/* * ALIST.C - Bitmap allocator/deallocator, using a radix tree with hinting. * Unlimited-size allocations, power-of-2 only, power-of-2 * aligned results only. * * Copyright (c) 2007 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Matthew Dillon * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This module has been adapted from the BLIST module, which was written * by Matthew Dillon many years ago. * * This module implements a general power-of-2 bitmap allocator/deallocator. * All allocations must be in powers of 2 and will return similarly aligned * results. The module does not try to interpret the meaning of a 'block' * other then to return ALIST_BLOCK_NONE on an allocation failure. * * A maximum of 2 billion blocks is supported so, for example, if one block * represented 64 bytes a maximally sized ALIST would represent * 128 gigabytes. * * A radix tree is used to maintain the bitmap and layed out in a manner * similar to the blist code. Meta nodes use a radix of 16 and 2 bits per * block while leaf nodes use a radix of 32 and 1 bit per block (stored in * a 32 bit bitmap field). Both meta and leaf nodes have a hint field. * This field gives us a hint as to the largest free contiguous range of * blocks under the node. It may contain a value that is too high, but * will never contain a value that is too low. When the radix tree is * searched, allocation failures in subtrees update the hint. * * The radix tree is layed out recursively using a linear array. Each meta * node is immediately followed (layed out sequentially in memory) by * ALIST_META_RADIX lower level nodes. This is a recursive structure but one * that can be easily scanned through a very simple 'skip' calculation. In * order to support large radixes, portions of the tree may reside outside our * memory allocation. We handle this with an early-terminate optimization * in the meta-node. The memory allocation is only large enough to cover * the number of blocks requested at creation time even if it must be * encompassed in larger root-node radix. * * This code can be compiled stand-alone for debugging. */ #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #else #ifndef ALIST_NO_DEBUG #define ALIST_DEBUG #endif #include #include #include #include #include #include #define kmalloc(a,b,c) malloc(a) #define kfree(a,b) free(a) #define kprintf printf #define KKASSERT(exp) assert(exp) struct malloc_type; #include void panic(const char *ctl, ...); #endif /* * static support functions */ static alist_blk_t alst_leaf_alloc(almeta_t *scan, alist_blk_t blk, alist_blk_t start, alist_blk_t count); static alist_blk_t alst_meta_alloc(almeta_t *scan, alist_blk_t blk, alist_blk_t start, alist_blk_t count, alist_blk_t radix, alist_blk_t skip); static void alst_leaf_free(almeta_t *scan, alist_blk_t relblk, alist_blk_t count); static void alst_meta_free(almeta_t *scan, alist_blk_t freeBlk, alist_blk_t count, alist_blk_t radix, alist_blk_t skip, alist_blk_t blk); static alist_blk_t alst_radix_init(almeta_t *scan, alist_blk_t blk, alist_blk_t radix, alist_blk_t skip, alist_blk_t count); #ifndef _KERNEL static void alst_radix_print(almeta_t *scan, alist_blk_t blk, alist_blk_t radix, alist_blk_t skip, int tab); #endif /* * Create a alist capable of handling up to the specified number of blocks. * Blocks must be greater then 0 but does not have to be a power of 2. * * The smallest alist consists of a single leaf node capable of * managing ALIST_BMAP_RADIX blocks. */ alist_t alist_create(alist_blk_t blocks, struct malloc_type *mtype) { alist_t bl; alist_blk_t radix; alist_blk_t skip = 0; /* * Calculate radix and skip field used for scanning. */ radix = ALIST_BMAP_RADIX; while (radix < blocks) { radix *= ALIST_META_RADIX; skip = (skip + 1) * ALIST_META_RADIX; } bl = kmalloc(sizeof(struct alist), mtype, M_WAITOK | M_ZERO); bl->bl_blocks = blocks; bl->bl_radix = radix; bl->bl_skip = skip; bl->bl_rootblks = 1 + alst_radix_init(NULL, 0, bl->bl_radix, bl->bl_skip, blocks); bl->bl_root = kmalloc(sizeof(almeta_t) * bl->bl_rootblks, mtype, M_WAITOK); #if defined(ALIST_DEBUG) kprintf( "ALIST representing %d blocks (%d MB of swap)" ", requiring %dK (%d bytes) of ram\n", bl->bl_blocks, bl->bl_blocks * 4 / 1024, (bl->bl_rootblks * sizeof(almeta_t) + 1023) / 1024, (bl->bl_rootblks * sizeof(almeta_t)) ); kprintf("ALIST raw radix tree contains %d records\n", bl->bl_rootblks); #endif alst_radix_init(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, blocks); return(bl); } void alist_init(alist_t bl, alist_blk_t blocks, almeta_t *records, alist_blk_t nrecords) { alist_blk_t radix; alist_blk_t skip = 0; /* * Calculate radix and skip field used for scanning. */ radix = ALIST_BMAP_RADIX; while (radix < blocks) { radix *= ALIST_META_RADIX; skip = (skip + 1) * ALIST_META_RADIX; } bzero(bl, sizeof(*bl)); bl->bl_blocks = blocks; bl->bl_radix = radix; bl->bl_skip = skip; bl->bl_rootblks = 1 + alst_radix_init(NULL, 0, bl->bl_radix, bl->bl_skip, blocks); KKASSERT(bl->bl_rootblks <= nrecords); bl->bl_root = records; #if defined(ALIST_DEBUG) kprintf( "ALIST representing %d blocks (%d MB of swap)" ", requiring %dK (%d bytes) of ram\n", bl->bl_blocks, bl->bl_blocks * 4 / 1024, (bl->bl_rootblks * sizeof(almeta_t) + 1023) / 1024, (bl->bl_rootblks * sizeof(almeta_t)) ); kprintf("ALIST raw radix tree contains %d records\n", bl->bl_rootblks); #endif alst_radix_init(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, blocks); } void alist_destroy(alist_t bl, struct malloc_type *mtype) { kfree(bl->bl_root, mtype); kfree(bl, mtype); } /* * Reserve space in the block bitmap. Return the base of a contiguous * region or ALIST_BLOCK_NONE if space could not be allocated. * * This nominally allocates a power-of-2 number of blocks. However, * non-powers of 2 are accepted and implemented by first allocating * the nearest power of 2 and then freeing the remainder. */ alist_blk_t alist_alloc(alist_t bl, alist_blk_t start, alist_blk_t count) { alist_blk_t blk = ALIST_BLOCK_NONE; /* * Check non power-of-2 */ KKASSERT(count); if ((count | (count - 1)) != (count << 1) - 1) { alist_blk_t ncount = (count < 256) ? 1 : 256; while (ncount < count) ncount <<= 1; blk = alist_alloc(bl, start, ncount); if (blk != ALIST_BLOCK_NONE) alist_free(bl, blk + count, ncount - count); return (blk); } /* * Power of 2 */ if (bl && count < bl->bl_radix) { if (bl->bl_radix == ALIST_BMAP_RADIX) { blk = alst_leaf_alloc(bl->bl_root, 0, start, count); } else { blk = alst_meta_alloc(bl->bl_root, 0, start, count, bl->bl_radix, bl->bl_skip); } if (blk != ALIST_BLOCK_NONE) bl->bl_free -= count; } return(blk); } /* * Free up space in the block bitmap. The starting block and count do not * need to be power-of-2 aligned. The related blocks must be in an allocated * state. */ void alist_free(alist_t bl, alist_blk_t blkno, alist_blk_t count) { if (bl) { KKASSERT(blkno + count <= bl->bl_blocks); if (bl->bl_radix == ALIST_BMAP_RADIX) { alst_leaf_free(bl->bl_root, blkno, count); } else { alst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0); } bl->bl_free += count; } } /* * Returns the current total number of free blocks and the * approximate trailing largest contiguous free block available. */ alist_blk_t alist_free_info(alist_t bl, alist_blk_t *startp, alist_blk_t *countp) { alist_blk_t radix = bl->bl_radix; alist_blk_t skip = bl->bl_skip; alist_blk_t next_skip; alist_blk_t i; alist_bmap_t mask; almeta_t *scan = bl->bl_root; *startp = 0; *countp = 0; while (radix != ALIST_BMAP_RADIX) { radix /= ALIST_META_RADIX; next_skip = skip / ALIST_META_RADIX; /* * Find the biggest fully allocated chunk. */ for (i = ALIST_META_RADIX - 1; i != ALIST_BLOCK_NONE; --i) { mask = (scan->bm_bitmap >> (i * 2)) & 3; if (mask == 0) { /* * All allocated, continue the loop */ continue; } if (mask == 1) { /* * Partially allocated, push into this guy */ break; } if (mask == 2) { /* * Unknown state */ return(bl->bl_free); } /* * All free, we can return the chunk. */ *startp += i * radix; *countp = radix; return(bl->bl_free); } /* * If we failed to find anything stop here, otherwise push * in. */ if (i == ALIST_BLOCK_NONE) return(bl->bl_free); *startp += i * radix; scan += 1 + next_skip * i; skip = next_skip - 1; } /* * If we got all the way down to a leaf node locate the last block, * power-of-2 aligned and power-of-2 sized. Well, the easiest way * to deal with this is to just return 1 block. */ if (radix == ALIST_BMAP_RADIX) { mask = scan->bm_bitmap; for (i = ALIST_BMAP_RADIX - 1; i != ALIST_BLOCK_NONE; --i) { if ((mask & ((alist_bmap_t)1U << i))) break; } /* * did not find free entry */ if (i == ALIST_BLOCK_NONE) return(bl->bl_free); /* * Return one block. */ *startp += i; *countp = 1; return(bl->bl_free); } return(bl->bl_free); } #ifdef ALIST_DEBUG /* * alist_print() - dump radix tree */ void alist_print(alist_t bl) { kprintf("ALIST {\n"); alst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4); kprintf("}\n"); } #endif /************************************************************************ * ALLOCATION SUPPORT FUNCTIONS * ************************************************************************ * * These support functions do all the actual work. They may seem * rather longish, but that's because I've commented them up. The * actual code is straight forward. * */ /* * alist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap). * * This is the core of the allocator and is optimized for the 1 block * and the ALIST_BMAP_RADIX block allocation cases. Other cases are * somewhat slower. The 1 block allocation case is log2 and extremely * quick. * * mask bit is 0 allocated, not available * mask bit is 1 free, available for allocation */ static alist_blk_t alst_leaf_alloc(almeta_t *scan, alist_blk_t blk, alist_blk_t start, alist_blk_t count) { alist_bmap_t orig = scan->bm_bitmap; /* * Allocate only beyond the start point. Mask to 0 the low bits * below start. If start == blk no bits get cleared so don't * bother. */ if (start >= blk + ALIST_BMAP_RADIX) return(ALIST_BLOCK_NONE); if (start > blk && start < blk + ALIST_BMAP_RADIX) orig &= ~(((alist_bmap_t)1U << (start - blk)) - 1); start &= ALIST_BMAP_RADIX - 1; /* * Optimize bitmap all-allocated case. Also, count = 1 * case assumes at least 1 bit is free in the bitmap, so * we have to take care of this case here. */ if (orig == 0) { if (start <= blk) scan->bm_bighint = 0; return(ALIST_BLOCK_NONE); } /* * Optimized code to allocate one bit out of the bitmap */ if (count == 1) { alist_bmap_t mask; alist_blk_t j = ALIST_BMAP_RADIX/2; alist_blk_t r = 0; mask = (alist_bmap_t)-1 >> (ALIST_BMAP_RADIX/2); while (j) { if ((orig & mask) == 0) { r += j; orig >>= j; } j >>= 1; mask >>= j; } scan->bm_bitmap &= ~(1 << r); return(blk + r); } /* * non-optimized code to allocate N bits out of the bitmap. * The more bits, the faster the code runs. It will run * the slowest allocating 2 bits, but since there aren't any * memory ops in the core loop (or shouldn't be, anyway), * you probably won't notice the difference. * * Similar to the blist case, the alist code also requires * allocations to be power-of-2 sized and aligned to the * size of the allocation, which simplifies the algorithm. */ { alist_blk_t j; alist_blk_t n = ALIST_BMAP_RADIX - count; alist_bmap_t