.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.32 .\" .\" Standard preamble: .\" ======================================================================== .de Sh \" Subsection heading .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. | will give a .\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to .\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C' .\" expand to `' in nroff, nothing in troff, for use with C<>. .tr \(*W-|\(bv\*(Tr .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\} .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . nr % 0 . rr F .\} .\" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .hy 0 .if n .na .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "PKCS7_verify 3" .TH PKCS7_verify 3 "2007-10-12" "0.9.8f" "OpenSSL" .SH "NAME" PKCS7_verify \- verify a PKCS#7 signedData structure .SH "SYNOPSIS" .IX Header "SYNOPSIS" int PKCS7_verify(\s-1PKCS7\s0 *p7, \s-1STACK_OF\s0(X509) *certs, X509_STORE *store, \s-1BIO\s0 *indata, \s-1BIO\s0 *out, int flags); .PP \&\s-1STACK_OF\s0(X509) *PKCS7_get0_signers(\s-1PKCS7\s0 *p7, \s-1STACK_OF\s0(X509) *certs, int flags); .SH "DESCRIPTION" .IX Header "DESCRIPTION" \&\fIPKCS7_verify()\fR verifies a PKCS#7 signedData structure. \fBp7\fR is the \s-1PKCS7\s0 structure to verify. \fBcerts\fR is a set of certificates in which to search for the signer's certificate. \fBstore\fR is a trusted certficate store (used for chain verification). \fBindata\fR is the signed data if the content is not present in \fBp7\fR (that is it is detached). The content is written to \fBout\fR if it is not \s-1NULL\s0. .PP \&\fBflags\fR is an optional set of flags, which can be used to modify the verify operation. .PP \&\fIPKCS7_get0_signers()\fR retrieves the signer's certificates from \fBp7\fR, it does \&\fBnot\fR check their validity or whether any signatures are valid. The \fBcerts\fR and \fBflags\fR parameters have the same meanings as in \fIPKCS7_verify()\fR. .SH "VERIFY PROCESS" .IX Header "VERIFY PROCESS" Normally the verify process proceeds as follows. .PP Initially some sanity checks are performed on \fBp7\fR. The type of \fBp7\fR must be signedData. There must be at least one signature on the data and if the content is detached \fBindata\fR cannot be \fB\s-1NULL\s0\fR. .PP An attempt is made to locate all the signer's certificates, first looking in the \fBcerts\fR parameter (if it is not \fB\s-1NULL\s0\fR) and then looking in any certificates contained in the \fBp7\fR structure itself. If any signer's certificates cannot be located the operation fails. .PP Each signer's certificate is chain verified using the \fBsmimesign\fR purpose and the supplied trusted certificate store. Any internal certificates in the message are used as untrusted CAs. If any chain verify fails an error code is returned. .PP Finally the signed content is read (and written to \fBout\fR is it is not \s-1NULL\s0) and the signature's checked. .PP If all signature's verify correctly then the function is successful. .PP Any of the following flags (ored together) can be passed in the \fBflags\fR parameter to change the default verify behaviour. Only the flag \fB\s-1PKCS7_NOINTERN\s0\fR is meaningful to \fIPKCS7_get0_signers()\fR. .PP If \fB\s-1PKCS7_NOINTERN\s0\fR is set the certificates in the message itself are not searched when locating the signer's certificate. This means that all the signers certificates must be in the \fBcerts\fR parameter. .PP If the \fB\s-1PKCS7_TEXT\s0\fR flag is set \s-1MIME\s0 headers for type \fBtext/plain\fR are deleted from the content. If the content is not of type \fBtext/plain\fR then an error is returned. .PP If \fB\s-1PKCS7_NOVERIFY\s0\fR is set the signer's certificates are not chain verified. .PP If \fB\s-1PKCS7_NOCHAIN\s0\fR is set then the certificates contained in the message are not used as untrusted CAs. This means that the whole verify chain (apart from the signer's certificate) must be contained in the trusted store. .PP If \fB\s-1PKCS7_NOSIGS\s0\fR is set then the signatures on the data are not checked. .SH "NOTES" .IX Header "NOTES" One application of \fB\s-1PKCS7_NOINTERN\s0\fR is to only accept messages signed by a small number of certificates. The acceptable certificates would be passed in the \fBcerts\fR parameter. In this case if the signer is not one of the certificates supplied in \fBcerts\fR then the verify will fail because the signer cannot be found. .PP Care should be taken when modifying the default verify behaviour, for example setting \fBPKCS7_NOVERIFY|PKCS7_NOSIGS\fR will totally disable all verification and any signed message will be considered valid. This combination is however useful if one merely wishes to write the content to \fBout\fR and its validity is not considered important. .PP Chain verification should arguably be performed using the signing time rather than the current time. However since the signing time is supplied by the signer it cannot be trusted without additional evidence (such as a trusted timestamp). .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fIPKCS7_verify()\fR returns 1 for a successful verification and zero or a negative value if an error occurs. .PP \&\fIPKCS7_get0_signers()\fR returns all signers or \fB\s-1NULL\s0\fR if an error occurred. .PP The error can be obtained from \fIERR_get_error\fR\|(3) .SH "BUGS" .IX Header "BUGS" The trusted certificate store is not searched for the signers certificate, this is primarily due to the inadequacies of the current \fBX509_STORE\fR functionality. .PP The lack of single pass processing and need to hold all data in memory as mentioned in \fIPKCS7_sign()\fR also applies to \fIPKCS7_verify()\fR. .SH "SEE ALSO" .IX Header "SEE ALSO" \&\fIERR_get_error\fR\|(3), \fIPKCS7_sign\fR\|(3) .SH "HISTORY" .IX Header "HISTORY" \&\fIPKCS7_verify()\fR was added to OpenSSL 0.9.5