/* C-compiler utilities for types and variables storage layout Copyright (C) 1987-2018 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "target.h" #include "function.h" #include "rtl.h" #include "tree.h" #include "memmodel.h" #include "tm_p.h" #include "stringpool.h" #include "regs.h" #include "emit-rtl.h" #include "cgraph.h" #include "diagnostic-core.h" #include "fold-const.h" #include "stor-layout.h" #include "varasm.h" #include "print-tree.h" #include "langhooks.h" #include "tree-inline.h" #include "dumpfile.h" #include "gimplify.h" #include "attribs.h" #include "debug.h" /* Data type for the expressions representing sizes of data types. It is the first integer type laid out. */ tree sizetype_tab[(int) stk_type_kind_last]; /* If nonzero, this is an upper limit on alignment of structure fields. The value is measured in bits. */ unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT; static tree self_referential_size (tree); static void finalize_record_size (record_layout_info); static void finalize_type_size (tree); static void place_union_field (record_layout_info, tree); static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT, tree); extern void debug_rli (record_layout_info); /* Given a size SIZE that may not be a constant, return a SAVE_EXPR to serve as the actual size-expression for a type or decl. */ tree variable_size (tree size) { /* Obviously. */ if (TREE_CONSTANT (size)) return size; /* If the size is self-referential, we can't make a SAVE_EXPR (see save_expr for the rationale). But we can do something else. */ if (CONTAINS_PLACEHOLDER_P (size)) return self_referential_size (size); /* If we are in the global binding level, we can't make a SAVE_EXPR since it may end up being shared across functions, so it is up to the front-end to deal with this case. */ if (lang_hooks.decls.global_bindings_p ()) return size; return save_expr (size); } /* An array of functions used for self-referential size computation. */ static GTY(()) vec *size_functions; /* Return true if T is a self-referential component reference. */ static bool self_referential_component_ref_p (tree t) { if (TREE_CODE (t) != COMPONENT_REF) return false; while (REFERENCE_CLASS_P (t)) t = TREE_OPERAND (t, 0); return (TREE_CODE (t) == PLACEHOLDER_EXPR); } /* Similar to copy_tree_r but do not copy component references involving PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr and substituted in substitute_in_expr. */ static tree copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data) { enum tree_code code = TREE_CODE (*tp); /* Stop at types, decls, constants like copy_tree_r. */ if (TREE_CODE_CLASS (code) == tcc_type || TREE_CODE_CLASS (code) == tcc_declaration || TREE_CODE_CLASS (code) == tcc_constant) { *walk_subtrees = 0; return NULL_TREE; } /* This is the pattern built in ada/make_aligning_type. */ else if (code == ADDR_EXPR && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR) { *walk_subtrees = 0; return NULL_TREE; } /* Default case: the component reference. */ else if (self_referential_component_ref_p (*tp)) { *walk_subtrees = 0; return NULL_TREE; } /* We're not supposed to have them in self-referential size trees because we wouldn't properly control when they are evaluated. However, not creating superfluous SAVE_EXPRs requires accurate tracking of readonly-ness all the way down to here, which we cannot always guarantee in practice. So punt in this case. */ else if (code == SAVE_EXPR) return error_mark_node; else if (code == STATEMENT_LIST) gcc_unreachable (); return copy_tree_r (tp, walk_subtrees, data); } /* Given a SIZE expression that is self-referential, return an equivalent expression to serve as the actual size expression for a type. */ static tree self_referential_size (tree size) { static unsigned HOST_WIDE_INT fnno = 0; vec self_refs = vNULL; tree param_type_list = NULL, param_decl_list = NULL; tree t, ref, return_type, fntype, fnname, fndecl; unsigned int i; char buf[128]; vec *args = NULL; /* Do not factor out simple operations. */ t = skip_simple_constant_arithmetic (size); if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t)) return size; /* Collect the list of self-references in the expression. */ find_placeholder_in_expr (size, &self_refs); gcc_assert (self_refs.length () > 0); /* Obtain a private copy of the expression. */ t = size; if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE) return size; size = t; /* Build the parameter and argument lists in parallel; also substitute the former for the latter in the expression. */ vec_alloc (args, self_refs.length ()); FOR_EACH_VEC_ELT (self_refs, i, ref) { tree subst, param_name, param_type, param_decl; if (DECL_P (ref)) { /* We shouldn't have true variables here. */ gcc_assert (TREE_READONLY (ref)); subst = ref; } /* This is the pattern built in ada/make_aligning_type. */ else if (TREE_CODE (ref) == ADDR_EXPR) subst = ref; /* Default case: the component reference. */ else subst = TREE_OPERAND (ref, 1); sprintf (buf, "p%d", i); param_name = get_identifier (buf); param_type = TREE_TYPE (ref); param_decl = build_decl (input_location, PARM_DECL, param_name, param_type); DECL_ARG_TYPE (param_decl) = param_type; DECL_ARTIFICIAL (param_decl) = 1; TREE_READONLY (param_decl) = 1; size = substitute_in_expr (size, subst, param_decl); param_type_list = tree_cons (NULL_TREE, param_type, param_type_list); param_decl_list = chainon (param_decl, param_decl_list); args->quick_push (ref); } self_refs.release (); /* Append 'void' to indicate that the number of parameters is fixed. */ param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list); /* The 3 lists have been created in reverse order. */ param_type_list = nreverse (param_type_list); param_decl_list = nreverse (param_decl_list); /* Build the function type. */ return_type = TREE_TYPE (size); fntype = build_function_type (return_type, param_type_list); /* Build the function declaration. */ sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++); fnname = get_file_function_name (buf); fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype); for (t = param_decl_list; t; t = DECL_CHAIN (t)) DECL_CONTEXT (t) = fndecl; DECL_ARGUMENTS (fndecl) = param_decl_list; DECL_RESULT (fndecl) = build_decl (input_location, RESULT_DECL, 0, return_type); DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl; /* The function has been created by the compiler and we don't want to emit debug info for it. */ DECL_ARTIFICIAL (fndecl) = 1; DECL_IGNORED_P (fndecl) = 1; /* It is supposed to be "const" and never throw. */ TREE_READONLY (fndecl) = 1; TREE_NOTHROW (fndecl) = 1; /* We want it to be inlined when this is deemed profitable, as well as discarded if every call has been integrated. */ DECL_DECLARED_INLINE_P (fndecl) = 1; /* It is made up of a unique return statement. */ DECL_INITIAL (fndecl) = make_node (BLOCK); BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl; t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size); DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t); TREE_STATIC (fndecl) = 1; /* Put it onto the list of size functions. */ vec_safe_push (size_functions, fndecl); /* Replace the original expression with a call to the size function. */ return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args); } /* Take, queue and compile all the size functions. It is essential that the size functions be gimplified at the very end of the compilation in order to guarantee transparent handling of self-referential sizes. Otherwise the GENERIC inliner would not be able to inline them back at each of their call sites, thus creating artificial non-constant size expressions which would trigger nasty problems later on. */ void finalize_size_functions (void) { unsigned int i; tree fndecl; for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++) { allocate_struct_function (fndecl, false); set_cfun (NULL); dump_function (TDI_original, fndecl); /* As these functions are used to describe the layout of variable-length structures, debug info generation needs their implementation. */ debug_hooks->size_function (fndecl); gimplify_function_tree (fndecl); cgraph_node::finalize_function (fndecl, false); } vec_free (size_functions); } /* Return a machine mode of class MCLASS with SIZE bits of precision, if one exists. The mode may have padding bits as well the SIZE value bits. If LIMIT is nonzero, disregard modes wider than MAX_FIXED_MODE_SIZE. */ opt_machine_mode mode_for_size (poly_uint64 size, enum mode_class mclass, int limit) { machine_mode mode; int i; if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE)) return opt_machine_mode (); /* Get the first mode which has this size, in the specified class. */ FOR_EACH_MODE_IN_CLASS (mode, mclass) if (known_eq (GET_MODE_PRECISION (mode), size)) return mode; if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT) for (i = 0; i < NUM_INT_N_ENTS; i ++) if (known_eq (int_n_data[i].bitsize, size) && int_n_enabled_p[i]) return int_n_data[i].m; return opt_machine_mode (); } /* Similar, except passed a tree node. */ opt_machine_mode mode_for_size_tree (const_tree size, enum mode_class mclass, int limit) { unsigned HOST_WIDE_INT uhwi; unsigned int ui; if (!tree_fits_uhwi_p (size)) return opt_machine_mode (); uhwi = tree_to_uhwi (size); ui = uhwi; if (uhwi != ui) return opt_machine_mode (); return mode_for_size (ui, mclass, limit); } /* Return the narrowest mode of class MCLASS that contains at least SIZE bits. Abort if no such mode exists. */ machine_mode smallest_mode_for_size (poly_uint64 size, enum mode_class mclass) { machine_mode mode = VOIDmode; int i; /* Get the first mode which has at least this size, in the specified class. */ FOR_EACH_MODE_IN_CLASS (mode, mclass) if (known_ge (GET_MODE_PRECISION (mode), size)) break; gcc_assert (mode != VOIDmode); if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT) for (i = 0; i < NUM_INT_N_ENTS; i ++) if (known_ge (int_n_data[i].bitsize, size) && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode)) && int_n_enabled_p[i]) mode = int_n_data[i].m; return mode; } /* Return an integer mode of exactly the same size as MODE, if one exists. */ opt_scalar_int_mode int_mode_for_mode (machine_mode mode) { switch (GET_MODE_CLASS (mode)) { case MODE_INT: case MODE_PARTIAL_INT: return as_a (mode); case MODE_COMPLEX_INT: case MODE_COMPLEX_FLOAT: case MODE_FLOAT: case MODE_DECIMAL_FLOAT: case MODE_FRACT: case MODE_ACCUM: case MODE_UFRACT: case MODE_UACCUM: case MODE_VECTOR_BOOL: case MODE_VECTOR_INT: case MODE_VECTOR_FLOAT: case MODE_VECTOR_FRACT: case MODE_VECTOR_ACCUM: case MODE_VECTOR_UFRACT: case MODE_VECTOR_UACCUM: case MODE_POINTER_BOUNDS: return int_mode_for_size (GET_MODE_BITSIZE (mode), 0); case MODE_RANDOM: if (mode == BLKmode) return opt_scalar_int_mode (); /* fall through */ case MODE_CC: default: gcc_unreachable (); } } /* Find a mode that can be used for efficient bitwise operations on MODE, if one exists. */ opt_machine_mode bitwise_mode_for_mode (machine_mode mode) { /* Quick exit if we already have a suitable mode. */ scalar_int_mode int_mode; if (is_a (mode, &int_mode) && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE) return int_mode; /* Reuse the sanity checks from int_mode_for_mode. */ gcc_checking_assert ((int_mode_for_mode (mode), true)); poly_int64 