/* * Copyright (c) 1997, Stefan Esser * Copyright (c) 2000, Michael Smith * Copyright (c) 2000, BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/i386/isa/pci_cfgreg.c,v 1.1.2.7 2001/11/28 05:47:03 imp Exp $ * $DragonFly: src/sys/bus/pci/i386/pci_cfgreg.c,v 1.13 2006/12/22 23:12:17 swildner Exp $ * */ #include /* XXX trim includes */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PRVERB(a) do { \ if (bootverbose) \ kprintf a ; \ } while(0) static int pci_disable_bios_route = 0; SYSCTL_INT(_hw, OID_AUTO, pci_disable_bios_route, CTLFLAG_RD, &pci_disable_bios_route, 0, "disable interrupt routing via PCI-BIOS"); TUNABLE_INT("hw.pci_disable_bios_route", &pci_disable_bios_route); static int cfgmech; static int devmax; static int pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq); static int pci_cfgintr_unique(struct PIR_entry *pe, int pin); static int pci_cfgintr_linked(struct PIR_entry *pe, int pin); static int pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin); static int pci_cfgintr_virgin(struct PIR_entry *pe, int pin); static void pci_print_irqmask(u_int16_t irqs); static void pci_print_route_table(struct PIR_table *prt, int size); static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes); static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes); static int pcireg_cfgopen(void); static struct PIR_table *pci_route_table; static int pci_route_count; /* * Some BIOS writers seem to want to ignore the spec and put * 0 in the intline rather than 255 to indicate none. Some use * numbers in the range 128-254 to indicate something strange and * apparently undocumented anywhere. Assume these are completely bogus * and map them to 255, which means "none". */ static int pci_i386_map_intline(int line) { if (line == 0 || line >= 128) return (PCI_INVALID_IRQ); return (line); } static u_int16_t pcibios_get_version(void) { struct bios_regs args; if (PCIbios.ventry == 0) { PRVERB(("pcibios: No call entry point\n")); return (0); } args.eax = PCIBIOS_BIOS_PRESENT; if (bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL))) { PRVERB(("pcibios: BIOS_PRESENT call failed\n")); return (0); } if (args.edx != 0x20494350) { PRVERB(("pcibios: BIOS_PRESENT didn't return 'PCI ' in edx\n")); return (0); } return (args.ebx & 0xffff); } /* * Initialise access to PCI configuration space */ int pci_cfgregopen(void) { static int opened = 0; u_long sigaddr; static struct PIR_table *pt; u_int16_t v; u_int8_t ck, *cv; int i; if (opened) return (1); if (pcireg_cfgopen() == 0) return (0); v = pcibios_get_version(); if (v > 0) kprintf("pcibios: BIOS version %x.%02x\n", (v & 0xff00) >> 8, v & 0xff); /* * Look for the interrupt routing table. * * We use PCI BIOS's PIR table if it's available $PIR is the * standard way to do this. Sadly some machines are not * standards conforming and have _PIR instead. We shrug and cope * by looking for both. */ if (pcibios_get_version() >= 0x0210 && pt == NULL) { sigaddr = bios_sigsearch(0, "$PIR", 4, 16, 0); if (sigaddr == 0) sigaddr = bios_sigsearch(0, "_PIR", 4, 16, 0); if (sigaddr != 0) { pt = (struct PIR_table *)(uintptr_t) BIOS_PADDRTOVADDR(sigaddr); for (cv = (u_int8_t *)pt, ck = 0, i = 0; i < (pt->pt_header.ph_length); i++) ck += cv[i]; if (ck == 0 && pt->pt_header.ph_length > sizeof(struct PIR_header)) { pci_route_table = pt; pci_route_count = (pt->pt_header.ph_length - sizeof(struct PIR_header)) / sizeof(struct PIR_entry); kprintf("Using $PIR table, %d entries at %p\n", pci_route_count, pci_route_table); if (bootverbose) pci_print_route_table(pci_route_table, pci_route_count); } } } opened = 1; return (1); } /* * Read configuration space register */ u_int32_t pci_cfgregread(int bus, int slot, int func, int reg, int bytes) { uint32_t line; #ifdef APIC_IO uint32_t pin; /* * If we are using the APIC, the contents of the intline * register will probably be wrong (since they are set up for * use with the PIC. Rather than rewrite these registers * (maybe that would be smarter) we trap attempts to read them * and translate to our private vector numbers. */ if ((reg == PCIR_INTLINE) && (bytes == 1)) { pin = pcireg_cfgread(bus, slot, func, PCIR_INTPIN, 1); line = pcireg_cfgread(bus, slot, func, PCIR_INTLINE, 1); if (pin != 0) { int airq; airq = pci_apic_irq(bus, slot, pin); if (airq >= 0) { /* PCI specific entry found in MP table */ if (airq != line) undirect_pci_irq(line); return (airq); } else { /* * PCI interrupts might be redirected to the * ISA bus according to some MP tables. Use the * same methods as used by the ISA devices * devices to find the proper IOAPIC int pin. */ airq = isa_apic_irq(line); if ((airq >= 0) && (airq != line)) { /* XXX: undirect_pci_irq() ? */ undirect_isa_irq(line); return (airq); } } } return (line); } #else /* * Some BIOS writers seem to want to ignore the spec and put * 0 in the intline rather than 255 to indicate none. The rest of * the code uses 255 as an invalid IRQ. */ if (reg == PCIR_INTLINE && bytes == 1) { line = pcireg_cfgread(bus, slot, func, PCIR_INTLINE, 1); return pci_i386_map_intline(line); } #endif /* APIC_IO */ return (pcireg_cfgread(bus, slot, func, reg, bytes)); } /* * Write configuration space register */ void pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes) { pcireg_cfgwrite(bus, slot, func, reg, data, bytes); } int pci_cfgread(pcicfgregs *cfg, int reg, int bytes) { return (pci_cfgregread(cfg->bus, cfg->slot, cfg->func, reg, bytes)); } void pci_cfgwrite(pcicfgregs *cfg, int reg, int data, int bytes) { pci_cfgregwrite(cfg->bus, cfg->slot, cfg->func, reg, data, bytes); } /* * Route a PCI interrupt */ int pci_cfgintr(int bus, int device, int pin, int oldirq) { struct PIR_entry *pe; int i, irq; struct bios_regs args; u_int16_t v; int already = 0; int errok = 0; v = pcibios_get_version(); if (v < 0x0210) { PRVERB(( "pci_cfgintr: BIOS %x.%02x doesn't support interrupt routing\n", (v & 0xff00) >> 8, v & 0xff)); return (PCI_INVALID_IRQ); } if ((bus < 0) || (bus > 255) || (device < 0) || (device > 255) || (pin < 1) || (pin > 4)) return (PCI_INVALID_IRQ); /* * Scan the entry table for a contender */ for (i = 0, pe = &pci_route_table->pt_entry[0]; i < pci_route_count; i++, pe++) { if ((bus != pe->pe_bus) || (device != pe->pe_device)) continue; /* * A link of 0 means that this intpin is not connected to * any other device's interrupt pins and is not connected to * any of the Interrupt Router's interrupt pins, so we can't * route it. */ if (pe->pe_intpin[pin - 1].link == 0) continue; if (pci_cfgintr_valid(pe, pin, oldirq)) { kprintf("pci_cfgintr: %d:%d INT%c BIOS irq %d\n", bus, device, 'A' + pin - 1, oldirq); return (oldirq); } /* * We try to find a linked interrupt, then we look to see * if the interrupt is uniquely routed, then we look for * a virgin interrupt. The virgin interrupt should return * an interrupt we can route, but if that fails, maybe we * should try harder to route a different interrupt. * However, experience has shown that that's rarely the * failure mode we see. */ irq = pci_cfgintr_linked(pe, pin); if (irq != PCI_INVALID_IRQ) already = 1; if (irq == PCI_INVALID_IRQ) { irq = pci_cfgintr_unique(pe, pin); if (irq != PCI_INVALID_IRQ) errok = 1; } if (irq == PCI_INVALID_IRQ) irq = pci_cfgintr_virgin(pe, pin); if (irq == PCI_INVALID_IRQ) break; if (pci_disable_bios_route != 0) break; /* * Ask the BIOS to route the interrupt. If we picked an * interrupt that failed, we should really try other * choices that the BIOS offers us. * * For uniquely routed interrupts, we need to try * to route them on some machines. Yet other machines * fail to route, so we have to pretend that in that * case it worked. Isn't PC hardware fun? * * NOTE: if we want to whack hardware to do this, then * I think the right way to do that would be to have * bridge drivers that do this. I'm not sure that the * $PIR table would be valid for those interrupt * routers. */ args.eax = PCIBIOS_ROUTE_INTERRUPT; args.ebx = (bus << 8) | (device << 3); /* pin value is 0xa - 0xd */ args.ecx = (irq << 8) | (0xa + pin -1); if (!already && bios32(&args, PCIbios.ventry, GSEL(GCODE_SEL, SEL_KPL)) && !errok) { PRVERB(("pci_cfgintr: ROUTE_INTERRUPT failed.\n")); return (PCI_INVALID_IRQ); } kprintf("pci_cfgintr: %d:%d INT%c routed to irq %d\n", bus, device, 'A' + pin - 1, irq); return(irq); } PRVERB(("pci_cfgintr: can't route an interrupt to %d:%d INT%c oldirq=%d\n", bus, device, 'A' + pin - 1, oldirq)); return (PCI_INVALID_IRQ); } /* * Check to see if an existing IRQ setting is valid. */ static int pci_cfgintr_valid(struct PIR_entry *pe, int pin, int irq) { uint32_t irqmask; if (!PCI_INTERRUPT_VALID(irq)) return (0); irqmask = pe->pe_intpin[pin - 1].irqs; if (irqmask & (1 << irq)) { PRVERB(("pci_cfgintr_valid: BIOS irq %d is valid\n", irq)); return (1); } return (0); } /* * Look to see if the routing table claims this pin is uniquely routed. */ static int pci_cfgintr_unique(struct PIR_entry *pe, int pin) { int irq; uint32_t irqmask; irqmask = pe->pe_intpin[pin - 1].irqs; if(irqmask != 0 && powerof2(irqmask)) { irq = ffs(irqmask) - 1; PRVERB(("pci_cfgintr_unique: hard-routed to irq %d\n", irq)); return (irq); } return (PCI_INVALID_IRQ); } /* * Look for another device which shares the same link byte and * already has a unique IRQ, or which has had one routed already. */ static int pci_cfgintr_linked(struct PIR_entry *pe, int pin) { struct PIR_entry *oe; struct PIR_intpin *pi; int i, j, irq; /* * Scan table slots. */ for (i = 0, oe = &pci_route_table->pt_entry[0]; i < pci_route_count; i++, oe++) { /* scan interrupt pins */ for (j = 0, pi = &oe->pe_intpin[0]; j < 4; j++, pi++) { /* don't look at the entry we're trying to match */ if ((pe == oe) && (i == (pin - 1))) continue; /* compare link bytes */ if (pi->link != pe->pe_intpin[pin - 1].link) continue; /* link destination mapped to a unique interrupt? */ if (pi->irqs != 0 && powerof2(pi->irqs)) { irq = ffs(pi->irqs) - 1; PRVERB(("pci_cfgintr_linked: linked (%x) to hard-routed irq %d\n", pi->link, irq)); return(irq); } /* * look for the real PCI device that matches this * table entry */ irq = pci_cfgintr_search(pe, oe->pe_bus, oe->pe_device, j, pin); if (irq != PCI_INVALID_IRQ) return (irq); } } return (PCI_INVALID_IRQ); } /* * Scan for the real PCI device at (bus)/(device) using intpin (matchpin) and * see if it has already been assigned an interrupt. */ static int pci_cfgintr_search(struct PIR_entry *pe, int bus, int device, int matchpin, int pin) { devclass_t pci_devclass; device_t *pci_devices; int pci_count; device_t *pci_children; int pci_childcount; device_t *busp, *childp; int i, j, irq; /* * Find all the PCI busses. */ pci_count = 0; if ((pci_devclass = devclass_find("pci")) != NULL) devclass_get_devices(pci_devclass, &pci_devices, &pci_count); /* * Scan all the PCI busses/devices looking for this one. */ irq = PCI_INVALID_IRQ; for (i = 0, busp = pci_devices; (i < pci_count) && (irq == PCI_INVALID_IRQ); i++, busp++) { pci_childcount = 0; device_get_children(*busp, &pci_children, &pci_childcount); for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) { if ((pci_get_bus(*childp) == bus) && (pci_get_slot(*childp) == device) && (pci_get_intpin(*childp) == matchpin)) { irq = pci_i386_map_intline(pci_get_irq(*childp)); if (irq != PCI_INVALID_IRQ) PRVERB(("pci_cfgintr_search: linked (%x) to configured irq %d at %d:%d:%d\n", pe->pe_intpin[pin - 1].link, irq, pci_get_bus(*childp), pci_get_slot(*childp), pci_get_function(*childp))); break; } } if (pci_children != NULL) kfree(pci_children, M_TEMP); } if (pci_devices != NULL) kfree(pci_devices, M_TEMP); return (irq); } /* * Pick a suitable IRQ from those listed as routable to this device. */ static int pci_cfgintr_virgin(struct PIR_entry *pe, int pin) { int irq, ibit; /* * first scan the set of PCI-only interrupts and see if any of these * are routable */ for (irq = 0; irq < 16; irq++) { ibit = (1 << irq); /* can we use this interrupt? */ if ((pci_route_table->pt_header.ph_pci_irqs & ibit) && (pe->pe_intpin[pin - 1].irqs & ibit)) { PRVERB(("pci_cfgintr_virgin: using routable PCI-only interrupt %d\n", irq)); return (irq); } } /* life is tough, so just pick an interrupt */ for (irq = 0; irq < 16; irq++) { ibit = (1 << irq); if (pe->pe_intpin[pin - 1].irqs & ibit) { PRVERB(("pci_cfgintr_virgin: using routable interrupt %d\n", irq)); return (irq); } } return (PCI_INVALID_IRQ); } static void pci_print_irqmask(u_int16_t irqs) { int i, first; if (irqs == 0) { kprintf("none"); return; } first = 1; for (i = 0; i < 16; i++, irqs >>= 1) if (irqs & 1) { if (!first) kprintf(" "); else first = 0; kprintf("%d", i); } } /* * Dump the contents of a PCI BIOS Interrupt Routing Table to the console. */ static void pci_print_route_table(struct PIR_table *ptr, int size) { struct PIR_entry *entry; struct PIR_intpin *intpin; int i, pin; kprintf("PCI-Only Interrupts: "); pci_print_irqmask(ptr->pt_header.ph_pci_irqs); kprintf("\nLocation Bus Device Pin Link IRQs\n"); entry = &ptr->pt_entry[0]; for (i = 0; i < size; i++, entry++) { intpin = &entry->pe_intpin[0]; for (pin = 0; pin < 4; pin++, intpin++) if (intpin->link != 0) { if (entry->pe_slot == 0) kprintf("embedded "); else kprintf("slot %-3d ", entry->pe_slot); kprintf(" %3d %3d %c 0x%02x ", entry->pe_bus, entry->pe_device, 'A' + pin, intpin->link); pci_print_irqmask(intpin->irqs); kprintf("\n"); } } } /* * See if any interrupts for a given PCI bus are routed in the PIR. Don't * even bother looking if the BIOS doesn't support routing anyways. */ int pci_probe_route_table(int bus) { int i; u_int16_t v; v = pcibios_get_version(); if (v < 0x0210) return (0); for (i = 0; i < pci_route_count; i++) if (pci_route_table->pt_entry[i].pe_bus == bus) return (1); return (0); } /* * Configuration space access using direct register operations */ /* enable configuration space accesses and return data port address */ static int pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes) { int dataport = 0; if (bus <= PCI_BUSMAX && slot < devmax && func <= PCI_FUNCMAX && reg <= PCI_REGMAX && bytes != 3 && (unsigned) bytes <= 4 && (reg & (bytes - 1)) == 