#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libcryptsetup.h" #include "internal.h" struct safe_allocation { size_t size; char data[1]; }; static char *error=NULL; void set_error_va(const char *fmt, va_list va) { int r; if(error) { free(error); error = NULL; } if(!fmt) return; r = vasprintf(&error, fmt, va); if (r < 0) { free(error); error = NULL; return; } if (r && error[r - 1] == '\n') error[r - 1] = '\0'; } void set_error(const char *fmt, ...) { va_list va; va_start(va, fmt); set_error_va(fmt, va); va_end(va); } const char *get_error(void) { return error; } void *safe_alloc(size_t size) { struct safe_allocation *alloc; if (!size) return NULL; alloc = malloc(size + offsetof(struct safe_allocation, data)); if (!alloc) return NULL; alloc->size = size; return &alloc->data; } void safe_free(void *data) { struct safe_allocation *alloc; if (!data) return; alloc = data - offsetof(struct safe_allocation, data); memset(data, 0, alloc->size); alloc->size = 0x55aa55aa; free(alloc); } void *safe_realloc(void *data, size_t size) { void *new_data; new_data = safe_alloc(size); if (new_data && data) { struct safe_allocation *alloc; alloc = data - offsetof(struct safe_allocation, data); if (size > alloc->size) size = alloc->size; memcpy(new_data, data, size); } safe_free(data); return new_data; } char *safe_strdup(const char *s) { char *s2 = safe_alloc(strlen(s) + 1); if (!s2) return NULL; return strcpy(s2, s); } static int get_alignment(int fd) { int alignment = DEFAULT_ALIGNMENT; #ifdef _PC_REC_XFER_ALIGN alignment = fpathconf(fd, _PC_REC_XFER_ALIGN); if (alignment < 0) alignment = DEFAULT_ALIGNMENT; #endif return alignment; } static void *aligned_malloc(void **base, int size, int alignment) { #ifdef HAVE_POSIX_MEMALIGN return posix_memalign(base, alignment, size) ? NULL : *base; #else /* Credits go to Michal's padlock patches for this alignment code */ char *ptr; ptr = malloc(size + alignment); if(ptr == NULL) return NULL; *base = ptr; if(alignment > 1 && ((long)ptr & (alignment - 1))) { ptr += alignment - ((long)(ptr) & (alignment - 1)); } return ptr; #endif } static int sector_size(int fd) { int bsize; return DEV_BSIZE; #if 0 if (ioctl(fd,BLKSSZGET, &bsize) < 0) return -EINVAL; else return bsize; #endif } int sector_size_for_device(const char *device) { int fd = open(device, O_RDONLY); int r; if(fd < 0) return -EINVAL; r = sector_size(fd); close(fd); return r; } ssize_t write_blockwise(int fd, const void *orig_buf, size_t count) { void *hangover_buf, *hangover_buf_base = NULL; void *buf, *buf_base = NULL; int r, hangover, solid, bsize, alignment; ssize_t ret = -1; if ((bsize = sector_size(fd)) < 0) return bsize; hangover = count % bsize; solid = count - hangover; alignment = get_alignment(fd); if ((long)orig_buf & (alignment - 1)) { buf = aligned_malloc(&buf_base, count, alignment); if (!buf) goto out; memcpy(buf, orig_buf, count); } else buf = (void *)orig_buf; r = write(fd, buf, solid); if (r < 0 || r != solid) goto out; if (hangover) { hangover_buf = aligned_malloc(&hangover_buf_base, bsize, alignment); if (!hangover_buf) goto out; r = read(fd, hangover_buf, bsize); if(r < 0 || r != bsize) goto out; r = lseek(fd, -bsize, SEEK_CUR); if (r < 0) goto out; memcpy(hangover_buf, buf + solid, hangover); r = write(fd, hangover_buf, bsize); if(r < 0 || r != bsize) goto out; free(hangover_buf_base); } ret = count; out: if (buf != orig_buf) free(buf_base); return ret; } ssize_t read_blockwise(int fd, void *orig_buf, size_t count) { void *hangover_buf, *hangover_buf_base; void *buf, *buf_base = NULL; int r, hangover, solid, bsize, alignment; ssize_t ret = -1; if ((bsize = sector_size(fd)) < 0) return bsize; hangover = count % bsize; solid = count - hangover; alignment = get_alignment(fd); if ((long)orig_buf & (alignment - 1)) { buf = aligned_malloc(&buf_base, count, alignment); if (!buf) goto out; } else buf = orig_buf; r = read(fd, buf, solid); if(r < 0 || r != solid) goto out; if (hangover) { hangover_buf = aligned_malloc(&hangover_buf_base, bsize, alignment); if (!hangover_buf) goto out; r = read(fd, hangover_buf, bsize); if (r < 0 || r != bsize) goto out; memcpy(buf + solid, hangover_buf, hangover); free(hangover_buf_base); } ret = count; out: if (buf != orig_buf) { memcpy(orig_buf, buf, count); free(buf_base); } return ret; } /* * Combines llseek with blockwise write. write_blockwise can already deal with short writes * but we also need a function to deal with short writes at the start. But this information * is implicitly included in the read/write offset, which can not be set to non-aligned * boundaries. Hence, we combine llseek with write. */ ssize_t write_lseek_blockwise(int fd, const char *buf, size_t count, off_t offset) { int bsize = sector_size(fd); const char *orig_buf = buf; char frontPadBuf[bsize]; int frontHang = offset % bsize; int r; int innerCount = count < bsize ? count : bsize; if (bsize < 0) return bsize; lseek(fd, offset - frontHang, SEEK_SET); if(offset % bsize) { r = read(fd,frontPadBuf,bsize); if(r < 0) return -1; memcpy(frontPadBuf+frontHang, buf, innerCount); lseek(fd, offset - frontHang, SEEK_SET); r = write(fd,frontPadBuf,bsize); if(r < 0) return -1; buf += innerCount; count -= innerCount; } if(count <= 0) return buf - orig_buf; return write_blockwise(fd, buf, count) + innerCount; } /* Password reading helpers */ static int untimed_read(int fd, char *pass, size_t maxlen) { ssize_t i; i = read(fd, pass, maxlen); if (i > 0) { pass[i-1] = '\0'; i = 0; } else if (i == 0) { /* EOF */ *pass = 0; i = -1; } return i; } static int timed_read(int fd, char *pass, size_t maxlen, long timeout) { struct timeval t; fd_set fds; int failed = -1; FD_ZERO(&fds); FD_SET(fd, &fds); t.tv_sec = timeout; t.tv_usec = 0; if (select(fd+1, &fds, NULL, NULL, &t) > 0) failed = untimed_read(fd, pass, maxlen); return failed; } static int interactive_pass(const char *prompt, char *pass, size_t maxlen, long timeout) { struct termios orig, tmp; int failed = -1; int infd = STDIN_FILENO, outfd; if (maxlen < 1) goto out_err; /* Read and write to /dev/tty if available */ if ((infd = outfd = open("/dev/tty", O_RDWR)) == -1) { infd = STDIN_FILENO; outfd = STDERR_FILENO; } if (tcgetattr(infd, &orig)) goto out_err; memcpy(&tmp, &orig, sizeof(tmp)); tmp.c_lflag &= ~ECHO; if (write(outfd, prompt, strlen(prompt)) < 0) goto out_err; tcsetattr(infd, TCSAFLUSH, &tmp); if (timeout) failed = timed_read(infd, pass, maxlen, timeout); else failed = untimed_read(infd, pass, maxlen); tcsetattr(infd, TCSAFLUSH, &orig); out_err: if (!failed && write(outfd, "\n", 1)); if (infd != STDIN_FILENO) close(infd); return failed; } /* * Password reading behaviour matrix of get_key * FIXME: rewrite this from scratch. * p v n h * -----------------+---+---+---+--- * interactive | Y | Y | Y | Inf * from fd | N | N | Y | Inf * from binary file | N | N | N | Inf or options->key_size * * Legend: p..prompt, v..can verify, n..newline-stop, h..read horizon * * Note: --key-file=- is interpreted as a read from a binary file (stdin) */ void get_key(char *prompt, char **key, unsigned int *passLen, int key_size, const char *key_file, int timeout, int how2verify, struct crypt_device *cd) { int fd = -1; const int verify = how2verify & CRYPT_FLAG_VERIFY; const int verify_if_possible = how2verify & CRYPT_FLAG_VERIFY_IF_POSSIBLE; char *pass = NULL; int read_horizon; int regular_file = 0; int read_stdin; int r; struct stat st; /* Passphrase read from stdin? */ read_stdin = (!key_file || !strcmp(key_file, "-")) ? 