/* drm_memory.h -- Memory management wrappers for DRM -*- linux-c -*- * Created: Thu Feb 4 14:00:34 1999 by faith@valinux.com * * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Rickard E. (Rik) Faith * Gareth Hughes * * $FreeBSD: src/sys/dev/drm/drm_memory.h,v 1.8.2.1 2003/04/26 07:05:28 anholt Exp $ * $DragonFly: src/sys/dev/drm/Attic/drm_memory.h,v 1.4 2004/05/13 19:44:32 dillon Exp $ */ #include "dev/drm/drmP.h" #if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) #define malloctype DRM(M_DRM) /* The macros conflicted in the MALLOC_DEFINE */ MALLOC_DEFINE(malloctype, "drm", "DRM Data Structures"); #undef malloctype #endif typedef struct drm_mem_stats { const char *name; int succeed_count; int free_count; int fail_count; unsigned long bytes_allocated; unsigned long bytes_freed; } drm_mem_stats_t; static DRM_SPINTYPE DRM(mem_lock); static unsigned long DRM(ram_available) = 0; /* In pages */ static unsigned long DRM(ram_used) = 0; static drm_mem_stats_t DRM(mem_stats)[] = { [DRM_MEM_DMA] = { "dmabufs" }, [DRM_MEM_SAREA] = { "sareas" }, [DRM_MEM_DRIVER] = { "driver" }, [DRM_MEM_MAGIC] = { "magic" }, [DRM_MEM_IOCTLS] = { "ioctltab" }, [DRM_MEM_MAPS] = { "maplist" }, [DRM_MEM_BUFS] = { "buflist" }, [DRM_MEM_SEGS] = { "seglist" }, [DRM_MEM_PAGES] = { "pagelist" }, [DRM_MEM_FILES] = { "files" }, [DRM_MEM_QUEUES] = { "queues" }, [DRM_MEM_CMDS] = { "commands" }, [DRM_MEM_MAPPINGS] = { "mappings" }, [DRM_MEM_BUFLISTS] = { "buflists" }, [DRM_MEM_AGPLISTS] = { "agplist" }, [DRM_MEM_SGLISTS] = { "sglist" }, [DRM_MEM_TOTALAGP] = { "totalagp" }, [DRM_MEM_BOUNDAGP] = { "boundagp" }, [DRM_MEM_CTXBITMAP] = { "ctxbitmap"}, [DRM_MEM_STUB] = { "stub" }, { NULL, 0, } /* Last entry must be null */ }; void DRM(mem_init)(void) { drm_mem_stats_t *mem; #ifdef __NetBSD__ malloc_type_attach(DRM(M_DRM)); #endif DRM_SPININIT(DRM(mem_lock), "drm memory"); for (mem = DRM(mem_stats); mem->name; ++mem) { mem->succeed_count = 0; mem->free_count = 0; mem->fail_count = 0; mem->bytes_allocated = 0; mem->bytes_freed = 0; } DRM(ram_available) = 0; /* si.totalram */ DRM(ram_used) = 0; } void DRM(mem_uninit)(void) { DRM_SPINUNINIT(DRM(mem_lock)); } #if defined(__DragonFly__) || defined(__FreeBSD__) /* drm_mem_info is called whenever a process reads /dev/drm/mem. */ static int DRM(_mem_info)(drm_mem_stats_t *stats, struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) { drm_mem_stats_t *pt; char buf[128]; int error; DRM_SYSCTL_PRINT(" total counts " " | outstanding \n"); DRM_SYSCTL_PRINT("type alloc freed fail bytes freed" " | allocs bytes\n\n"); DRM_SYSCTL_PRINT("%-9.9s %5d %5d %4d %10lu |\n", "system", 0, 0, 0, DRM(ram_available)); DRM_SYSCTL_PRINT("%-9.9s %5d %5d %4d %10lu |\n", "locked", 0, 0, 0, DRM(ram_used)); DRM_SYSCTL_PRINT("\n"); for (pt = stats; pt->name; pt++) { DRM_SYSCTL_PRINT("%-9.9s %5d %5d %4d %10lu %10lu | %6d %10ld\n", pt->name, pt->succeed_count, pt->free_count, pt->fail_count, pt->bytes_allocated, pt->bytes_freed, pt->succeed_count - pt->free_count, (long)pt->bytes_allocated - (long)pt->bytes_freed); } SYSCTL_OUT(req, "", 1); return 0; } int DRM(mem_info) DRM_SYSCTL_HANDLER_ARGS { int ret; drm_mem_stats_t *stats; stats = malloc(sizeof(DRM(mem_stats)), DRM(M_DRM), M_WAITOK); DRM_SPINLOCK(&DRM(mem_lock)); bcopy(DRM(mem_stats), stats, sizeof(DRM(mem_stats))); DRM_SPINUNLOCK(&DRM(mem_lock)); ret = DRM(_mem_info)(stats, oidp, arg1, arg2, req); free(stats, DRM(M_DRM)); return ret; } #endif /* __FreeBSD__ */ void *DRM(alloc)(size_t size, int area) { void *pt; if (!size) { DRM_MEM_ERROR(area, "Allocating 0 bytes\n"); return NULL; } if (!