt != NULL) {
1022                 RTFREE(ro->ro_rt);
1023                 ro->ro_rt = NULL;
1024         }
1025 #ifdef IPSEC
1026         if (sp != NULL) {
1027                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1028                         kprintf("DP ip_output call free SP:%p\n", sp));
1029                 key_freesp(sp);
1030         }
1031 #endif
1032 #ifdef FAST_IPSEC
1033         if (sp != NULL)
1034                 KEY_FREESP(&sp);
1035 #endif
1036         return (error);
1037 bad:
1038         m_freem(m);
1039         goto done;
1040 }
1041
1042 /*
1043  * Create a chain of fragments which fit the given mtu. m_frag points to the
1044  * mbuf to be fragmented; on return it points to the chain with the fragments.
1045  * Return 0 if no error. If error, m_frag may contain a partially built
1046  * chain of fragments that should be freed by the caller.
1047  *
1048  * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1049  * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1050  */
1051 int
1052 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1053             u_long if_hwassist_flags, int sw_csum)
1054 {
1055         int error = 0;
1056         int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1057         int len = (mtu - hlen) & ~7;    /* size of payload in each fragment */
1058         int off;
1059         struct mbuf *m0 = *m_frag;      /* the original packet          */
1060         int firstlen;
1061         struct mbuf **mnext;
1062         int nfrags;
1063
1064         if (ip->ip_off & IP_DF) {       /* Fragmentation not allowed */
1065                 ipstat.ips_cantfrag++;
1066                 return EMSGSIZE;
1067         }
1068
1069         /*
1070          * Must be able to put at least 8 bytes per fragment.
1071          */
1072         if (len < 8)
1073                 return EMSGSIZE;
1074
1075         /*
1076          * If the interface will not calculate checksums on
1077          * fragmented packets, then do it here.
1078          */
1079         if ((m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1080             !(if_hwassist_flags & CSUM_IP_FRAGS)) {
1081                 in_delayed_cksum(m0);
1082                 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1083         }
1084
1085         if (len > PAGE_SIZE) {
1086                 /*
1087                  * Fragment large datagrams such that each segment
1088                  * contains a multiple of PAGE_SIZE amount of data,
1089                  * plus headers. This enables a receiver to perform
1090                  * page-flipping zero-copy optimizations.
1091                  *
1092                  * XXX When does this help given that sender and receiver
1093                  * could have different page sizes, and also mtu could
1094                  * be less than the receiver's page size ?
1095                  */
1096                 int newlen;
1097                 struct mbuf *m;
1098
1099                 for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1100                         off += m->m_len;
1101
1102                 /*
1103                  * firstlen (off - hlen) must be aligned on an
1104                  * 8-byte boundary
1105                  */
1106                 if (off < hlen)
1107                         goto smart_frag_failure;
1108                 off = ((off - hlen) & ~7) + hlen;
1109                 newlen = (~PAGE_MASK) & mtu;
1110                 if ((newlen + sizeof(struct ip)) > mtu) {
1111                         /* we failed, go back the default */
1112 smart_frag_failure:
1113                         newlen = len;
1114                         off = hlen + len;
1115                 }
1116                 len = newlen;
1117
1118         } else {
1119                 off = hlen + len;
1120         }
1121
1122         firstlen = off - hlen;
1123         mnext = &m0->m_nextpkt;         /* pointer to next packet */
1124
1125         /*
1126          * Loop through length of segment after first fragment,
1127          * make new header and copy data of each part and link onto chain.
1128          * Here, m0 is the original packet, m is the fragment being created.
1129          * The fragments are linked off the m_nextpkt of the original
1130          * packet, which after processing serves as the first fragment.
1131          */
1132         for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1133                 struct ip *mhip;        /* ip header on the fragment */
1134                 struct mbuf *m;
1135                 int mhlen = sizeof(struct ip);
1136
1137                 MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1138                 if (m == NULL) {
1139                         error = ENOBUFS;
1140                         ipstat.ips_odropped++;
1141                         goto done;
1142                 }
1143                 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1144                 /*
1145                  * In the first mbuf, leave room for the link header, then
1146                  * copy the original IP header including options. The payload
1147                  * goes into an additional mbuf chain returned by m_copy().
