/* $NetBSD: ohci.c,v 1.64 2000/01/19 00:23:58 augustss Exp $ */ /* $FreeBSD: src/sys/dev/usb/ohci.c,v 1.39.2.9 2003/03/05 17:09:44 shiba Exp $ */ /* $DragonFly: src/sys/bus/usb/ohci.c,v 1.3 2003/06/29 03:28:41 dillon Exp $ */ /* * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB Open Host Controller driver. * * OHCI spec: ftp://ftp.compaq.com/pub/supportinformation/papers/hcir1_0a.exe * USB spec: http://www.usb.org/developers/data/usb11.pdf */ #include #include #include #if defined(__NetBSD__) || defined(__OpenBSD__) #include #include #include #elif defined(__FreeBSD__) #include #include #include #include #if defined(DIAGNOSTIC) && defined(__i386__) && defined(__FreeBSD__) #include #endif #endif #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__FreeBSD__) #include #define delay(d) DELAY(d) #endif #if defined(__OpenBSD__) struct cfdriver ohci_cd = { NULL, "ohci", DV_DULL }; #endif #ifdef USB_DEBUG #define DPRINTF(x) if (ohcidebug) logprintf x #define DPRINTFN(n,x) if (ohcidebug>(n)) logprintf x int ohcidebug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, ohci, CTLFLAG_RW, 0, "USB ohci"); SYSCTL_INT(_hw_usb_ohci, OID_AUTO, debug, CTLFLAG_RW, &ohcidebug, 0, "ohci debug level"); #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * The OHCI controller is little endian, so on big endian machines * the data strored in memory needs to be swapped. */ #if BYTE_ORDER == BIG_ENDIAN #define LE(x) (bswap32(x)) #else #define LE(x) (x) #endif struct ohci_pipe; Static ohci_soft_ed_t *ohci_alloc_sed(ohci_softc_t *); Static void ohci_free_sed(ohci_softc_t *, ohci_soft_ed_t *); Static ohci_soft_td_t *ohci_alloc_std(ohci_softc_t *); Static void ohci_free_std(ohci_softc_t *, ohci_soft_td_t *); Static ohci_soft_itd_t *ohci_alloc_sitd(ohci_softc_t *); Static void ohci_free_sitd(ohci_softc_t *,ohci_soft_itd_t *); #if 0 Static void ohci_free_std_chain(ohci_softc_t *, ohci_soft_td_t *, ohci_soft_td_t *); #endif Static usbd_status ohci_alloc_std_chain(struct ohci_pipe *, ohci_softc_t *, int, int, u_int16_t, usb_dma_t *, ohci_soft_td_t *, ohci_soft_td_t **); #if defined(__NetBSD__) || defined(__OpenBSD__) Static void ohci_shutdown(void *v); Static void ohci_power(int, void *); #endif Static usbd_status ohci_open(usbd_pipe_handle); Static void ohci_poll(struct usbd_bus *); Static void ohci_waitintr(ohci_softc_t *, usbd_xfer_handle); Static void ohci_rhsc(ohci_softc_t *, usbd_xfer_handle); Static void ohci_process_done(ohci_softc_t *, ohci_physaddr_t); Static usbd_status ohci_device_request(usbd_xfer_handle xfer); Static void ohci_add_ed(ohci_soft_ed_t *, ohci_soft_ed_t *); Static void ohci_rem_ed(ohci_soft_ed_t *, ohci_soft_ed_t *); Static void ohci_hash_add_td(ohci_softc_t *, ohci_soft_td_t *); Static void ohci_hash_rem_td(ohci_softc_t *, ohci_soft_td_t *); Static ohci_soft_td_t *ohci_hash_find_td(ohci_softc_t *, ohci_physaddr_t); Static usbd_status ohci_setup_isoc(usbd_pipe_handle pipe); Static void ohci_device_isoc_enter(usbd_xfer_handle); Static usbd_status ohci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t); Static void ohci_freem(struct usbd_bus *, usb_dma_t *); Static usbd_xfer_handle ohci_allocx(struct usbd_bus *); Static void ohci_freex(struct usbd_bus *, usbd_xfer_handle); Static usbd_status ohci_root_ctrl_transfer(usbd_xfer_handle); Static usbd_status ohci_root_ctrl_start(usbd_xfer_handle); Static void ohci_root_ctrl_abort(usbd_xfer_handle); Static void ohci_root_ctrl_close(usbd_pipe_handle); Static usbd_status ohci_root_intr_transfer(usbd_xfer_handle); Static usbd_status ohci_root_intr_start(usbd_xfer_handle); Static void ohci_root_intr_abort(usbd_xfer_handle); Static void ohci_root_intr_close(usbd_pipe_handle); Static void ohci_root_intr_done (usbd_xfer_handle); Static usbd_status ohci_device_ctrl_transfer(usbd_xfer_handle); Static usbd_status ohci_device_ctrl_start(usbd_xfer_handle); Static void ohci_device_ctrl_abort(usbd_xfer_handle); Static void ohci_device_ctrl_close(usbd_pipe_handle); Static void ohci_device_ctrl_done (usbd_xfer_handle); Static usbd_status ohci_device_bulk_transfer(usbd_xfer_handle); Static usbd_status ohci_device_bulk_start(usbd_xfer_handle); Static void ohci_device_bulk_abort(usbd_xfer_handle); Static void ohci_device_bulk_close(usbd_pipe_handle); Static void ohci_device_bulk_done (usbd_xfer_handle); Static usbd_status ohci_device_intr_transfer(usbd_xfer_handle); Static usbd_status ohci_device_intr_start(usbd_xfer_handle); Static void ohci_device_intr_abort(usbd_xfer_handle); Static void ohci_device_intr_close(usbd_pipe_handle); Static void ohci_device_intr_done (usbd_xfer_handle); Static usbd_status ohci_device_isoc_transfer(usbd_xfer_handle); Static usbd_status ohci_device_isoc_start(usbd_xfer_handle); Static void ohci_device_isoc_abort(usbd_xfer_handle); Static void ohci_device_isoc_close(usbd_pipe_handle); Static void ohci_device_isoc_done (usbd_xfer_handle); Static usbd_status ohci_device_setintr(ohci_softc_t *sc, struct ohci_pipe *pipe, int ival); Static int ohci_str(usb_string_descriptor_t *, int, char *); Static void ohci_timeout(void *); Static void ohci_rhsc_able(ohci_softc_t *, int); Static void ohci_close_pipe(usbd_pipe_handle pipe, ohci_soft_ed_t *head); Static void ohci_abort_xfer(usbd_xfer_handle xfer, usbd_status status); Static void ohci_abort_xfer_end(void *); Static void ohci_device_clear_toggle(usbd_pipe_handle pipe); Static void ohci_noop(usbd_pipe_handle pipe); #ifdef USB_DEBUG Static void ohci_dumpregs(ohci_softc_t *); Static void ohci_dump_tds(ohci_soft_td_t *); Static void ohci_dump_td(ohci_soft_td_t *); Static void ohci_dump_ed(ohci_soft_ed_t *); #endif #define OWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)) #define OREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r)) #define OREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r)) /* Reverse the bits in a value 0 .. 31 */ Static u_int8_t revbits[OHCI_NO_INTRS] = { 0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0c, 0x1c, 0x02, 0x12, 0x0a, 0x1a, 0x06, 0x16, 0x0e, 0x1e, 0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0d, 0x1d, 0x03, 0x13, 0x0b, 0x1b, 0x07, 0x17, 0x0f, 0x1f }; struct ohci_pipe { struct usbd_pipe pipe; ohci_soft_ed_t *sed; union { ohci_soft_td_t *td; ohci_soft_itd_t *itd; } tail; /* Info needed for different pipe kinds. */ union { /* Control pipe */ struct { usb_dma_t reqdma; u_int length; ohci_soft_td_t *setup, *data, *stat; } ctl; /* Interrupt pipe */ struct { int nslots; int pos; } intr; /* Bulk pipe */ struct { u_int length; int isread; } bulk; /* Iso pipe */ struct iso { int next, inuse; } iso; } u; }; #define OHCI_INTR_ENDPT 1 Static struct usbd_bus_methods ohci_bus_methods = { ohci_open, ohci_poll, ohci_allocm, ohci_freem, ohci_allocx, ohci_freex, }; Static struct usbd_pipe_methods ohci_root_ctrl_methods = { ohci_root_ctrl_transfer, ohci_root_ctrl_start, ohci_root_ctrl_abort, ohci_root_ctrl_close, ohci_noop, 0, }; Static struct usbd_pipe_methods ohci_root_intr_methods = { ohci_root_intr_transfer, ohci_root_intr_start, ohci_root_intr_abort, ohci_root_intr_close, ohci_noop, ohci_root_intr_done, }; Static struct usbd_pipe_methods ohci_device_ctrl_methods = { ohci_device_ctrl_transfer, ohci_device_ctrl_start, ohci_device_ctrl_abort, ohci_device_ctrl_close, ohci_noop, ohci_device_ctrl_done, }; Static struct usbd_pipe_methods ohci_device_intr_methods = { ohci_device_intr_transfer, ohci_device_intr_start, ohci_device_intr_abort, ohci_device_intr_close, ohci_device_clear_toggle, ohci_device_intr_done, }; Static struct usbd_pipe_methods ohci_device_bulk_methods = { ohci_device_bulk_transfer, ohci_device_bulk_start, ohci_device_bulk_abort, ohci_device_bulk_close, ohci_device_clear_toggle, ohci_device_bulk_done, }; Static struct usbd_pipe_methods ohci_device_isoc_methods = { ohci_device_isoc_transfer, ohci_device_isoc_start, ohci_device_isoc_abort, ohci_device_isoc_close, ohci_noop, ohci_device_isoc_done, }; #if defined(__NetBSD__) || defined(__OpenBSD__) int ohci_activate(device_ptr_t self, enum devact act) { struct ohci_softc *sc = (struct ohci_softc *)self; int rv = 0; switch (act) { case DVACT_ACTIVATE: return (EOPNOTSUPP); break; case DVACT_DEACTIVATE: if (sc->sc_child != NULL) rv = config_deactivate(sc->sc_child); break; } return (rv); } int ohci_detach(struct ohci_softc *sc, int flags) { int rv = 0; if (sc->sc_child != NULL) rv = config_detach(sc->sc_child, flags); if (rv != 0) return (rv); #if defined(__NetBSD__) powerhook_disestablish(sc->sc_powerhook); shutdownhook_disestablish(sc->sc_shutdownhook); #endif /* free data structures XXX */ return (rv); } #endif ohci_soft_ed_t * ohci_alloc_sed(ohci_softc_t *sc) { ohci_soft_ed_t *sed; usbd_status err; int i, offs; usb_dma_t dma; if (sc->sc_freeeds == NULL) { DPRINTFN(2, ("ohci_alloc_sed: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, OHCI_SED_SIZE * OHCI_SED_CHUNK, OHCI_ED_ALIGN, &dma); if (err) return (0); for(i = 0; i < OHCI_SED_CHUNK; i++) { offs = i * OHCI_SED_SIZE; sed = (ohci_soft_ed_t *)((char *)KERNADDR(&dma, offs)); sed->physaddr = DMAADDR(&dma, offs); sed->next = sc->sc_freeeds; sc->sc_freeeds = sed; } } sed = sc->sc_freeeds; sc->sc_freeeds = sed->next; memset(&sed->ed, 0, sizeof(ohci_ed_t)); sed->next = 0; return (sed); } void ohci_free_sed(ohci_softc_t *sc, ohci_soft_ed_t *sed) { sed->next = sc->sc_freeeds; sc->sc_freeeds = sed; } ohci_soft_td_t * ohci_alloc_std(ohci_softc_t *sc) { ohci_soft_td_t *std; usbd_status err; int i, offs; usb_dma_t dma; int s; if (sc->sc_freetds == NULL) { DPRINTFN(2, ("ohci_alloc_std: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, OHCI_STD_SIZE * OHCI_STD_CHUNK, OHCI_TD_ALIGN, &dma); if (err) return (0); for(i = 0; i < OHCI_STD_CHUNK; i++) { offs = i * OHCI_STD_SIZE; std = (ohci_soft_td_t *)((char *)KERNADDR(&dma, offs)); std->physaddr = DMAADDR(&dma, offs); std->nexttd = sc->sc_freetds; sc->sc_freetds = std; } } std = sc->sc_freetds; sc->sc_freetds = std->nexttd; memset(&std->td, 0, sizeof(ohci_td_t)); std->nexttd = NULL; s = splusb(); ohci_hash_add_td(sc, std); splx(s); return (std); } void ohci_free_std(ohci_softc_t *sc, ohci_soft_td_t *std) { int s; s = splusb(); ohci_hash_rem_td(sc, std); splx(s); std->nexttd = sc->sc_freetds; sc->sc_freetds = std; } usbd_status ohci_alloc_std_chain(struct ohci_pipe *opipe, ohci_softc_t *sc, int len, int rd, u_int16_t flags, usb_dma_t *dma, ohci_soft_td_t *std, ohci_soft_td_t **rstd) { ohci_soft_td_t *next, *cur; ohci_physaddr_t dataphys, dataphysend; u_int32_t intr, tdflags; int offset = 0; int curlen; DPRINTFN(len < 4096,("ohci_alloc_std_chain: start len=%d\n", len)); cur = std; dataphysend = OHCI_PAGE(DMAADDR(dma, len - 1)); tdflags = (rd ? OHCI_TD_IN : OHCI_TD_OUT) | OHCI_TD_NOCC | OHCI_TD_TOGGLE_CARRY | (flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0); for (;;) { next = ohci_alloc_std(sc); if (next == 0) goto nomem; dataphys = DMAADDR(dma, offset); /* The OHCI hardware can handle at most one page crossing. */ #if defined(__NetBSD__) || defined(__OpenBSD__) if (OHCI_PAGE(dataphys) == dataphysend || OHCI_PAGE(dataphys) + OHCI_PAGE_SIZE == dataphysend) #elif defined(__FreeBSD__) /* XXX This is pretty broken: Because we do not allocate * a contiguous buffer (contiguous in physical pages) we * can only transfer one page in one go. * So check whether the start and end of the buffer are on * the same page. */ if (OHCI_PAGE(dataphys) == dataphysend) #endif { /* we can handle it in this TD */ curlen = len; } else { /* XXX The calculation below is wrong and could * result in a packet that is not a multiple of the * MaxPacketSize in the case where the buffer does not * start on an appropriate address (like for example in * the case of an mbuf cluster). You'll get an early * short packet. */ #if defined(__NetBSD__) || defined(__OpenBSD__) /* must use multiple TDs, fill as much as possible. */ curlen = 2 * OHCI_PAGE_SIZE - OHCI_PAGE_MASK(dataphys); if (curlen > len) /* may have fit in one page */ curlen = len; #elif defined(__FreeBSD__) /* See comment above (XXX) */ curlen = OHCI_PAGE_SIZE - OHCI_PAGE_MASK(dataphys); #endif } DPRINTFN(4,("ohci_alloc_std_chain: dataphys=0x%08x " "dataphysend=0x%08x len=%d curlen=%d\n", dataphys, dataphysend, len, curlen)); len -= curlen; intr = len == 0 ? OHCI_TD_SET_DI(1) : OHCI_TD_NOINTR; cur->td.td_flags = LE(tdflags | intr); cur->td.td_cbp = LE(dataphys); cur->nexttd = next; cur->td.td_nexttd = LE(next->physaddr); cur->td.td_be = LE(dataphys + curlen - 1); cur->len = curlen; cur->flags = OHCI_ADD_LEN; DPRINTFN(10,("ohci_alloc_std_chain: cbp=0x%08x be=0x%08x\n", dataphys, dataphys + curlen - 1)); if (len == 0) break; DPRINTFN(10,("ohci_alloc_std_chain: extend chain\n")); offset += curlen; cur = next; } if ((flags & USBD_FORCE_SHORT_XFER) && len % UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize) == 0) { /* Force a 0 length transfer at the end. */ cur->td.td_flags = LE(tdflags | OHCI_TD_NOINTR); cur = next; next = ohci_alloc_std(sc); if (next == 0) goto nomem; cur->td.td_flags = LE(tdflags | OHCI_TD_SET_DI(1)); cur->td.td_cbp = 0; /* indicate 0 length packet */ cur->nexttd = next; cur->td.td_nexttd = LE(next->physaddr); cur->td.td_be = ~0; cur->len = 0; cur->flags = 0; DPRINTFN(2,("ohci_alloc_std_chain: add 0 xfer\n")); } cur->flags = OHCI_CALL_DONE | OHCI_ADD_LEN; *rstd = next; return (USBD_NORMAL_COMPLETION); nomem: /* XXX free chain */ return (USBD_NOMEM); } #if 0 Static void ohci_free_std_chain(ohci_softc_t *sc, ohci_soft_td_t *std, ohci_soft_td_t *stdend) { ohci_soft_td_t *p; for (; std != stdend; std = p) { p = std->nexttd; ohci_free_std(sc, std); } } #endif ohci_soft_itd_t * ohci_alloc_sitd(ohci_softc_t *sc) { ohci_soft_itd_t *sitd; usbd_status err; int i, offs; usb_dma_t dma; if (sc->sc_freeitds == NULL) { DPRINTFN(2, ("ohci_alloc_sitd: allocating chunk\n")); err = usb_allocmem(&sc->sc_bus, OHCI_STD_SIZE * OHCI_STD_CHUNK, OHCI_TD_ALIGN, &dma); if (err) return (0); for(i = 0; i < OHCI_STD_CHUNK; i++) { offs = i * OHCI_STD_SIZE; sitd = (ohci_soft_itd_t *)((char*)KERNADDR(&dma, offs)); sitd->physaddr = DMAADDR(&dma, offs); sitd->nextitd = sc->sc_freeitds; sc->sc_freeitds = sitd; } } sitd = sc->sc_freeitds; sc->sc_freeitds = sitd->nextitd; memset(&sitd->itd, 0, sizeof(ohci_itd_t)); sitd->nextitd = 0; return (sitd); } void ohci_free_sitd(ohci_softc_t *sc, ohci_soft_itd_t *sitd) { sitd->nextitd = sc->sc_freeitds; sc->sc_freeitds = sitd; } usbd_status ohci_init(ohci_softc_t *sc) { ohci_soft_ed_t *sed, *psed; usbd_status err; int i; u_int32_t s, ctl, ival, hcr, fm, per, rev; DPRINTF(("ohci_init: start\n")); #if defined(__OpenBSD__) printf(","); #else printf("%s:", USBDEVNAME(sc->sc_bus.bdev)); #endif rev = OREAD4(sc, OHCI_REVISION); printf(" OHCI version %d.%d%s\n", OHCI_REV_HI(rev), OHCI_REV_LO(rev), OHCI_REV_LEGACY(rev) ? ", legacy support" : ""); if (OHCI_REV_HI(rev) != 1 || OHCI_REV_LO(rev) != 0) { printf("%s: unsupported OHCI revision\n", USBDEVNAME(sc->sc_bus.bdev)); sc->sc_bus.usbrev = USBREV_UNKNOWN; return (USBD_INVAL); } sc->sc_bus.usbrev = USBREV_1_0; for (i = 0; i < OHCI_HASH_SIZE; i++) LIST_INIT(&sc->sc_hash_tds[i]); SIMPLEQ_INIT(&sc->sc_free_xfers); /* Allocate the HCCA area. */ err = usb_allocmem(&sc->sc_bus, OHCI_HCCA_SIZE, OHCI_HCCA_ALIGN, &sc->sc_hccadma); if (err) return (err); sc->sc_hcca = (struct ohci_hcca *)KERNADDR(&sc->sc_hccadma, 0); memset(sc->sc_hcca, 0, OHCI_HCCA_SIZE); sc->sc_eintrs = OHCI_NORMAL_INTRS; /* Allocate dummy ED that starts the control list. */ sc->sc_ctrl_head = ohci_alloc_sed(sc); if (sc->sc_ctrl_head == NULL) { err = USBD_NOMEM; goto bad1; } sc->sc_ctrl_head->ed.ed_flags |= LE(OHCI_ED_SKIP); /* Allocate dummy ED that starts the bulk list. */ sc->sc_bulk_head = ohci_alloc_sed(sc); if (sc->sc_bulk_head == NULL) { err = USBD_NOMEM; goto bad2; } sc->sc_bulk_head->ed.ed_flags |= LE(OHCI_ED_SKIP); /* Allocate dummy ED that starts the isochronous list. */ sc->sc_isoc_head = ohci_alloc_sed(sc); if (sc->sc_isoc_head == NULL) { err = USBD_NOMEM; goto bad3; } sc->sc_isoc_head->ed.ed_flags |= LE(OHCI_ED_SKIP); /* Allocate all the dummy EDs that make up the interrupt tree. */ for (i = 0; i < OHCI_NO_EDS; i++) { sed = ohci_alloc_sed(sc); if (sed == NULL) { while (--i >= 0) ohci_free_sed(sc, sc->sc_eds[i]); err = USBD_NOMEM; goto bad4; } /* All ED fields are set to 0. */ sc->sc_eds[i] = sed; sed->ed.ed_flags |= LE(OHCI_ED_SKIP); if (i != 0) psed = sc->sc_eds[(i-1) / 2]; else psed= sc->sc_isoc_head; sed->next = psed; sed->ed.ed_nexted = LE(psed->physaddr); } /* * Fill HCCA interrupt