1 : 0; /* read_horizon applies only for real keyfile, not stdin or terminal */ read_horizon = (key_file && !read_stdin) ? key_size : 0 /* until EOF */; /* Setup file descriptior */ fd = read_stdin ? STDIN_FILENO : open(key_file, O_RDONLY); if (fd < 0) { log_err(cd, _("Failed to open key file %s.\n"), key_file ?: "-"); goto out_err; } /* Interactive case */ if(isatty(fd)) { int i; pass = safe_alloc(MAX_TTY_PASSWORD_LEN); if (!pass || (i = interactive_pass(prompt, pass, MAX_TTY_PASSWORD_LEN, timeout))) { log_err(cd, _("Error reading passphrase from terminal.\n")); goto out_err; } if (verify || verify_if_possible) { char pass_verify[MAX_TTY_PASSWORD_LEN]; i = interactive_pass(_("Verify passphrase: "), pass_verify, sizeof(pass_verify), timeout); if (i || strcmp(pass, pass_verify) != 0) { log_err(cd, _("Passphrases do not match.\n")); goto out_err; } memset(pass_verify, 0, sizeof(pass_verify)); } *passLen = strlen(pass); *key = pass; } else { /* * This is either a fd-input or a file, in neither case we can verify the input, * however we don't stop on new lines if it's a binary file. */ int buflen, i; if(verify) { log_err(cd, _("Can't do passphrase verification on non-tty inputs.\n")); goto out_err; } /* The following for control loop does an exhausting * read on the key material file, if requested with * key_size == 0, as it's done by LUKS. However, we * should warn the user, if it's a non-regular file, * such as /dev/random, because in this case, the loop * will read forever. */ if(!read_stdin && read_horizon == 0) { if(stat(key_file, &st) < 0) { log_err(cd, _("Failed to stat key file %s.\n"), key_file); goto out_err; } if(!S_ISREG(st.st_mode)) log_std(cd, _("Warning: exhausting read requested, but key file %s" " is not a regular file, function might never return.\n"), key_file); else regular_file = 1; } buflen = 0; for(i = 0; read_horizon == 0 || i < read_horizon; i++) { if(i >= buflen - 1) { buflen += 128; pass = safe_realloc(pass, buflen); if (!pass) { log_err(cd, _("Out of memory while reading passphrase.\n")); goto out_err; } } r = read(fd, pass + i, 1); if (r < 0) { log_err(cd, _("Error reading passphrase.\n")); goto out_err; } /* Stop on newline only if not requested read from keyfile */ if(r == 0 || (!key_file && pass[i] == '\n')) break; } /* Fail if piped input dies reading nothing */ if(!i && !regular_file) { log_dbg("Error reading passphrase."); goto out_err; } pass[i] = 0; *key = pass; *passLen = i; } if(fd != STDIN_FILENO) close(fd); return; out_err: if(fd >= 0 && fd != STDIN_FILENO) close(fd); if(pass) safe_free(pass); *key = NULL; *passLen = 0; } int device_ready(struct crypt_device *cd, const char *device, int mode) { int devfd, r = 1; ssize_t s; struct stat st; char buf[512]; if(stat(device, &st) < 0) { log_err(cd, _("Device %s doesn't exist or access denied.\n"), device); return 0; } log_dbg("Trying to open and read device %s.", device); devfd = open(device, mode | O_DIRECT | O_SYNC); if(devfd < 0) { log_err(cd, _("Cannot open device %s for %s%s access.\n"), device, (mode & O_EXCL) ? _("exclusive ") : "", (mode & O_RDWR) ? _("writable") : _("read-only")); return 0; } /* Try to read first sector */ s = read_blockwise(devfd, buf, sizeof(buf)); if (s < 0 || s != sizeof(buf)) { log_err(cd, _("Cannot read device %s.