/*- * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/acpica/Osd/OsdSynch.c,v 1.21 2004/05/05 20:07:52 njl Exp $ * $DragonFly: src/sys/dev/acpica5/Osd/OsdSynch.c,v 1.11 2007/01/25 15:12:06 y0netan1 Exp $ */ /* * 6.1 : Mutual Exclusion and Synchronisation */ #include "acpi.h" #include "opt_acpi.h" #include #include #include #include #include #include #include #define _COMPONENT ACPI_OS_SERVICES ACPI_MODULE_NAME("SYNCH") MALLOC_DEFINE(M_ACPISEM, "acpisem", "ACPI semaphore"); #define AS_LOCK(as) spin_lock_wr(&(as)->as_mtx) #define AS_UNLOCK(as) spin_unlock_wr(&(as)->as_mtx) #define AS_LOCK_DECL /* * Simple counting semaphore implemented using a mutex. (Subsequently used * in the OSI code to implement a mutex. Go figure.) */ struct acpi_semaphore { struct spinlock as_mtx; UINT32 as_units; UINT32 as_maxunits; UINT32 as_pendings; UINT32 as_resetting; UINT32 as_timeouts; }; #ifndef ACPI_NO_SEMAPHORES #ifndef ACPI_SEMAPHORES_MAX_PENDING #define ACPI_SEMAPHORES_MAX_PENDING 4 #endif static int acpi_semaphore_debug = 0; TUNABLE_INT("debug.acpi_semaphore_debug", &acpi_semaphore_debug); SYSCTL_DECL(_debug_acpi); SYSCTL_INT(_debug_acpi, OID_AUTO, semaphore_debug, CTLFLAG_RW, &acpi_semaphore_debug, 0, "Enable ACPI semaphore debug messages"); #endif /* !ACPI_NO_SEMAPHORES */ ACPI_STATUS AcpiOsCreateSemaphore(UINT32 MaxUnits, UINT32 InitialUnits, ACPI_HANDLE *OutHandle) { #ifndef ACPI_NO_SEMAPHORES struct acpi_semaphore *as; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (OutHandle == NULL) return_ACPI_STATUS (AE_BAD_PARAMETER); if (InitialUnits > MaxUnits) return_ACPI_STATUS (AE_BAD_PARAMETER); as = kmalloc(sizeof(*as), M_ACPISEM, M_INTWAIT | M_ZERO); spin_init(&as->as_mtx); as->as_units = InitialUnits; as->as_maxunits = MaxUnits; as->as_pendings = as->as_resetting = as->as_timeouts = 0; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "created semaphore %p max %d, initial %d\n", as, InitialUnits, MaxUnits)); *OutHandle = (ACPI_HANDLE)as; #else *OutHandle = (ACPI_HANDLE)OutHandle; #endif /* !ACPI_NO_SEMAPHORES */ return_ACPI_STATUS (AE_OK); } ACPI_STATUS AcpiOsDeleteSemaphore(ACPI_HANDLE Handle) { #ifndef ACPI_NO_SEMAPHORES struct acpi_semaphore *as = (struct acpi_semaphore *)Handle; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "destroyed semaphore %p\n", as)); spin_uninit(&as->as_mtx); kfree(as, M_ACPISEM); #endif /* !ACPI_NO_SEMAPHORES */ return_ACPI_STATUS (AE_OK); } ACPI_STATUS AcpiOsWaitSemaphore(ACPI_HANDLE Handle, UINT32 Units, UINT16 Timeout) { #ifndef ACPI_NO_SEMAPHORES ACPI_STATUS result; struct acpi_semaphore *as = (struct acpi_semaphore *)Handle; int rv, tmo; struct timeval timeouttv, currenttv, timelefttv; AS_LOCK_DECL; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (as == NULL) return_ACPI_STATUS (AE_BAD_PARAMETER); if (cold) return_ACPI_STATUS (AE_OK); #if 0 if (as->as_units < Units && as->as_timeouts > 10) { kprintf("%s: semaphore %p too many timeouts, resetting\n", __func__, as); AS_LOCK(as); as->as_units = as->as_maxunits; if (as->as_pendings) as->as_resetting = 1; as->as_timeouts = 0; wakeup(as); AS_UNLOCK(as); return_ACPI_STATUS (AE_TIME); } if (as->as_resetting) return_ACPI_STATUS (AE_TIME); #endif /* a timeout of ACPI_WAIT_FOREVER means "forever" */ if (Timeout == ACPI_WAIT_FOREVER) { tmo = 0; timeouttv.tv_sec = ((0xffff/1000) + 1); /* cf. ACPI spec */ timeouttv.tv_usec = 0; } else { /* compute timeout using microseconds per tick */ tmo = (Timeout * 1000) / (1000000 / hz); if (tmo <= 0) tmo = 1; timeouttv.tv_sec = Timeout / 1000; timeouttv.tv_usec = (Timeout % 1000) * 1000; } /* calculate timeout value in timeval */ getmicrouptime(¤ttv); timevaladd(&timeouttv, ¤ttv); AS_LOCK(as); ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "get %d units from semaphore %p (has %d), timeout %d\n", Units, as, as->as_units, Timeout)); for (;;) { if (as->as_maxunits == ACPI_NO_UNIT_LIMIT) { result = AE_OK; break; } if (as->as_units >= Units) { as->as_units -= Units; result = AE_OK; break; } /* limit number of pending treads */ if (as->as_pendings >= ACPI_SEMAPHORES_MAX_PENDING) { result = AE_TIME; break; } /* if timeout values of zero is specified, return immediately */ if (Timeout == 0) { result = AE_TIME; break; } ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "semaphore blocked, calling msleep(%p, %p, %d, \"acsem\", %d)\n", as, &as->as_mtx, PCATCH, tmo)); as->as_pendings++; if (acpi_semaphore_debug) { kprintf("%s: Sleep %d, pending %d, semaphore %p, thread %d\n", __func__, Timeout, as->as_pendings, as, AcpiOsGetThreadId()); } rv = msleep(as, &as->as_mtx, PCATCH, "acsem", tmo); as->as_pendings--; #if 0 if (as->as_resetting) { /* semaphore reset, return immediately */ if (as->as_pendings == 0) { as->as_resetting = 0; } result = AE_TIME; break; } #endif ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "msleep(%d) returned %d\n", tmo, rv)); if (rv == EWOULDBLOCK) { result = AE_TIME; break; } /* check if we already awaited enough */ timelefttv = timeouttv; getmicrouptime(¤ttv); timevalsub(&timelefttv, ¤ttv); if (timelefttv.tv_sec < 0) { ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "await semaphore %p timeout\n", as)); result = AE_TIME; break; } /* adjust timeout for the next sleep */ tmo = (timelefttv.tv_sec * 1000000 + timelefttv.tv_usec) / (1000000 / hz); if (tmo <= 0) tmo = 1; if (acpi_semaphore_debug) { kprintf("%s: Wakeup timeleft(%lu, %lu), tmo %u, sem %p, thread %d\n", __func__, timelefttv.tv_sec, timelefttv.tv_usec, tmo, as, AcpiOsGetThreadId()); } } if (acpi_semaphore_debug) { if (result == AE_TIME && Timeout > 0) { kprintf("%s: Timeout %d, pending %d, semaphore %p\n", __func__, Timeout, as->as_pendings, as); } if (result == AE_OK && (as->as_timeouts > 0 || as->as_pendings > 0)) { kprintf("%s: Acquire %d, units %d, pending %d, sem %p, thread %d\n", __func__, Units, as->as_units, as->as_pendings, as, AcpiOsGetThreadId()); } } if (result == AE_TIME) as->as_timeouts++; else as->as_timeouts = 0; AS_UNLOCK(as); return_ACPI_STATUS (result); #else return_ACPI_STATUS (AE_OK); #endif /* !ACPI_NO_SEMAPHORES */ } ACPI_STATUS AcpiOsSignalSemaphore(ACPI_HANDLE Handle, UINT32 Units) { #ifndef ACPI_NO_SEMAPHORES struct acpi_semaphore *as = (struct acpi_semaphore *)Handle; AS_LOCK_DECL; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (as == NULL) return_ACPI_STATUS(AE_BAD_PARAMETER); AS_LOCK(as); ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "return %d units to semaphore %p (has %d)\n", Units, as, as->as_units)); if (as->as_maxunits != ACPI_NO_UNIT_LIMIT) { as->as_units += Units; if (as->as_units > as->as_maxunits) as->as_units = as->as_maxunits; } if (acpi_semaphore_debug && (as->as_timeouts > 0 || as->as_pendings > 0)) { kprintf("%s: Release %d, units %d, pending %d, semaphore %p, thread %d\n", __func__, Units, as->as_units, as->as_pendings, as, AcpiOsGetThreadId()); } wakeup(as); AS_UNLOCK(as); #endif /* !ACPI_NO_SEMAPHORES */ return_ACPI_STATUS (AE_OK); } struct acpi_spinlock { struct spinlock lock; #ifdef ACPI_DEBUG_LOCKS thread_t owner; const char *func; int line; #endif }; ACPI_STATUS AcpiOsCreateLock(ACPI_SPINLOCK *OutHandle) { ACPI_SPINLOCK spin; if (OutHandle == NULL) return (AE_BAD_PARAMETER); spin = kmalloc(sizeof(*spin), M_ACPISEM, M_INTWAIT|M_ZERO); spin_init(&spin->lock); #ifdef ACPI_DEBUG_LOCKS spin->owner = NULL; spin->func = ""; spin->line = 0; #endif *OutHandle = spin; return (AE_OK); } void AcpiOsDeleteLock (ACPI_SPINLOCK Spin) { if (Spin == NULL) return; spin_uninit(&Spin->lock); kfree(Spin, M_ACPISEM); } #ifdef ACPI_DEBUG_LOCKS void db_print_backtrace(void); #endif /* * OS-dependent locking primitives. These routines should be able to be * called from an interrupt-handler or cpu_idle thread. * * NB: some of ACPI-CA functions with locking flags, say AcpiSetRegister(), * are changed to unconditionally call AcpiOsAcquireLock/AcpiOsReleaseLock. */ ACPI_CPU_FLAGS #ifdef ACPI_DEBUG_LOCKS _AcpiOsAcquireLock (ACPI_SPINLOCK Spin, const char *func, int line) #else AcpiOsAcquireLock (ACPI_SPINLOCK Spin) #endif { spin_lock_wr(&Spin->lock); #ifdef ACPI_DEBUG_LOCKS if (Spin->owner) { kprintf("%p(%s:%d): acpi_spinlock %p already held by %p(%s:%d)\n", curthread, func, line, Spin, Spin->owner, Spin->func, Spin->line); db_print_backtrace(); } else { Spin->owner = curthread; Spin->func = func; Spin->line = line; } #endif return(0); } void AcpiOsReleaseLock (ACPI_SPINLOCK Spin, UINT32 Flags) { #ifdef ACPI_DEBUG_LOCKS if (Flags) { if (Spin->owner != NULL) { kprintf("%p: acpi_spinlock %p is unexectedly held by %p(%s:%d)\n", curthread, Spin, Spin->owner, Spin->func, Spin->line); db_print_backtrace(); } else return; } Spin->owner = NULL; Spin->func = ""; Spin->line = 0; #endif spin_unlock_wr(&Spin->lock); } /* Section 5.2.9.1: global lock acquire/release functions */ #define GL_ACQUIRED (-1) #define GL_BUSY 0 #define GL_BIT_PENDING 0x1 #define GL_BIT_OWNED 0x2 #define GL_BIT_MASK (GL_BIT_PENDING | GL_BIT_OWNED) /* * Acquire the global lock. If busy, set the pending bit. The caller * will wait for notification from the BIOS that the lock is available * and then attempt to acquire it again. */ int acpi_acquire_global_lock(uint32_t *lock) { uint32_t new, old; do { old = *lock; new = ((old & ~GL_BIT_MASK) | GL_BIT_OWNED) | ((old >> 1) & GL_BIT_PENDING); } while (atomic_cmpset_int(lock, old, new) == 0); return ((new < GL_BIT_MASK) ? GL_ACQUIRED : GL_BUSY); } /* * Release the global lock, returning whether there is a waiter pending. * If the BIOS set the pending bit, OSPM must notify the BIOS when it * releases the lock. */ int acpi_release_global_lock(uint32_t *lock) { uint32_t new, old; do { old = *lock; new = old & ~GL_BIT_MASK; } while (atomic_cmpset_int(lock, old, new) == 0); return (old & GL_BIT_PENDING); }