/* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.23 2009/02/05 17:43:12 imp Exp $ */ /* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */ /*- * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000, 2001 Angelos D. Keromytis * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptodev_if.h" static int32_t swcr_id; static struct swcr_data **swcr_sessions = NULL; static u_int32_t swcr_sesnum; u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN]; u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN]; static int swcr_encdec(struct cryptodesc *, struct swcr_data *, caddr_t, int); static int swcr_authcompute(struct cryptodesc *, struct swcr_data *, caddr_t, int); static int swcr_compdec(struct cryptodesc *, struct swcr_data *, caddr_t, int); static int swcr_freesession(device_t dev, u_int64_t tid); /* * Apply a symmetric encryption/decryption algorithm. */ static int swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, int flags) { unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat; unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN]; struct enc_xform *exf; int i, k, j, blks; exf = sw->sw_exf; blks = exf->blocksize; /* Check for non-padded data */ if (crd->crd_len % blks) return EINVAL; /* Initialize the IV */ if (crd->crd_flags & CRD_F_ENCRYPT) { /* IV explicitly provided ? */ if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, iv, blks); else karc4rand(iv, blks); /* Do we need to write the IV */ if (!(crd->crd_flags & CRD_F_IV_PRESENT)) crypto_copyback(flags, buf, crd->crd_inject, blks, iv); } else { /* Decryption */ /* IV explicitly provided ? */ if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, iv, blks); else { /* Get IV off buf */ crypto_copydata(flags, buf, crd->crd_inject, blks, iv); } } if (crd->crd_flags & CRD_F_KEY_EXPLICIT) { int error; if (sw->sw_kschedule) exf->zerokey(&(sw->sw_kschedule)); error = exf->setkey(&sw->sw_kschedule, crd->crd_key, crd->crd_klen / 8); if (error) return (error); } ivp = iv; if (flags & CRYPTO_F_IMBUF) { struct mbuf *m = (struct mbuf *) buf; /* Find beginning of data */ m = m_getptr(m, crd->crd_skip, &k); if (m == NULL) return EINVAL; i = crd->crd_len; while (i > 0) { /* * If there's insufficient data at the end of * an mbuf, we have to do some copying. */ if (m->m_len < k + blks && m->m_len != k) { m_copydata(m, k, blks, blk); /* Actual encryption/decryption */ if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, blk); /* * Keep encrypted block for XOR'ing * with next block */ bcopy(blk, iv, blks); ivp = iv; } else { /* decrypt */ /* * Keep encrypted block for XOR'ing * with next block */ if (ivp == iv) bcopy(blk, piv, blks); else bcopy(blk, iv, blks); exf->decrypt(sw->sw_kschedule, blk); /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; if (ivp == iv) bcopy(piv, iv, blks); else ivp = iv; } /* Copy back decrypted block */ m_copyback(m, k, blks, blk); /* Advance pointer */ m = m_getptr(m, k + blks, &k); if (m == NULL) return EINVAL; i -= blks; /* Could be done... */ if (i == 0) break; } /* Skip possibly empty mbufs */ if (k == m->m_len) { for (m = m->m_next; m && m->m_len == 0; m = m->m_next) ; k = 0; } /* Sanity check */ if (m == NULL) return EINVAL; /* * Warning: idat may point to garbage here, but * we only use it in the while() loop, only if * there are indeed enough data. */ idat = mtod(m, unsigned char *) + k; while (m->m_len >= k + blks && i > 0) { if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, idat); ivp = idat; } else { /* decrypt */ /* * Keep encrypted block to be used * in next block's processing. */ if (ivp == iv) bcopy(idat, piv, blks); else bcopy(idat, iv, blks); exf->decrypt(sw->sw_kschedule, idat); /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; if (ivp == iv) bcopy(piv, iv, blks); else ivp = iv; } idat += blks; k += blks; i -= blks; } } return 0; /* Done with mbuf encryption/decryption */ } else if (flags & CRYPTO_F_IOV) { struct uio *uio = (struct uio *) buf; struct iovec *iov; /* Find beginning of data */ iov = cuio_getptr(uio, crd->crd_skip, &k); if (iov == NULL) return EINVAL; i = crd->crd_len; while (i > 0) { /* * If there's insufficient data at the end of * an iovec, we have to do some copying. */ if (iov->iov_len < k + blks && iov->iov_len != k) { cuio_copydata(uio, k, blks, blk); /* Actual encryption/decryption */ if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, blk); /* * Keep encrypted block for XOR'ing * with next block */ bcopy(blk, iv, blks); ivp = iv; } else { /* decrypt */ /* * Keep encrypted block for XOR'ing * with next block */ if (ivp == iv) bcopy(blk, piv, blks); else bcopy(blk, iv, blks); exf->decrypt(sw->sw_kschedule, blk); /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; if (ivp == iv) bcopy(piv, iv, blks); else ivp = iv; } /* Copy back decrypted block */ cuio_copyback(uio, k, blks, blk); /* Advance pointer */ iov = cuio_getptr(uio, k + blks, &k); if (iov == NULL) return EINVAL; i -= blks; /* Could be done... */ if (i == 0) break; } /* * Warning: idat may point to garbage here, but * we only use it in the while() loop, only if * there are indeed enough data. */ idat = (char *)iov->iov_base + k; while (iov->iov_len >= k + blks && i > 0) { if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, idat); ivp = idat; } else { /* decrypt */ /* * Keep encrypted block to be used * in next block's processing. */ if (ivp == iv) bcopy(idat, piv, blks); else bcopy(idat, iv, blks); exf->decrypt(sw->sw_kschedule, idat); /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; if (ivp == iv) bcopy(piv, iv, blks); else ivp = iv; } idat += blks; k += blks; i -= blks; } if (k == iov->iov_len) { iov++; k = 0; } } return 0; /* Done with iovec encryption/decryption */ } else { /* contiguous buffer */ if (crd->crd_flags & CRD_F_ENCRYPT) { for (i = crd->crd_skip; i < crd->crd_skip + crd->crd_len; i += blks) { /* XOR with the IV/previous block, as appropriate. */ if (i == crd->crd_skip) for (k = 0; k < blks; k++) buf[i + k] ^= ivp[k]; else for (k = 0; k < blks; k++) buf[i + k] ^= buf[i + k - blks]; exf->encrypt(sw->sw_kschedule, buf + i); } } else { /* Decrypt */ /* * Start at the end, so we don't need to keep the encrypted * block as the IV for the next block. */ for (i = crd->crd_skip + crd->crd_len - blks; i >= crd->crd_skip; i -= blks) { exf->decrypt(sw->sw_kschedule, buf + i); /* XOR with the IV/previous block, as appropriate */ if (i == crd->crd_skip) for (k = 0; k < blks; k++) buf[i + k] ^= ivp[k]; else for (k = 0; k < blks; k++) buf[i + k] ^= buf[i + k - blks]; } } return 0; /* Done with contiguous buffer encryption/decryption */ } /* Unreachable */ return EINVAL; } static void swcr_authprepare(struct auth_hash *axf, struct swcr_data *sw, u_char *key, int klen) { int k; klen /= 8; switch (axf->type) { case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_NULL_HMAC: case CRYPTO_RIPEMD160_HMAC: for (k = 0; k < klen; k++) key[k] ^= HMAC_IPAD_VAL; axf->Init(sw->sw_ictx); axf->Update(sw->sw_ictx, key, klen); axf->Update(sw->sw_ictx, hmac_ipad_buffer, axf->blocksize - klen); for (k = 0; k < klen; k++) key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); axf->Init(sw->sw_octx); axf->Update(sw->sw_octx, key, klen); axf->Update(sw->sw_octx, hmac_opad_buffer, axf->blocksize - klen); for (k = 0; k < klen; k++) key[k] ^= HMAC_OPAD_VAL; break; case CRYPTO_MD5_KPDK: case CRYPTO_SHA1_KPDK: { /* We need a buffer that can hold an md5 and a sha1 result. */ u_char buf[SHA1_RESULTLEN]; sw->sw_klen = klen; bcopy(key, sw->sw_octx, klen); axf->Init(sw->sw_ictx); axf->Update(sw->sw_ictx, key, klen); axf->Final(buf, sw->sw_ictx); break; } default: kprintf("%s: CRD_F_KEY_EXPLICIT flag given, but algorithm %d " "doesn't use keys.\n", __func__, axf->type); } } /* * Compute keyed-hash authenticator. */ static int swcr_authcompute(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, int flags) { unsigned char aalg[HASH_MAX_LEN]; struct auth_hash *axf; union authctx ctx; int err; if (sw->sw_ictx == 0) return EINVAL; axf = sw->sw_axf; if (crd->crd_flags & CRD_F_KEY_EXPLICIT) swcr_authprepare(axf, sw, crd->crd_key, crd->crd_klen); bcopy(sw->sw_ictx, &ctx, axf->ctxsize); err = crypto_apply(flags, buf, crd->crd_skip, crd->crd_len, (int (*)(void *, void *, unsigned int))axf->Update, (caddr_t)&ctx); if (err) return err; switch (sw->sw_alg) { case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_RIPEMD160_HMAC: if (sw->sw_octx == NULL) return EINVAL; axf->Final(aalg, &ctx); bcopy(sw->sw_octx, &ctx, axf->ctxsize); axf->Update(&ctx, aalg, axf->hashsize); axf->Final(aalg, &ctx); break; case CRYPTO_MD5_KPDK: case CRYPTO_SHA1_KPDK: if (sw->sw_octx == NULL) return EINVAL; axf->Update(&ctx, sw->sw_octx, sw->sw_klen); axf->Final(aalg, &ctx); break; case CRYPTO_NULL_HMAC: axf->Final(aalg, &ctx); break; } /* Inject the authentication data */ crypto_copyback(flags, buf, crd->crd_inject, sw->sw_mlen == 0 ? axf->hashsize : sw->sw_mlen, aalg); return 0; } /* * Apply a compression/decompression algorithm */ static int swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, int flags) { u_int8_t *data, *out; struct comp_algo *cxf; int adj; u_int32_t result; cxf = sw->sw_cxf; /* We must handle the whole buffer of data in one time * then if there is not all the data in the mbuf, we must * copy in a buffer. */ data = kmalloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT); if (data == NULL) return (EINVAL); crypto_copydata(flags, buf, crd->crd_skip, crd->crd_len, data); if (crd->crd_flags & CRD_F_COMP) result = cxf->compress(data, crd->crd_len, &out); else result = cxf->decompress(data, crd->crd_len, &out); kfree(data, M_CRYPTO_DATA); if (result == 0) return EINVAL; /* Copy back the (de)compressed data. m_copyback is * extending the mbuf as necessary. */ sw->sw_size = result; /* Check the compressed size when doing compression */ if (crd->crd_flags & CRD_F_COMP) { if (result > crd->crd_len) { /* Compression was useless, we lost time */ kfree(out, M_CRYPTO_DATA); return 0; } } crypto_copyback(flags, buf, crd->crd_skip, result, out); if (result < crd->crd_len) { adj = result - crd->crd_len; if (flags & CRYPTO_F_IMBUF) { adj = result - crd->crd_len; m_adj((struct mbuf *)buf, adj); } else if (flags & CRYPTO_F_IOV) { struct uio *uio = (struct uio *)buf; int ind; adj = crd->crd_len - result; ind = uio->uio_iovcnt - 1; while (adj > 0 && ind >= 0) { if (adj < uio->uio_iov[ind].iov_len) { uio->uio_iov[ind].iov_len -= adj; break; } adj -= uio->uio_iov[ind].iov_len; uio->uio_iov[ind].iov_len = 0; ind--; uio->uio_iovcnt--; } } } kfree(out, M_CRYPTO_DATA); return 0; } /* * Generate a new software session. */ static int swcr_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri) { struct swcr_data **swd; struct auth_hash *axf; struct enc_xform *txf; struct comp_algo *cxf; u_int32_t i; int error; if (sid == NULL || cri == NULL) return EINVAL; if (swcr_sessions) { for (i = 1; i < swcr_sesnum; i++) if (swcr_sessions[i] == NULL) break; } else i = 1; /* NB: to silence compiler warning */ if (swcr_sessions == NULL || i == swcr_sesnum) { if (swcr_sessions == NULL) { i = 1; /* We leave swcr_sessions[0] empty */ swcr_sesnum = CRYPTO_SW_SESSIONS; } else swcr_sesnum *= 2; swd = kmalloc(swcr_sesnum * sizeof(struct swcr_data *), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (swd == NULL) { /* Reset session number */ if (swcr_sesnum == CRYPTO_SW_SESSIONS) swcr_sesnum = 0; else swcr_sesnum /= 2; return ENOBUFS; } /* Copy existing sessions */ if (swcr_sessions != NULL) { bcopy(swcr_sessions, swd, (swcr_sesnum / 2) * sizeof(struct swcr_data *)); kfree(swcr_sessions, M_CRYPTO_DATA); } swcr_sessions = swd; } swd = &swcr_sessions[i]; *sid = i; while (cri) { *swd = kmalloc(sizeof(struct swcr_data), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (*swd == NULL) { swcr_freesession(dev, i); return ENOBUFS; } switch (cri->cri_alg) { case CRYPTO_DES_CBC: txf = &enc_xform_des; goto enccommon; case CRYPTO_3DES_CBC: txf = &enc_xform_3des; goto enccommon; case CRYPTO_BLF_CBC: txf = &enc_xform_blf; goto enccommon; case CRYPTO_CAST_CBC: txf = &enc_xform_cast5; goto enccommon; case CRYPTO_SKIPJACK_CBC: txf = &enc_xform_skipjack; goto enccommon; case CRYPTO_RIJNDAEL128_CBC: txf = &enc_xform_rijndael128; goto enccommon; case CRYPTO_CAMELLIA_CBC: txf = &enc_xform_camellia; goto enccommon; case CRYPTO_NULL_CBC: txf = &enc_xform_null; goto enccommon; enccommon: if (cri->cri_key != NULL) { error = txf->setkey(&((*swd)->sw_kschedule), cri->cri_key, cri->cri_klen / 8); if (error) { swcr_freesession(dev, i); return error; } } (*swd)->sw_exf = txf; break; case CRYPTO_MD5_HMAC: axf = &auth_hash_hmac_md5; goto authcommon; case CRYPTO_SHA1_HMAC: axf = &auth_hash_hmac_sha1; goto authcommon; case CRYPTO_SHA2_256_HMAC: axf = &auth_hash_hmac_sha2_256; goto authcommon; case CRYPTO_SHA2_384_HMAC: axf = &auth_hash_hmac_sha2_384; goto authcommon; case CRYPTO_SHA2_512_HMAC: axf = &auth_hash_hmac_sha2_512; goto authcommon; case CRYPTO_NULL_HMAC: axf = &auth_hash_null; goto authcommon; case CRYPTO_RIPEMD160_HMAC: axf = &auth_hash_hmac_ripemd_160; authcommon: (*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_ictx == NULL) { swcr_freesession(dev, i); return ENOBUFS; } (*swd)->sw_octx = kmalloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_octx == NULL) { swcr_freesession(dev, i); return ENOBUFS; } if (cri->cri_key != NULL) { swcr_authprepare(axf, *swd, cri->cri_key, cri->cri_klen); } (*swd)->sw_mlen = cri->cri_mlen; (*swd)->sw_axf = axf; break; case CRYPTO_MD5_KPDK: axf = &auth_hash_key_md5; goto auth2common; case CRYPTO_SHA1_KPDK: axf = &auth_hash_key_sha1; auth2common: (*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_ictx == NULL) { swcr_freesession(dev, i); return ENOBUFS; } (*swd)->sw_octx = kmalloc(cri->cri_klen / 8, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_octx == NULL) { swcr_freesession(dev, i); return ENOBUFS; } /* Store the key so we can "append" it to the payload */ if (cri->cri_key != NULL) { swcr_authprepare(axf, *swd, cri->cri_key, cri->cri_klen); } (*swd)->sw_mlen = cri->cri_mlen; (*swd)->sw_axf = axf; break; #ifdef notdef case CRYPTO_MD5: axf = &auth_hash_md5; goto auth3common; case CRYPTO_SHA1: axf = &auth_hash_sha1; auth3common: (*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_ictx == NULL) { swcr_freesession(dev, i); return ENOBUFS; } axf->Init((*swd)->sw_ictx); (*swd)->sw_mlen = cri->cri_mlen; (*swd)->sw_axf = axf; break; #endif case CRYPTO_DEFLATE_COMP: cxf = &comp_algo_deflate; (*swd)->sw_cxf = cxf; break; default: swcr_freesession(dev, i); return EINVAL; } (*swd)->sw_alg = cri->cri_alg; cri = cri->cri_next; swd = &((*swd)->sw_next); } return 0; } /* * Free a session. */ static int swcr_freesession(device_t dev, u_int64_t tid) { struct swcr_data *swd; struct enc_xform *txf; struct auth_hash *axf; struct comp_algo *cxf; u_int32_t sid = CRYPTO_SESID2LID(tid); if (sid > swcr_sesnum || swcr_sessions == NULL || swcr_sessions[sid] == NULL) return EINVAL; /* Silently accept and return */ if (sid == 0) return 0; while ((swd = swcr_sessions[sid]) != NULL) { swcr_sessions[sid] = swd->sw_next; switch (swd->sw_alg) { case CRYPTO_DES_CBC: case CRYPTO_3DES_CBC: case CRYPTO_BLF_CBC: case CRYPTO_CAST_CBC: case CRYPTO_SKIPJACK_CBC: case CRYPTO_RIJNDAEL128_CBC: case CRYPTO_CAMELLIA_CBC: case CRYPTO_NULL_CBC: txf = swd->sw_exf; if (swd->sw_kschedule) txf->zerokey(&(swd->sw_kschedule)); break; case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_NULL_HMAC: axf = swd->sw_axf; if (swd->sw_ictx) { bzero(swd->sw_ictx, axf->ctxsize); kfree(swd->sw_ictx, M_CRYPTO_DATA); } if (swd->sw_octx) { bzero(swd->sw_octx, axf->ctxsize); kfree(swd->sw_octx, M_CRYPTO_DATA); } break; case CRYPTO_MD5_KPDK: case CRYPTO_SHA1_KPDK: axf = swd->sw_axf; if (swd->sw_ictx) { bzero(swd->sw_ictx, axf->ctxsize); kfree(swd->sw_ictx, M_CRYPTO_DATA); } if (swd->sw_octx) { bzero(swd->sw_octx, swd->sw_klen); kfree(swd->sw_octx, M_CRYPTO_DATA); } break; case CRYPTO_MD5: case CRYPTO_SHA1: axf = swd->sw_axf; if (swd->sw_ictx) kfree(swd->sw_ictx, M_CRYPTO_DATA); break; case CRYPTO_DEFLATE_COMP: cxf = swd->sw_cxf; break; } //FREE(swd, M_CRYPTO_DATA); kfree(swd, M_CRYPTO_DATA); } return 0; } /* * Process a software request. */ static int swcr_process(device_t dev, struct cryptop *crp, int hint) { struct cryptodesc *crd; struct swcr_data *sw; u_int32_t lid; /* Sanity check */ if (crp == NULL) return EINVAL; if (crp->crp_desc == NULL || crp->crp_buf == NULL) { crp->crp_etype = EINVAL; goto done; } lid = crp->crp_sid & 0xffffffff; if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) { crp->crp_etype = ENOENT; goto done; } /* Go through crypto descriptors, processing as we go */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { /* * Find the crypto context. * * XXX Note that the logic here prevents us from having * XXX the same algorithm multiple times in a session * XXX (or rather, we can but it won't give us the right * XXX results). To do that, we'd need some way of differentiating * XXX between the various instances of an algorithm (so we can * XXX locate the correct crypto context). */ for (sw = swcr_sessions[lid]; sw && sw->sw_alg != crd->crd_alg; sw = sw->sw_next) ; /* No such context ? */ if (sw == NULL) { crp->crp_etype = EINVAL; goto