mask; mask = (alist_bmap_t)-1 >> n; for (j = 0; j <= n; j += count) { if ((orig & mask) == mask) { scan->bm_bitmap &= ~mask; return(blk + j); } mask = mask << count; } } /* * We couldn't allocate count in this subtree, update bighint * if we were able to check the entire node. */ if (start <= blk) scan->bm_bighint = count - 1; return(ALIST_BLOCK_NONE); } /* * Attempt to allocate at a meta node. If we can't, we update * bighint and return a failure. Updating bighint optimize future * calls that hit this node. We have to check for our collapse cases * and we have a few optimizations strewn in as well. */ static alist_blk_t alst_meta_alloc(almeta_t *scan, alist_blk_t blk, alist_blk_t start, alist_blk_t count, alist_blk_t radix, alist_blk_t skip) { alist_blk_t i; alist_bmap_t mask; alist_bmap_t pmask; alist_blk_t next_skip = ((u_int)skip / ALIST_META_RADIX); alist_blk_t orig_blk; /* * ALL-ALLOCATED special case */ if (scan->bm_bitmap == 0) { scan->bm_bighint = 0; return(ALIST_BLOCK_NONE); } radix /= ALIST_META_RADIX; /* * Radix now represents each bitmap entry for this meta node. If * the number of blocks being allocated can be fully represented, * we allocate directly out of this meta node. * * Meta node bitmaps use 2 bits per block. * * 00 ALL-ALLOCATED * 01 PARTIALLY-FREE/PARTIALLY-ALLOCATED * 10 (RESERVED) * 11 ALL-FREE */ if (count >= radix) { alist_blk_t n = count / radix * 2; /* number of bits */ alist_blk_t j; mask = (alist_bmap_t)-1 >> (ALIST_BMAP_RADIX - n); for (j = 0; j < ALIST_META_RADIX; j += n / 2) { if ((scan->bm_bitmap & mask) == mask && blk + j * radix >= start) { scan->bm_bitmap &= ~mask; return(blk + j * radix); } mask <<= n; } if (scan->bm_bighint >= count && start <= blk) scan->bm_bighint = count >> 1; return(ALIST_BLOCK_NONE); } /* * If not we have to recurse. */ mask = 0x00000003; pmask = 0x00000001; orig_blk = blk; for (i = 1; i <= skip; i += next_skip) { if (scan[i].bm_bighint == (alist_blk_t)-1) { /* * Terminator */ break; } /* * If the element is marked completely free (11), initialize * the recursion. */ if ((scan->bm_bitmap & mask) == mask) { scan[i].bm_bitmap = (alist_bmap_t)-1; scan[i].bm_bighint = radix; } if ((scan->bm_bitmap & mask) == 0) { /* * Object marked completely allocated, recursion * contains garbage. */ /* Skip it */ } else if (blk + radix <= start) { /* * Object does not contain or is not beyond our * start point. */ /* Skip it */ } else if (count <= scan[i].bm_bighint) { /* * count fits in object. If successful and the * deeper level becomes all allocated, mark our * level as all-allocated. */ alist_blk_t r; if (next_skip == 1) { r = alst_leaf_alloc(&scan[i], blk, start, count); } else { r = alst_meta_alloc(&scan[i], blk, start, count, radix, next_skip - 1); } if (r != ALIST_BLOCK_NONE) { if (scan[i].bm_bitmap == 0) { scan->bm_bitmap &= ~mask; } else { scan->bm_bitmap &= ~mask; scan->bm_bitmap |= pmask; } return(r); } } blk += radix; mask <<= 2; pmask <<= 2; } /* * We couldn't allocate count in this subtree, update bighint * if we were able to check the entire node. */ if (scan->bm_bighint >= count && start <= orig_blk) scan->bm_bighint = count >> 1; return(ALIST_BLOCK_NONE); } /* * Free allocated block from leaf bitmap */ static void alst_leaf_free(almeta_t *scan, alist_blk_t blk, alist_blk_t count) { /* * free some data in this bitmap * * e.g. * 0000111111111110000 * \_________/\__/ * v n */ alist_blk_t n = blk & (ALIST_BMAP_RADIX - 1); alist_bmap_t mask; mask = ((alist_bmap_t)-1 << n) & ((alist_bmap_t)-1 >> (ALIST_BMAP_RADIX - count - n)); if (scan->bm_bitmap & mask) panic("alst_radix_free: freeing free block"); scan->bm_bitmap |= mask; /* * We could probably do a better job here. We are required to make * bighint at least