table. The bit reversal is to get * the tree set up properly to spread the interrupts. */ for (i = 0; i < OHCI_NO_INTRS; i++) sc->sc_hcca->hcca_interrupt_table[revbits[i]] = LE(sc->sc_eds[OHCI_NO_EDS-OHCI_NO_INTRS+i]->physaddr); /* Determine in what context we are running. */ ctl = OREAD4(sc, OHCI_CONTROL); if (ctl & OHCI_IR) { /* SMM active, request change */ DPRINTF(("ohci_init: SMM active, request owner change\n")); s = OREAD4(sc, OHCI_COMMAND_STATUS); OWRITE4(sc, OHCI_COMMAND_STATUS, s | OHCI_OCR); for (i = 0; i < 100 && (ctl & OHCI_IR); i++) { usb_delay_ms(&sc->sc_bus, 1); ctl = OREAD4(sc, OHCI_CONTROL); } if ((ctl & OHCI_IR) == 0) { printf("%s: SMM does not respond, resetting\n", USBDEVNAME(sc->sc_bus.bdev)); OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET); goto reset; } } else if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_RESET) { /* BIOS started controller. */ DPRINTF(("ohci_init: BIOS active\n")); if ((ctl & OHCI_HCFS_MASK) != OHCI_HCFS_OPERATIONAL) { OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_OPERATIONAL); usb_delay_ms(&sc->sc_bus, USB_RESUME_DELAY); } } else { DPRINTF(("ohci_init: cold started\n")); reset: /* Controller was cold started. */ usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); } /* * This reset should not be necessary according to the OHCI spec, but * without it some controllers do not start. */ DPRINTF(("%s: resetting\n", USBDEVNAME(sc->sc_bus.bdev))); OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET); usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* We now own the host controller and the bus has been reset. */ ival = OHCI_GET_IVAL(OREAD4(sc, OHCI_FM_INTERVAL)); OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_HCR); /* Reset HC */ /* Nominal time for a reset is 10 us. */ for (i = 0; i < 10; i++) { delay(10); hcr = OREAD4(sc, OHCI_COMMAND_STATUS) & OHCI_HCR; if (!hcr) break; } if (hcr) { printf("%s: reset timeout\n", USBDEVNAME(sc->sc_bus.bdev)); err = USBD_IOERROR; goto bad5; } #ifdef USB_DEBUG if (ohcidebug > 15) ohci_dumpregs(sc); #endif /* The controller is now in SUSPEND state, we have 2ms to finish. */ /* Set up HC registers. */ OWRITE4(sc, OHCI_HCCA, DMAADDR(&sc->sc_hccadma, 0)); OWRITE4(sc, OHCI_CONTROL_HEAD_ED, sc->sc_ctrl_head->physaddr); OWRITE4(sc, OHCI_BULK_HEAD_ED, sc->sc_bulk_head->physaddr); /* disable all interrupts and then switch on all desired interrupts */ OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); OWRITE4(sc, OHCI_INTERRUPT_ENABLE, sc->sc_eintrs | OHCI_MIE); /* switch on desired functional features */ ctl = OREAD4(sc, OHCI_CONTROL); ctl &= ~(OHCI_CBSR_MASK | OHCI_LES | OHCI_HCFS_MASK | OHCI_IR); ctl |= OHCI_PLE | OHCI_IE | OHCI_CLE | OHCI_BLE | OHCI_RATIO_1_4 | OHCI_HCFS_OPERATIONAL; /* And finally start it! */ OWRITE4(sc, OHCI_CONTROL, ctl); /* * The controller is now OPERATIONAL. Set a some final * registers that should be set earlier, but that the * controller ignores when in the SUSPEND state. */ fm = (OREAD4(sc, OHCI_FM_INTERVAL) & OHCI_FIT) ^ OHCI_FIT; fm |= OHCI_FSMPS(ival) | ival; OWRITE4(sc, OHCI_FM_INTERVAL, fm); per = OHCI_PERIODIC(ival); /* 90% periodic */ OWRITE4(sc, OHCI_PERIODIC_START, per); OWRITE4(sc, OHCI_RH_STATUS, OHCI_LPSC); /* Enable port power */ sc->sc_noport = OHCI_GET_NDP(OREAD4(sc, OHCI_RH_DESCRIPTOR_A)); #ifdef USB_DEBUG if (ohcidebug > 5) ohci_dumpregs(sc); #endif /* Set up the bus struct. */ sc->sc_bus.methods = &ohci_bus_methods; sc->sc_bus.pipe_size = sizeof(struct ohci_pipe); #if defined(__NetBSD__) sc->sc_powerhook = powerhook_establish(ohci_power, sc); sc->sc_shutdownhook = shutdownhook_establish(ohci_shutdown, sc); #endif return (USBD_NORMAL_COMPLETION); bad5: for (i = 0; i < OHCI_NO_EDS; i++) ohci_free_sed(sc, sc->sc_eds[i]); bad4: ohci_free_sed(sc, sc->sc_isoc_head); bad3: ohci_free_sed(sc, sc->sc_ctrl_head); bad2: ohci_free_sed(sc, sc->sc_bulk_head); bad1: usb_freemem(&sc->sc_bus, &sc->sc_hccadma); return (err); } usbd_status ohci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size) { #if defined(__NetBSD__) || defined(__OpenBSD__) struct ohci_softc *sc = (struct ohci_softc *)bus; #endif return (usb_allocmem(&sc->sc_bus, size, 0, dma)); } void ohci_freem(struct usbd_bus *bus, usb_dma_t *dma) { #if defined(__NetBSD__) || defined(__OpenBSD__) struct ohci_softc *sc = (struct ohci_softc *)bus; #endif usb_freemem(&sc->sc_bus, dma); } usbd_xfer_handle ohci_allocx(struct usbd_bus *bus) { struct ohci_softc *sc = (struct ohci_softc *)bus; usbd_xfer_handle xfer; xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers); if (xfer != NULL) SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, xfer, next); else xfer = malloc(sizeof(*xfer), M_USB, M_NOWAIT); if (xfer != NULL) memset(xfer, 0, sizeof *xfer); return (xfer); } void ohci_freex(struct usbd_bus *bus, usbd_xfer_handle xfer) { struct ohci_softc *sc = (struct ohci_softc *)bus; SIMPLEQ_INSERT_HEAD(&sc->sc_free_xfers, xfer, next); } /* * Shut down the controller when the system is going down. */ #if defined(__NetBSD__) || defined(__OpenBSD__) void ohci_shutdown(void *v) { ohci_softc_t *sc = v; DPRINTF(("ohci_shutdown: stopping the HC\n")); OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET); } /* * Handle suspend/resume. * * We need to switch to polling mode here, because this routine is * called from an intterupt context. This is all right since we * are almost suspended anyway. */ void ohci_power(int why, void *v) { #ifdef USB_DEBUG ohci_softc_t *sc = v; DPRINTF(("ohci_power: sc=%p, why=%d\n", sc, why)); /* XXX should suspend/resume */ ohci_dumpregs(sc); #endif } #endif #ifdef USB_DEBUG void ohci_dumpregs(ohci_softc_t *sc) { DPRINTF(("ohci_dumpregs: rev=0x%08x control=0x%08x command=0x%08x\n", OREAD4(sc, OHCI_REVISION), OREAD4(sc, OHCI_CONTROL), OREAD4(sc, OHCI_COMMAND_STATUS))); DPRINTF((" intrstat=0x%08x intre=0x%08x intrd=0x%08x\n", OREAD4(sc, OHCI_INTERRUPT_STATUS), OREAD4(sc, OHCI_INTERRUPT_ENABLE), OREAD4(sc, OHCI_INTERRUPT_DISABLE))); DPRINTF((" hcca=0x%08x percur=0x%08x ctrlhd=0x%08x\n", OREAD4(sc, OHCI_HCCA), OREAD4(sc, OHCI_PERIOD_CURRENT_ED), OREAD4(sc, OHCI_CONTROL_HEAD_ED))); DPRINTF((" ctrlcur=0x%08x bulkhd=0x%08x bulkcur=0x%08x\n", OREAD4(sc, OHCI_CONTROL_CURRENT_ED), OREAD4(sc, OHCI_BULK_HEAD_ED), OREAD4(sc, OHCI_BULK_CURRENT_ED))); DPRINTF((" done=0x%08x fmival=0x%08x fmrem=0x%08x\n", OREAD4(sc, OHCI_DONE_HEAD), OREAD4(sc, OHCI_FM_INTERVAL), OREAD4(sc, OHCI_FM_REMAINING))); DPRINTF((" fmnum=0x%08x perst=0x%08x lsthrs=0x%08x\n", OREAD4(sc, OHCI_FM_NUMBER), OREAD4(sc, OHCI_PERIODIC_START), OREAD4(sc, OHCI_LS_THRESHOLD))); DPRINTF((" desca=0x%08x descb=0x%08x stat=0x%08x\n", OREAD4(sc, OHCI_RH_DESCRIPTOR_A), OREAD4(sc, OHCI_RH_DESCRIPTOR_B), OREAD4(sc, OHCI_RH_STATUS))); DPRINTF((" port1=0x%08x port2=0x%08x\n", OREAD4(sc, OHCI_RH_PORT_STATUS(1)), OREAD4(sc, OHCI_RH_PORT_STATUS(2)))); DPRINTF((" HCCA: frame_number=0x%04x done_head=0x%08x\n", LE(sc->sc_hcca->hcca_frame_number), LE(sc->sc_hcca->hcca_done_head))); } #endif Static int ohci_intr1(ohci_softc_t *); int ohci_intr(void *p) { ohci_softc_t *sc = p; /* If we get an interrupt while polling, then just ignore it. */ if (sc->sc_bus.use_polling) { #ifdef DIAGNOSTIC printf("ohci_intr: ignored interrupt while polling\n"); #endif return (0); } return (ohci_intr1(sc)); } Static int ohci_intr1(ohci_softc_t *sc) { u_int32_t intrs, eintrs; ohci_physaddr_t done; /* In case the interrupt occurs before initialization has completed. */ if (sc == NULL || sc->sc_hcca == NULL) { #ifdef DIAGNOSTIC printf("ohci_intr: sc->sc_hcca == NULL\n"); #endif return (0); } intrs = 0; done = LE(sc->sc_hcca->hcca_done_head); /* The LSb of done is used to inform the HC Driver that an interrupt * condition exists for both the Done list and for another event * recorded in HcInterruptStatus. On an interrupt from the HC, the HC * Driver checks the HccaDoneHead Value. If this value is 0, then the * interrupt was caused by other than the HccaDoneHead update and the * HcInterruptStatus register needs to be accessed to determine that * exact interrupt cause. If HccaDoneHead is nonzero, then a Done list * update interrupt is indicated and if the LSb of done is nonzero, * then an additional interrupt event is indicated and * HcInterruptStatus