/* * Copyright (c) 1983, 1989, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#) Copyright (c) 1983, 1989, 1993, 1994 The Regents of the University of California. All rights reserved. * @(#)newfs.c 8.13 (Berkeley) 5/1/95 * $FreeBSD: src/sbin/newfs/newfs.c,v 1.30.2.9 2003/05/13 12:03:55 joerg Exp $ * $DragonFly: src/sbin/newfs/newfs.c,v 1.17 2007/06/19 19:18:20 dillon Exp $ */ /* * newfs: friendly front end to mkfs */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MFS #include #include #endif #if __STDC__ #include #else #include #endif #include "mntopts.h" #include "defs.h" struct mntopt mopts[] = { MOPT_STDOPTS, MOPT_ASYNC, MOPT_NULL, }; void fatal(const char *fmt, ...); #define COMPAT /* allow non-labeled disks */ /* * The following two constants set the default block and fragment sizes. * Both constants must be a power of 2 and meet the following constraints: * MINBSIZE <= DESBLKSIZE <= MAXBSIZE * sectorsize <= DESFRAGSIZE <= DESBLKSIZE * DESBLKSIZE / DESFRAGSIZE <= 8 */ #define DFL_FRAGSIZE 2048 #define DFL_BLKSIZE 16384 /* * Cylinder groups may have up to many cylinders. The actual * number used depends upon how much information can be stored * on a single cylinder. The default is to use as many as possible * cylinders per group. */ #define DESCPG 65536 /* desired fs_cpg ("infinity") */ /* * Once upon a time... * ROTDELAY gives the minimum number of milliseconds to initiate * another disk transfer on the same cylinder. It is used in * determining the rotationally optimal layout for disk blocks * within a file; the default of fs_rotdelay is 4ms. * * ...but now we make this 0 to disable the rotdelay delay because * modern drives with read/write-behind achieve higher performance * without the delay. */ #define ROTDELAY 0 /* * MAXBLKPG determines the maximum number of data blocks which are * placed in a single cylinder group. The default is one indirect * block worth of data blocks. */ #define MAXBLKPG(bsize) ((bsize) / sizeof(daddr_t)) /* * Each file system has a number of inodes statically allocated. * We allocate one inode slot per NFPI fragments, expecting this * to be far more than we will ever need. */ #define NFPI 4 /* * Once upon a time... * For each cylinder we keep track of the availability of blocks at different * rotational positions, so that we can lay out the data to be picked * up with minimum rotational latency. NRPOS is the default number of * rotational positions that we distinguish. With NRPOS of 8 the resolution * of our summary information is 2ms for a typical 3600 rpm drive. * * ...but now we make this 1 (which essentially disables the rotational * position table because modern drives with read-ahead and write-behind do * better without the rotational position table. */ #define NRPOS 1 /* number distinct rotational positions */ /* * About the same time as the above, we knew what went where on the disks. * no longer so, so kill the code which finds the different platters too... * We do this by saying one head, with a lot of sectors on it. * The number of sectors are used to determine the size of a cyl-group. * Kirk suggested one or two meg per "cylinder" so we say two. */ #define NTRACKS 1 /* number of heads */ #define NSECTORS 4096 /* number of sectors */ int mfs; /* run as the memory based filesystem */ char *mfs_mtpt; /* mount point for mfs */ struct stat mfs_mtstat; /* stat prior to mount */ int Nflag; /* run without writing file system */ int