1148                  */
1149                 m->m_data += max_linkhdr;
1150                 mhip = mtod(m, struct ip *);
1151                 *mhip = *ip;
1152                 if (hlen > sizeof(struct ip)) {
1153                         mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1154                         mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1155                 }
1156                 m->m_len = mhlen;
1157                 /* XXX do we need to add ip->ip_off below ? */
1158                 mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1159                 if (off + len >= ip->ip_len) {  /* last fragment */
1160                         len = ip->ip_len - off;
1161                         m->m_flags |= M_LASTFRAG;
1162                 } else
1163                         mhip->ip_off |= IP_MF;
1164                 mhip->ip_len = htons((u_short)(len + mhlen));
1165                 m->m_next = m_copy(m0, off, len);
1166                 if (m->m_next == NULL) {                /* copy failed */
1167                         m_free(m);
1168                         error = ENOBUFS;        /* ??? */
1169                         ipstat.ips_odropped++;
1170                         goto done;
1171                 }
1172                 m->m_pkthdr.len = mhlen + len;
1173                 m->m_pkthdr.rcvif = NULL;
1174                 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1175                 m->m_pkthdr.csum_iphlen = mhlen;
1176                 mhip->ip_off = htons(mhip->ip_off);
1177                 mhip->ip_sum = 0;
1178                 if (sw_csum & CSUM_DELAY_IP)
1179                         mhip->ip_sum = in_cksum(m, mhlen);
1180                 *mnext = m;
1181                 mnext = &m->m_nextpkt;
1182         }
1183         ipstat.ips_ofragments += nfrags;
1184
1185         /* set first marker for fragment chain */
1186         m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1187         m0->m_pkthdr.csum_data = nfrags;
1188
1189         /*
1190          * Update first fragment by trimming what's been copied out
1191          * and updating header.
1192          */
1193         m_adj(m0, hlen + firstlen - ip->ip_len);
1194         m0->m_pkthdr.len = hlen + firstlen;
1195         ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1196         ip->ip_off |= IP_MF;
1197         ip->ip_off = htons(ip->ip_off);
1198         ip->ip_sum = 0;
1199         if (sw_csum & CSUM_DELAY_IP)
1200                 ip->ip_sum = in_cksum(m0, hlen);
1201
1202 done:
1203         *m_frag = m0;
1204         return error;
1205 }
1206
1207 void
1208 in_delayed_cksum(struct mbuf *m)
1209 {
1210         struct ip *ip;
1211         u_short csum, offset;
1212
1213         ip = mtod(m, struct ip *);
1214         offset = IP_VHL_HL(ip->ip_vhl) << 2 ;
1215         csum = in_cksum_skip(m, ip->ip_len, offset);
1216         if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1217                 csum = 0xffff;
1218         offset += m->m_pkthdr.csum_data;        /* checksum offset */
1219
1220         if (offset + sizeof(u_short) > m->m_len) {
1221                 kprintf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1222                     m->m_len, offset, ip->ip_p);
1223                 /*
1224                  * XXX
1225                  * this shouldn't happen, but if it does, the
1226                  * correct behavior may be to insert the checksum
1227                  * in the existing chain instead of rearranging it.
1228                  */
1229                 m = m_pullup(m, offset + sizeof(u_short));
1230         }
1231         *(u_short *)(m->m_data + offset) = csum;
1232 }
1233
1234 /*
1235  * Insert IP options into preformed packet.
1236  * Adjust IP destination as required for IP source routing,
1237  * as indicated by a non-zero in_addr at the start of the options.
1238  *
1239  * XXX This routine assumes that the packet has no options in place.
1240  */
1241 static struct mbuf *
1242 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1243 {
1244         struct ipoption *p = mtod(opt, struct ipoption *);
1245         struct mbuf *n;
1246         struct ip *ip = mtod(m, struct ip *);
1247         unsigned optlen;
1248
1249         optlen = opt->m_len - sizeof p->ipopt_dst;
1250         if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1251                 *phlen = 0;
1252                 return (m);             /* XXX should fail */
1253         }
1254         if (p->ipopt_dst.s_addr)
1255                 ip->ip_dst = p->ipopt_dst;
1256         if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1257                 MGETHDR(n, MB_DONTWAIT, MT_HEADER);
1258                 if (n == NULL) {
1259                         *phlen = 0;
1260                         return (m);
1261                 }
1262                 n->m_pkthdr.rcvif = NULL;
1263                 n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1264                 m->m_len -= sizeof(struct ip);
1265                 m->m_data += sizeof(struct ip);
1266                 n->m_next = m;
1267                 m = n;
1268                 m->m_len = optlen + sizeof(struct ip);
1269                 m->m_data += max_linkhdr;
1270                 memcpy(mtod(m, void *), ip, sizeof(struct ip));
1271         } else {
1272                 m->m_data -= optlen;
1273                 m->m_len += optlen;
1274                 m->m_pkthdr.len += optlen;
1275                 ovbcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
1276         }
1277         ip = mtod(m, struct ip *);
1278         bcopy(p->ipopt_list, ip + 1, optlen);
1279         *phlen = sizeof(struct ip) + optlen;
1280         ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
1281         ip->ip_len += optlen;
1282         return (m);
1283 }
1284
1285 /*
1286  * Copy options from ip to jp,
1287  * omitting those not copied during fragmentation.