should be checked to determine its cause. */ if (done != 0) { sc->sc_hcca->hcca_done_head = 0; if (done & ~OHCI_DONE_INTRS) intrs = OHCI_WDH; if (done & OHCI_DONE_INTRS) { intrs |= OREAD4(sc, OHCI_INTERRUPT_STATUS); done &= ~OHCI_DONE_INTRS; } } else { intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS); } if (intrs == 0) { /* nothing to be done ?! */ return (0); } intrs &= ~OHCI_MIE; /* mask out Master Interrupt Enable */ /* Acknowledge any interrupts that have happened */ OWRITE4(sc, OHCI_INTERRUPT_STATUS, intrs); /* Any interrupts we had enabled? */ eintrs = intrs & sc->sc_eintrs; if (!eintrs) return (0); sc->sc_bus.intr_context++; sc->sc_bus.no_intrs++; DPRINTFN(7, ("ohci_intr: sc=%p intrs=%x(%x) eintr=%x\n", sc, (u_int)intrs, OREAD4(sc, OHCI_INTERRUPT_STATUS), (u_int)eintrs)); if (eintrs & OHCI_SO) { printf("%s: scheduling overrun\n",USBDEVNAME(sc->sc_bus.bdev)); /* XXX do what */ intrs &= ~OHCI_SO; } if (eintrs & OHCI_WDH) { ohci_process_done(sc, done); intrs &= ~OHCI_WDH; } if (eintrs & OHCI_RD) { printf("%s: resume detect\n", USBDEVNAME(sc->sc_bus.bdev)); /* XXX process resume detect */ } if (eintrs & OHCI_UE) { printf("%s: unrecoverable error, controller halted\n", USBDEVNAME(sc->sc_bus.bdev)); OWRITE4(sc, OHCI_CONTROL, OHCI_HCFS_RESET); /* XXX what else */ } if (eintrs & OHCI_RHSC) { ohci_rhsc(sc, sc->sc_intrxfer); intrs &= ~OHCI_RHSC; /* * Disable RHSC interrupt for now, because it will be * on until the port has been reset. */ ohci_rhsc_able(sc, 0); } sc->sc_bus.intr_context--; /* Block unprocessed interrupts. XXX */ OWRITE4(sc, OHCI_INTERRUPT_DISABLE, intrs); sc->sc_eintrs &= ~intrs; return (1); } void ohci_rhsc_able(ohci_softc_t *sc, int on) { DPRINTFN(4, ("ohci_rhsc_able: on=%d\n", on)); if (on) { sc->sc_eintrs |= OHCI_RHSC; OWRITE4(sc, OHCI_INTERRUPT_ENABLE, OHCI_RHSC); } else { sc->sc_eintrs &= ~OHCI_RHSC; OWRITE4(sc, OHCI_INTERRUPT_DISABLE, OHCI_RHSC); } } #ifdef USB_DEBUG char *ohci_cc_strs[] = { "NO_ERROR", "CRC", "BIT_STUFFING", "DATA_TOGGLE_MISMATCH", "STALL", "DEVICE_NOT_RESPONDING", "PID_CHECK_FAILURE", "UNEXPECTED_PID", "DATA_OVERRUN", "DATA_UNDERRUN", "BUFFER_OVERRUN", "BUFFER_UNDERRUN", "reserved", "reserved", "NOT_ACCESSED", "NOT_ACCESSED" }; #endif void ohci_process_done(ohci_softc_t *sc, ohci_physaddr_t done) { ohci_soft_td_t *std, *sdone, *stdnext; usbd_xfer_handle xfer; int len, cc; DPRINTFN(10,("ohci_process_done: done=0x%08lx\n", (u_long)done)); /* Reverse the done list and store the reversed list in sdone */ sdone = NULL; for (; done; done = LE(std->td.td_nexttd)) { std = ohci_hash_find_td(sc, done & LE(OHCI_TAILMASK)); if (std == NULL) { #ifdef USB_DEBUG DPRINTF(("%s: Invalid done queue 0x%08x", USBDEVNAME(sc->sc_bus.bdev), done)); ohci_dumpregs(sc); #endif /* XXX Should we compare the list of active TDs with * the list of TDs queued at EDs to handle the ones that * are not listed on any of the ED queues and therefore * must be finished? */ return; } std->dnext = sdone; sdone = std; } #ifdef USB_DEBUG if (ohcidebug > 10) { DPRINTF(("ohci_process_done: TD done:\n")); for (std = sdone; std; std = std->dnext) ohci_dump_td(sdone); } #endif for (std = sdone; std; std = stdnext) { xfer = std->xfer; stdnext = std->dnext; DPRINTFN(5, ("ohci_process_done: std=%p xfer=%p hcpriv=%p\n", std, xfer, (xfer? xfer->hcpriv:NULL))); if (xfer == NULL || (std->flags & OHCI_TD_HANDLED)) { /* xfer == NULL: There seems to be no xfer associated * with this TD. It is tailp that happened to end up on * the done queue. * flags & OHCI_TD_HANDLED: The TD has already been * handled by process_done and should not be done again. */ continue; } cc = OHCI_TD_GET_CC(LE(std->td.td_flags)); usb_untimeout(ohci_timeout, xfer, xfer->timo_handle); if (xfer->status == USBD_CANCELLED || xfer->status == USBD_TIMEOUT) { DPRINTF(("ohci_process_done: cancel/timeout, xfer=%p\n", xfer)); /* Handled by abort routine. */ } else if (cc == OHCI_CC_NO_ERROR) { DPRINTFN(15, ("ohci_process_done: no error, xfer=%p\n", xfer)); len = std->len; if (std->td.td_cbp != 0) len -= LE(std->td.td_be) - LE(std->td.td_cbp) + 1; if (std->flags & OHCI_ADD_LEN) xfer->actlen += len; if (std->flags & OHCI_CALL_DONE) { xfer->status = USBD_NORMAL_COMPLETION; usb_transfer_complete(xfer); } ohci_free_std(sc, std); } else { /* * Endpoint is halted. First unlink all the TDs * belonging to the failed transfer, and then restart * the endpoint. */ ohci_soft_td_t *p, *n; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; DPRINTF(("ohci_process_done: err cc=%d (%s), xfer=%p\n", OHCI_TD_GET_CC(LE(std->td.td_flags)), ohci_cc_strs[OHCI_TD_GET_CC(LE(std->td.td_flags))], xfer)); /* Mark all the TDs in the done queue for the current * xfer as handled */ for (p = stdnext; p; p = p->dnext) { if (p->xfer == xfer) p->flags |= OHCI_TD_HANDLED; } /* remove TDs for the current xfer from the ED */ for (p = std; p->xfer == xfer; p = n) { n = p->nexttd; ohci_free_std(sc, p); } opipe->sed->ed.ed_headp = LE(p->physaddr); /* XXX why is this being done? Why not OHCI_BLF too */ OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF); if (cc == OHCI_CC_STALL) xfer->status = USBD_STALLED; else xfer->status = USBD_IOERROR; usb_transfer_complete(xfer); } } } void ohci_device_ctrl_done(usbd_xfer_handle xfer) { DPRINTFN(10,("ohci_ctrl_done: xfer=%p\n", xfer)); #ifdef DIAGNOSTIC if (!(xfer->rqflags & URQ_REQUEST)) { panic("ohci_ctrl_done: not a request\n"); } #endif xfer->hcpriv = NULL; } void ohci_device_intr_done(usbd_xfer_handle xfer) { struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; ohci_softc_t *sc = (ohci_softc_t *)opipe->pipe.device->bus; ohci_soft_ed_t *sed = opipe->sed; ohci_soft_td_t *data, *tail; DPRINTFN(10,("ohci_intr_done: xfer=%p, actlen=%d\n", xfer, xfer->actlen)); xfer->hcpriv = NULL; if (xfer->pipe->repeat) { data = opipe->tail.td; tail = ohci_alloc_std(sc); /* XXX should reuse TD */ if (tail == NULL) { xfer->status = USBD_NOMEM; return; } tail->xfer = NULL; data->td.td_flags = LE( OHCI_TD_IN | OHCI_TD_NOCC | OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY); if (xfer->flags & USBD_SHORT_XFER_OK) data->td.td_flags |= LE(OHCI_TD_R); data->td.td_cbp = LE(DMAADDR(&xfer->dmabuf, 0)); data->nexttd = tail; data->td.td_nexttd = LE(tail->physaddr); data->td.td_be = LE(LE(data->td.td_cbp) + xfer->length - 1); data->len = xfer->length; data->xfer = xfer; data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN; xfer->hcpriv = data; xfer->actlen = 0; ohci_hash_add_td(sc, data); sed->ed.ed_tailp = LE(tail->physaddr); opipe->tail.td = tail; } } void ohci_device_bulk_done(usbd_xfer_handle xfer) { DPRINTFN(10,("ohci_bulk_done: xfer=%p, actlen=%d\n", xfer, xfer->actlen)); xfer->hcpriv = NULL; } void ohci_rhsc(ohci_softc_t *sc, usbd_xfer_handle xfer) { usbd_pipe_handle pipe; struct ohci_pipe *opipe; u_char *p; int i, m; int hstatus; hstatus = OREAD4(sc, OHCI_RH_STATUS); DPRINTF(("ohci_rhsc: sc=%p xfer=%p hstatus=0x%08x\n", sc, xfer, hstatus)); if (xfer == NULL) { /* Just ignore the change. */ return; } pipe = xfer->pipe; opipe = (struct ohci_pipe *)pipe; p = KERNADDR(&xfer->dmabuf, 0); m = min(sc->sc_noport, xfer->length * 8 - 1); memset(p, 0, xfer->length); for (i = 1; i <= m; i++) { if (OREAD4(sc, OHCI_RH_PORT_STATUS(i)) >> 16) p[i/8] |= 1 << (i%8); } DPRINTF(("ohci_rhsc: change=0x%02x\n", *p)); xfer->actlen = xfer->length; xfer->status = USBD_NORMAL_COMPLETION; usb_transfer_complete(xfer); } void ohci_root_intr_done(usbd_xfer_handle xfer) { xfer->hcpriv = NULL; } /* * Wait here until controller claims to have an interrupt. * Then call ohci_intr and return. Use timeout to avoid waiting * too long. */ void ohci_waitintr(ohci_softc_t *sc, usbd_xfer_handle xfer) { int timo = xfer->timeout; int usecs; u_int32_t intrs; xfer->status = USBD_IN_PROGRESS; for (usecs = timo * 1000000 / hz; usecs > 0; usecs -= 1000) { usb_delay_ms(&sc->sc_bus, 1); intrs = OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs; DPRINTFN(15,("ohci_waitintr: 0x%04x\n", intrs)); #ifdef USB_DEBUG if (ohcidebug > 15) ohci_dumpregs(sc); #endif if (intrs) { ohci_intr1(sc); if (xfer->status != USBD_IN_PROGRESS) return; } } /* Timeout */ DPRINTF(("ohci_waitintr: timeout\n")); #ifdef USB_DEBUG ohci_dumpregs(sc); #endif xfer->status = USBD_TIMEOUT; usb_transfer_complete(xfer); /* XXX