Oflag; /* format as an 4.3BSD file system */ int Cflag; /* copy underlying filesystem (mfs only) */ int Uflag; /* enable soft updates for file system */ int fssize; /* file system size */ int ntracks = NTRACKS; /* # tracks/cylinder */ int nsectors = NSECTORS; /* # sectors/track */ int nphyssectors; /* # sectors/track including spares */ int secpercyl; /* sectors per cylinder */ int trackspares = -1; /* spare sectors per track */ int cylspares = -1; /* spare sectors per cylinder */ int sectorsize; /* bytes/sector */ int realsectorsize; /* bytes/sector in hardware */ int rpm; /* revolutions/minute of drive */ int interleave; /* hardware sector interleave */ int trackskew = -1; /* sector 0 skew, per track */ int headswitch; /* head switch time, usec */ int trackseek; /* track-to-track seek, usec */ int fsize = 0; /* fragment size */ int bsize = 0; /* block size */ int cpg = DESCPG; /* cylinders/cylinder group */ int cpgflg; /* cylinders/cylinder group flag was given */ int minfree = MINFREE; /* free space threshold */ int opt = DEFAULTOPT; /* optimization preference (space or time) */ int density; /* number of bytes per inode */ int maxcontig = 0; /* max contiguous blocks to allocate */ int rotdelay = ROTDELAY; /* rotational delay between blocks */ int maxbpg; /* maximum blocks per file in a cyl group */ int nrpos = NRPOS; /* # of distinguished rotational positions */ int avgfilesize = AVFILESIZ;/* expected average file size */ int avgfilesperdir = AFPDIR;/* expected number of files per directory */ int bbsize = BBSIZE; /* boot block size */ int sbsize = SBSIZE; /* superblock size */ int mntflags = MNT_ASYNC; /* flags to be passed to mount */ int t_or_u_flag = 0; /* user has specified -t or -u */ u_long memleft; /* virtual memory available */ caddr_t membase; /* start address of memory based filesystem */ char *filename; #ifdef COMPAT char *disktype; int unlabeled; #endif char mfsdevname[256]; char *progname; static void usage(void); static void mfsintr(int signo); int main(int argc, char **argv) { int ch; struct disktab geom; /* disk geometry data */ struct stat st; struct statfs *mp; int fsi = -1, fso = -1, len, n, vflag; char *s1, *s2, *special; const char *opstring; #ifdef MFS struct vfsconf vfc; int error; #endif bzero(&geom, sizeof(geom)); vflag = 0; if ((progname = strrchr(*argv, '/'))) ++progname; else progname = *argv; if (strstr(progname, "mfs")) { mfs = 1; Nflag++; } opstring = mfs ? "NCF:T:Ua:b:c:d:e:f:g:h:i:m:o:s:v" : "NOS:T:Ua:b:c:d:e:f:g:h:i:k:l:m:n:o:p:r:s:t:u:vx:"; while ((ch = getopt(argc, argv, opstring)) != -1) { switch (ch) { case 'N': Nflag = 1; break; case 'O': Oflag = 1; break; case 'C': Cflag = 1; /* MFS only */ break; case 'S': if ((sectorsize = atoi(optarg)) <= 0) fatal("%s: bad sector size", optarg); break; #ifdef COMPAT case 'T': disktype = optarg; break; #endif case 'F': filename = optarg; break; case 'U': Uflag = 1; break; case 'a': if ((maxcontig = atoi(optarg)) <= 0) fatal("%s: bad maximum contiguous blocks", optarg); break; case 'b': if ((bsize = atoi(optarg)) < MINBSIZE) fatal("%s: bad block size", optarg); break; case 'c': if ((cpg = atoi(optarg)) <= 0) fatal("%s: bad cylinders/group", optarg); cpgflg++; break; case 'd': if ((rotdelay = atoi(optarg)) < 0) fatal("%s: bad rotational delay", optarg); break; case 'e': if ((maxbpg = atoi(optarg)) <= 0) fatal("%s: bad blocks per file in a cylinder group", optarg); break; case 'f': if ((fsize = atoi(optarg)) <= 