1288  */
1289 int
1290 ip_optcopy(struct ip *ip, struct ip *jp)
1291 {
1292         u_char *cp, *dp;
1293         int opt, optlen, cnt;
1294
1295         cp = (u_char *)(ip + 1);
1296         dp = (u_char *)(jp + 1);
1297         cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1298         for (; cnt > 0; cnt -= optlen, cp += optlen) {
1299                 opt = cp[0];
1300                 if (opt == IPOPT_EOL)
1301                         break;
1302                 if (opt == IPOPT_NOP) {
1303                         /* Preserve for IP mcast tunnel's LSRR alignment. */
1304                         *dp++ = IPOPT_NOP;
1305                         optlen = 1;
1306                         continue;
1307                 }
1308
1309                 KASSERT(cnt >= IPOPT_OLEN + sizeof *cp,
1310                     ("ip_optcopy: malformed ipv4 option"));
1311                 optlen = cp[IPOPT_OLEN];
1312                 KASSERT(optlen >= IPOPT_OLEN + sizeof *cp && optlen <= cnt,
1313                     ("ip_optcopy: malformed ipv4 option"));
1314
1315                 /* bogus lengths should have been caught by ip_dooptions */
1316                 if (optlen > cnt)
1317                         optlen = cnt;
1318                 if (IPOPT_COPIED(opt)) {
1319                         bcopy(cp, dp, optlen);
1320                         dp += optlen;
1321                 }
1322         }
1323         for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1324                 *dp++ = IPOPT_EOL;
1325         return (optlen);
1326 }
1327
1328 /*
1329  * IP socket option processing.
1330  */
1331 void
1332 ip_ctloutput(netmsg_t msg)
1333 {
1334         struct socket *so = msg->base.nm_so;
1335         struct sockopt *sopt = msg->ctloutput.nm_sopt;
1336         struct  inpcb *inp = so->so_pcb;
1337         int     error, optval;
1338
1339         error = optval = 0;
1340         if (sopt->sopt_level != IPPROTO_IP) {
1341                 error = EINVAL;
1342                 goto done;
1343         }
1344
1345         switch (sopt->sopt_dir) {
1346         case SOPT_SET:
1347                 switch (sopt->sopt_name) {
1348                 case IP_OPTIONS:
1349 #ifdef notyet
1350                 case IP_RETOPTS:
1351 #endif
1352                 {
1353                         struct mbuf *m;
1354                         if (sopt->sopt_valsize > MLEN) {
1355                                 error = EMSGSIZE;
1356                                 break;
1357                         }
1358                         MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1359                         if (m == NULL) {
1360                                 error = ENOBUFS;
1361                                 break;
1362                         }
1363                         m->m_len = sopt->sopt_valsize;
1364                         error = soopt_to_kbuf(sopt, mtod(m, void *), m->m_len,
1365                                               m->m_len);
1366                         error = ip_pcbopts(sopt->sopt_name,
1367                                            &inp->inp_options, m);
1368                         goto done;
1369                 }
1370
1371                 case IP_TOS:
1372                 case IP_TTL:
1373                 case IP_MINTTL:
1374                 case IP_RECVOPTS:
1375                 case IP_RECVRETOPTS:
1376                 case IP_RECVDSTADDR:
1377                 case IP_RECVIF:
1378                 case IP_RECVTTL:
1379                 case IP_FAITH:
1380                         error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1381                                              sizeof optval);
1382                         if (error)
1383                                 break;
1384                         switch (sopt->sopt_name) {
1385                         case IP_TOS:
1386                                 inp->inp_ip_tos = optval;
1387                                 break;
1388
1389                         case IP_TTL:
1390                                 inp->inp_ip_ttl = optval;
1391                                 break;
1392                         case IP_MINTTL:
1393                                 if (optval >= 0 && optval <= MAXTTL)
1394                                         inp->inp_ip_minttl = optval;
1395                                 else
1396                                         error = EINVAL;
1397                                 break;
1398 #define OPTSET(bit) \
1399         if (optval) \
1400                 inp->inp_flags |= bit; \
1401         else \
1402                 inp->inp_flags &= ~bit;
1403
1404                         case IP_RECVOPTS:
1405                                 OPTSET(INP_RECVOPTS);
1406                                 break;
1407
1408                         case IP_RECVRETOPTS:
1409                                 OPTSET(INP_RECVRETOPTS);
1410                                 break;
1411
1412                         case IP_RECVDSTADDR:
1413                                 OPTSET(INP_RECVDSTADDR);
1414                                 break;
1415
1416                         case IP_RECVIF:
1417                                 OPTSET(INP_RECVIF);
1418                                 break;
1419
1420                         case IP_RECVTTL:
1421                                 OPTSET(INP_RECVTTL);
1422                                 break;
1423
1424                         case IP_FAITH:
1425                                 OPTSET(INP_FAITH);
1426                                 break;
1427                         }
1428                         break;
1429 #undef OPTSET
1430
1431                 case IP_MULTICAST_IF:
1432                 case IP_MULTICAST_VIF:
1433                 case IP_MULTICAST_TTL:
1434                 case IP_MULTICAST_LOOP:
1435                 case IP_ADD_MEMBERSHIP:
1436                 case IP_DROP_MEMBERSHIP:
1437                         error = ip_setmoptions(sopt, &inp->inp_moptions);
1438                         break;
1439
1440                 case IP_PORTRANGE:
1441                         error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1442                                             sizeof optval);
1443                         if (error)
1444                                 break;
1445
1446                         switch (optval) {
1447                         case IP_PORTRANGE_DEFAULT:
1448                                 inp->inp_flags &= ~(INP_LOWPORT);
1449                                 inp->inp_flags &= ~(INP_HIGHPORT);
1450                                 break;
1451