should free TD */ } void ohci_poll(struct usbd_bus *bus) { ohci_softc_t *sc = (ohci_softc_t *)bus; if (OREAD4(sc, OHCI_INTERRUPT_STATUS) & sc->sc_eintrs) ohci_intr1(sc); } usbd_status ohci_device_request(usbd_xfer_handle xfer) { struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; usb_device_request_t *req = &xfer->request; usbd_device_handle dev = opipe->pipe.device; ohci_softc_t *sc = (ohci_softc_t *)dev->bus; int addr = dev->address; ohci_soft_td_t *setup, *data = 0, *stat, *next, *tail; ohci_soft_ed_t *sed; int isread; int len; usbd_status err; int s; isread = req->bmRequestType & UT_READ; len = UGETW(req->wLength); DPRINTFN(3,("ohci_device_control type=0x%02x, request=0x%02x, " "wValue=0x%04x, wIndex=0x%04x len=%d, addr=%d, endpt=%d\n", req->bmRequestType, req->bRequest, UGETW(req->wValue), UGETW(req->wIndex), len, addr, opipe->pipe.endpoint->edesc->bEndpointAddress)); setup = opipe->tail.td; stat = ohci_alloc_std(sc); if (stat == NULL) { err = USBD_NOMEM; goto bad1; } tail = ohci_alloc_std(sc); if (tail == NULL) { err = USBD_NOMEM; goto bad2; } tail->xfer = NULL; sed = opipe->sed; opipe->u.ctl.length = len; /* Update device address and length since they may have changed. */ /* XXX This only needs to be done once, but it's too early in open. */ sed->ed.ed_flags = LE( (LE(sed->ed.ed_flags) & ~(OHCI_ED_ADDRMASK | OHCI_ED_MAXPMASK)) | OHCI_ED_SET_FA(addr) | OHCI_ED_SET_MAXP(UGETW(opipe->pipe.endpoint->edesc->wMaxPacketSize))); /* Set up data transaction */ if (len != 0) { data = ohci_alloc_std(sc); if (data == NULL) { err = USBD_NOMEM; goto bad3; } data->td.td_flags = LE( (isread ? OHCI_TD_IN : OHCI_TD_OUT) | OHCI_TD_NOCC | OHCI_TD_TOGGLE_1 | OHCI_TD_NOINTR | (xfer->flags & USBD_SHORT_XFER_OK ? OHCI_TD_R : 0)); data->td.td_cbp = LE(DMAADDR(&xfer->dmabuf, 0)); data->nexttd = stat; data->td.td_nexttd = LE(stat->physaddr); data->td.td_be = LE(LE(data->td.td_cbp) + len - 1); data->len = len; data->xfer = xfer; data->flags = OHCI_ADD_LEN; next = data; stat->flags = OHCI_CALL_DONE; } else { next = stat; /* XXX ADD_LEN? */ stat->flags = OHCI_CALL_DONE | OHCI_ADD_LEN; } memcpy(KERNADDR(&opipe->u.ctl.reqdma, 0), req, sizeof *req); setup->td.td_flags = LE(OHCI_TD_SETUP | OHCI_TD_NOCC | OHCI_TD_TOGGLE_0 | OHCI_TD_NOINTR); setup->td.td_cbp = LE(DMAADDR(&opipe->u.ctl.reqdma, 0)); setup->nexttd = next; setup->td.td_nexttd = LE(next->physaddr); setup->td.td_be = LE(LE(setup->td.td_cbp) + sizeof *req - 1); setup->len = 0; /* XXX The number of byte we count */ setup->xfer = xfer; setup->flags = 0; xfer->hcpriv = setup; stat->td.td_flags = LE( (isread ? OHCI_TD_OUT : OHCI_TD_IN) | OHCI_TD_NOCC | OHCI_TD_TOGGLE_1 | OHCI_TD_SET_DI(1)); stat->td.td_cbp = 0; stat->nexttd = tail; stat->td.td_nexttd = LE(tail->physaddr); stat->td.td_be = 0; stat->len = 0; stat->xfer = xfer; #ifdef USB_DEBUG if (ohcidebug > 5) { DPRINTF(("ohci_device_request:\n")); ohci_dump_ed(sed); ohci_dump_tds(setup); } #endif /* Insert ED in schedule */ s = splusb(); sed->ed.ed_tailp = LE(tail->physaddr); opipe->tail.td = tail; OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_CLF); if (xfer->timeout && !sc->sc_bus.use_polling) { usb_timeout(ohci_timeout, xfer, MS_TO_TICKS(xfer->timeout), xfer->timo_handle); } splx(s); #ifdef USB_DEBUG if (ohcidebug > 25) { usb_delay_ms(&sc->sc_bus, 5); DPRINTF(("ohci_device_request: status=%x\n", OREAD4(sc, OHCI_COMMAND_STATUS))); ohci_dump_ed(sed); ohci_dump_tds(setup); } #endif return (USBD_NORMAL_COMPLETION); bad3: ohci_free_std(sc, tail); bad2: ohci_free_std(sc, stat); bad1: return (err); } /* * Add an ED to the schedule. Called at splusb(). */ void ohci_add_ed(ohci_soft_ed_t *sed, ohci_soft_ed_t *head) { SPLUSBCHECK; sed->next = head->next; sed->ed.ed_nexted = head->ed.ed_nexted; head->next = sed; head->ed.ed_nexted = LE(sed->physaddr); } /* * Remove an ED from the schedule. Called at splusb(). */ void ohci_rem_ed(ohci_soft_ed_t *sed, ohci_soft_ed_t *head) { ohci_soft_ed_t *p; SPLUSBCHECK; /* XXX */ for (p = head; p == NULL && p->next != sed; p = p->next) ; if (p == NULL) panic("ohci_rem_ed: ED not found\n"); p->next = sed->next; p->ed.ed_nexted = sed->ed.ed_nexted; } /* * When a transfer is completed the TD is added to the done queue by * the host controller. This queue is the processed by software. * Unfortunately the queue contains the physical address of the TD * and we have no simple way to translate this back to a kernel address. * To make the translation possible (and fast) we use a hash table of * TDs currently in the schedule. The physical address is used as the * hash value. */ #define HASH(a) (((a) >> 4) % OHCI_HASH_SIZE) /* Called at splusb() */ void ohci_hash_add_td(ohci_softc_t *sc, ohci_soft_td_t *std) { int h = HASH(std->physaddr); SPLUSBCHECK; LIST_INSERT_HEAD(&sc->sc_hash_tds[h], std, hnext); } /* Called at splusb() */ void ohci_hash_rem_td(ohci_softc_t *sc, ohci_soft_td_t *std) { SPLUSBCHECK; LIST_REMOVE(std, hnext); } ohci_soft_td_t * ohci_hash_find_td(ohci_softc_t *sc, ohci_physaddr_t a) { int h = HASH(a); ohci_soft_td_t *std; /* if these are present they should be masked out at an earlier * stage. */ KASSERT((a&~OHCI_TAILMASK) == 0, ("%s: 0x%b has lower bits set\n", USBDEVNAME(sc->sc_bus.bdev), (int) a, "\20\1HALT\2TOGGLE")); for (std = LIST_FIRST(&sc->sc_hash_tds[h]); std != NULL; std = LIST_NEXT(std, hnext)) if (std->physaddr == a) return (std); DPRINTF(("%s: ohci_hash_find_td: addr 0x%08lx not found\n", USBDEVNAME(sc->sc_bus.bdev), (u_long) a)); return NULL; } void ohci_timeout(void *addr) { usbd_xfer_handle xfer = addr; int s; DPRINTF(("ohci_timeout: xfer=%p\n", xfer)); s = splusb(); xfer->device->bus->intr_context++; ohci_abort_xfer(xfer, USBD_TIMEOUT); xfer->device->bus->intr_context--; splx(s); } #ifdef USB_DEBUG void ohci_dump_tds(ohci_soft_td_t *std) { for (; std; std = std->nexttd) ohci_dump_td(std); } void ohci_dump_td(ohci_soft_td_t *std) { DPRINTF(("TD(%p) at %08lx: %b delay=%d ec=%d cc=%d\ncbp=0x%08lx " "nexttd=0x%08lx be=0x%08lx\n", std, (u_long)std->physaddr, (int)LE(std->td.td_flags), "\20\23R\24OUT\25IN\31TOG1\32SETTOGGLE", OHCI_TD_GET_DI(LE(std->td.td_flags)), OHCI_TD_GET_EC(LE(std->td.td_flags)), OHCI_TD_GET_CC(LE(std->td.td_flags)), (u_long)LE(std->td.td_cbp), (u_long)LE(std->td.td_nexttd), (u_long)LE(std->td.td_be))); } void ohci_dump_ed(ohci_soft_ed_t *sed) { DPRINTF(("ED(%p) at %08lx: addr=%d endpt=%d maxp=%d %b\n" "tailp=0x%8b headp=0x%8b nexted=0x%08lx\n", sed, (u_long)sed->physaddr, OHCI_ED_GET_FA(LE(sed->ed.ed_flags)), OHCI_ED_GET_EN(LE(sed->ed.ed_flags)), OHCI_ED_GET_MAXP(LE(sed->ed.ed_flags)), (int)LE(sed->ed.ed_flags), "\20\14OUT\15IN\16LOWSPEED\17SKIP\20ISO", (int)(uintptr_t)LE(sed->ed.ed_tailp), "\20\1BIT1\2BIT2", (int)(uintptr_t)LE(sed->ed.ed_headp), "\20\1HALT\2CARRY", (u_long)LE(sed->ed.ed_nexted))); } #endif usbd_status ohci_open(usbd_pipe_handle pipe) { usbd_device_handle dev = pipe->device; ohci_softc_t *sc = (ohci_softc_t *)dev->bus; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc; struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; u_int8_t addr = dev->address; u_int8_t xfertype = ed->bmAttributes & UE_XFERTYPE; ohci_soft_ed_t *sed; ohci_soft_td_t *std = NULL; ohci_soft_itd_t *sitd; ohci_physaddr_t tdphys; u_int32_t fmt; usbd_status err; int s; int ival; DPRINTFN(1, ("ohci_open: pipe=%p, addr=%d, endpt=%d (%d)\n", pipe, addr, ed->bEndpointAddress, sc->sc_addr)); if (addr == sc->sc_addr) { switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->methods = &ohci_root_ctrl_methods; break; case UE_DIR_IN | OHCI_INTR_ENDPT: pipe->methods = &ohci_root_intr_methods; break; default: return (USBD_INVAL); } } else { sed = ohci_alloc_sed(sc); if (sed == NULL) goto bad0; opipe->sed = sed; if (xfertype == UE_ISOCHRONOUS) { sitd = ohci_alloc_sitd(sc); if (sitd == NULL) { ohci_free_sitd(sc, sitd); goto bad1; } opipe->tail.itd = sitd; tdphys = LE(sitd->physaddr); fmt = OHCI_ED_FORMAT_ISO; } else { std = ohci_alloc_std(sc); if (std == NULL) { ohci_free_std(sc, std); goto bad1; } opipe->tail.td = std; tdphys = LE(std->physaddr); fmt = OHCI_ED_FORMAT_GEN; } sed->ed.ed_flags = LE( OHCI_ED_SET_FA(addr) | OHCI_ED_SET_EN(ed->bEndpointAddress) | OHCI_ED_DIR_TD | (dev->lowspeed ? OHCI_ED_SPEED : 0) | fmt | OHCI_ED_SET_MAXP(UGETW(ed->wMaxPacketSize))); sed->ed.ed_headp = sed->ed.ed_tailp = tdphys; switch (xfertype) { case UE_CONTROL: pipe->methods = &ohci_device_ctrl_methods; err = usb_allocmem(&sc->sc_bus, sizeof(usb_device_request_t), 0, &opipe->u.ctl.reqdma); if (err) goto bad; s = splusb(); ohci_add_ed(sed, sc->sc_ctrl_head); splx(s); break; case UE_INTERRUPT: pipe->methods = &ohci_device_intr_methods; ival = pipe->interval; if (ival == USBD_DEFAULT_INTERVAL) ival = ed->bInterval; return (ohci_device_setintr(sc, opipe, ival)); case UE_ISOCHRONOUS: pipe->methods = &ohci_device_isoc_methods; return (ohci_setup_isoc(pipe)); case UE_BULK: pipe->methods = &ohci_device_bulk_methods; s = splusb(); ohci_add_ed(sed, sc->sc_bulk_head); splx(s); break; } } return (USBD_NORMAL_COMPLETION); bad: ohci_free_std(sc, std); bad1: ohci_free_sed(sc, sed); bad0: return (USBD_NOMEM); } /* * Close a reqular pipe. * Assumes that there are no pending transactions. */ void ohci_close_pipe(usbd_pipe_handle pipe, ohci_soft_ed_t *head) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus; ohci_soft_ed_t *sed = opipe->sed; int s; s = splusb(); #ifdef DIAGNOSTIC sed->ed.ed_flags |= LE(OHCI_ED_SKIP); if ((sed->ed.ed_tailp & LE(OHCI_TAILMASK)) != (sed->ed.ed_headp & LE(OHCI_HEADMASK))) { ohci_physaddr_t td = sed->ed.ed_headp; ohci_soft_td_t *std; for (std = LIST_FIRST(&sc->sc_hash_tds[HASH(td)]); std != NULL; std = LIST_NEXT(std, hnext)) if (std->physaddr == td) break; printf("ohci_close_pipe: pipe not empty sed=%p hd=0x%x " "tl=0x%x pipe=%p, std=%p\n", sed, (int)LE(sed->ed.ed_headp), (int)LE(sed->ed.ed_tailp), pipe, std); usb_delay_ms(&sc->sc_bus, 2); if ((sed->ed.ed_tailp & LE(OHCI_TAILMASK)) != (sed->ed.ed_headp & LE(OHCI_HEADMASK))) printf("ohci_close_pipe: pipe still not empty\n"); } #endif ohci_rem_ed(sed, head); splx(s); ohci_free_sed(sc, opipe->sed); } /* * Abort a device request. * If this routine is called at splusb() it guarantees that the request * will be removed from the hardware scheduling and that the callback * for it will be called with USBD_CANCELLED status. * It's impossible to guarantee that the requested transfer will not * have happened since the hardware runs concurrently. * If the transaction has already happened we rely on the ordinary * interrupt processing to process it. */ void ohci_abort_xfer(usbd_xfer_handle xfer, usbd_status status) { struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; ohci_soft_ed_t *sed; DPRINTF(("ohci_abort_xfer: xfer=%p pipe=%p\n", xfer, opipe)); xfer->status = status; usb_untimeout(ohci_timeout, xfer, xfer->timo_handle); sed = opipe->sed; sed->ed.ed_flags |= LE(OHCI_ED_SKIP); /* force hardware skip */ #ifdef USB_DEBUG DPRINTFN(1,("ohci_abort_xfer: stop ed=%p\n", sed)); ohci_dump_ed(sed); #endif #if 1 if (xfer->device->bus->intr_context) { /* We have no process context, so we can't use tsleep(). */ timeout(ohci_abort_xfer_end, xfer, hz / USB_FRAMES_PER_SECOND); } else { #if defined(DIAGNOSTIC) && defined(__FreeBSD__) KASSERT(mycpu->gd_intr_nesting_level == 0, ("ohci_abort_req in interrupt context")); #endif usb_delay_ms(opipe->pipe.device->bus, 1); ohci_abort_xfer_end(xfer); } #else delay(1000); ohci_abort_xfer_end(xfer); #endif } void ohci_abort_xfer_end(void *v) { usbd_xfer_handle xfer = v; struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; ohci_softc_t *sc = (ohci_softc_t *)opipe->pipe.device->bus; ohci_soft_ed_t *sed; ohci_soft_td_t *p, *n; int s; s = splusb(); p = xfer->hcpriv; #ifdef DIAGNOSTIC if (p == NULL) { printf("ohci_abort_xfer: hcpriv==0\n"); splx(s); return; } #endif for (; p->xfer == xfer; p = n) { n = p->nexttd; ohci_free_std(sc, p); } sed = opipe->sed; DPRINTFN(2,("ohci_abort_xfer: set hd=%x, tl=%x\n", (int)LE(p->physaddr), (int)LE(sed->ed.ed_tailp))); sed->ed.ed_headp = p->physaddr; /* unlink TDs */ sed->ed.ed_flags &= LE(~OHCI_ED_SKIP); /* remove hardware skip */ usb_transfer_complete(xfer); splx(s); } /* * Data structures and routines to emulate the root hub. */ Static usb_device_descriptor_t ohci_devd = { USB_DEVICE_DESCRIPTOR_SIZE, UDESC_DEVICE, /* type */ {0x00, 0x01}, /* USB version */ UDCLASS_HUB, /* class */ UDSUBCLASS_HUB, /* subclass */ UDPROTO_FSHUB, /* protocol */ 64, /* max packet */ {0},{0},{0x00,0x01}, /* device id */ 1,2,0, /* string indicies */ 1 /* # of configurations */ }; Static usb_config_descriptor_t ohci_confd = { USB_CONFIG_DESCRIPTOR_SIZE, UDESC_CONFIG, {USB_CONFIG_DESCRIPTOR_SIZE + USB_INTERFACE_DESCRIPTOR_SIZE + USB_ENDPOINT_DESCRIPTOR_SIZE}, 1, 1, 0, UC_SELF_POWERED, 0 /* max power */ }; Static usb_interface_descriptor_t ohci_ifcd = { USB_INTERFACE_DESCRIPTOR_SIZE, UDESC_INTERFACE, 0, 0, 1, UICLASS_HUB, UISUBCLASS_HUB, UIPROTO_FSHUB, 0 }; Static usb_endpoint_descriptor_t ohci_endpd = { USB_ENDPOINT_DESCRIPTOR_SIZE, UDESC_ENDPOINT, UE_DIR_IN | OHCI_INTR_ENDPT, UE_INTERRUPT, {8, 0}, /* max packet */ 255 }; Static usb_hub_descriptor_t ohci_hubd = { USB_HUB_DESCRIPTOR_SIZE, UDESC_HUB, 0, {0,0}, 0, 0, {0}, }; Static int ohci_str(usb_string_descriptor_t *p, int l, char *s) { int i; if (l == 0) return (0); p->bLength = 2 * strlen(s) + 2; if (l == 1) return (1); p->bDescriptorType = UDESC_STRING; l -= 2; for (i = 0; s[i] && l > 1; i++, l -= 2) USETW2(p->bString[i], 0, s[i]); return (2*i+2); } /* * Simulate a hardware hub by handling all the necessary requests. */ Static usbd_status ohci_root_ctrl_transfer(usbd_xfer_handle xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_root_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } Static usbd_status ohci_root_ctrl_start(usbd_xfer_handle xfer) { ohci_softc_t *sc = (ohci_softc_t *)xfer->pipe->device->bus; usb_device_request_t *req; void *buf = NULL; int port, i; int s, len, value, index, l, totlen = 0; usb_port_status_t ps; usb_hub_descriptor_t hubd; usbd_status err; u_int32_t v; #ifdef DIAGNOSTIC if (!(xfer->rqflags & URQ_REQUEST)) /* XXX panic */ return (USBD_INVAL); #endif req = &xfer->request; DPRINTFN(4,("ohci_root_ctrl_control type=0x%02x request=%02x\n", req->bmRequestType, req->bRequest)); len = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); if (len != 0) buf = KERNADDR(&xfer->dmabuf, 0); #define C(x,y) ((x) | ((y) << 8)) switch(C(req->bRequest, req->bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): if (len > 0) { *(u_int8_t *)buf = sc->sc_conf; totlen = 1; } break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): DPRINTFN(8,("ohci_root_ctrl_control wValue=0x%04x\n", value)); switch(value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_DEVICE_DESCRIPTOR_SIZE); USETW(ohci_devd.idVendor, sc->sc_id_vendor); memcpy(buf, &ohci_devd, l); break; case UDESC_CONFIG: if ((value & 0xff) != 0) { err = USBD_IOERROR; goto ret; } totlen = l = min(len, USB_CONFIG_DESCRIPTOR_SIZE); memcpy(buf, &ohci_confd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_INTERFACE_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &ohci_ifcd, l); buf = (char *)buf + l; len -= l; l = min(len, USB_ENDPOINT_DESCRIPTOR_SIZE); totlen += l; memcpy(buf, &ohci_endpd, l); break; case UDESC_STRING: if (len == 0) break; *(u_int8_t *)buf = 0; totlen = 1; switch (value & 0xff) { case 1: /* Vendor */ totlen = ohci_str(buf, len, sc->sc_vendor); break; case 2: /* Product */ totlen = ohci_str(buf, len, "OHCI root hub"); break; } break; default: err = USBD_IOERROR; goto ret; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): if (len > 0) { *(u_int8_t *)buf = 0; totlen = 1; } break; case C(UR_GET_STATUS, UT_READ_DEVICE): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus,UDS_SELF_POWERED); totlen = 2; } break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): if (len > 1) { USETW(((usb_status_t *)buf)->wStatus, 0); totlen = 2; } break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= USB_MAX_DEVICES) { err = USBD_IOERROR; goto ret; } sc->sc_addr = value; break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if (value != 0 && value != 1) { err = USBD_IOERROR; goto ret; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): err = USBD_IOERROR; goto ret; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(8, ("ohci_root_ctrl_control: UR_CLEAR_PORT_FEATURE " "port=%d feature=%d\n", index, value)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = OHCI_RH_PORT_STATUS(index); switch(value) { case