bitsize = GET_MODE_BITSIZE (mode); /* Try to replace complex modes with complex modes. In general we expect both components to be processed independently, so we only care whether there is a register for the inner mode. */ if (COMPLEX_MODE_P (mode)) { machine_mode trial = mode; if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial)) && have_regs_of_mode[GET_MODE_INNER (trial)]) return trial; } /* Try to replace vector modes with vector modes. Also try using vector modes if an integer mode would be too big. */ if (VECTOR_MODE_P (mode) || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE)) { machine_mode trial = mode; if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial)) && have_regs_of_mode[trial] && targetm.vector_mode_supported_p (trial)) return trial; } /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */ return mode_for_size (bitsize, MODE_INT, true); } /* Find a type that can be used for efficient bitwise operations on MODE. Return null if no such mode exists. */ tree bitwise_type_for_mode (machine_mode mode) { if (!bitwise_mode_for_mode (mode).exists (&mode)) return NULL_TREE; unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode); tree inner_type = build_nonstandard_integer_type (inner_size, true); if (VECTOR_MODE_P (mode)) return build_vector_type_for_mode (inner_type, mode); if (COMPLEX_MODE_P (mode)) return build_complex_type (inner_type); gcc_checking_assert (GET_MODE_INNER (mode) == mode); return inner_type; } /* Find a mode that is suitable for representing a vector with NUNITS elements of mode INNERMODE, if one exists. The returned mode can be either an integer mode or a vector mode. */ opt_machine_mode mode_for_vector (scalar_mode innermode, poly_uint64 nunits) { machine_mode mode; /* First, look for a supported vector type. */ if (SCALAR_FLOAT_MODE_P (innermode)) mode = MIN_MODE_VECTOR_FLOAT; else if (SCALAR_FRACT_MODE_P (innermode)) mode = MIN_MODE_VECTOR_FRACT; else if (SCALAR_UFRACT_MODE_P (innermode)) mode = MIN_MODE_VECTOR_UFRACT; else if (SCALAR_ACCUM_MODE_P (innermode)) mode = MIN_MODE_VECTOR_ACCUM; else if (SCALAR_UACCUM_MODE_P (innermode)) mode = MIN_MODE_VECTOR_UACCUM; else mode = MIN_MODE_VECTOR_INT; /* Do not check vector_mode_supported_p here. We'll do that later in vector_type_mode. */ FOR_EACH_MODE_FROM (mode, mode) if (known_eq (GET_MODE_NUNITS (mode), nunits) && GET_MODE_INNER (mode) == innermode) return mode; /* For integers, try mapping it to a same-sized scalar mode. */ if (GET_MODE_CLASS (innermode) == MODE_INT) { poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode); if (int_mode_for_size (nbits, 0).exists (&mode) && have_regs_of_mode[mode]) return mode; } return opt_machine_mode (); } /* Return the mode for a vector that has NUNITS integer elements of INT_BITS bits each, if such a mode exists. The mode can be either an integer mode or a vector mode. */ opt_machine_mode mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits) { scalar_int_mode int_mode; machine_mode vec_mode; if (int_mode_for_size (int_bits, 0).exists (&int_mode) && mode_for_vector (int_mode, nunits).exists (&vec_mode)) return vec_mode; return opt_machine_mode (); } /* Return the alignment of MODE. This will be bounded by 1 and BIGGEST_ALIGNMENT. */ unsigned int get_mode_alignment (machine_mode mode) { return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT)); } /* Return the natural mode of an array, given that it is SIZE bytes in total and has elements of type ELEM_TYPE. */ static machine_mode mode_for_array (tree elem_type, tree size) { tree elem_size; poly_uint64 int_size, int_elem_size; unsigned HOST_WIDE_INT num_elems; bool limit_p; /* One-element arrays get the component type's mode. */ elem_size = TYPE_SIZE (elem_type); if (simple_cst_equal (size, elem_size)) return TYPE_MODE (elem_type); limit_p = true; if (poly_int_tree_p (size, &int_size) && poly_int_tree_p (elem_size, &int_elem_size) && maybe_ne (int_elem_size, 0U) && constant_multiple_p (int_size, int_elem_size, &num_elems)) { machine_mode elem_mode = TYPE_MODE (elem_type); machine_mode mode; if (targetm.array_mode (elem_mode, num_elems).exists (&mode)) return mode; if (targetm.array_mode_supported_p (elem_mode, num_elems)) limit_p = false; } return mode_for_size_tree (size, MODE_INT, limit_p).else_blk (); } /* Subroutine of layout_decl: Force alignment required for the data type. But if the decl itself wants greater alignment, don't override that. */ static inline void do_type_align (tree type, tree decl) { if (TYPE_ALIGN (type) > DECL_ALIGN (decl)) { SET_DECL_ALIGN (decl, TYPE_ALIGN (type)); if (TREE_CODE (decl) == FIELD_DECL) DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type); } if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl)) SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type)); } /* Set the size, mode and alignment of a ..._DECL node. TYPE_DECL does need this for C++. Note that LABEL_DECL and CONST_DECL nodes do not need this, and FUNCTION_DECL nodes have them set up in a special (and simple) way. Don't call layout_decl for them. KNOWN_ALIGN is the amount of alignment we can assume this decl has with no special effort. It is relevant only for FIELD_DECLs and depends on the previous fields. All that matters about KNOWN_ALIGN is which powers of 2 divide it. If KNOWN_ALIGN is 0, it means, "as much alignment as you like": the record will be aligned to suit. */ void layout_decl (tree decl, unsigned int known_align) { tree type = TREE_TYPE (decl); enum tree_code code = TREE_CODE (decl); rtx rtl = NULL_RTX; location_t loc = DECL_SOURCE_LOCATION (decl); if (code == CONST_DECL) return; gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL || code == TYPE_DECL || code == FIELD_DECL); rtl = DECL_RTL_IF_SET (decl); if (type == error_mark_node) type = void_type_node; /* Usually the size and mode come from the data type without change, however, the front-end may set the explicit width of the field, so its size may not be the same as the size of its type. This happens with bitfields, of course (an `int' bitfield may be only 2 bits, say), but it also happens with other fields. For example, the C++ front-end creates zero-sized fields corresponding to empty base classes, and depends on layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the size in bytes from the size in bits. If we have already set the mode, don't set it again since we can be called twice for FIELD_DECLs. */ DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type); if (DECL_MODE (decl) == VOIDmode) SET_DECL_MODE (decl, TYPE_MODE (type)); if (DECL_SIZE (decl) == 0) { DECL_SIZE (decl) = TYPE_SIZE (type); DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type); } else if (DECL_SIZE_UNIT (decl) == 0) DECL_SIZE_UNIT (decl) = fold_convert_loc (loc, sizetype, size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl), bitsize_unit_node)); if (code != FIELD_DECL) /* For non-fields, update the alignment from the type. */ do_type_align (type, decl); else /* For fields, it's a bit more complicated... */ { bool old_user_align = DECL_USER_ALIGN (decl); bool zero_bitfield = false; bool packed_p = DECL_PACKED (decl); unsigned int mfa; if (DECL_BIT_FIELD (decl)) { DECL_BIT_FIELD_TYPE (decl) = type; /* A zero-length bit-field affects the alignment of the next field. In essence such bit-fields are not influenced by any packing due to #pragma pack or attribute packed. */ if (integer_zerop (DECL_SIZE (decl)) && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl))) { zero_bitfield = true; packed_p = false; if (PCC_BITFIELD_TYPE_MATTERS) do_type_align (type, decl); else { #ifdef EMPTY_FIELD_BOUNDARY if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl)) { SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY); DECL_USER_ALIGN (decl) = 0; } #endif } } /* See if we can use an ordinary integer mode for a bit-field. Conditions are: a fixed size that is correct for another mode, occupying a complete byte or bytes on proper boundary. */ if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT) { machine_mode xmode; if (mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1).exists (&xmode)) { unsigned int xalign = GET_MODE_ALIGNMENT (xmode); if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl)) && (known_align == 0 || known_align >= xalign)) { SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl))); SET_DECL_MODE (decl, xmode); DECL_BIT_FIELD (decl) = 0; } } } /* Turn off DECL_BIT_FIELD if we won't need it set. */ if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode && known_align >= TYPE_ALIGN (type) && DECL_ALIGN (decl) >= TYPE_ALIGN (type)) DECL_BIT_FIELD (decl) = 0; } else if (packed_p && DECL_USER_ALIGN (decl)) /* Don't touch DECL_ALIGN. For other packed fields, go ahead and round up; we'll reduce it again below. We want packing to supersede USER_ALIGN inherited from the type, but defer to alignment explicitly specified on the field decl. */; else do_type_align (type, decl); /* If the field is packed and not explicitly aligned, give it the minimum alignment. Note that do_type_align may set DECL_USER_ALIGN, so we need to check old_user_align instead. */ if (packed_p && !old_user_align) SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT)); if (! packed_p && ! DECL_USER_ALIGN (decl)) { /* Some targets (i.e. i386, VMS) limit struct field alignment to a lower boundary than alignment of variables unless it was overridden by attribute aligned. */ #ifdef BIGGEST_FIELD_ALIGNMENT SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT)); #endif #ifdef ADJUST_FIELD_ALIGN SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl), DECL_ALIGN (decl))); #endif } if (zero_bitfield) mfa = initial_max_fld_align * BITS_PER_UNIT; else mfa = maximum_field_alignment; /* Should this be controlled by DECL_USER_ALIGN, too? */ if (mfa != 0) SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa)); } /* Evaluate nonconstant size only once, either now or as soon as safe. */ if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST) DECL_SIZE (decl) = variable_size (DECL_SIZE (decl)); if (DECL_SIZE_UNIT (decl) != 0 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST) DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl)); /* If requested, warn about definitions of large data objects. */ if (warn_larger_than && (code == VAR_DECL || code == PARM_DECL) && ! DECL_EXTERNAL (decl)) { tree size = DECL_SIZE_UNIT (decl); if (size != 0 && TREE_CODE (size) == INTEGER_CST && compare_tree_int (size, larger_than_size) > 0) { int size_as_int = TREE_INT_CST_LOW (size); if (compare_tree_int (size, size_as_int) == 0) warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int); else warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes", decl, larger_than_size); } } /* If the RTL was already set, update its mode and mem attributes. */ if (rtl) { PUT_MODE (rtl, DECL_MODE (decl)); SET_DECL_RTL (decl, 0); if (MEM_P (rtl)) set_mem_attributes (rtl, decl, 1); SET_DECL_RTL (decl, rtl); } } /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the results of a previous call to layout_decl and calls it again. */ void relayout_decl (tree decl) { DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0; SET_DECL_MODE (decl, VOIDmode); if (!DECL_USER_ALIGN (decl)) SET_DECL_ALIGN (decl, 0); if (DECL_RTL_SET_P (decl)) SET_DECL_RTL (decl, 0); layout_decl (decl, 0); } /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which is to be passed to all other layout functions for this record. It is the responsibility of the caller to call `free' for the storage returned. Note that garbage collection is not permitted until we finish laying out the record. */ record_layout_info start_record_layout (tree t) { record_layout_info rli = XNEW (struct record_layout_info_s); rli->t = t; /* If the type has a minimum specified alignment (via an attribute declaration, for example) use it -- otherwise, start with a one-byte alignment. */ rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t)); rli->unpacked_align = rli->record_align; rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT); #ifdef STRUCTURE_SIZE_BOUNDARY /* Packed structures don't need to have minimum size. */ if (! TYPE_PACKED (t)) { unsigned tmp; /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */ tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY; if (maximum_field_alignment != 0) tmp = MIN (tmp, maximum_field_alignment); rli->record_align = MAX (rli->record_align, tmp); } #endif rli->offset = size_zero_node; rli->bitpos = bitsize_zero_node; rli->prev_field = 0; rli->pending_statics = 0; rli->packed_maybe_necessary = 0; rli->remaining_in_alignment = 0; return rli; } /* Fold sizetype value X to bitsizetype, given that X represents a type size or offset. */ static tree bits_from_bytes (tree x) { if (POLY_INT_CST_P (x)) /* The runtime calculation isn't allowed to overflow sizetype; increasing the runtime values must always increase the size or offset of the object. This means that the object imposes a maximum value on the runtime parameters, but we don't record what that is. */ return build_poly_int_cst (bitsizetype, poly_wide_int::from (poly_int_cst_value (x), TYPE_PRECISION (bitsizetype), TYPE_SIGN (TREE_TYPE (x)))); x = fold_convert (bitsizetype, x); gcc_checking_assert (x); return x; } /* Return the combined bit position for the byte offset OFFSET and the bit position BITPOS. These functions operate on byte and bit positions present in FIELD_DECLs and assume that these expressions result in no (intermediate) overflow. This assumption is necessary to fold the expressions as much as possible, so as to avoid creating artificially variable-sized types in languages supporting variable-sized types like Ada. */ tree bit_from_pos (tree offset, tree bitpos) { return size_binop (PLUS_EXPR, bitpos, size_binop (MULT_EXPR, bits_from_bytes (offset), bitsize_unit_node)); } /* Return the combined truncated byte position for the byte offset OFFSET and the bit position BITPOS. */ tree byte_from_pos (tree offset, tree bitpos) { tree bytepos; if (TREE_CODE (bitpos) == MULT_EXPR && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node)) bytepos = TREE_OPERAND (bitpos, 0); else bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node); return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos)); } /* Split the bit position POS into a byte offset *POFFSET and a bit position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */ void pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align, tree pos) { tree toff_align = bitsize_int (off_align); if (TREE_CODE (pos) == MULT_EXPR && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align)) { *poffset = size_binop (MULT_EXPR, fold_convert (sizetype, TREE_OPERAND (pos, 0)), size_int (off_align / BITS_PER_UNIT)); *pbitpos = bitsize_zero_node; } else { *poffset = size_binop (MULT_EXPR, fold_convert (sizetype, size_binop (FLOOR_DIV_EXPR, pos, toff_align)), size_int (off_align / BITS_PER_UNIT)); *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align); } } /* Given a pointer to bit and byte offsets and an offset alignment, normalize the offsets so they are within the alignment. */ void normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align) { /* If the bit position is now larger than it should be, adjust it downwards. */ if (compare_tree_int (*pbitpos, off_align) >= 0) { tree offset, bitpos; pos_from_bit (&offset, &bitpos, off_align, *pbitpos); *poffset = size_binop (PLUS_EXPR, *poffset, offset); *pbitpos = bitpos; } } /* Print debugging information about the information in RLI. */ DEBUG_FUNCTION void debug_rli (record_layout_info rli) { print_node_brief (stderr, "type", rli->t, 0); print_node_brief (stderr, "\noffset", rli->offset, 0); print_node_brief (stderr, " bitpos", rli->bitpos, 0); fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n", rli->record_align, rli->unpacked_align, rli->offset_align); /* The ms_struct code is the only that uses this. */ if (targetm.ms_bitfield_layout_p (rli->t)) fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment); if (rli->packed_maybe_necessary) fprintf (stderr, "packed may be necessary\n"); if (!vec_safe_is_empty (rli->pending_statics)) { fprintf (stderr, "pending statics:\n"); debug (rli->pending_statics); } } /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */ void normalize_rli (record_layout_info rli) { normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align); } /* Returns the size in bytes allocated so far. */ tree rli_size_unit_so_far (record_layout_info rli) { return byte_from_pos (rli->offset, rli->bitpos); } /* Returns the size in bits allocated so far. */ tree rli_size_so_far (record_layout_info rli) { return bit_from_pos (rli->offset, rli->bitpos); } /* FIELD is about to be added to RLI->T. The alignment (in bits) of the next available location within the record is given by KNOWN_ALIGN. Update the variable alignment fields in RLI, and return the alignment to give the FIELD. */ unsigned int update_alignment_for_field (record_layout_info rli, tree field, unsigned int known_align) { /* The alignment required for FIELD. */ unsigned int desired_align; /* The type of this field. */ tree type = TREE_TYPE (field); /* True if the field was explicitly aligned by the user. */ bool user_align; bool is_bitfield; /* Do not attempt to align an ERROR_MARK node */ if (TREE_CODE (type) == ERROR_MARK) return 0; /* Lay out the field so we know what alignment it needs. */ layout_decl (field, known_align); desired_align = DECL_ALIGN (field); user_align = DECL_USER_ALIGN (field); is_bitfield = (type != error_mark_node && DECL_BIT_FIELD_TYPE (field) && ! integer_zerop (TYPE_SIZE (type))); /* Record must have at least as much alignment as any field. Otherwise, the alignment of the field within the record is meaningless. */ if (targetm.ms_bitfield_layout_p (rli->t)) { /* Here, the alignment of the underlying type of a bitfield can affect the alignment of a record; even a zero-sized field can do this. The alignment should be to the alignment of the type, except that for zero-size bitfields this only applies if there was an immediately prior, nonzero-size bitfield. (That's the way it is, experimentally.) */ if (!is_bitfield || ((DECL_SIZE (field) == NULL_TREE || !integer_zerop (DECL_SIZE (field))) ? !DECL_PACKED (field) : (rli->prev_field && DECL_BIT_FIELD_TYPE (rli->prev_field) && ! integer_zerop (DECL_SIZE (rli->prev_field))))) { unsigned int type_align = TYPE_ALIGN (type); if (!is_bitfield && DECL_PACKED (field)) type_align = desired_align; else type_align = MAX (type_align, desired_align); if (maximum_field_alignment != 0) type_align = MIN (type_align, maximum_field_alignment); rli->record_align = MAX (rli->record_align, type_align); rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type)); } } else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS) { /* Named bit-fields cause the entire structure to have the alignment implied by their type. Some targets also apply the same rules to unnamed bitfields. */ if (DECL_NAME (field) != 0 || targetm.align_anon_bitfield ()) { unsigned int type_align = TYPE_ALIGN (type); #ifdef ADJUST_FIELD_ALIGN if (! TYPE_USER_ALIGN (type)) type_align = ADJUST_FIELD_ALIGN (field, type, type_align); #endif /* Targets might chose to handle unnamed and hence possibly zero-width bitfield. Those are not influenced by #pragmas or packed attributes. */ if (integer_zerop (DECL_SIZE (field))) { if (initial_max_fld_align) type_align = MIN (type_align, initial_max_fld_align * BITS_PER_UNIT); } else if (maximum_field_alignment != 0) type_align = MIN (type_align, maximum_field_alignment); else if (DECL_PACKED (field)) type_align = MIN (type_align, BITS_PER_UNIT); /* The alignment of the record is increased to the maximum of the current alignment, the alignment indicated on the field (i.e., the alignment specified by an __aligned__ attribute), and the alignment indicated by the type of the field. */ rli->record_align = MAX (rli->record_align, desired_align); rli->record_align = MAX (rli->record_align, type_align); if (warn_packed) rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type)); user_align |= TYPE_USER_ALIGN (type); } } else { rli->record_align = MAX (rli->record_align, desired_align); rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type)); } TYPE_USER_ALIGN (rli->t) |= user_align; return desired_align; } /* Issue a warning if the record alignment, RECORD_ALIGN, is less than the field alignment of FIELD or FIELD isn't aligned. */ static void handle_warn_if_not_align (tree field, unsigned int record_align) { tree type = TREE_TYPE (field); if (type == error_mark_node) return; unsigned int warn_if_not_align = 0; int opt_w = 0; if (warn_if_not_aligned) { warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field); if (!warn_if_not_align) warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type); if (warn_if_not_align) opt_w = OPT_Wif_not_aligned; } if (!warn_if_not_align && warn_packed_not_aligned && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type))) { warn_if_not_align = TYPE_ALIGN (type); opt_w = OPT_Wpacked_not_aligned; } if (!warn_if_not_align) return; tree context = DECL_CONTEXT (field); warn_if_not_align /= BITS_PER_UNIT; record_align /= BITS_PER_UNIT; if ((record_align % warn_if_not_align) != 0) warning (opt_w, "alignment %u of %qT is less than %u", record_align, context, warn_if_not_align); tree off = byte_position (field); if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align))) { if (TREE_CODE (off) == INTEGER_CST) warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u", field, off, context, warn_if_not_align); else warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u", field, off, context, warn_if_not_align); } } /* Called from place_field to handle unions. */ static void place_union_field (record_layout_info rli, tree field) { update_alignment_for_field (rli, field, /*known_align=*/0); DECL_FIELD_OFFSET (field) = size_zero_node; DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node; SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT); handle_warn_if_not_align (field, rli->record_align); /* If this is an ERROR_MARK return *after* having set the field at the start of the union. This helps when parsing invalid fields. */ if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK) return; if (AGGREGATE_TYPE_P (TREE_TYPE (field)) && TYPE_TYPELESS_STORAGE (TREE_TYPE (field))) TYPE_TYPELESS_STORAGE (rli->t) = 1; /* We assume the union's size will be a multiple of a byte so we don't bother with BITPOS. */ if (TREE_CODE (rli->t) == UNION_TYPE) rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field)); else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE) rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field), DECL_SIZE_UNIT (field), rli->offset); } /* A bitfield of SIZE with a required access alignment of ALIGN is allocated at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more units of alignment than the underlying TYPE. */ static int excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset, HOST_WIDE_INT size, HOST_WIDE_INT align, tree type) { /* Note that the calculation of OFFSET might overflow; we calculate it so that we still get the right result as long as ALIGN is a power of two. */ unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset; offset = offset % align; return ((offset + size + align - 1) / align > tree_to_uhwi (TYPE_SIZE (type)) / align); } /* RLI contains information about the layout of a RECORD_TYPE. FIELD is a FIELD_DECL to be added after those fields already present in T. (FIELD is not actually added to the TYPE_FIELDS list here; callers that desire that behavior must manually perform that step.) */ void place_field (record_layout_info rli, tree field) { /* The alignment required for FIELD. */ unsigned int desired_align; /* The alignment FIELD would have if we just dropped it into the record as it presently stands. */ unsigned int known_align; unsigned int actual_align; /* The type of this field. */ tree type = TREE_TYPE (field); gcc_assert (TREE_CODE (field) != ERROR_MARK); /* If FIELD is static, then treat it like a separate variable, not really like a structure field. If it is a FUNCTION_DECL, it's a method. In both cases, all we do is lay out the decl, and we do it *after* the record is laid out. */ if (VAR_P (field)) { vec_safe_push (rli->pending_statics, field); return; } /* Enumerators and enum types which are local to this class need not be laid out. Likewise for initialized constant fields. */ else if (TREE_CODE (field) != FIELD_DECL) return; /* Unions are laid out very differently than records, so split that code off to another function. */ else if (TREE_CODE (rli->t) != RECORD_TYPE) { place_union_field (rli, field); return; } else if (TREE_CODE (type) == ERROR_MARK) { /* Place this field at the current allocation position, so we maintain monotonicity. */ DECL_FIELD_OFFSET (field) = rli->offset; DECL_FIELD_BIT_OFFSET (field) = rli->bitpos; SET_DECL_OFFSET_ALIGN (field, rli->offset_align); handle_warn_if_not_align (field, rli->record_align); return; } if (AGGREGATE_TYPE_P (type) && TYPE_TYPELESS_STORAGE (type)) TYPE_TYPELESS_STORAGE (rli->t) = 1; /* Work out the known alignment so far. Note that A & (-A) is the value of the least-significant bit in A that is one. */ if (! integer_zerop (rli->bitpos)) known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos)); else if (integer_zerop (rli->offset)) known_align = 0; else if (tree_fits_uhwi_p (rli->offset)) known_align = (BITS_PER_UNIT * least_bit_hwi (tree_to_uhwi (rli->offset))); else known_align = rli->offset_align; desired_align = update_alignment_for_field (rli, field, known_align); if (known_align == 0) known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align); if (warn_packed && DECL_PACKED (field)) { if (known_align >= TYPE_ALIGN (type)) { if (TYPE_ALIGN (type) > desired_align) { if (STRICT_ALIGNMENT) warning (OPT_Wattributes, "packed attribute causes " "inefficient alignment for %q+D", field); /* Don't warn if DECL_PACKED was set by the type. */ else if (!TYPE_PACKED (rli->t)) warning (OPT_Wattributes, "packed attribute is " "unnecessary for %q+D", field); } } else rli->packed_maybe_necessary = 1; } /* Does this field automatically have alignment it needs by virtue of the fields that precede it and the record's own alignment? */ if (known_align < desired_align && (! targetm.ms_bitfield_layout_p (rli->t) || rli->prev_field == NULL)) { /* No, we need to skip space before this field. Bump the cumulative size to multiple of field alignment. */ if (!targetm.ms_bitfield_layout_p (rli->t) && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION) warning (OPT_Wpadded, "padding struct to align %q+D", field); /* If the alignment is still within offset_align, just align the bit position. */ if (desired_align < rli->offset_align) rli->bitpos = round_up (rli->bitpos, desired_align); else { /* First adjust OFFSET by the partial bits, then align. */ rli->offset = size_binop (PLUS_EXPR, rli->offset, fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, rli->bitpos, bitsize_unit_node))); rli->bitpos = bitsize_zero_node; rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT); } if (! TREE_CONSTANT (rli->offset)) rli->offset_align = desired_align; } /* Handle compatibility with PCC. Note that if the record has any variable-sized fields, we need not worry about compatibility. */ if (PCC_BITFIELD_TYPE_MATTERS && ! targetm.ms_bitfield_layout_p (rli->t) && TREE_CODE (field) == FIELD_DECL && type != error_mark_node && DECL_BIT_FIELD (field) && (! DECL_PACKED (field) /* Enter for these packed fields only to issue a warning. */ || TYPE_ALIGN (type) <= BITS_PER_UNIT) && maximum_field_alignment == 0 && ! integer_zerop (DECL_SIZE (field)) && tree_fits_uhwi_p (DECL_SIZE (field)) && tree_fits_uhwi_p (rli->offset) && tree_fits_uhwi_p (TYPE_SIZE (type))) { unsigned int type_align = TYPE_ALIGN (type); tree dsize = DECL_SIZE (field); HOST_WIDE_INT field_size = tree_to_uhwi (dsize); HOST_WIDE_INT offset = tree_to_uhwi (rli->offset); HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos); #ifdef ADJUST_FIELD_ALIGN if (! TYPE_USER_ALIGN (type)) type_align = ADJUST_FIELD_ALIGN (field, type, type_align); #endif /* A bit field may not span more units of alignment of its type than its type itself. Advance to next boundary if necessary. */ if (excess_unit_span (offset, bit_offset, field_size, type_align, type)) { if (DECL_PACKED (field)) { if (warn_packed_bitfield_compat == 1) inform (input_location, "offset of packed bit-field %qD has changed in GCC 4.4", field); } else rli->bitpos = round_up (rli->bitpos, type_align); } if (! DECL_PACKED (field)) TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type); SET_TYPE_WARN_IF_NOT_ALIGN (rli->t, TYPE_WARN_IF_NOT_ALIGN (type)); } #ifdef BITFIELD_NBYTES_LIMITED if (BITFIELD_NBYTES_LIMITED && ! targetm.ms_bitfield_layout_p (rli->t) && TREE_CODE (field) == FIELD_DECL && type != error_mark_node && DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field) && ! integer_zerop (DECL_SIZE (field)) && tree_fits_uhwi_p (DECL_SIZE (field)) && tree_fits_uhwi_p (rli->offset) && tree_fits_uhwi_p (TYPE_SIZE (type))) { unsigned int type_align = TYPE_ALIGN (type); tree dsize = DECL_SIZE (field); HOST_WIDE_INT field_size = tree_to_uhwi (dsize); HOST_WIDE_INT offset = tree_to_uhwi (rli->offset); HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos); #ifdef ADJUST_FIELD_ALIGN if (! TYPE_USER_ALIGN (type)) type_align = ADJUST_FIELD_ALIGN (field, type, type_align); #endif if (maximum_field_alignment != 0) type_align = MIN (type_align, maximum_field_alignment); /* ??? This test is opposite the test in the containing if statement, so this code is unreachable currently. */ else if (DECL_PACKED (field)) type_align = MIN (type_align, BITS_PER_UNIT); /* A bit field may not span the unit of alignment of its type. Advance to next boundary if necessary. */ if (excess_unit_span (offset, bit_offset, field_size, type_align, type)) rli->bitpos = round_up (rli->bitpos, type_align); TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type); SET_TYPE_WARN_IF_NOT_ALIGN (rli->t, TYPE_WARN_IF_NOT_ALIGN (type)); } #endif /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details. A subtlety: When a bit field is inserted into a packed record, the whole size of the underlying type is used by one or more same-size adjacent bitfields. (That is, if its long:3, 32 bits is used in the record, and any additional adjacent long bitfields are packed into the same chunk of 32 bits. However, if the size changes, a new field of that size is allocated.) In an unpacked record, this is the same as using alignment, but not equivalent when packing. Note: for compatibility, we use the type size, not the type alignment to determine alignment, since that matches the documentation */ if (targetm.ms_bitfield_layout_p (rli->t)) { tree prev_saved = rli->prev_field; tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL; /* This is a bitfield if it exists. */ if (rli->prev_field) { bool realign_p = known_align < desired_align; /* If both are bitfields, nonzero, and the same size, this is the middle of a run. Zero declared size fields are special and handled as "end of run". (Note: it's nonzero declared size, but equal type sizes!) (Since we know that both the current and previous fields are bitfields by the time we check it, DECL_SIZE must be present for both.) */ if (DECL_BIT_FIELD_TYPE (field) && !integer_zerop (DECL_SIZE (field)) && !integer_zerop (DECL_SIZE (rli->prev_field)) && tree_fits_shwi_p (DECL_SIZE (rli->prev_field)) && tree_fits_uhwi_p (TYPE_SIZE (type)) && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))) { /* We're in the middle of a run of equal type size fields; make sure we realign if we run out of bits. (Not decl size, type size!) */ HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field)); if (rli->remaining_in_alignment < bitsize) { HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type)); /* out of bits; bump up to next 'word'. */ rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, bitsize_int (rli->remaining_in_alignment)); rli->prev_field = field; if (typesize < bitsize) rli->remaining_in_alignment = 0; else rli->remaining_in_alignment = typesize - bitsize; } else { rli->remaining_in_alignment -= bitsize; realign_p = false; } } else { /* End of a run: if leaving a run of bitfields of the same type size, we have to "use up" the rest of the bits of the type size. Compute the new position as the sum of the size for the prior type and where we first started working on that type. Note: since the beginning of the field was aligned then of course the end will be too. No round needed. */ if (!integer_zerop (DECL_SIZE (rli->prev_field))) { rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, bitsize_int (rli->remaining_in_alignment)); } else /* We "use up" size zero fields; the code below should behave as if the prior field was not a bitfield. */ prev_saved = NULL; /* Cause a new bitfield to be captured, either this time (if currently a bitfield) or next time we see one. */ if (!DECL_BIT_FIELD_TYPE (field) || integer_zerop (DECL_SIZE (field))) rli->prev_field = NULL; } /* Does this field automatically have alignment it needs by virtue of the fields that precede it and the record's own alignment? */ if (realign_p) { /* If the alignment is still within offset_align, just align the bit position. */ if (desired_align < rli->offset_align) rli->bitpos = round_up (rli->bitpos, desired_align); else { /* First adjust OFFSET by the partial bits, then align. */ tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos, bitsize_unit_node); rli->offset = size_binop (PLUS_EXPR, rli->offset, fold_convert (sizetype, d)); rli->bitpos = bitsize_zero_node; rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT); } if (! TREE_CONSTANT (rli->offset)) rli->offset_align = desired_align; } normalize_rli (rli); } /* If we're starting a new run of same type size bitfields (or a run of non-bitfields), set up the "first of the run" fields. That is, if the current field is not a bitfield, or if there was a prior bitfield the type sizes differ, or if there wasn't a prior bitfield the size of the current field is nonzero. Note: we must be sure to test ONLY the type size if there was a prior bitfield and ONLY for the current field being zero if there wasn't. */ if (!DECL_BIT_FIELD_TYPE (field) || (prev_saved != NULL ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)) : !integer_zerop (DECL_SIZE (field)))) { /* Never smaller than a byte for compatibility. */ unsigned int type_align = BITS_PER_UNIT; /* (When not a bitfield), we could be seeing a flex array (with no DECL_SIZE). Since we won't be using remaining_in_alignment until we see a bitfield (and come by here again) we just skip calculating it. */ if (DECL_SIZE (field) != NULL && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field))) && tree_fits_uhwi_p (DECL_SIZE (field))) { unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field)); unsigned HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field))); if (typesize < bitsize) rli->remaining_in_alignment = 0; else rli->remaining_in_alignment = typesize - bitsize; } /* Now align (conventionally) for the new type. */ if (! DECL_PACKED (field)) type_align = TYPE_ALIGN (TREE_TYPE (field)); if (maximum_field_alignment != 0) type_align = MIN (type_align, maximum_field_alignment); rli->bitpos = round_up (rli->bitpos, type_align); /* If we really aligned, don't allow subsequent bitfields to undo that. */ rli->prev_field = NULL; } } /* Offset so far becomes the position of this field after normalizing. */ normalize_rli (rli); DECL_FIELD_OFFSET (field) = rli->offset; DECL_FIELD_BIT_OFFSET (field) = rli->bitpos; SET_DECL_OFFSET_ALIGN (field, rli->offset_align); handle_warn_if_not_align (field, rli->record_align); /* Evaluate nonconstant offsets only once, either now or as soon as safe. */ if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST) DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field)); /* If this field ended up more aligned than we thought it would be (we approximate this by seeing if its position changed), lay out the field again; perhaps we can use an integral mode for it now. */ if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field))) actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))); else if (integer_zerop (DECL_FIELD_OFFSET (field))) actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align); else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))) actual_align = (BITS_PER_UNIT * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field)))); else actual_align = DECL_OFFSET_ALIGN (field); /* ACTUAL_ALIGN is still the actual alignment *within the record* . store / extract bit field operations will check the alignment of the record against the mode of bit fields. */ if (known_align != actual_align) layout_decl (field, actual_align); if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field)) rli->prev_field = field; /* Now add size of this field to the size of the record. If the size is not constant, treat the field as being a multiple of bytes and just adjust the offset, resetting the bit position. Otherwise, apportion the size amongst the bit position and offset. First handle the case of an unspecified size, which can happen when we have an invalid nested struct definition, such as struct j { struct j { int i; } }. The error message is printed in finish_struct. */ if (DECL_SIZE (field) == 0) /* Do nothing. */; else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST || TREE_OVERFLOW (DECL_SIZE (field))) { rli->offset = size_binop (PLUS_EXPR, rli->offset, fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, rli->bitpos, bitsize_unit_node))); rli->offset = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field)); rli->bitpos = bitsize_zero_node; rli->offset_align = MIN (rli->offset_align, desired_align); if (!multiple_of_p (bitsizetype, DECL_SIZE (field), bitsize_int (rli->offset_align))) { tree type = strip_array_types (TREE_TYPE (field)); /* The above adjusts offset_align just based on the start of the field. The field might not have a size that is a multiple of that offset_align though. If the field is an array of fixed sized elements, assume there can be any multiple of those sizes. If it is a variable length aggregate or array of variable length aggregates, assume worst that the end is just BITS_PER_UNIT aligned. */ if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) { if (TREE_INT_CST_LOW (TYPE_SIZE (type))) { unsigned HOST_WIDE_INT sz = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type))); rli->offset_align = MIN (rli->offset_align, sz); } } else rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT); } } else if (targetm.ms_bitfield_layout_p (rli->t)) { rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field)); /* If we ended a bitfield before the full length of the type then pad the struct out to the full length of the last type. */ if ((DECL_CHAIN (field) == NULL || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL) && DECL_BIT_FIELD_TYPE (field) && !integer_zerop (DECL_SIZE (field))) rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, bitsize_int (rli->remaining_in_alignment)); normalize_rli (rli); } else { rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field)); normalize_rli (rli); } } /* Assuming that all the fields have been laid out, this function uses RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type indicated by RLI. */ static void finalize_record_size (record_layout_info rli) { tree unpadded_size, unpadded_size_unit; /* Now we want just byte and bit offsets, so set the offset alignment to be a byte and then normalize. */ rli->offset_align = BITS_PER_UNIT; normalize_rli (rli); /* Determine the desired alignment. */ #ifdef ROUND_TYPE_ALIGN SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->record_align)); #else SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align)); #endif /* Compute the size so far. Be sure to allow for extra bits in the size in bytes. We have guaranteed above that it will be no more than a single byte. */ unpadded_size = rli_size_so_far (rli); unpadded_size_unit = rli_size_unit_so_far (rli); if (! integer_zerop (rli->bitpos)) unpadded_size_unit = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node); /* Round the size up to be a multiple of the required alignment. */ TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t)); TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t)); if (TREE_CONSTANT (unpadded_size) && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0 && input_location != BUILTINS_LOCATION) warning (OPT_Wpadded, "padding struct size to alignment boundary"); if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary && TREE_CONSTANT (unpadded_size)) { tree unpacked_size; #ifdef ROUND_TYPE_ALIGN rli->unpacked_align = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align); #else rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align); #endif unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align); if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t))) { if (TYPE_NAME (rli->t)) { tree name; if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE) name = TYPE_NAME (rli->t); else name = DECL_NAME (TYPE_NAME (rli->t)); if (STRICT_ALIGNMENT) warning (OPT_Wpacked, "packed attribute causes inefficient " "alignment for %qE", name); else warning (OPT_Wpacked, "packed attribute is unnecessary for %qE", name); } else { if (STRICT_ALIGNMENT) warning (OPT_Wpacked, "packed attribute causes inefficient alignment"); else warning (OPT_Wpacked, "packed attribute is unnecessary"); } } } } /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */ void compute_record_mode (tree type) { tree field; machine_mode mode = VOIDmode; /* Most RECORD_TYPEs have BLKmode, so we start off assuming that. However, if possible, we use a mode that fits in a register instead, in order to allow for better optimization down the line. */ SET_TYPE_MODE (type, BLKmode); if (! tree_fits_uhwi_p (TYPE_SIZE (type))) return; /* A record which has any BLKmode members must itself be BLKmode; it can't go in a register. Unless the member is BLKmode only because it isn't aligned. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK || (TYPE_MODE (TREE_TYPE (field)) == BLKmode && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)) && !(TYPE_SIZE (TREE_TYPE (field)) != 0 && integer_zerop (TYPE_SIZE (TREE_TYPE (field))))) || ! tree_fits_uhwi_p (bit_position (field)) || DECL_SIZE (field) == 0 || ! tree_fits_uhwi_p (DECL_SIZE (field))) return; /* If this field is the whole struct, remember its mode so that, say, we can put a double in a class into a DF register instead of forcing it to live in the stack. */ if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field))) mode = DECL_MODE (field); /* With some targets, it is sub-optimal to access an aligned BLKmode structure as a scalar. */ if (targetm.member_type_forces_blk (field, mode)) return; } /* If we only have one real field; use its mode if that mode's size matches the type's size. This only applies to RECORD_TYPE. This does not apply to unions. */ if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode && tree_fits_uhwi_p (TYPE_SIZE (type)) && known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type)))) ; else mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk (); /* If structure's known alignment is less than what the scalar mode would need, and it matters, then stick with BLKmode. */ if (mode != BLKmode && STRICT_ALIGNMENT && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode))) { /* If this is the only reason this type is BLKmode, then don't force containing types to be BLKmode. */ TYPE_NO_FORCE_BLK (type) = 1; mode = BLKmode; } SET_TYPE_MODE (type, mode); } /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid out. */ static void finalize_type_size (tree type) { /* Normally, use the alignment corresponding to the mode chosen. However, where strict alignment is not required, avoid over-aligning structures, since most compilers do not do this alignment. */ if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type))) { unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type)); /* Don't override a larger alignment requirement coming from a user alignment of one of the fields. */ if (mode_align >= TYPE_ALIGN (type)) { SET_TYPE_ALIGN (type, mode_align); TYPE_USER_ALIGN (type) = 0; } } /* Do machine-dependent extra alignment. */ #ifdef ROUND_TYPE_ALIGN SET_TYPE_ALIGN (type, ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT)); #endif /* If we failed to find a simple way to calculate the unit size of the type, find it by division. */ if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0) /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the result will fit in sizetype. We will get more efficient code using sizetype, so we force a conversion. */ TYPE_SIZE_UNIT (type) = fold_convert (sizetype, size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type), bitsize_unit_node)); if (TYPE_SIZE (type) != 0) { TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type)); TYPE_SIZE_UNIT (type) = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type)); } /* Evaluate nonconstant sizes only once, either now or as soon as safe. */ if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) TYPE_SIZE (type) = variable_size (TYPE_SIZE (type)); if (TYPE_SIZE_UNIT (type) != 0 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST) TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type)); /* Handle empty records as per the x86-64 psABI. */ TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type); /* Also layout any other variants of the type. */ if (TYPE_NEXT_VARIANT (type) || type != TYPE_MAIN_VARIANT (type)) { tree variant; /* Record layout info of this variant. */ tree size = TYPE_SIZE (type); tree size_unit = TYPE_SIZE_UNIT (type); unsigned int align = TYPE_ALIGN (type); unsigned int precision = TYPE_PRECISION (type); unsigned int user_align = TYPE_USER_ALIGN (type); machine_mode mode = TYPE_MODE (type); bool empty_p = TYPE_EMPTY_P (type); /* Copy it into all variants. */ for (variant = TYPE_MAIN_VARIANT (type); variant != 0; variant = TYPE_NEXT_VARIANT (variant)) { TYPE_SIZE (variant) = size; TYPE_SIZE_UNIT (variant) = size_unit; unsigned valign = align; if (TYPE_USER_ALIGN (variant)) valign = MAX (valign, TYPE_ALIGN (variant)); else TYPE_USER_ALIGN (variant) = user_align; SET_TYPE_ALIGN (variant, valign); TYPE_PRECISION (variant) = precision; SET_TYPE_MODE (variant, mode); TYPE_EMPTY_P (variant) = empty_p; } } } /* Return a new underlying object for a bitfield started with FIELD. */ static tree start_bitfield_representative (tree field) { tree repr = make_node (FIELD_DECL); DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field); /* Force the representative to begin at a BITS_PER_UNIT aligned boundary - C++ may use tail-padding of a base object to continue packing bits so the bitfield region does not start at bit zero (see g++.dg/abi/bitfield5.C for example). Unallocated bits may happen for other reasons as well, for example Ada which allows explicit bit-granular structure layout. */ DECL_FIELD_BIT_OFFSET (repr) = size_binop (BIT_AND_EXPR, DECL_FIELD_BIT_OFFSET (field), bitsize_int (~(BITS_PER_UNIT - 1))); SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field)); DECL_SIZE (repr) = DECL_SIZE (field); DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field); DECL_PACKED (repr) = DECL_PACKED (field); DECL_CONTEXT (repr) = DECL_CONTEXT (field); /* There are no indirect accesses to this field. If we introduce some then they have to use the record alias set. This makes sure to properly conflict with [indirect] accesses to addressable fields of the bitfield group. */ DECL_NONADDRESSABLE_P (repr) = 1; return repr; } /* Finish up a bitfield group that was started by creating the underlying object REPR with the last field in the bitfield group FIELD. */ static void finish_bitfield_representative (tree repr, tree field) { unsigned HOST_WIDE_INT bitsize, maxbitsize; tree nextf, size; size = size_diffop (DECL_FIELD_OFFSET (field), DECL_FIELD_OFFSET (repr)); while (TREE_CODE (size) == COMPOUND_EXPR) size = TREE_OPERAND (size, 1); gcc_assert (tree_fits_uhwi_p (size)); bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)) + tree_to_uhwi (DECL_SIZE (field))); /* Round up bitsize to multiples of BITS_PER_UNIT. */ bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1); /* Now nothing tells us how to pad out bitsize ... */ nextf = DECL_CHAIN (field); while (nextf && TREE_CODE (nextf) != FIELD_DECL) nextf = DECL_CHAIN (nextf); if (nextf) { tree maxsize; /* If there was an error, the field may be not laid out correctly. Don't bother to do anything. */ if (TREE_TYPE (nextf) == error_mark_node) return; maxsize = size_diffop (DECL_FIELD_OFFSET (nextf), DECL_FIELD_OFFSET (repr)); if (tree_fits_uhwi_p (maxsize)) { maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf)) - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))); /* If the group ends within a bitfield nextf does not need to be aligned to BITS_PER_UNIT. Thus round up. */ maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1); } else maxbitsize = bitsize; } else { /* Note that if the C++ FE sets up tail-padding to be re-used it creates a as-base variant of the type with TYPE_SIZE adjusted accordingly. So it is safe to include tail-padding here. */ tree aggsize = lang_hooks.types.unit_size_without_reusable_padding (DECL_CONTEXT (field)); tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr)); /* We cannot generally rely on maxsize to fold to an integer constant, so use bitsize as fallback for this case. */ if (tree_fits_uhwi_p (maxsize)) maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))); else maxbitsize = bitsize; } /* Only if we don't artificially break up the representative in the middle of a large bitfield with different possibly overlapping representatives. And all representatives start at byte offset. */ gcc_assert (maxbitsize % BITS_PER_UNIT == 0); /* Find the smallest nice mode to use. */ opt_scalar_int_mode mode_iter; FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize) break; scalar_int_mode mode; if (!mode_iter.exists (&mode) || GET_MODE_BITSIZE (mode) > maxbitsize || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE) { /* We really want a BLKmode representative only as a last resort, considering the member b in struct { int a : 7; int b : 17; int c; } __attribute__((packed)); Otherwise we simply want to split the representative up allowing for overlaps within the bitfield region as required for struct { int a : 7; int b : 7; int c : 10; int d; } __attribute__((packed)); [0, 15] HImode for a and b, [8, 23] HImode for c. */ DECL_SIZE (repr) = bitsize_int (bitsize); DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT); SET_DECL_MODE (repr, BLKmode); TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node, bitsize / BITS_PER_UNIT); } else { unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode); DECL_SIZE (repr) = bitsize_int (modesize); DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT); SET_DECL_MODE (repr, mode); TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1); } /* Remember whether the bitfield group is at the end of the structure or not. */ DECL_CHAIN (repr) = nextf; } /* Compute and set FIELD_DECLs for the underlying objects we should use for bitfield access for the structure T. */ void finish_bitfield_layout (tree t) { tree field, prev; tree repr = NULL_TREE; /* Unions would be special, for the ease of type-punning optimizations we could use the underlying type as hint for the representative if the bitfield would fit and the representative would not exceed the union in size. */ if (TREE_CODE (t) != RECORD_TYPE) return; for (prev = NULL_TREE, field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) != FIELD_DECL) continue; /* In the C++ memory model, consecutive bit fields in a structure are considered one memory location and updating a memory location may not store into adjacent memory locations. */ if (!repr && DECL_BIT_FIELD_TYPE (field)) { /* Start new representative. */ repr = start_bitfield_representative (field); } else if (repr && ! DECL_BIT_FIELD_TYPE (field)) { /* Finish off new representative. */ finish_bitfield_representative (repr, prev); repr = NULL_TREE; } else if (DECL_BIT_FIELD_TYPE (field)) { gcc_assert (repr != NULL_TREE); /* Zero-size bitfields finish off a representative and do not have a representative themselves. This is required by the C++ memory model. */ if (integer_zerop (DECL_SIZE (field))) { finish_bitfield_representative (repr, prev); repr = NULL_TREE; } /* We assume that either DECL_FIELD_OFFSET of the representative and each bitfield member is a constant or they are equal. This is because we need to be able to compute the bit-offset of each field relative to the representative in get_bit_range during RTL expansion. If these constraints are not met, simply force a new representative to be generated. That will at most generate worse code but still maintain correctness with respect to the C++ memory model. */ else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)) && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))) || operand_equal_p (DECL_FIELD_OFFSET (repr), DECL_FIELD_OFFSET (field), 0))) { finish_bitfield_representative (repr, prev); repr = start_bitfield_representative (field); } } else continue; if (repr) DECL_BIT_FIELD_REPRESENTATIVE (field) = repr; prev = field; } if (repr) finish_bitfield_representative (repr, prev); } /* Do all of the work required to layout the type indicated by RLI, once the fields have been laid out. This function will call `free' for RLI, unless FREE_P is false. Passing a value other than false for FREE_P is bad practice; this option only exists to support the G++ 3.2 ABI. */ void finish_record_layout (record_layout_info rli, int free_p) { tree variant; /* Compute the final size. */ finalize_record_size (rli); /* Compute the TYPE_MODE for the record. */ compute_record_mode (rli->t); /* Perform any last tweaks to the TYPE_SIZE, etc. */ finalize_type_size (rli->t); /* Compute bitfield representatives. */ finish_bitfield_layout (rli->t); /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants. With C++ templates, it is too early to do this when the attribute is being parsed. */ for (variant = TYPE_NEXT_VARIANT (rli->t); variant; variant = TYPE_NEXT_VARIANT (variant)) { TYPE_PACKED (variant) = TYPE_PACKED (rli->t); TYPE_REVERSE_STORAGE_ORDER (variant) = TYPE_REVERSE_STORAGE_ORDER (rli->t); } /* Lay out any static members. This is done now because their type may use the record's type. */ while (!vec_safe_is_empty (rli->pending_statics)) layout_decl (rli->pending_statics->pop (), 0); /* Clean up. */ if (free_p) { vec_free (rli->pending_statics); free (rli); } } /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is NAME, its fields are chained in reverse on FIELDS. If ALIGN_TYPE is non-null, it is given the same alignment as ALIGN_TYPE. */ void finish_builtin_struct (tree type, const char *name, tree fields, tree align_type) { tree tail, next; for (tail = NULL_TREE; fields; tail = fields, fields = next) { DECL_FIELD_CONTEXT (fields) = type; next = DECL_CHAIN (fields); DECL_CHAIN (fields) = tail; } TYPE_FIELDS (type) = tail; if (align_type) { SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type)); TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type); SET_TYPE_WARN_IF_NOT_ALIGN (type, TYPE_WARN_IF_NOT_ALIGN (align_type)); } layout_type (type); #if 0 /* not yet, should get fixed properly later */ TYPE_NAME (type) = make_type_decl (get_identifier (name), type); #else TYPE_NAME (type) = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier (name), type); #endif TYPE_STUB_DECL (type) = TYPE_NAME (type); layout_decl (TYPE_NAME (type), 0); } /* Calculate the mode, size, and alignment for TYPE. For an array type, calculate the element separation as well. Record TYPE on the chain of permanent or temporary types so that dbxout will find out about it. TYPE_SIZE of a type is nonzero if the type has been laid out already. layout_type does nothing on such a type. If the type is