1452                         case IP_PORTRANGE_HIGH:
1453                                 inp->inp_flags &= ~(INP_LOWPORT);
1454                                 inp->inp_flags |= INP_HIGHPORT;
1455                                 break;
1456
1457                         case IP_PORTRANGE_LOW:
1458                                 inp->inp_flags &= ~(INP_HIGHPORT);
1459                                 inp->inp_flags |= INP_LOWPORT;
1460                                 break;
1461
1462                         default:
1463                                 error = EINVAL;
1464                                 break;
1465                         }
1466                         break;
1467
1468 #if defined(IPSEC) || defined(FAST_IPSEC)
1469                 case IP_IPSEC_POLICY:
1470                 {
1471                         caddr_t req;
1472                         size_t len = 0;
1473                         int priv;
1474                         struct mbuf *m;
1475                         int optname;
1476
1477                         if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1478                                 break;
1479                         soopt_to_mbuf(sopt, m);
1480                         priv = (sopt->sopt_td != NULL &&
1481                                 priv_check(sopt->sopt_td, PRIV_ROOT) != 0) ? 0 : 1;
1482                         req = mtod(m, caddr_t);
1483                         len = m->m_len;
1484                         optname = sopt->sopt_name;
1485                         error = ipsec4_set_policy(inp, optname, req, len, priv);
1486                         m_freem(m);
1487                         break;
1488                 }
1489 #endif /*IPSEC*/
1490
1491                 default:
1492                         error = ENOPROTOOPT;
1493                         break;
1494                 }
1495                 break;
1496
1497         case SOPT_GET:
1498                 switch (sopt->sopt_name) {
1499                 case IP_OPTIONS:
1500                 case IP_RETOPTS:
1501                         if (inp->inp_options)
1502                                 soopt_from_kbuf(sopt, mtod(inp->inp_options,
1503                                                            char *),
1504                                                 inp->inp_options->m_len);
1505                         else
1506                                 sopt->sopt_valsize = 0;
1507                         break;
1508
1509                 case IP_TOS:
1510                 case IP_TTL:
1511                 case IP_MINTTL:
1512                 case IP_RECVOPTS:
1513                 case IP_RECVRETOPTS:
1514                 case IP_RECVDSTADDR:
1515                 case IP_RECVTTL:
1516                 case IP_RECVIF:
1517                 case IP_PORTRANGE:
1518                 case IP_FAITH:
1519                         switch (sopt->sopt_name) {
1520
1521                         case IP_TOS:
1522                                 optval = inp->inp_ip_tos;
1523                                 break;
1524
1525                         case IP_TTL:
1526                                 optval = inp->inp_ip_ttl;
1527                                 break;
1528                         case IP_MINTTL:
1529                                 optval = inp->inp_ip_minttl;
1530                                 break;
1531
1532 #define OPTBIT(bit)     (inp->inp_flags & bit ? 1 : 0)
1533
1534                         case IP_RECVOPTS:
1535                                 optval = OPTBIT(INP_RECVOPTS);
1536                                 break;
1537
1538                         case IP_RECVRETOPTS:
1539                                 optval = OPTBIT(INP_RECVRETOPTS);
1540                                 break;
1541
1542                         case IP_RECVDSTADDR:
1543                                 optval = OPTBIT(INP_RECVDSTADDR);
1544                                 break;
1545
1546                         case IP_RECVTTL:
1547                                 optval = OPTBIT(INP_RECVTTL);
1548                                 break;
1549
1550                         case IP_RECVIF:
1551                                 optval = OPTBIT(INP_RECVIF);
1552                                 break;
1553
1554                         case IP_PORTRANGE:
1555                                 if (inp->inp_flags & INP_HIGHPORT)
1556                                         optval = IP_PORTRANGE_HIGH;
1557                                 else if (inp->inp_flags & INP_LOWPORT)
1558                                         optval = IP_PORTRANGE_LOW;
1559                                 else
1560                                         optval = 0;
1561                                 break;
1562
1563                         case IP_FAITH:
1564                                 optval = OPTBIT(INP_FAITH);
1565                                 break;
1566                         }
1567                         soopt_from_kbuf(sopt, &optval, sizeof optval);
1568                         break;
1569
1570                 case IP_MULTICAST_IF:
1571                 case IP_MULTICAST_VIF:
1572                 case IP_MULTICAST_TTL:
1573                 case IP_MULTICAST_LOOP:
1574                 case IP_ADD_MEMBERSHIP:
1575                 case IP_DROP_MEMBERSHIP:
1576                         error = ip_getmoptions(sopt, inp->inp_moptions);
1577                         break;
1578
1579 #if defined(IPSEC) || defined(FAST_IPSEC)
1580                 case IP_IPSEC_POLICY:
1581                 {
1582                         struct mbuf *m = NULL;
1583                         caddr_t req = NULL;
1584                         size_t len = 0;
1585
1586                         if (m != NULL) {
1587                                 req = mtod(m, caddr_t);
1588                                 len = m->m_len;
1589                         }
1590                         error = ipsec4_get_policy(so->so_pcb, req, len, &m);
1591                         if (error == 0)
1592                                 error = soopt_from_mbuf(sopt, m); /* XXX */
1593                         if (error == 0)
1594                                 m_freem(m);
1595                         break;
1596                 }
1597 #endif /*IPSEC*/
1598
1599                 default:
1600                         error = ENOPROTOOPT;
1601                         break;
1602                 }
1603                 break;
1604         }
1605 done:
1606         lwkt_replymsg(&msg->lmsg, error);
1607 }
1608
1609 /*
1610  * Set up IP options in pcb for insertion in output packets.