UHF_PORT_ENABLE: OWRITE4(sc, port, UPS_CURRENT_CONNECT_STATUS); break; case UHF_PORT_SUSPEND: OWRITE4(sc, port, UPS_OVERCURRENT_INDICATOR); break; case UHF_PORT_POWER: OWRITE4(sc, port, UPS_LOW_SPEED); break; case UHF_C_PORT_CONNECTION: OWRITE4(sc, port, UPS_C_CONNECT_STATUS << 16); break; case UHF_C_PORT_ENABLE: OWRITE4(sc, port, UPS_C_PORT_ENABLED << 16); break; case UHF_C_PORT_SUSPEND: OWRITE4(sc, port, UPS_C_SUSPEND << 16); break; case UHF_C_PORT_OVER_CURRENT: OWRITE4(sc, port, UPS_C_OVERCURRENT_INDICATOR << 16); break; case UHF_C_PORT_RESET: OWRITE4(sc, port, UPS_C_PORT_RESET << 16); break; default: err = USBD_IOERROR; goto ret; } switch(value) { case UHF_C_PORT_CONNECTION: case UHF_C_PORT_ENABLE: case UHF_C_PORT_SUSPEND: case UHF_C_PORT_OVER_CURRENT: case UHF_C_PORT_RESET: /* Enable RHSC interrupt if condition is cleared. */ if ((OREAD4(sc, port) >> 16) == 0) ohci_rhsc_able(sc, 1); break; default: break; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if (value != 0) { err = USBD_IOERROR; goto ret; } v = OREAD4(sc, OHCI_RH_DESCRIPTOR_A); hubd = ohci_hubd; hubd.bNbrPorts = sc->sc_noport; USETW(hubd.wHubCharacteristics, (v & OHCI_NPS ? UHD_PWR_NO_SWITCH : v & OHCI_PSM ? UHD_PWR_GANGED : UHD_PWR_INDIVIDUAL) /* XXX overcurrent */ ); hubd.bPwrOn2PwrGood = OHCI_GET_POTPGT(v); v = OREAD4(sc, OHCI_RH_DESCRIPTOR_B); for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8) hubd.DeviceRemovable[i++] = (u_int8_t)v; hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i; l = min(len, hubd.bDescLength); totlen = l; memcpy(buf, &hubd, l); break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): if (len != 4) { err = USBD_IOERROR; goto ret; } memset(buf, 0, len); /* ? XXX */ totlen = len; break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): DPRINTFN(8,("ohci_root_ctrl_transfer: get port status i=%d\n", index)); if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } if (len != 4) { err = USBD_IOERROR; goto ret; } v = OREAD4(sc, OHCI_RH_PORT_STATUS(index)); DPRINTFN(8,("ohci_root_ctrl_transfer: port status=0x%04x\n", v)); USETW(ps.wPortStatus, v); USETW(ps.wPortChange, v >> 16); l = min(len, sizeof ps); memcpy(buf, &ps, l); totlen = l; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): err = USBD_IOERROR; goto ret; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): if (index < 1 || index > sc->sc_noport) { err = USBD_IOERROR; goto ret; } port = OHCI_RH_PORT_STATUS(index); switch(value) { case UHF_PORT_ENABLE: OWRITE4(sc, port, UPS_PORT_ENABLED); break; case UHF_PORT_SUSPEND: OWRITE4(sc, port, UPS_SUSPEND); break; case UHF_PORT_RESET: DPRINTFN(5,("ohci_root_ctrl_transfer: reset port %d\n", index)); OWRITE4(sc, port, UPS_RESET); for (i = 0; i < 10; i++) { usb_delay_ms(&sc->sc_bus, 10); if ((OREAD4(sc, port) & UPS_RESET) == 0) break; } DPRINTFN(8,("ohci port %d reset, status = 0x%04x\n", index, OREAD4(sc, port))); break; case UHF_PORT_POWER: DPRINTFN(2,("ohci_root_ctrl_transfer: set port power " "%d\n", index)); OWRITE4(sc, port, UPS_PORT_POWER); break; default: err = USBD_IOERROR; goto ret; } break; default: err = USBD_IOERROR; goto ret; } xfer->actlen = totlen; err = USBD_NORMAL_COMPLETION; ret: xfer->status = err; s = splusb(); usb_transfer_complete(xfer); splx(s); return (USBD_IN_PROGRESS); } /* Abort a root control request. */ Static void ohci_root_ctrl_abort(usbd_xfer_handle xfer) { /* Nothing to do, all transfers are synchronous. */ } /* Close the root pipe. */ Static void ohci_root_ctrl_close(usbd_pipe_handle pipe) { DPRINTF(("ohci_root_ctrl_close\n")); /* Nothing to do. */ } Static usbd_status ohci_root_intr_transfer(usbd_xfer_handle xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_root_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } Static usbd_status ohci_root_intr_start(usbd_xfer_handle xfer) { usbd_pipe_handle pipe = xfer->pipe; ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus; sc->sc_intrxfer = xfer; return (USBD_IN_PROGRESS); } /* Abort a root interrupt request. */ Static void ohci_root_intr_abort(usbd_xfer_handle xfer) { int s; if (xfer->pipe->intrxfer == xfer) { DPRINTF(("ohci_root_intr_abort: remove\n")); xfer->pipe->intrxfer = NULL; } xfer->status = USBD_CANCELLED; s = splusb(); usb_transfer_complete(xfer); splx(s); } /* Close the root pipe. */ Static void ohci_root_intr_close(usbd_pipe_handle pipe) { ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus; DPRINTF(("ohci_root_intr_close\n")); sc->sc_intrxfer = NULL; } /************************/ Static usbd_status ohci_device_ctrl_transfer(usbd_xfer_handle xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } Static usbd_status ohci_device_ctrl_start(usbd_xfer_handle xfer) { ohci_softc_t *sc = (ohci_softc_t *)xfer->pipe->device->bus; usbd_status err; #ifdef DIAGNOSTIC if (!(xfer->rqflags & URQ_REQUEST)) { /* XXX panic */ printf("ohci_device_ctrl_transfer: not a request\n"); return (USBD_INVAL); } #endif err = ohci_device_request(xfer); if (err) return (err); if (sc->sc_bus.use_polling) ohci_waitintr(sc, xfer); return (USBD_IN_PROGRESS); } /* Abort a device control request. */ Static void ohci_device_ctrl_abort(usbd_xfer_handle xfer) { DPRINTF(("ohci_device_ctrl_abort: xfer=%p\n", xfer)); ohci_abort_xfer(xfer, USBD_CANCELLED); } /* Close a device control pipe. */ Static void ohci_device_ctrl_close(usbd_pipe_handle pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus; DPRINTF(("ohci_device_ctrl_close: pipe=%p\n", pipe)); ohci_close_pipe(pipe, sc->sc_ctrl_head); ohci_free_std(sc, opipe->tail.td); } /************************/ Static void ohci_device_clear_toggle(usbd_pipe_handle pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; opipe->sed->ed.ed_headp &= LE(~OHCI_TOGGLECARRY); } Static void ohci_noop(usbd_pipe_handle pipe) { } Static usbd_status ohci_device_bulk_transfer(usbd_xfer_handle xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_device_bulk_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } Static usbd_status ohci_device_bulk_start(usbd_xfer_handle xfer) { struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; usbd_device_handle dev = opipe->pipe.device; ohci_softc_t *sc = (ohci_softc_t *)dev->bus; int addr = dev->address; ohci_soft_td_t *data, *tail, *tdp; ohci_soft_ed_t *sed; int s, len, isread, endpt; usbd_status err; #ifdef DIAGNOSTIC if (xfer->rqflags & URQ_REQUEST) { /* XXX panic */ printf("ohci_device_bulk_start: a request\n"); return (USBD_INVAL); } #endif len = xfer->length; endpt = xfer->pipe->endpoint->edesc->bEndpointAddress; isread = UE_GET_DIR(endpt) == UE_DIR_IN; sed = opipe->sed; DPRINTFN(4,("ohci_device_bulk_start: xfer=%p len=%d isread=%d " "flags=%d endpt=%d\n", xfer, len, isread, xfer->flags, endpt)); opipe->u.bulk.isread = isread; opipe->u.bulk.length = len; /* Update device address */ sed->ed.ed_flags = LE( (LE(sed->ed.ed_flags) & ~OHCI_ED_ADDRMASK) | OHCI_ED_SET_FA(addr)); /* Allocate a chain of new TDs (including a new tail). */ data = opipe->tail.td; err = ohci_alloc_std_chain(opipe, sc, len, isread, xfer->flags, &xfer->dmabuf, data, &tail); if (err) return (err); tail->xfer = NULL; xfer->hcpriv = data; DPRINTFN(4,("ohci_device_bulk_start: ed_flags=0x%08x td_flags=0x%08x " "td_cbp=0x%08x td_be=0x%08x\n", (int)LE(sed->ed.ed_flags), (int)LE(data->td.td_flags), (int)LE(data->td.td_cbp), (int)LE(data->td.td_be))); #ifdef USB_DEBUG if (ohcidebug > 4) { ohci_dump_ed(sed); ohci_dump_tds(data); } #endif /* Insert ED in schedule */ s = splusb(); for (tdp = data; tdp != tail; tdp = tdp->nexttd) { tdp->xfer = xfer; ohci_hash_add_td(sc, tdp); } sed->ed.ed_tailp = LE(tail->physaddr); opipe->tail.td = tail; sed->ed.ed_flags &= LE(~OHCI_ED_SKIP); OWRITE4(sc, OHCI_COMMAND_STATUS, OHCI_BLF); if (xfer->timeout && !sc->sc_bus.use_polling) { usb_timeout(ohci_timeout, xfer, MS_TO_TICKS(xfer->timeout), xfer->timo_handle); } #if 0 /* This goes wrong if we are too slow. */ if (ohcidebug > 5) { usb_delay_ms(&sc->sc_bus, 5); DPRINTF(("ohci_device_intr_transfer: status=%x\n", OREAD4(sc, OHCI_COMMAND_STATUS))); ohci_dump_ed(sed); ohci_dump_tds(data); } #endif splx(s); return (USBD_IN_PROGRESS); } Static void ohci_device_bulk_abort(usbd_xfer_handle xfer) { DPRINTF(("ohci_device_bulk_abort: xfer=%p\n", xfer)); ohci_abort_xfer(xfer, USBD_CANCELLED); } /* * Close a device bulk pipe. */ Static void ohci_device_bulk_close(usbd_pipe_handle pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus; DPRINTF(("ohci_device_bulk_close: pipe=%p\n", pipe)); ohci_close_pipe(pipe, sc->sc_bulk_head); ohci_free_std(sc, opipe->tail.td); } /************************/ Static usbd_status ohci_device_intr_transfer(usbd_xfer_handle xfer) { usbd_status err; /* Insert last in queue. */ err = usb_insert_transfer(xfer); if (err) return (err); /* Pipe isn't running, start first */ return (ohci_device_intr_start(SIMPLEQ_FIRST(&xfer->pipe->queue))); } Static usbd_status ohci_device_intr_start(usbd_xfer_handle xfer) { struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; usbd_device_handle dev = opipe->pipe.device; ohci_softc_t *sc = (ohci_softc_t *)dev->bus; ohci_soft_ed_t *sed = opipe->sed; ohci_soft_td_t *data, *tail; int len; int s; DPRINTFN(3, ("ohci_device_intr_transfer: xfer=%p len=%d " "flags=%d priv=%p\n", xfer, xfer->length, xfer->flags, xfer->priv)); #ifdef DIAGNOSTIC if (xfer->rqflags & URQ_REQUEST) panic("ohci_device_intr_transfer: a request\n"); #endif len = xfer->length; data = opipe->tail.td; tail = ohci_alloc_std(sc); if (tail == NULL) return (USBD_NOMEM); tail->xfer = NULL; data->td.td_flags = LE( OHCI_TD_IN | OHCI_TD_NOCC | OHCI_TD_SET_DI(1) | OHCI_TD_TOGGLE_CARRY); if (xfer->flags & USBD_SHORT_XFER_OK) data->td.td_flags |= LE(OHCI_TD_R); data->td.td_cbp = LE(DMAADDR(&xfer->dmabuf, 0)); data->nexttd = tail; data->td.td_nexttd = LE(tail->physaddr); data->td.td_be = LE(LE(data->td.td_cbp) + len - 1); data->len = len; data->xfer = xfer; data->flags = OHCI_CALL_DONE | OHCI_ADD_LEN; xfer->hcpriv = data; #ifdef USB_DEBUG if (ohcidebug > 5) { DPRINTF(("ohci_device_intr_transfer:\n")); ohci_dump_ed(sed); ohci_dump_tds(data); } #endif /* Insert ED in schedule */ s = splusb(); ohci_hash_add_td(sc, data); sed->ed.ed_tailp = LE(tail->physaddr); opipe->tail.td = tail; sed->ed.ed_flags &= LE(~OHCI_ED_SKIP); #if 0 /* * This goes horribly wrong, printing thousands of descriptors, * because false references are followed due to the fact that the * TD is gone. */ if (ohcidebug > 5) { usb_delay_ms(&sc->sc_bus, 5); DPRINTF(("ohci_device_intr_transfer: status=%x\n", OREAD4(sc, OHCI_COMMAND_STATUS))); ohci_dump_ed(sed); ohci_dump_tds(data); } #endif splx(s); return (USBD_IN_PROGRESS); } /* Abort a device control request. */ Static void ohci_device_intr_abort(usbd_xfer_handle xfer) { if (xfer->pipe->intrxfer == xfer) { DPRINTF(("ohci_device_intr_abort: remove\n")); xfer->pipe->intrxfer = NULL; } ohci_abort_xfer(xfer, USBD_CANCELLED); } /* Close a device interrupt pipe. */ Static void ohci_device_intr_close(usbd_pipe_handle pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus; int nslots = opipe->u.intr.nslots; int pos = opipe->u.intr.pos; int j; ohci_soft_ed_t *p, *sed = opipe->sed; int s; DPRINTFN(1,("ohci_device_intr_close: pipe=%p nslots=%d pos=%d\n", pipe, nslots, pos)); s = splusb(); sed->ed.ed_flags |= LE(OHCI_ED_SKIP); if ((sed->ed.ed_tailp & LE(OHCI_TAILMASK)) != (sed->ed.ed_headp & LE(OHCI_HEADMASK))) usb_delay_ms(&sc->sc_bus, 2); #ifdef DIAGNOSTIC if ((sed->ed.ed_tailp & LE(OHCI_TAILMASK)) != (sed->ed.ed_headp & LE(OHCI_HEADMASK))) panic("%s: Intr pipe %p still has TDs queued\n", USBDEVNAME(sc->sc_bus.bdev), pipe); #endif for (p = sc->sc_eds[pos]; p && p->next != sed; p = p->next) ; #ifdef DIAGNOSTIC if (p == NULL) panic("ohci_device_intr_close: ED not found\n"); #endif p->next = sed->next; p->ed.ed_nexted = sed->ed.ed_nexted; splx(s); for (j = 0; j < nslots; j++) --sc->sc_bws[(pos * nslots + j) % OHCI_NO_INTRS]; ohci_free_std(sc, opipe->tail.td); ohci_free_sed(sc, opipe->sed); } Static usbd_status ohci_device_setintr(ohci_softc_t *sc, struct ohci_pipe *opipe, int ival) { int i, j, s, best; u_int npoll, slow, shigh, nslots; u_int bestbw, bw; ohci_soft_ed_t *hsed, *sed = opipe->sed; DPRINTFN(2, ("ohci_setintr: pipe=%p\n", opipe)); if (ival == 0) { printf("ohci_setintr: 0 interval\n"); return (USBD_INVAL); } npoll = OHCI_NO_INTRS; while (npoll > ival) npoll /= 2; DPRINTFN(2, ("ohci_setintr: ival=%d npoll=%d\n", ival, npoll)); /* * We now know which level in the tree the ED must go into. * Figure out which slot has most bandwidth left over. * Slots to examine: * npoll * 1 0 * 2 1 2 * 4 3 4 5 6 * 8 7 8 9 10 11 12 13 14 * N (N-1) .. (N-1+N-1) */ slow = npoll-1; shigh = slow + npoll; nslots = OHCI_NO_INTRS / npoll; for (best = i = slow, bestbw = ~0; i < shigh; i++) { bw = 0; for (j = 0; j < nslots; j++) bw += sc->sc_bws[(i * nslots + j) % OHCI_NO_INTRS]; if (bw < bestbw) { best = i; bestbw = bw; } } DPRINTFN(2, ("ohci_setintr: best=%d(%d..%d) bestbw=%d\n", best, slow, shigh, bestbw)); s = splusb(); hsed = sc->sc_eds[best]; sed->next = hsed->next; sed->ed.ed_nexted = hsed->ed.ed_nexted; hsed->next = sed; hsed->ed.ed_nexted = LE(sed->physaddr); splx(s); for (j = 0; j < nslots; j++) ++sc->sc_bws[(best * nslots + j) % OHCI_NO_INTRS]; opipe->u.intr.nslots = nslots; opipe->u.intr.pos = best; DPRINTFN(5, ("ohci_setintr: returns %p\n", opipe)); return (USBD_NORMAL_COMPLETION); } /***********************/ usbd_status ohci_device_isoc_transfer(usbd_xfer_handle xfer) { usbd_status err; DPRINTFN(5,("ohci_device_isoc_transfer: xfer=%p\n", xfer)); /* Put it on our queue, */ err = usb_insert_transfer(xfer); /* bail out on error, */ if (err && err != USBD_IN_PROGRESS) return (err); /* XXX should check inuse here */ /* insert into schedule, */ ohci_device_isoc_enter(xfer); /* and put on interrupt list if the pipe wasn't running */ if (!err) ohci_device_isoc_start(SIMPLEQ_FIRST(&xfer->pipe->queue)); return (err); } void ohci_device_isoc_enter(usbd_xfer_handle xfer) { struct ohci_pipe *opipe = (struct ohci_pipe *)xfer->pipe; usbd_device_handle dev = opipe->pipe.device; ohci_softc_t *sc = (ohci_softc_t *)dev->bus; ohci_soft_ed_t *sed = opipe->sed; struct iso *iso = &opipe->u.iso; ohci_soft_itd_t *sitd, *nsitd; ohci_physaddr_t buf, offs; int i, ncur, nframes; int ncross = 0; int s; s = splusb(); sitd = opipe->tail.itd; buf = DMAADDR(&xfer->dmabuf, 0); sitd->itd.itd_bp0 = LE(buf & OHCI_ITD_PAGE_MASK); nframes = xfer->nframes; offs = buf & OHCI_ITD_OFFSET_MASK; for (i = ncur = 0; i < nframes; i++, ncur++) { if (ncur == OHCI_ITD_NOFFSET || /* all offsets used */ ncross > 1) { /* too many page crossings */ nsitd = ohci_alloc_sitd(sc); if (nsitd == NULL) { /* XXX what now? */ splx(s); return; } sitd->nextitd = nsitd; sitd->itd.itd_nextitd = LE(nsitd->physaddr); sitd->itd.itd_flags = LE( OHCI_ITD_NOCC | OHCI_ITD_SET_SF(iso->next) | OHCI_ITD_NOINTR | OHCI_ITD_SET_FC(OHCI_ITD_NOFFSET)); sitd->itd.itd_be = LE(LE(sitd->itd.itd_bp0) + offs - 1); nsitd->itd.itd_bp0 = LE((buf + offs) & OHCI_ITD_PAGE_MASK); sitd = nsitd; iso->next = iso->next + ncur; ncur = 0; ncross = 0; } /* XXX byte order */ sitd->itd.itd_offset[i] = offs | (ncross == 1 ? OHCI_ITD_PAGE_SELECT : 0); offs += xfer->frlengths[i]; /* XXX update ncross */ } nsitd = ohci_alloc_sitd(sc); if (nsitd == NULL) { /* XXX what now? */ splx(s); return; } sitd->nextitd = nsitd; sitd->itd.itd_nextitd = LE(nsitd->physaddr); sitd->itd.itd_flags = LE( OHCI_ITD_NOCC | OHCI_ITD_SET_SF(iso->next) | OHCI_ITD_SET_DI(0) | OHCI_ITD_SET_FC(ncur)); sitd->itd.itd_be = LE(LE(sitd->itd.itd_bp0) + offs - 1); iso->next = iso->next + ncur; opipe->tail.itd = nsitd; sed->ed.ed_tailp = LE(nsitd->physaddr); /* XXX update ED */ splx(s); } usbd_status ohci_device_isoc_start(usbd_xfer_handle xfer) { printf("ohci_device_isoc_start: not implemented\n"); return (USBD_INVAL); } void ohci_device_isoc_abort(usbd_xfer_handle xfer) { } void ohci_device_isoc_done(usbd_xfer_handle xfer) { printf("ohci_device_isoc_done: not implemented\n"); } usbd_status ohci_setup_isoc(usbd_pipe_handle pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; struct iso *iso = &opipe->u.iso; iso->next = -1; iso->inuse = 0; return (USBD_NORMAL_COMPLETION); } void ohci_device_isoc_close(usbd_pipe_handle pipe) { struct ohci_pipe *opipe = (struct ohci_pipe *)pipe; ohci_softc_t *sc = (ohci_softc_t *)pipe->device->bus; DPRINTF(("ohci_device_isoc_close: pipe=%p\n", pipe)); ohci_close_pipe(pipe, sc->sc_isoc_head); ohci_free_sitd(sc, opipe->tail.itd); }