0) { switch (cfgmech) { case 1: outl(CONF1_ADDR_PORT, (1 << 31) | (bus << 16) | (slot << 11) | (func << 8) | (reg & ~0x03)); dataport = CONF1_DATA_PORT + (reg & 0x03); break; case 2: outb(CONF2_ENABLE_PORT, 0xf0 | (func << 1)); outb(CONF2_FORWARD_PORT, bus); dataport = 0xc000 | (slot << 8) | reg; break; } } return (dataport); } /* disable configuration space accesses */ static void pci_cfgdisable(void) { switch (cfgmech) { case 1: outl(CONF1_ADDR_PORT, 0); break; case 2: outb(CONF2_ENABLE_PORT, 0); outb(CONF2_FORWARD_PORT, 0); break; } } static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes) { int data = -1; int port; port = pci_cfgenable(bus, slot, func, reg, bytes); if (port != 0) { switch (bytes) { case 1: data = inb(port); break; case 2: data = inw(port); break; case 4: data = inl(port); break; } pci_cfgdisable(); } return (data); } static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes) { int port; port = pci_cfgenable(bus, slot, func, reg, bytes); if (port != 0) { switch (bytes) { case 1: outb(port, data); break; case 2: outw(port, data); break; case 4: outl(port, data); break; } pci_cfgdisable(); } } /* check whether the configuration mechanism has been correctly identified */ static int pci_cfgcheck(int maxdev) { uint32_t id, class; uint8_t header; uint8_t device; int port; if (bootverbose) kprintf("pci_cfgcheck:\tdevice "); for (device = 0; device < maxdev; device++) { if (bootverbose) kprintf("%d ", device); port = pci_cfgenable(0, device, 0, 0, 4); id = inl(port); if (id == 0 || id == 0xffffffff) continue; port = pci_cfgenable(0, device, 0, 8, 4); class = inl(port) >> 8; if (bootverbose) kprintf("[class=%06x] ", class); if (class == 0 || (class & 0xf870ff) != 0) continue; port = pci_cfgenable(0, device, 0, 14, 1); header = inb(port); if (bootverbose) kprintf("[hdr=%02x] ", header); if ((header & 0x7e) != 0) continue; if (bootverbose) kprintf("is there (id=%08x)\n", id); pci_cfgdisable(); return (1); } if (bootverbose) kprintf("-- nothing found\n"); pci_cfgdisable(); return (0); } static int pcireg_cfgopen(void) { uint32_t mode1res,oldval1; uint8_t mode2res,oldval2; oldval1 = inl(CONF1_ADDR_PORT); if (bootverbose) { kprintf("pci_open(1):\tmode 1 addr port (0x0cf8) is 0x%08x\n", oldval1); } if ((oldval1 & CONF1_ENABLE_MSK) == 0) { cfgmech = 1; devmax = 32; outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK); DELAY(1); mode1res = inl(CONF1_ADDR_PORT); outl(CONF1_ADDR_PORT, oldval1); if (bootverbose) kprintf("pci_open(1a):\tmode1res=0x%08x (0x%08lx)\n", mode1res, CONF1_ENABLE_CHK); if (mode1res) { if (pci_cfgcheck(32)) return (cfgmech); } outl(CONF1_ADDR_PORT, CONF1_ENABLE_CHK1); mode1res = inl(CONF1_ADDR_PORT); outl(CONF1_ADDR_PORT, oldval1); if (bootverbose) kprintf("pci_open(1b):\tmode1res=0x%08x (0x%08lx)\n", mode1res, CONF1_ENABLE_CHK1); if ((mode1res & CONF1_ENABLE_MSK1) == CONF1_ENABLE_RES1) { if (pci_cfgcheck(32)) return (cfgmech); } } oldval2 = inb(CONF2_ENABLE_PORT); if (bootverbose) { kprintf("pci_open(2):\tmode 2 enable port (0x0cf8) is 0x%02x\n", oldval2); } if ((oldval2 & 0xf0) == 0) { cfgmech = 2; devmax = 16; outb(CONF2_ENABLE_PORT, CONF2_ENABLE_CHK); mode2res = inb(CONF2_ENABLE_PORT); outb(CONF2_ENABLE_PORT, oldval2); if (bootverbose) kprintf("pci_open(2a):\tmode2res=0x%02x (0x%02x)\n", mode2res, CONF2_ENABLE_CHK); if (mode2res == CONF2_ENABLE_RES) { if (bootverbose) kprintf("pci_open(2a):\tnow trying mechanism 2\n"); if (pci_cfgcheck(16)) return (cfgmech); } } cfgmech = 0; devmax = 0; return (cfgmech); }