1611  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1612  * with destination address if source routed.
1613  */
1614 static int
1615 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1616 {
1617         int cnt, optlen;
1618         u_char *cp;
1619         u_char opt;
1620
1621         /* turn off any old options */
1622         if (*pcbopt)
1623                 m_free(*pcbopt);
1624         *pcbopt = NULL;
1625         if (m == NULL || m->m_len == 0) {
1626                 /*
1627                  * Only turning off any previous options.
1628                  */
1629                 if (m != NULL)
1630                         m_free(m);
1631                 return (0);
1632         }
1633
1634         if (m->m_len % sizeof(int32_t))
1635                 goto bad;
1636         /*
1637          * IP first-hop destination address will be stored before
1638          * actual options; move other options back
1639          * and clear it when none present.
1640          */
1641         if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1642                 goto bad;
1643         cnt = m->m_len;
1644         m->m_len += sizeof(struct in_addr);
1645         cp = mtod(m, u_char *) + sizeof(struct in_addr);
1646         ovbcopy(mtod(m, caddr_t), cp, cnt);
1647         bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1648
1649         for (; cnt > 0; cnt -= optlen, cp += optlen) {
1650                 opt = cp[IPOPT_OPTVAL];
1651                 if (opt == IPOPT_EOL)
1652                         break;
1653                 if (opt == IPOPT_NOP)
1654                         optlen = 1;
1655                 else {
1656                         if (cnt < IPOPT_OLEN + sizeof *cp)
1657                                 goto bad;
1658                         optlen = cp[IPOPT_OLEN];
1659                         if (optlen < IPOPT_OLEN + sizeof *cp || optlen > cnt)
1660                                 goto bad;
1661                 }
1662                 switch (opt) {
1663
1664                 default:
1665                         break;
1666
1667                 case IPOPT_LSRR:
1668                 case IPOPT_SSRR:
1669                         /*
1670                          * user process specifies route as:
1671                          *      ->A->B->C->D
1672                          * D must be our final destination (but we can't
1673                          * check that since we may not have connected yet).
1674                          * A is first hop destination, which doesn't appear in
1675                          * actual IP option, but is stored before the options.
1676                          */
1677                         if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1678                                 goto bad;
1679                         m->m_len -= sizeof(struct in_addr);
1680                         cnt -= sizeof(struct in_addr);
1681                         optlen -= sizeof(struct in_addr);
1682                         cp[IPOPT_OLEN] = optlen;
1683                         /*
1684                          * Move first hop before start of options.
1685                          */
1686                         bcopy(&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1687                               sizeof(struct in_addr));
1688                         /*
1689                          * Then copy rest of options back
1690                          * to close up the deleted entry.
1691                          */
1692                         ovbcopy(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1693                                 &cp[IPOPT_OFFSET+1],
1694                                 cnt - (IPOPT_MINOFF - 1));
1695                         break;
1696                 }
1697         }
1698         if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1699                 goto bad;
1700         *pcbopt = m;
1701         return (0);
1702
1703 bad:
1704         m_free(m);
1705         return (EINVAL);
1706 }
1707
1708 /*
1709  * XXX
1710  * The whole multicast option thing needs to be re-thought.
1711  * Several of these options are equally applicable to non-multicast
1712  * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1713  * standard option (IP_TTL).
1714  */
1715
1716 /*
1717  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1718  */
1719 static struct ifnet *
1720 ip_multicast_if(struct in_addr *a, int *ifindexp)
1721 {
1722         int ifindex;
1723         struct ifnet *ifp;
1724
1725         if (ifindexp)
1726                 *ifindexp = 0;
1727         if (ntohl(a->s_addr) >> 24 == 0) {
1728                 ifindex = ntohl(a->s_addr) & 0xffffff;
1729                 if (ifindex < 0 || if_index < ifindex)
1730                         return NULL;
1731                 ifp = ifindex2ifnet[ifindex];
1732                 if (ifindexp)
1733                         *ifindexp = ifindex;
1734         } else {
1735                 ifp = INADDR_TO_IFP(a);
1736         }
1737         return ifp;
1738 }
1739
1740 /*
1741  * Set the IP multicast options in response to user setsockopt().