incomplete, its TYPE_SIZE remains zero. */ void layout_type (tree type) { gcc_assert (type); if (type == error_mark_node) return; /* We don't want finalize_type_size to copy an alignment attribute to variants that don't have it. */ type = TYPE_MAIN_VARIANT (type); /* Do nothing if type has been laid out before. */ if (TYPE_SIZE (type)) return; switch (TREE_CODE (type)) { case LANG_TYPE: /* This kind of type is the responsibility of the language-specific code. */ gcc_unreachable (); case BOOLEAN_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE: { scalar_int_mode mode = smallest_int_mode_for_size (TYPE_PRECISION (type)); SET_TYPE_MODE (type, mode); TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode)); /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */ TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode)); break; } case REAL_TYPE: { /* Allow the caller to choose the type mode, which is how decimal floats are distinguished from binary ones. */ if (TYPE_MODE (type) == VOIDmode) SET_TYPE_MODE (type, float_mode_for_size (TYPE_PRECISION (type)).require ()); scalar_float_mode mode = as_a (TYPE_MODE (type)); TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode)); TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode)); break; } case FIXED_POINT_TYPE: { /* TYPE_MODE (type) has been set already. */ scalar_mode mode = SCALAR_TYPE_MODE (type); TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode)); TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode)); break; } case COMPLEX_TYPE: TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type)); SET_TYPE_MODE (type, GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type)))); TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type))); TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type))); break; case VECTOR_TYPE: { poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type); tree innertype = TREE_TYPE (type); /* Find an appropriate mode for the vector type. */ if (TYPE_MODE (type) == VOIDmode) SET_TYPE_MODE (type, mode_for_vector (SCALAR_TYPE_MODE (innertype), nunits).else_blk ()); TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type)); TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type)); /* Several boolean vector elements may fit in a single unit. */ if (VECTOR_BOOLEAN_TYPE_P (type) && type->type_common.mode != BLKmode) TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (type->type_common.mode)); else TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR, TYPE_SIZE_UNIT (innertype), size_int (nunits)); TYPE_SIZE (type) = int_const_binop (MULT_EXPR, bits_from_bytes (TYPE_SIZE_UNIT (type)), bitsize_int (BITS_PER_UNIT)); /* For vector types, we do not default to the mode's alignment. Instead, query a target hook, defaulting to natural alignment. This prevents ABI changes depending on whether or not native vector modes are supported. */ SET_TYPE_ALIGN (type, targetm.vector_alignment (type)); /* However, if the underlying mode requires a bigger alignment than what the target hook provides, we cannot use the mode. For now, simply reject that case. */ gcc_assert (TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))); break; } case VOID_TYPE: /* This is an incomplete type and so doesn't have a size. */ SET_TYPE_ALIGN (type, 1); TYPE_USER_ALIGN (type) = 0; SET_TYPE_MODE (type, VOIDmode); break; case POINTER_BOUNDS_TYPE: TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type))); TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type))); break; case OFFSET_TYPE: TYPE_SIZE (type) = bitsize_int (POINTER_SIZE); TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS); /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be integral, which may be an __intN. */ SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ()); TYPE_PRECISION (type) = POINTER_SIZE; break; case FUNCTION_TYPE: case METHOD_TYPE: /* It's hard to see what the mode and size of a function ought to be, but we do know the alignment is FUNCTION_BOUNDARY, so make it consistent with that. */ SET_TYPE_MODE (type, int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ()); TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY); TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT); break; case POINTER_TYPE: case REFERENCE_TYPE: { scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type); TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode)); TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode)); TYPE_UNSIGNED (type) = 1; TYPE_PRECISION (type) = GET_MODE_PRECISION (mode); } break; case ARRAY_TYPE: { tree index = TYPE_DOMAIN (type); tree element = TREE_TYPE (type); /* We need to know both bounds in order to compute the size. */ if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index) && TYPE_SIZE (element)) { tree ub = TYPE_MAX_VALUE (index); tree lb = TYPE_MIN_VALUE (index); tree element_size = TYPE_SIZE (element); tree length; /* Make sure that an array of zero-sized element is zero-sized regardless of its extent. */ if (integer_zerop (element_size)) length = size_zero_node; /* The computation should happen in the original signedness so that (possible) negative values are handled appropriately when determining overflow. */ else { /* ??? When it is obvious that the range is signed represent it using ssizetype. */ if (TREE_CODE (lb) == INTEGER_CST && TREE_CODE (ub) == INTEGER_CST && TYPE_UNSIGNED (TREE_TYPE (lb)) && tree_int_cst_lt (ub, lb)) { lb = wide_int_to_tree (ssizetype, offset_int::from (wi::to_wide (lb), SIGNED)); ub = wide_int_to_tree (ssizetype, offset_int::from (wi::to_wide (ub), SIGNED)); } length = fold_convert (sizetype, size_binop (PLUS_EXPR, build_int_cst (TREE_TYPE (lb), 1), size_binop (MINUS_EXPR, ub, lb))); } /* ??? We have no way to distinguish a null-sized array from an array spanning the whole sizetype range, so we arbitrarily decide that [0, -1] is the only valid representation. */ if (integer_zerop (length) && TREE_OVERFLOW (length) && integer_zerop (lb)) length = size_zero_node; TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size, bits_from_bytes (length)); /* If we know the size of the element, calculate the total size directly, rather than do some division thing below. This optimization helps Fortran assumed-size arrays (where the size of the array is determined at runtime) substantially. */ if (TYPE_SIZE_UNIT (element)) TYPE_SIZE_UNIT (type) = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length); } /* Now round the alignment and size, using machine-dependent criteria if any. */ unsigned align = TYPE_ALIGN (element); if (TYPE_USER_ALIGN (type)) align = MAX (align, TYPE_ALIGN (type)); else TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element); if (!TYPE_WARN_IF_NOT_ALIGN (type)) SET_TYPE_WARN_IF_NOT_ALIGN (type, TYPE_WARN_IF_NOT_ALIGN (element)); #ifdef ROUND_TYPE_ALIGN align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT); #else align = MAX (align, BITS_PER_UNIT); #endif SET_TYPE_ALIGN (type, align); SET_TYPE_MODE (type, BLKmode); if (TYPE_SIZE (type) != 0 && ! targetm.member_type_forces_blk (type, VOIDmode) /* BLKmode elements force BLKmode aggregate; else extract/store fields may lose. */ && (TYPE_MODE (TREE_TYPE (type)) != BLKmode || TYPE_NO_FORCE_BLK (TREE_TYPE (type)))) { SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type), TYPE_SIZE (type))); if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))) { TYPE_NO_FORCE_BLK (type) = 1; SET_TYPE_MODE (type, BLKmode); } } if (AGGREGATE_TYPE_P (element)) TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element); /* When the element size is constant, check that it is at least as large as the element alignment. */ if (TYPE_SIZE_UNIT (element) && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than TYPE_ALIGN_UNIT. */ && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element)) && !integer_zerop (TYPE_SIZE_UNIT (element)) && compare_tree_int (TYPE_SIZE_UNIT (element), TYPE_ALIGN_UNIT (element)) < 0) error ("alignment of array elements is greater than element size"); break; } case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; record_layout_info rli; /* Initialize the layout information. */ rli = start_record_layout (type); /* If this is a QUAL_UNION_TYPE, we want to process the fields in the reverse order in building the COND_EXPR that denotes its size. We reverse them again later. */ if (TREE_CODE (type) == QUAL_UNION_TYPE) TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type)); /* Place all the fields. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) place_field (rli, field); if (TREE_CODE (type) == QUAL_UNION_TYPE) TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type)); /* Finish laying out the record. */ finish_record_layout (rli, /*free_p=*/true); } break; default: gcc_unreachable (); } /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For records and unions, finish_record_layout already called this function. */ if (!RECORD_OR_UNION_TYPE_P (type)) finalize_type_size (type); /* We should never see alias sets on incomplete aggregates. And we should not call layout_type on not incomplete aggregates. */ if (AGGREGATE_TYPE_P (type)) gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type)); } /* Return the least alignment required for type TYPE. */ unsigned int min_align_of_type (tree type) { unsigned int align = TYPE_ALIGN (type); if (!TYPE_USER_ALIGN (type)) { align = MIN (align, BIGGEST_ALIGNMENT); #ifdef BIGGEST_FIELD_ALIGNMENT align = MIN (align, BIGGEST_FIELD_ALIGNMENT); #endif unsigned int field_align = align; #ifdef ADJUST_FIELD_ALIGN field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align); #endif align = MIN (align, field_align); } return align / BITS_PER_UNIT; } /* Create and return a type for signed integers of PRECISION bits. */ tree make_signed_type (int precision) { tree type = make_node (INTEGER_TYPE); TYPE_PRECISION (type) = precision; fixup_signed_type (type); return type; } /* Create and return a type for unsigned integers of PRECISION bits. */ tree make_unsigned_type (int precision) { tree type = make_node (INTEGER_TYPE); TYPE_PRECISION (type) = precision; fixup_unsigned_type (type); return type; } /* Create and return a type for fract of PRECISION bits, UNSIGNEDP, and SATP. */ tree make_fract_type (int precision, int unsignedp, int satp) { tree type = make_node (FIXED_POINT_TYPE); TYPE_PRECISION (type) = precision; if (satp) TYPE_SATURATING (type) = 1; /* Lay out the type: set its alignment, size, etc. */ TYPE_UNSIGNED (type) = unsignedp; enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT; SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ()); layout_type (type); return type; } /* Create and return a type for accum of PRECISION bits, UNSIGNEDP, and SATP. */ tree make_accum_type (int precision, int unsignedp, int satp) { tree type = make_node (FIXED_POINT_TYPE); TYPE_PRECISION (type) = precision; if (satp) TYPE_SATURATING (type) = 1; /* Lay out the type: set its alignment, size, etc. */ TYPE_UNSIGNED (type) = unsignedp; enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM; SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ()); layout_type (type); return type; } /* Initialize sizetypes so layout_type can use them. */ void initialize_sizetypes (void) { int precision, bprecision; /* Get