\n"), device); r = 0; } memset(buf, 0, sizeof(buf)); close(devfd); return r; } int get_device_infos(const char *device, struct device_infos *infos, struct crypt_device *cd) { struct partinfo pinfo; uint64_t size; unsigned long size_small; int readonly = 0; int ret = -1; int fd; /* Try to open read-write to check whether it is a read-only device */ fd = open(device, O_RDWR); if (fd < 0) { if (errno == EROFS) { readonly = 1; fd = open(device, O_RDONLY); } } else { close(fd); fd = open(device, O_RDONLY); } if (fd < 0) { log_err(cd, _("Cannot open device: %s\n"), device); return -1; } #ifdef BLKGETSIZE64 if (ioctl(fd, BLKGETSIZE64, &size) >= 0) { size >>= SECTOR_SHIFT; ret = 0; goto out; } #endif #ifdef BLKGETSIZE if (ioctl(fd, BLKGETSIZE, &size_small) >= 0) { size = (uint64_t)size_small; ret = 0; goto out; } #else if (ioctl(fd, DIOCGPART, &pinfo) >= 0) { size = pinfo.media_blocks; ret = 0; goto out; } #endif log_err(cd, _("BLKGETSIZE failed on device %s.\n"), device); out: if (ret == 0) { infos->size = size; infos->readonly = readonly; } close(fd); return ret; } int wipe_device_header(const char *device, int sectors) { char *buffer; int size = sectors * SECTOR_SIZE; int r = -1; int devfd; devfd = open(device, O_RDWR | O_DIRECT | O_SYNC); if(devfd == -1) return -EINVAL; buffer = malloc(size); if (!buffer) { close(devfd); return -ENOMEM; } memset(buffer, 0, size); r = write_blockwise(devfd, buffer, size) < size ? -EIO : 0; free(buffer); close(devfd); return r; } /* MEMLOCK */ #define DEFAULT_PROCESS_PRIORITY -18 static int _priority; static int _memlock_count = 0; // return 1 if memory is locked int crypt_memlock_inc(struct crypt_device *ctx) { if (!_memlock_count++) { log_dbg("Locking memory."); if (mlockall(MCL_CURRENT | MCL_FUTURE)) { log_err(ctx, _("WARNING!!! Possibly insecure memory. Are you root?\n")); _memlock_count--; return 0; } errno = 0; if (((_priority = getpriority(PRIO_PROCESS, 0)) == -1) && errno) log_err(ctx, _("Cannot get process priority.\n")); else if (setpriority(PRIO_PROCESS, 0, DEFAULT_PROCESS_PRIORITY)) log_err(ctx, _("setpriority %u failed: %s"), DEFAULT_PROCESS_PRIORITY, strerror(errno)); } return _memlock_count ? 1 : 0; } int crypt_memlock_dec(struct crypt_device *ctx) { if (_memlock_count && (!--_memlock_count)) { log_dbg("Unlocking memory."); if (munlockall()) log_err(ctx, _("Cannot unlock memory.")); if (setpriority(PRIO_PROCESS, 0, _priority)) log_err(ctx, _("setpriority %u failed: %s"), _priority, strerror(errno)); } return _memlock_count ? 1 : 0; } /* DEVICE TOPOLOGY */ /* block device topology ioctls, introduced in 2.6.32 */ #ifndef BLKIOMIN #define BLKIOMIN _IO(0x12,120) #define BLKIOOPT _IO(0x12,121) #define BLKALIGNOFF _IO(0x12,122) #endif void get_topology_alignment(const char *device, unsigned long *required_alignment, /* bytes */ unsigned long *alignment_offset, /* bytes */ unsigned long default_alignment) { unsigned int dev_alignment_offset = 0; unsigned long min_io_size = 0, opt_io_size = 0; int fd; *required_alignment = default_alignment; *alignment_offset = 0; fd = open(device, O_RDONLY); if (fd == -1) return; /* minimum io size */ if (ioctl(fd, BLKIOMIN, &min_io_size) == -1) { log_dbg("Topology info for %s not supported, using default offset %lu bytes.", device, default_alignment); goto out; } /* optimal io size */ if (ioctl(fd, BLKIOOPT, &opt_io_size) == -1) opt_io_size = min_io_size; /* alignment offset, bogus -1 means misaligned/unknown */ if (ioctl(fd, BLKALIGNOFF, &dev_alignment_offset) == -1 || (int)dev_alignment_offset < 0) dev_alignment_offset = 0; if (*required_alignment < min_io_size) *required_alignment = min_io_size; if (*required_alignment < opt_io_size) *required_alignment = opt_io_size; *alignment_offset = (unsigned long)dev_alignment_offset; log_dbg("Topology: IO (%lu/%lu), offset = %lu; Required alignment is %lu bytes.", min_io_size, opt_io_size, *alignment_offset, *required_alignment); out: (void)close(fd); }