1742  */
1743 static int
1744 ip_setmoptions(struct sockopt *sopt, struct ip_moptions **imop)
1745 {
1746         int error = 0;
1747         int i;
1748         struct in_addr addr;
1749         struct ip_mreq mreq;
1750         struct ifnet *ifp;
1751         struct ip_moptions *imo = *imop;
1752         int ifindex;
1753
1754         if (imo == NULL) {
1755                 /*
1756                  * No multicast option buffer attached to the pcb;
1757                  * allocate one and initialize to default values.
1758                  */
1759                 imo = kmalloc(sizeof *imo, M_IPMOPTS, M_WAITOK);
1760
1761                 *imop = imo;
1762                 imo->imo_multicast_ifp = NULL;
1763                 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1764                 imo->imo_multicast_vif = -1;
1765                 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1766                 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1767                 imo->imo_num_memberships = 0;
1768         }
1769         switch (sopt->sopt_name) {
1770         /* store an index number for the vif you wanna use in the send */
1771         case IP_MULTICAST_VIF:
1772                 if (legal_vif_num == 0) {
1773                         error = EOPNOTSUPP;
1774                         break;
1775                 }
1776                 error = soopt_to_kbuf(sopt, &i, sizeof i, sizeof i);
1777                 if (error)
1778                         break;
1779                 if (!legal_vif_num(i) && (i != -1)) {
1780                         error = EINVAL;
1781                         break;
1782                 }
1783                 imo->imo_multicast_vif = i;
1784                 break;
1785
1786         case IP_MULTICAST_IF:
1787                 /*
1788                  * Select the interface for outgoing multicast packets.
1789                  */
1790                 error = soopt_to_kbuf(sopt, &addr, sizeof addr, sizeof addr);
1791                 if (error)
1792                         break;
1793
1794                 /*
1795                  * INADDR_ANY is used to remove a previous selection.
1796                  * When no interface is selected, a default one is
1797                  * chosen every time a multicast packet is sent.
1798                  */
1799                 if (addr.s_addr == INADDR_ANY) {
1800                         imo->imo_multicast_ifp = NULL;
1801                         break;
1802                 }
1803                 /*
1804                  * The selected interface is identified by its local
1805                  * IP address.  Find the interface and confirm that
1806                  * it supports multicasting.
1807                  */
1808                 crit_enter();
1809                 ifp = ip_multicast_if(&addr, &ifindex);
1810                 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1811                         crit_exit();
1812                         error = EADDRNOTAVAIL;
1813                         break;
1814                 }
1815                 imo->imo_multicast_ifp = ifp;
1816                 if (ifindex)
1817                         imo->imo_multicast_addr = addr;
1818                 else
1819                         imo->imo_multicast_addr.s_addr = INADDR_ANY;
1820                 crit_exit();
1821                 break;
1822
1823         case IP_MULTICAST_TTL:
1824                 /*
1825                  * Set the IP time-to-live for outgoing multicast packets.
1826                  * The original multicast API required a char argument,
1827                  * which is inconsistent with the rest of the socket API.
1828                  * We allow either a char or an int.
1829                  */
1830                 if (sopt->sopt_valsize == 1) {
1831                         u_char ttl;
1832                         error = soopt_to_kbuf(sopt, &ttl, 1, 1);
1833                         if (error)
1834                                 break;
1835                         imo->imo_multicast_ttl = ttl;
1836                 } else {
1837                         u_int ttl;
1838                         error = soopt_to_kbuf(sopt, &ttl, sizeof ttl, sizeof ttl);
1839                         if (error)
1840                                 break;
1841                         if (ttl > 255)
1842                                 error = EINVAL;
1843                         else
1844                                 imo->imo_multicast_ttl = ttl;
1845                 }
1846                 break;
1847
1848         case IP_MULTICAST_LOOP:
1849                 /*
1850                  * Set the loopback flag for outgoing multicast packets.
1851                  * Must be zero or one.  The original multicast API required a
1852                  * char argument, which is inconsistent with the rest
1853                  * of the socket API.  We allow either a char or an int.
1854                  */
1855                 if (sopt->sopt_valsize == 1) {
1856                         u_char loop;
1857
1858                         error = soopt_to_kbuf(sopt, &loop, 1, 1);
1859                         if (error)
1860                                 break;
1861                         imo->imo_multicast_loop = !!loop;
1862                 } else {
1863                         u_int loop;
1864
1865                         error = soopt_to_kbuf(sopt, &loop, sizeof loop,
1866                                             sizeof loop);
1867                         if (error)
1868                                 break;
1869                         imo->imo_multicast_loop = !!loop;
1870                 }
1871                 break;
1872
1873         case IP_ADD_MEMBERSHIP:
1874                 /*
1875                  * Add a multicast group membership.
1876                  * Group must be a valid IP multicast address.
1877                  */
1878                 error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1879                 if (error)
1880                         break;
1881
1882                 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1883                         error = EINVAL;
1884                         break;
1885                 }
1886                 crit_enter();
1887                 /*
1888                  * If no interface address was provided, use the interface of
1889                  * the route to the given multicast address.