as large as the biggest contiguous block of * data. If we just shoehorn it, a little extra overhead will * be incured on the next allocation (but only that one typically). */ scan->bm_bighint = ALIST_BMAP_RADIX; } /* * Free allocated blocks from radix tree meta info. This support routine * frees a range of blocks from the bitmap. The range must be entirely * enclosed by this radix node. If a meta node, we break the range down * recursively to free blocks in subnodes (which means that this code * can free an arbitrary range whereas the allocation code cannot allocate * an arbitrary range). */ static void alst_meta_free(almeta_t *scan, alist_blk_t freeBlk, alist_blk_t count, alist_blk_t radix, alist_blk_t skip, alist_blk_t blk) { alist_blk_t next_skip = ((u_int)skip / ALIST_META_RADIX); alist_bmap_t mask; alist_bmap_t pmask; alist_blk_t i; /* * Break the free down into its components. Because it is so easy * to implement, frees are not limited to power-of-2 sizes. * * Each block in a meta-node bitmap takes two bits. */ radix /= ALIST_META_RADIX; i = (freeBlk - blk) / radix; blk += i * radix; mask = 0x00000003 << (i * 2); pmask = 0x00000001 << (i * 2); i = i * next_skip + 1; while (i <= skip && blk < freeBlk + count) { alist_blk_t v; v = blk + radix - freeBlk; if (v > count) v = count; if (scan->bm_bighint == (alist_blk_t)-1) panic("alst_meta_free: freeing unexpected range"); /* * WARNING on bighint updates. When we free an element in * a chunk if the chunk becomes wholely free it is possible * that the whole node is now free, so bighint must be set * to cover the whole node. Otherwise address-specific * allocations may fail. * * We don't bother figuring out how much of the node is * actually free in this case. */ if (freeBlk == blk && count >= radix) { /* * The area being freed covers the entire block, * assert that we are marked all-allocated and * then mark it all-free. */ KKASSERT((scan->bm_bitmap & mask) == 0); scan->bm_bitmap |= mask; scan->bm_bighint = radix * ALIST_META_RADIX; } else { /* * If we were previously marked all-allocated, fix-up * the next layer so we can recurse down into it. */ if ((scan->bm_bitmap & mask) == 0) { scan[i].bm_bitmap = (alist_bmap_t)0; scan[i].bm_bighint = 0; } /* * Recursion case, then either mark all-free or * partially free. */ if (next_skip == 1) { alst_leaf_free(&scan[i], freeBlk, v); } else { alst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk); } if (scan[i].bm_bitmap == (alist_bmap_t)-1) { scan->bm_bitmap |= mask; scan->bm_bighint = radix * ALIST_META_RADIX; } else { scan->bm_bitmap &= ~mask; scan->bm_bitmap |= pmask; if (scan->bm_bighint < scan[i].bm_bighint) scan->bm_bighint = scan[i].bm_bighint; } } mask <<= 2; pmask <<= 2; count -= v; freeBlk += v; blk += radix; i += next_skip; } } /* * Initialize our meta structures and bitmaps and calculate the exact * amount of space required to manage 'count' blocks - this space may * be considerably less then the calculated radix due to the large * RADIX values we use. */ static alist_blk_t alst_radix_init(almeta_t *scan, alist_blk_t blk, alist_blk_t radix, alist_blk_t skip, alist_blk_t count) { alist_blk_t i; alist_blk_t next_skip; alist_bmap_t mask; alist_bmap_t pmask; alist_blk_t memindex; /* * Leaf node */ if (radix == ALIST_BMAP_RADIX) { if (scan) { scan->bm_bighint = 0; scan->bm_bitmap = 0; } return(0); } /* * Meta node. If allocating the entire object we can special * case it. However, we need to figure out how much memory * is required to manage 'count' blocks, so we continue on anyway. */ if (scan) { scan->bm_bighint = 0; scan->bm_bitmap = 0; } memindex = 0; radix /= ALIST_META_RADIX; next_skip = skip / ALIST_META_RADIX; mask = 0x00000003; pmask = 0x00000001; for (i = 1; i <= skip; i += next_skip) { if (count >= blk + radix) { /* * Allocate the entire object */ memindex += alst_radix_init(((scan) ? &scan[i] : NULL), blk, radix, next_skip - 1, count); /* already marked as wholely allocated */ } else if (count > blk) { /* * Allocate a partial object, well it's really * all-allocated, we just aren't allowed to * free the whole thing. */ memindex += alst_radix_init(((scan) ? &scan[i] : NULL), blk, radix, next_skip - 1, count); /* already marked as wholely allocated */ } else { /* * Add terminator but continue the loop. Populate * all terminators. */ if (scan) { scan[i].bm_bighint = (alist_blk_t)-1; scan[i].bm_bitmap = 0; } /* already marked as wholely allocated */ } mask <<= 2; pmask <<= 2; blk += radix; } memindex += ALIST_META_RADIX; return(memindex); } #ifdef ALIST_DEBUG static void alst_radix_print(almeta_t *scan, alist_blk_t blk, alist_blk_t radix, alist_blk_t skip, int tab) { alist_blk_t i; alist_blk_t next_skip; alist_bmap_t mask; if (radix == ALIST_BMAP_RADIX) { kprintf( "%*.*s(%04x,%d): bitmap %08x big=%d\n", tab, tab, "", blk, radix, scan->bm_bitmap, scan->bm_bighint ); return; } if (scan->bm_bitmap == 0) { kprintf( "%*.*s(%04x,%d) ALL ALLOCATED\n", tab, tab, "", blk, radix ); return; } if (scan->bm_bitmap == (alist_bmap_t)-1) { kprintf( "%*.*s(%04x,%d) ALL FREE\n", tab, tab, "", blk, radix ); return; } kprintf( "%*.*s(%04x,%d): subtree (%d) bitmap=%08x big=%d {\n", tab, tab, "", blk, radix, radix, scan->bm_bitmap, scan->bm_bighint ); radix /= ALIST_META_RADIX; next_skip = skip / ALIST_META_RADIX; tab += 4; mask = 0x00000003; for (i = 1; i <= skip; i += next_skip) { if (scan[i].bm_bighint == (alist_blk_t)-1) { kprintf( "%*.*s(%04x,%d): Terminator\n", tab, tab, "", blk, radix ); break; } if ((scan->bm_bitmap & mask) == mask) { kprintf( "%*.*s(%04x,%d): ALL FREE\n", tab, tab, "", blk, radix ); } else if ((scan->bm_bitmap & mask) == 0) { kprintf( "%*.*s(%04x,%d): ALL ALLOCATED\n", tab, tab, "", blk, radix ); } else { alst_radix_print( &scan[i], blk, radix, next_skip - 1, tab ); } blk += radix; mask <<= 2; } tab -= 4; kprintf("%*.*s}\n", tab, tab, ""); } #endif #ifdef ALIST_DEBUG int main(int ac, char **av) { alist_blk_t size = 1024; alist_blk_t da = 0; alist_blk_t count = 0; alist_t bl; int i; for (i = 1; i < ac; ++i) { const char *ptr = av[i]; if (*ptr != '-') { size = strtol(ptr, NULL, 0); continue; } ptr += 2; fprintf(stderr, "Bad option: %s\n", ptr - 2); exit(1); } bl = alist_create(size, NULL); alist_free(bl, 0, size); for (;;) { char buf[1024]; alist_blk_t bfree; kprintf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix); fflush(stdout); if (fgets(buf, sizeof(buf), stdin) == NULL) break; switch(buf[0]) { case 'p': alist_print(bl); break; case 'a': if (sscanf(buf + 1, "%x %d", &da, &count) == 2) { da = alist_alloc(bl, da, count); kprintf(" R=%04x\n", da); } else if (sscanf(buf + 1, "%d", &count) == 1) { da = alist_alloc(bl, 0, count); kprintf(" R=%04x\n", da); } else if (count) { kprintf("alloc 0x%04x/%d\n", da, count); alist_blk_t blk = alist_alloc(bl, da, count); kprintf(" R=%04x\n", blk); } else { kprintf("?\n"); } break; case 'f': if (sscanf(buf + 1, "%x %d", &da, &count) == 2) { alist_free(bl, da, count); } else if (count) { kprintf("free 0x%04x/%d\n", da, count); alist_free(bl, da, count); } else { kprintf("?\n"); } break; case '?': case 'h': puts("p -print\n" "a %d -allocate\n" "f %x %d -free\n" "h/? -help"); break; case 'i': bfree = alist_free_info(bl, &da, &count); kprintf("info: %d free trailing: 0x%04x/%d\n", bfree, da, count); break; default: kprintf("?\n"); break; } } return(0); } void panic(const char *ctl, ...) { __va_list va; __va_start(va, ctl); vfprintf(stderr, ctl, va); fprintf(stderr, "\n"); __va_end(va); exit(1); } #endif