(pt = malloc(size, DRM(M_DRM), M_NOWAIT))) { DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[area].fail_count; DRM_SPINUNLOCK(&DRM(mem_lock)); return NULL; } DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[area].succeed_count; DRM(mem_stats)[area].bytes_allocated += size; DRM_SPINUNLOCK(&DRM(mem_lock)); return pt; } void *DRM(realloc)(void *oldpt, size_t oldsize, size_t size, int area) { void *pt; if (!(pt = DRM(alloc)(size, area))) return NULL; if (oldpt && oldsize) { memcpy(pt, oldpt, oldsize); DRM(free)(oldpt, oldsize, area); } return pt; } char *DRM(strdup)(const char *s, int area) { char *pt; int length = s ? strlen(s) : 0; if (!(pt = DRM(alloc)(length+1, area))) return NULL; strcpy(pt, s); return pt; } void DRM(strfree)(char *s, int area) { unsigned int size; if (!s) return; size = 1 + strlen(s); DRM(free)((void *)s, size, area); } void DRM(free)(void *pt, size_t size, int area) { int alloc_count; int free_count; if (!pt) DRM_MEM_ERROR(area, "Attempt to free NULL pointer\n"); else free(pt, DRM(M_DRM)); DRM_SPINLOCK(&DRM(mem_lock)); DRM(mem_stats)[area].bytes_freed += size; free_count = ++DRM(mem_stats)[area].free_count; alloc_count = DRM(mem_stats)[area].succeed_count; DRM_SPINUNLOCK(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(area, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } } void *DRM(ioremap)( drm_device_t *dev, drm_local_map_t *map ) { void *pt; if (!map->size) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Mapping 0 bytes at 0x%08lx\n", map->offset); return NULL; } #ifdef __NetBSD__ map->iot = dev->pa.pa_memt; #endif #if defined(__DragonFly__) || defined(__FreeBSD__) if (!(pt = pmap_mapdev(map->offset, map->size))) { #elif defined(__NetBSD__) if (bus_space_map(map->iot, map->offset, map->size, BUS_SPACE_MAP_LINEAR, &map->ioh)) { #endif DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].fail_count; DRM_SPINUNLOCK(&DRM(mem_lock)); return NULL; } #ifdef __NetBSD__ pt = bus_space_vaddr(map->iot, map->ioh); #endif DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count; DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_allocated += map->size; DRM_SPINUNLOCK(&DRM(mem_lock)); return pt; } /* unused so far */ #if 0 void *DRM(ioremap_nocache)(unsigned long offset, unsigned long size) { void *pt; if (!size) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Mapping 0 bytes at 0x%08lx\n", offset); return NULL; } /* FIXME FOR BSD */ if (!(pt = ioremap_nocache(offset, size))) { DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].fail_count; DRM_SPINUNLOCK(&DRM(mem_lock)); return NULL; } DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count; DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_allocated += size; DRM_SPINUNLOCK(&DRM(mem_lock)); return pt; } #endif void DRM(ioremapfree)(drm_local_map_t *map) { int alloc_count; int free_count; if (map->handle == NULL) DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Attempt to free NULL