1890                  */
1891                 if (mreq.imr_interface.s_addr == INADDR_ANY) {
1892                         struct sockaddr_in dst;
1893                         struct rtentry *rt;
1894
1895                         bzero(&dst, sizeof(struct sockaddr_in));
1896                         dst.sin_len = sizeof(struct sockaddr_in);
1897                         dst.sin_family = AF_INET;
1898                         dst.sin_addr = mreq.imr_multiaddr;
1899                         rt = rtlookup((struct sockaddr *)&dst);
1900                         if (rt == NULL) {
1901                                 error = EADDRNOTAVAIL;
1902                                 crit_exit();
1903                                 break;
1904                         }
1905                         --rt->rt_refcnt;
1906                         ifp = rt->rt_ifp;
1907                 } else {
1908                         ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1909                 }
1910
1911                 /*
1912                  * See if we found an interface, and confirm that it
1913                  * supports multicast.
1914                  */
1915                 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
1916                         error = EADDRNOTAVAIL;
1917                         crit_exit();
1918                         break;
1919                 }
1920                 /*
1921                  * See if the membership already exists or if all the
1922                  * membership slots are full.
1923                  */
1924                 for (i = 0; i < imo->imo_num_memberships; ++i) {
1925                         if (imo->imo_membership[i]->inm_ifp == ifp &&
1926                             imo->imo_membership[i]->inm_addr.s_addr
1927                                                 == mreq.imr_multiaddr.s_addr)
1928                                 break;
1929                 }
1930                 if (i < imo->imo_num_memberships) {
1931                         error = EADDRINUSE;
1932                         crit_exit();
1933                         break;
1934                 }
1935                 if (i == IP_MAX_MEMBERSHIPS) {
1936                         error = ETOOMANYREFS;
1937                         crit_exit();
1938                         break;
1939                 }
1940                 /*
1941                  * Everything looks good; add a new record to the multicast
1942                  * address list for the given interface.
1943                  */
1944                 if ((imo->imo_membership[i] =
1945                      in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1946                         error = ENOBUFS;
1947                         crit_exit();
1948                         break;
1949                 }
1950                 ++imo->imo_num_memberships;
1951                 crit_exit();
1952                 break;
1953
1954         case IP_DROP_MEMBERSHIP:
1955                 /*
1956                  * Drop a multicast group membership.
1957                  * Group must be a valid IP multicast address.
1958                  */
1959                 error = soopt_to_kbuf(sopt, &mreq, sizeof mreq, sizeof mreq);
1960                 if (error)
1961                         break;
1962
1963                 if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1964                         error = EINVAL;
1965                         break;
1966                 }
1967
1968                 crit_enter();
1969                 /*
1970                  * If an interface address was specified, get a pointer
1971                  * to its ifnet structure.
1972                  */
1973                 if (mreq.imr_interface.s_addr == INADDR_ANY)
1974                         ifp = NULL;
1975                 else {
1976                         ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1977                         if (ifp == NULL) {
1978                                 error = EADDRNOTAVAIL;
1979                                 crit_exit();
1980                                 break;
1981                         }
1982                 }
1983                 /*
1984                  * Find the membership in the membership array.
1985                  */
1986                 for (i = 0; i < imo->imo_num_memberships; ++i) {
1987                         if ((ifp == NULL ||
1988                              imo->imo_membership[i]->inm_ifp == ifp) &&
1989                             imo->imo_membership[i]->inm_addr.s_addr ==
1990                             mreq.imr_multiaddr.s_addr)
1991                                 break;
1992                 }
1993                 if (i == imo->imo_num_memberships) {
1994                         error = EADDRNOTAVAIL;
1995                         crit_exit();
1996                         break;
1997                 }
1998                 /*
1999                  * Give up the multicast address record to which the
2000                  * membership points.
2001                  */
2002                 in_delmulti(imo->imo_membership[i]);
2003                 /*
2004                  * Remove the gap in the membership array.
2005                  */
2006                 for (++i; i < imo->imo_num_memberships; ++i)
2007                         imo->imo_membership[i-1] = imo->imo_membership[i];
2008                 --imo->imo_num_memberships;
2009                 crit_exit();
2010                 break;
2011
2012         default:
2013                 error = EOPNOTSUPP;
2014                 break;
2015         }
2016
2017         /*
2018          * If all options have default values, no need to keep the mbuf.
2019          */
2020         if (imo->imo_multicast_ifp == NULL &&
2021             imo->imo_multicast_vif == -1 &&
2022             imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2023             imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2024             imo->imo_num_memberships == 0) {
2025                 kfree(*imop, M_IPMOPTS);
2026                 *imop = NULL;
2027         }
2028
2029         return (error);
2030 }
2031
2032 /*
2033  * Return the IP multicast options in response to user getsockopt().