sizetypes precision from the SIZE_TYPE target macro. */ if (strcmp (SIZETYPE, "unsigned int") == 0) precision = INT_TYPE_SIZE; else if (strcmp (SIZETYPE, "long unsigned int") == 0) precision = LONG_TYPE_SIZE; else if (strcmp (SIZETYPE, "long long unsigned int") == 0) precision = LONG_LONG_TYPE_SIZE; else if (strcmp (SIZETYPE, "short unsigned int") == 0) precision = SHORT_TYPE_SIZE; else { int i; precision = -1; for (i = 0; i < NUM_INT_N_ENTS; i++) if (int_n_enabled_p[i]) { char name[50]; sprintf (name, "__int%d unsigned", int_n_data[i].bitsize); if (strcmp (name, SIZETYPE) == 0) { precision = int_n_data[i].bitsize; } } if (precision == -1) gcc_unreachable (); } bprecision = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE); bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision)); if (bprecision > HOST_BITS_PER_DOUBLE_INT) bprecision = HOST_BITS_PER_DOUBLE_INT; /* Create stubs for sizetype and bitsizetype so we can create constants. */ sizetype = make_node (INTEGER_TYPE); TYPE_NAME (sizetype) = get_identifier ("sizetype"); TYPE_PRECISION (sizetype) = precision; TYPE_UNSIGNED (sizetype) = 1; bitsizetype = make_node (INTEGER_TYPE); TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype"); TYPE_PRECISION (bitsizetype) = bprecision; TYPE_UNSIGNED (bitsizetype) = 1; /* Now layout both types manually. */ scalar_int_mode mode = smallest_int_mode_for_size (precision); SET_TYPE_MODE (sizetype, mode); SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype))); TYPE_SIZE (sizetype) = bitsize_int (precision); TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode)); set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED); mode = smallest_int_mode_for_size (bprecision); SET_TYPE_MODE (bitsizetype, mode); SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype))); TYPE_SIZE (bitsizetype) = bitsize_int (bprecision); TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode)); set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED); /* Create the signed variants of *sizetype. */ ssizetype = make_signed_type (TYPE_PRECISION (sizetype)); TYPE_NAME (ssizetype) = get_identifier ("ssizetype"); sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype)); TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype"); } /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE for TYPE, based on the PRECISION and whether or not the TYPE IS_UNSIGNED. PRECISION need not correspond to a width supported natively by the hardware; for example, on a machine with 8-bit, 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or 61. */ void set_min_and_max_values_for_integral_type (tree type, int precision, signop sgn) { /* For bitfields with zero width we end up creating integer types with zero precision. Don't assign any minimum/maximum values to those types, they don't have any valid value. */ if (precision < 1) return; TYPE_MIN_VALUE (type) = wide_int_to_tree (type, wi::min_value (precision, sgn)); TYPE_MAX_VALUE (type) = wide_int_to_tree (type, wi::max_value (precision, sgn)); } /* Set the extreme values of TYPE based on its precision in bits, then lay it out. Used when make_signed_type won't do because the tree code is not INTEGER_TYPE. */ void fixup_signed_type (tree type) { int precision = TYPE_PRECISION (type); set_min_and_max_values_for_integral_type (type, precision, SIGNED); /* Lay out the type: set its alignment, size, etc. */ layout_type (type); } /* Set the extreme values of TYPE based on its precision in bits, then lay it out. This is used both in `make_unsigned_type' and for enumeral types. */ void fixup_unsigned_type (tree type) { int precision = TYPE_PRECISION (type); TYPE_UNSIGNED (type) = 1; set_min_and_max_values_for_integral_type (type, precision, UNSIGNED); /* Lay out the type: set its alignment, size, etc. */ layout_type (type); } /* Construct an iterator for a bitfield that spans BITSIZE bits, starting at BITPOS. BITREGION_START is the bit position of the first bit in this sequence of bit fields. BITREGION_END is the last bit in this sequence. If these two fields are non-zero, we should restrict the memory access to that range. Otherwise, we are allowed to touch any adjacent non bit-fields. ALIGN is the alignment of the underlying object in bits. VOLATILEP says whether the bitfield is volatile. */ bit_field_mode_iterator ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, poly_int64 bitregion_start, poly_int64 bitregion_end, unsigned int align, bool volatilep) : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize), m_bitpos (bitpos), m_bitregion_start (bitregion_start), m_bitregion_end (bitregion_end), m_align (align), m_volatilep (volatilep), m_count (0) { if (known_eq (m_bitregion_end, 0)) { /* We can assume that any aligned chunk of ALIGN bits that overlaps the bitfield is mapped and won't trap, provided that ALIGN isn't too large. The cap is the biggest required alignment for data, or at least the word size. And force one such chunk at least. */ unsigned HOST_WIDE_INT units = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD)); if (bitsize <= 0) bitsize = 1; HOST_WIDE_INT end = bitpos + bitsize + units - 1; m_bitregion_end = end - end % units - 1; } } /* Calls to this function return successively larger modes that can be used to represent the bitfield. Return true if another bitfield mode is available, storing it in *OUT_MODE if so. */ bool bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode) { scalar_int_mode mode; for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode)) { unsigned int unit = GET_MODE_BITSIZE (mode); /* Skip modes that don't have full precision. */ if (unit != GET_MODE_PRECISION (mode)) continue; /* Stop if the mode is too wide to handle efficiently. */ if (unit > MAX_FIXED_MODE_SIZE) break; /* Don't deliver more than one multiword mode; the smallest one should be used. */ if (m_count > 0 && unit > BITS_PER_WORD) break; /* Skip modes that are too small. */ unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit; unsigned HOST_WIDE_INT subend = substart + m_bitsize; if (subend > unit) continue; /* Stop if the mode goes outside the bitregion. */ HOST_WIDE_INT start = m_bitpos - substart; if (maybe_ne (m_bitregion_start, 0) && maybe_lt (start, m_bitregion_start)) break; HOST_WIDE_INT end = start + unit; if (maybe_gt (end, m_bitregion_end + 1)) break; /* Stop if the mode requires too much alignment. */ if (GET_MODE_ALIGNMENT (mode) > m_align && targetm.slow_unaligned_access (mode, m_align)) break; *out_mode = mode; m_mode = GET_MODE_WIDER_MODE (mode); m_count++; return true; } return false; } /* Return true if smaller modes are generally preferred for this kind of bitfield. */ bool bit_field_mode_iterator::prefer_smaller_modes () { return (m_volatilep ? targetm.narrow_volatile_bitfield () : !SLOW_BYTE_ACCESS); } /* Find the best machine mode to use when referencing a bit field of length BITSIZE bits starting at BITPOS. BITREGION_START is the bit position of the first bit in this sequence of bit fields. BITREGION_END is the last bit in this sequence. If these two fields are non-zero, we should restrict the memory access to that range. Otherwise, we are allowed to touch any adjacent non bit-fields. The chosen mode must have no more than LARGEST_MODE_BITSIZE bits. INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller doesn't want to apply a specific limit. If no mode meets all these conditions, we return VOIDmode. The underlying object is known to be aligned to a boundary of ALIGN bits. If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the smallest mode meeting these conditions. If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the largest mode (but a mode no wider than UNITS_PER_WORD) that meets all the conditions. If VOLATILEP is true the narrow_volatile_bitfields target hook is used to decide which of the above modes should be used. */ bool get_best_mode (int bitsize, int bitpos, poly_uint64 bitregion_start, poly_uint64 bitregion_end, unsigned int align, unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep, scalar_int_mode *best_mode) { bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start, bitregion_end, align, volatilep); scalar_int_mode mode; bool found = false; while (iter.next_mode (&mode) /* ??? For historical reasons, reject modes that would normally receive greater alignment, even if unaligned accesses are acceptable. This has both advantages and disadvantages. Removing this check means that something like: struct s { unsigned int x; unsigned int y; }; int f (struct s *s) { return s->x == 0 && s->y == 0; } can be implemented using a single load and compare on 64-bit machines that have no alignment restrictions. For example, on powerpc64-linux-gnu, we would generate: ld 3,0(3) cntlzd 3,3 srdi 3,3,6 blr rather than: lwz 9,0(3) cmpwi 7,9,0 bne 7,.L3 lwz 3,4(3) cntlzw 3,3 srwi 3,3,5 extsw 3,3 blr .p2align 4,,15 .L3: li 3,0 blr However, accessing more than one field can make life harder for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c has a series of unsigned short copies followed by a series of unsigned short comparisons. With this check, both the copies and comparisons remain 16-bit accesses and FRE is able to eliminate the latter. Without the check, the comparisons can be done using 2 64-bit operations, which FRE isn't able to handle in the same way. Either way, it would probably be worth disabling this check during expand. One particular example where removing the check would help is the get_best_mode call in store_bit_field. If we are given a memory bitregion of 128 bits that is aligned to a 64-bit boundary, and the bitfield we want to modify is in the second half of the bitregion, this check causes store_bitfield to turn the memory into a 64-bit reference to the _first_ half of the region. We later use adjust_bitfield_address to get a reference to the correct half, but doing so looks to adjust_bitfield_address as though we are moving past the end of the original object, so it drops the associated MEM_EXPR and MEM_OFFSET. Removing the check causes store_bit_field to keep a 128-bit memory reference, so that the final bitfield reference still has a MEM_EXPR and MEM_OFFSET. */ && GET_MODE_ALIGNMENT (mode) <= align && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize) { *best_mode = mode; found = true; if (iter.prefer_smaller_modes ()) break; } return found; } /* Gets minimal and maximal values for MODE (signed or unsigned depending on SIGN). The returned constants are made to be usable in TARGET_MODE. */ void get_mode_bounds (scalar_int_mode mode, int sign, scalar_int_mode target_mode, rtx *mmin, rtx *mmax) { unsigned size = GET_MODE_PRECISION (mode); unsigned HOST_WIDE_INT min_val, max_val; gcc_assert (size <= HOST_BITS_PER_WIDE_INT); /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */ if (mode == BImode) { if (STORE_FLAG_VALUE < 0) { min_val = STORE_FLAG_VALUE; max_val = 0; } else { min_val = 0; max_val = STORE_FLAG_VALUE; } } else if (sign) { min_val = -(HOST_WIDE_INT_1U << (size - 1)); max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1; } else { min_val = 0; max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1; } *mmin = gen_int_mode (min_val, target_mode); *mmax = gen_int_mode (max_val, target_mode); } #include "gt-stor-layout.h"