pointer\n"); else #if defined(__DragonFly__) || defined(__FreeBSD__) pmap_unmapdev((vm_offset_t) map->handle, map->size); #elif defined(__NetBSD__) bus_space_unmap(map->iot, map->ioh, map->size); #endif DRM_SPINLOCK(&DRM(mem_lock)); DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_freed += map->size; free_count = ++DRM(mem_stats)[DRM_MEM_MAPPINGS].free_count; alloc_count = DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count; DRM_SPINUNLOCK(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_MAPPINGS, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } } #if __REALLY_HAVE_AGP agp_memory *DRM(alloc_agp)(int pages, u32 type) { agp_memory *handle; if (!pages) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Allocating 0 pages\n"); return NULL; } if ((handle = DRM(agp_allocate_memory)(pages, type))) { DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_TOTALAGP].succeed_count; DRM(mem_stats)[DRM_MEM_TOTALAGP].bytes_allocated += pages << PAGE_SHIFT; DRM_SPINUNLOCK(&DRM(mem_lock)); return handle; } DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_TOTALAGP].fail_count; DRM_SPINUNLOCK(&DRM(mem_lock)); return NULL; } int DRM(free_agp)(agp_memory *handle, int pages) { int alloc_count; int free_count; if (!handle) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Attempt to free NULL AGP handle\n"); return DRM_ERR(EINVAL); } if (DRM(agp_free_memory)(handle)) { DRM_SPINLOCK(&DRM(mem_lock)); free_count = ++DRM(mem_stats)[DRM_MEM_TOTALAGP].free_count; alloc_count = DRM(mem_stats)[DRM_MEM_TOTALAGP].succeed_count; DRM(mem_stats)[DRM_MEM_TOTALAGP].bytes_freed += pages << PAGE_SHIFT; DRM_SPINUNLOCK(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } return 0; } return DRM_ERR(EINVAL); } int DRM(bind_agp)(agp_memory *handle, unsigned int start) { int retcode; device_t dev = DRM_AGP_FIND_DEVICE(); struct agp_memory_info info; if (!dev) return EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Attempt to bind NULL AGP handle\n"); return DRM_ERR(EINVAL); } if (!(retcode = DRM(agp_bind_memory)(handle, start))) { DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_BOUNDAGP].succeed_count; agp_memory_info(dev, handle, &info); DRM(mem_stats)[DRM_MEM_BOUNDAGP].bytes_allocated += info.ami_size; DRM_SPINUNLOCK(&DRM(mem_lock)); return DRM_ERR(0); } DRM_SPINLOCK(&DRM(mem_lock)); ++DRM(mem_stats)[DRM_MEM_BOUNDAGP].fail_count; DRM_SPINUNLOCK(&DRM(mem_lock)); return DRM_ERR(retcode); } int DRM(unbind_agp)(agp_memory *handle) { int alloc_count; int free_count; int retcode = EINVAL; device_t dev = DRM_AGP_FIND_DEVICE(); struct agp_memory_info info; if (!dev) return EINVAL; if (!handle) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Attempt to unbind NULL AGP handle\n"); return DRM_ERR(retcode); } agp_memory_info(dev, handle, &info); if ((retcode = DRM(agp_unbind_memory)(handle))) return DRM_ERR(retcode); DRM_SPINLOCK(&DRM(mem_lock)); free_count = ++DRM(mem_stats)[DRM_MEM_BOUNDAGP].free_count; alloc_count = DRM(mem_stats)[DRM_MEM_BOUNDAGP].succeed_count; DRM(mem_stats)[DRM_MEM_BOUNDAGP].bytes_freed += info.ami_size; DRM_SPINUNLOCK(&DRM(mem_lock)); if (free_count > alloc_count) { DRM_MEM_ERROR(DRM_MEM_BOUNDAGP, "Excess frees: %d frees, %d allocs\n", free_count, alloc_count); } return DRM_ERR(retcode); } #endif