2034  */
2035 static int
2036 ip_getmoptions(struct sockopt *sopt, struct ip_moptions *imo)
2037 {
2038         struct in_addr addr;
2039         struct in_ifaddr *ia;
2040         int error, optval;
2041         u_char coptval;
2042
2043         error = 0;
2044         switch (sopt->sopt_name) {
2045         case IP_MULTICAST_VIF:
2046                 if (imo != NULL)
2047                         optval = imo->imo_multicast_vif;
2048                 else
2049                         optval = -1;
2050                 soopt_from_kbuf(sopt, &optval, sizeof optval);
2051                 break;
2052
2053         case IP_MULTICAST_IF:
2054                 if (imo == NULL || imo->imo_multicast_ifp == NULL)
2055                         addr.s_addr = INADDR_ANY;
2056                 else if (imo->imo_multicast_addr.s_addr) {
2057                         /* return the value user has set */
2058                         addr = imo->imo_multicast_addr;
2059                 } else {
2060                         ia = IFP_TO_IA(imo->imo_multicast_ifp);
2061                         addr.s_addr = (ia == NULL) ? INADDR_ANY
2062                                 : IA_SIN(ia)->sin_addr.s_addr;
2063                 }
2064                 soopt_from_kbuf(sopt, &addr, sizeof addr);
2065                 break;
2066
2067         case IP_MULTICAST_TTL:
2068                 if (imo == NULL)
2069                         optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2070                 else
2071                         optval = coptval = imo->imo_multicast_ttl;
2072                 if (sopt->sopt_valsize == 1)
2073                         soopt_from_kbuf(sopt, &coptval, 1);
2074                 else
2075                         soopt_from_kbuf(sopt, &optval, sizeof optval);
2076                 break;
2077
2078         case IP_MULTICAST_LOOP:
2079                 if (imo == NULL)
2080                         optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2081                 else
2082                         optval = coptval = imo->imo_multicast_loop;
2083                 if (sopt->sopt_valsize == 1)
2084                         soopt_from_kbuf(sopt, &coptval, 1);
2085                 else
2086                         soopt_from_kbuf(sopt, &optval, sizeof optval);
2087                 break;
2088
2089         default:
2090                 error = ENOPROTOOPT;
2091                 break;
2092         }
2093         return (error);
2094 }
2095
2096 /*
2097  * Discard the IP multicast options.
2098  */
2099 void
2100 ip_freemoptions(struct ip_moptions *imo)
2101 {
2102         int i;
2103
2104         if (imo != NULL) {
2105                 for (i = 0; i < imo->imo_num_memberships; ++i)
2106                         in_delmulti(imo->imo_membership[i]);
2107                 kfree(imo, M_IPMOPTS);
2108         }
2109 }
2110
2111 /*
2112  * Routine called from ip_output() to loop back a copy of an IP multicast
2113  * packet to the input queue of a specified interface.  Note that this
2114  * calls the output routine of the loopback "driver", but with an interface
2115  * pointer that might NOT be a loopback interface -- evil, but easier than
2116  * replicating that code here.
2117  */
2118 static void
2119 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
2120              int hlen)
2121 {
2122         struct ip *ip;
2123         struct mbuf *copym;
2124
2125         copym = m_copypacket(m, MB_DONTWAIT);
2126         if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2127                 copym = m_pullup(copym, hlen);
2128         if (copym != NULL) {
2129                 /*
2130                  * if the checksum hasn't been computed, mark it as valid
2131                  */
2132                 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2133                         in_delayed_cksum(copym);
2134                         copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2135                         copym->m_pkthdr.csum_flags |=
2136                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2137                         copym->m_pkthdr.csum_data = 0xffff;
2138                 }
2139                 /*
2140                  * We don't bother to fragment if the IP length is greater
2141                  * than the interface's MTU.  Can this possibly matter?
2142                  */
2143                 ip = mtod(copym, struct ip *);
2144                 ip->ip_len = htons(ip->ip_len);
2145                 ip->ip_off = htons(ip->ip_off);
2146                 ip->ip_sum = 0;
2147                 if (ip->ip_vhl == IP_VHL_BORING) {
2148                         ip->ip_sum = in_cksum_hdr(ip);
2149                 } else {
2150                         ip->ip_sum = in_cksum(copym, hlen);
2151                 }
2152                 /*
2153                  * NB:
2154                  * It's not clear whether there are any lingering
2155                  * reentrancy problems in other areas which might
2156                  * be exposed by using ip_input directly (in
2157                  * particular, everything which modifies the packet
2158                  * in-place).  Yet another option is using the
2159                  * protosw directly to deliver the looped back
2160                  * packet.  For the moment, we'll err on the side
2161                  * of safety by using if_simloop().
2162                  */
2163 #if 1 /* XXX */
2164                 if (dst->sin_family != AF_INET) {
2165                         kprintf("ip_mloopback: bad address family %d\n",
2166                                                 dst->sin_family);
2167                         dst->sin_family = AF_INET;
2168                 }
2169 #endif
2170                 get_mplock();   /* is if_simloop() mpsafe yet? */
2171                 if_simloop(ifp, copym, dst->sin_family, 0);
2172                 rel_mplock();
2173         }
2174 }