done; } switch (sw->sw_alg) { case CRYPTO_DES_CBC: case CRYPTO_3DES_CBC: case CRYPTO_BLF_CBC: case CRYPTO_CAST_CBC: case CRYPTO_SKIPJACK_CBC: case CRYPTO_RIJNDAEL128_CBC: case CRYPTO_CAMELLIA_CBC: if ((crp->crp_etype = swcr_encdec(crd, sw, crp->crp_buf, crp->crp_flags)) != 0) goto done; break; case CRYPTO_NULL_CBC: crp->crp_etype = 0; break; case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_NULL_HMAC: case CRYPTO_MD5_KPDK: case CRYPTO_SHA1_KPDK: case CRYPTO_MD5: case CRYPTO_SHA1: if ((crp->crp_etype = swcr_authcompute(crd, sw, crp->crp_buf, crp->crp_flags)) != 0) goto done; break; case CRYPTO_DEFLATE_COMP: if ((crp->crp_etype = swcr_compdec(crd, sw, crp->crp_buf, crp->crp_flags)) != 0) goto done; else crp->crp_olen = (int)sw->sw_size; break; default: /* Unknown/unsupported algorithm */ crp->crp_etype = EINVAL; goto done; } } done: crypto_done(crp); return 0; } static void swcr_identify(driver_t *drv, device_t parent) { /* NB: order 10 is so we get attached after h/w devices */ /* XXX: wouldn't bet about this BUS_ADD_CHILD correctness */ if (device_find_child(parent, "cryptosoft", -1) == NULL && BUS_ADD_CHILD(parent, parent, 10, "cryptosoft", -1) == 0) panic("cryptosoft: could not attach"); } static int swcr_probe(device_t dev) { device_set_desc(dev, "software crypto"); return (0); } static int swcr_attach(device_t dev) { memset(hmac_ipad_buffer, HMAC_IPAD_VAL, HMAC_MAX_BLOCK_LEN); memset(hmac_opad_buffer, HMAC_OPAD_VAL, HMAC_MAX_BLOCK_LEN); swcr_id = crypto_get_driverid(dev, CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC); if (swcr_id < 0) { device_printf(dev, "cannot initialize!"); return ENOMEM; } #define REGISTER(alg) \ crypto_register(swcr_id, alg, 0,0) REGISTER(CRYPTO_DES_CBC); REGISTER(CRYPTO_3DES_CBC); REGISTER(CRYPTO_BLF_CBC); REGISTER(CRYPTO_CAST_CBC); REGISTER(CRYPTO_SKIPJACK_CBC); REGISTER(CRYPTO_NULL_CBC); REGISTER(CRYPTO_MD5_HMAC); REGISTER(CRYPTO_SHA1_HMAC); REGISTER(CRYPTO_SHA2_256_HMAC); REGISTER(CRYPTO_SHA2_384_HMAC); REGISTER(CRYPTO_SHA2_512_HMAC); REGISTER(CRYPTO_RIPEMD160_HMAC); REGISTER(CRYPTO_NULL_HMAC); REGISTER(CRYPTO_MD5_KPDK); REGISTER(CRYPTO_SHA1_KPDK); REGISTER(CRYPTO_MD5); REGISTER(CRYPTO_SHA1); REGISTER(CRYPTO_RIJNDAEL128_CBC); REGISTER(CRYPTO_CAMELLIA_CBC); REGISTER(CRYPTO_DEFLATE_COMP); #undef REGISTER return 0; } static int swcr_detach(device_t dev) { crypto_unregister_all(swcr_id); if (swcr_sessions != NULL) kfree(swcr_sessions, M_CRYPTO_DATA); return 0; } static device_method_t swcr_methods[] = { DEVMETHOD(device_identify, swcr_identify), DEVMETHOD(device_probe, swcr_probe), DEVMETHOD(device_attach, swcr_attach), DEVMETHOD(device_detach, swcr_detach), DEVMETHOD(cryptodev_newsession, swcr_newsession), DEVMETHOD(cryptodev_freesession,swcr_freesession), DEVMETHOD(cryptodev_process, swcr_process), {0, 0}, }; static driver_t swcr_driver = { "cryptosoft", swcr_methods, 0, /* NB: no softc */ }; static devclass_t swcr_devclass; /* * NB: We explicitly reference the crypto module so we * get the necessary ordering when built as a loadable * module. This is required because we bundle the crypto * module code together with the cryptosoft driver (otherwise * normal module dependencies would handle things). */ extern int crypto_modevent(struct module *, int, void *); /* XXX where to attach */ DRIVER_MODULE(cryptosoft, nexus, swcr_driver, swcr_devclass, crypto_modevent,0); MODULE_VERSION(cryptosoft, 1); MODULE_DEPEND(cryptosoft, crypto, 1, 1, 1);