0) fatal("%s: bad fragment size", optarg); break; case 'g': if ((avgfilesize = atoi(optarg)) <= 0) fatal("%s: bad average file size", optarg); break; case 'h': if ((avgfilesperdir = atoi(optarg)) <= 0) fatal("%s: bad average files per dir", optarg); break; case 'i': if ((density = atoi(optarg)) <= 0) fatal("%s: bad bytes per inode", optarg); break; case 'k': if ((trackskew = atoi(optarg)) < 0) fatal("%s: bad track skew", optarg); break; case 'l': if ((interleave = atoi(optarg)) <= 0) fatal("%s: bad interleave", optarg); break; case 'm': if ((minfree = atoi(optarg)) < 0 || minfree > 99) fatal("%s: bad free space %%", optarg); break; case 'n': if ((nrpos = atoi(optarg)) < 0) fatal("%s: bad rotational layout count", optarg); if (nrpos == 0) nrpos = 1; break; case 'o': if (mfs) getmntopts(optarg, mopts, &mntflags, 0); else { if (strcmp(optarg, "space") == 0) opt = FS_OPTSPACE; else if (strcmp(optarg, "time") == 0) opt = FS_OPTTIME; else fatal("%s: unknown optimization preference: use `space' or `time'", optarg); } break; case 'p': if ((trackspares = atoi(optarg)) < 0) fatal("%s: bad spare sectors per track", optarg); break; case 'r': if ((rpm = atoi(optarg)) <= 0) fatal("%s: bad revolutions/minute", optarg); break; case 's': if ((fssize = atoi(optarg)) <= 0) fatal("%s: bad file system size", optarg); break; case 't': t_or_u_flag++; if ((ntracks = atoi(optarg)) < 0) fatal("%s: bad total tracks", optarg); break; case 'u': t_or_u_flag++; if ((nsectors = atoi(optarg)) < 0) fatal("%s: bad sectors/track", optarg); break; case 'v': vflag = 1; break; case 'x': if ((cylspares = atoi(optarg)) < 0) fatal("%s: bad spare sectors per cylinder", optarg); break; case '?': default: usage(); } } argc -= optind; argv += optind; if (argc != 2 && (mfs || argc != 1)) usage(); special = argv[0]; /* Copy the NetBSD way of faking up a disk label */ if (mfs && !strcmp(special, "swap")) { /* * it's an MFS, mounted on "swap." fake up a label. * XXX XXX XXX */ fso = -1; /* XXX; normally done below. */ geom.d_media_blksize = 512; geom.d_nheads = 16; geom.d_secpertrack = 64; /* geom.d_ncylinders not used */ geom.d_secpercyl = 1024; geom.d_media_blocks = 16384; geom.d_rpm = 3600; geom.d_interleave = 1; goto havelabel; } /* * If we can't stat the device and the path is relative, try * prepending /dev. */ if (stat(special, &st) < 0 && special[0] && special[0] != '/') asprintf(&special, "/dev/%s", special); if (Nflag) { fso = -1; } else { fso = open(special, O_WRONLY); if (fso < 0) fatal("%s: %s", special, strerror(errno)); /* Bail if target special is mounted */ n = getmntinfo(&mp, MNT_NOWAIT); if (n == 0) fatal("%s: getmntinfo: %s", special, strerror(errno)); len = sizeof(_PATH_DEV) - 1; s1 = special; if (strncmp(_PATH_DEV, s1, len) == 0) s1 += len; while (--n >= 0) { s2 = mp->f_mntfromname; if (strncmp(_PATH_DEV, s2, len) == 0) { s2 += len - 1; *s2 = 'r'; } if (strcmp(s1, s2) == 0 || strcmp(s1, &s2[1]) == 0) fatal("%s is mounted on %s", special, mp->f_mntonname); ++mp; } } if (mfs && disktype != NULL) { struct disktab *dt; if ((dt = getdisktabbyname(disktype)) == NULL) fatal("%s: unknown disk type", disktype); geom = *dt; } else { struct partinfo pinfo; if (special[0] == 0) fatal("null special file name"); fsi = open(special, O_RDONLY); if (fsi < 0) fatal("%s: %s", special, strerror(errno)); if (fstat(fsi, &st) < 0) fatal("%s: %s", special, strerror(errno)); if ((st.st_mode & S_IFMT) != S_IFCHR && !mfs && !vflag) printf("%s: %s: not a character-special device\n", progname, special); #ifdef COMPAT if (!mfs && disktype == NULL) disktype = argv[1]; #endif if (ioctl(fsi, DIOCGPART, &pinfo) < 0) { if (!vflag) { fatal("%s: unable to retrieve geometry " "information", argv[0]); } /* * fake up geometry data */ geom.d_media_blksize = 512; geom.d_nheads = 16; geom.d_secpertrack = 64; geom.d_secpercyl = 1024; geom.d_media_blocks = st.st_size / geom.d_media_blksize; geom.d_media_size = geom.d_media_blocks * geom.d_media_blksize; /* geom.d_ncylinders not used */ } else { /* * extract geometry from pinfo */ geom.d_media_blksize = pinfo.media_blksize; geom.d_nheads = pinfo.d_nheads; geom.d_secpertrack = pinfo.d_secpertrack; geom.d_secpercyl = pinfo.d_secpercyl; /* geom.d_ncylinders not used */ geom.d_media_blocks = pinfo.media_blocks; geom.d_media_size = pinfo.media_size; } if (geom.d_media_blocks == 0 || geom.d_media_size == 0) { fatal("%s: is unavailable", argv[0]); } printf("%s: media size %6.2fMB\n", argv[0], geom.d_media_size / 1024.0 / 1024.0); if (geom.d_media_size / 512 >= 0x80000000ULL) fatal("%s: media size is too large for newfs to handle", argv[0]); } havelabel: if (fssize == 0) fssize = geom.d_media_blocks; if ((uint32_t)fssize > geom.d_media_blocks && !mfs) { fatal("%s: maximum file system size is %lld blocks", argv[0], geom.d_media_blocks); } if (rpm == 0) { rpm = geom.d_rpm; if (rpm <= 0) rpm = 3600; } if (ntracks == 0) { ntracks = geom.d_nheads; if (ntracks <= 0) fatal("%s: no default #tracks", argv[0]); } if (nsectors == 0) { nsectors = geom.d_secpertrack; if (nsectors <= 0) fatal("%s: no default #sectors/track", argv[0]); } if (sectorsize == 0) { sectorsize = geom.d_media_blksize; if (sectorsize <= 0) fatal("%s: no default sector size", argv[0]); } if (trackskew == -1) { trackskew = geom.d_trackskew; if (trackskew < 0) trackskew = 0; } if (interleave == 0) { interleave = geom.d_interleave; if (interleave <= 0) interleave = 1; } if (fsize == 0) fsize = MAX(DFL_FRAGSIZE, geom.d_media_blksize); if (bsize == 0) bsize = MIN(DFL_BLKSIZE, 8 * fsize); /* * Maxcontig sets the default for the maximum number of blocks * that may be allocated sequentially. With filesystem clustering * it is possible to allocate contiguous blocks up to the maximum * transfer size permitted by the controller or buffering. */ if (maxcontig == 0) maxcontig = MAX(1, MAXPHYS / bsize - 1); if (density == 0) density = NFPI * fsize; if (minfree < MINFREE && opt != FS_OPTSPACE) { fprintf(stderr, "Warning: changing optimization to space "); fprintf(stderr, "because minfree is less than %d%%\n", MINFREE); opt = FS_OPTSPACE; } if (trackspares == -1) trackspares = 0; nphyssectors = nsectors + trackspares; if (cylspares == -1) cylspares = 0; secpercyl = nsectors * ntracks - cylspares; /* * Only complain if -t or -u have been specified; the default * case (4096 sectors per cylinder) is intended to disagree * with the disklabel. */ if (t_or_u_flag && (uint32_t)secpercyl != geom.d_secpercyl) fprintf(stderr, "%s (%d) %s (%u)\n", "Warning: calculated sectors per cylinder", secpercyl, "disagrees with disk label", geom.d_secpercyl); if (maxbpg == 0) maxbpg = MAXBLKPG(bsize); headswitch = geom.d_headswitch; trackseek = geom.d_trkseek; realsectorsize = sectorsize; if (sectorsize != DEV_BSIZE) { /* XXX */ int secperblk = sectorsize / DEV_BSIZE; sectorsize = DEV_BSIZE; nsectors *= secperblk; nphyssectors *= secperblk; secpercyl *= secperblk; fssize *= secperblk; } if (mfs) { mfs_mtpt = argv[1]; if ( stat(mfs_mtpt, &mfs_mtstat) < 0 || !S_ISDIR(mfs_mtstat.st_mode) ) { fatal("mount point not dir: %s", mfs_mtpt); } } mkfs(special, fsi, fso, (Cflag && mfs) ? argv[1] : NULL); /* * NOTE: Newfs no longer accesses or attempts to update the * filesystem disklabel. */ if (!Nflag) close(fso); close(fsi); #ifdef MFS if (mfs) { struct mfs_args args; int udev; snprintf(mfsdevname, sizeof(mfsdevname), "/dev/mfs%d", getpid()); args.fspec = mfsdevname; args.export.ex_root = -2; if (mntflags & MNT_RDONLY) args.export.ex_flags = MNT_EXRDONLY; else args.export.ex_flags = 0; args.base = membase; args.size = fssize * sectorsize; error = getvfsbyname("mfs", &vfc); if (error && vfsisloadable("mfs")) { if (vfsload("mfs")) fatal("vfsload(mfs)"); endvfsent(); /* flush cache */ error = getvfsbyname("mfs", &vfc); } if (error) fatal("mfs filesystem not available"); udev = (253 << 8) | (getpid() & 255) | ((getpid() & ~0xFF) << 8); if (mknod(mfsdevname, S_IFCHR | 0700, udev) < 0) printf("Warning: unable to create %s\n", mfsdevname); signal(SIGINT, mfsintr); if (mount(vfc.vfc_name, argv[1], mntflags, &args) < 0) fatal("%s: %s", argv[1], strerror(errno)); signal(SIGINT, SIG_DFL); mfsintr(SIGINT); } #endif exit(0); } #ifdef MFS static void mfsintr(__unused int signo) { if (filename) munmap(membase, fssize * sectorsize); remove(mfsdevname); } #endif /*VARARGS*/ void fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (fcntl(STDERR_FILENO, F_GETFL) < 0) { openlog(progname, LOG_CONS, LOG_DAEMON); vsyslog(LOG_ERR, fmt, ap); closelog(); } else { vwarnx(fmt, ap); } va_end(ap); exit(1); /*NOTREACHED*/ } static void usage(void) { if (mfs) { fprintf(stderr, "usage: %s [ -fsoptions ] special-device mount-point\n", progname); } else fprintf(stderr, "usage: %s [ -fsoptions ] special-device%s\n", progname, #ifdef COMPAT " [device-type]"); #else ""); #endif fprintf(stderr, "where fsoptions are:\n"); fprintf(stderr, "\t-C (mfs) Copy the underlying filesystem to the MFS mount\n"); fprintf(stderr, "\t-N do not create file system, just print out parameters\n"); fprintf(stderr, "\t-O create a 4.3BSD format filesystem\n"); fprintf(stderr, "\t-S sector size\n"); #ifdef COMPAT fprintf(stderr, "\t-T disktype\n"); #endif fprintf(stderr, "\t-U enable soft updates\n"); fprintf(stderr, "\t-a maximum contiguous blocks\n"); fprintf(stderr, "\t-b block size\n"); fprintf(stderr, "\t-c cylinders/group\n"); fprintf(stderr, "\t-d rotational delay between contiguous blocks\n"); fprintf(stderr, "\t-e maximum blocks per file in a cylinder group\n"); fprintf(stderr, "\t-f frag size\n"); fprintf(stderr, "\t-g average file size\n"); fprintf(stderr, "\t-h average files per directory\n"); fprintf(stderr, "\t-i number of bytes per inode\n"); fprintf(stderr, "\t-k sector 0 skew, per track\n"); fprintf(stderr, "\t-l hardware sector interleave\n"); fprintf(stderr, "\t-m minimum free space %%\n"); fprintf(stderr, "\t-n number of distinguished rotational positions\n"); fprintf(stderr, "\t-o optimization preference (`space' or `time')\n"); fprintf(stderr, "\t-p spare sectors per track\n"); fprintf(stderr, "\t-s file system size (sectors)\n"); fprintf(stderr, "\t-r revolutions/minute\n"); fprintf(stderr, "\t-t tracks/cylinder\n"); fprintf(stderr, "\t-u sectors/track\n"); fprintf(stderr, "\t-v do not attempt to determine partition name from device name\n"); fprintf(stderr, "\t-x spare sectors per cylinder\n"); exit(1); }