/* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.3 (Berkeley) 1/4/94 * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $ */ #include "opt_inet6.h" #include "opt_inet.h" #include "opt_ifpoll.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #ifdef INET6 #include #include #endif /* INET6 */ #endif /* INET || INET6 */ struct netmsg_ifaddr { struct netmsg_base base; struct ifaddr *ifa; struct ifnet *ifp; int tail; }; struct ifsubq_stage_head { TAILQ_HEAD(, ifsubq_stage) stg_head; } __cachealign; struct if_ringmap { int rm_cnt; int rm_grid; int rm_cpumap[]; }; #define RINGMAP_FLAG_NONE 0x0 #define RINGMAP_FLAG_POWEROF2 0x1 /* * System initialization */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t, struct ucred *); static void ifinit(void *); static void ifnetinit(void *); static void if_slowtimo(void *); static void link_rtrequest(int, struct rtentry *); static int if_rtdel(struct radix_node *, void *); static void if_slowtimo_dispatch(netmsg_t); /* Helper functions */ static void ifsq_watchdog_reset(struct ifsubq_watchdog *); static int if_delmulti_serialized(struct ifnet *, struct sockaddr *); static struct ifnet_array *ifnet_array_alloc(int); static void ifnet_array_free(struct ifnet_array *); static struct ifnet_array *ifnet_array_add(struct ifnet *, const struct ifnet_array *); static struct ifnet_array *ifnet_array_del(struct ifnet *, const struct ifnet_array *); static struct ifg_group *if_creategroup(const char *); static int if_destroygroup(struct ifg_group *); static int if_delgroup_locked(struct ifnet *, const char *); static int if_getgroups(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); SYSCTL_NODE(_net_link, OID_AUTO, ringmap, CTLFLAG_RW, 0, "link ringmap"); static int ifsq_stage_cntmax = 16; TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax); SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW, &ifsq_stage_cntmax, 0, "ifq staging packet count max"); static int if_stats_compat = 0; SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW, &if_stats_compat, 0, "Compat the old ifnet stats"); static int if_ringmap_dumprdr = 0; SYSCTL_INT(_net_link_ringmap, OID_AUTO, dump_rdr, CTLFLAG_RW, &if_ringmap_dumprdr, 0, "dump redirect table"); SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL); SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_ANY, ifnetinit, NULL); static if_com_alloc_t *if_com_alloc[256]; static if_com_free_t *if_com_free[256]; MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure"); int ifqmaxlen = IFQ_MAXLEN; struct ifnethead ifnet = TAILQ_HEAD_INITIALIZER(ifnet); struct ifgrouphead ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); static struct lock ifgroup_lock; static struct ifnet_array ifnet_array0; static struct ifnet_array *ifnet_array = &ifnet_array0; static struct callout if_slowtimo_timer; static struct netmsg_base if_slowtimo_netmsg; int if_index = 0; struct ifnet **ifindex2ifnet = NULL; static struct mtx ifnet_mtx = MTX_INITIALIZER("ifnet"); static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU]; #ifdef notyet #define IFQ_KTR_STRING "ifq=%p" #define IFQ_KTR_ARGS struct ifaltq *ifq #ifndef KTR_IFQ #define KTR_IFQ KTR_ALL #endif KTR_INFO_MASTER(ifq); KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS); KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS); #define logifq(name, arg) KTR_LOG(ifq_ ## name, arg) #define IF_START_KTR_STRING "ifp=%p" #define IF_START_KTR_ARGS struct ifnet *ifp #ifndef KTR_IF_START #define KTR_IF_START KTR_ALL #endif KTR_INFO_MASTER(if_start); KTR_INFO(KTR_IF_START, if_start, run, 0, IF_START_KTR_STRING, IF_START_KTR_ARGS); KTR_INFO(KTR_IF_START, if_start, sched, 1, IF_START_KTR_STRING, IF_START_KTR_ARGS); KTR_INFO(KTR_IF_START, if_start, avoid, 2, IF_START_KTR_STRING, IF_START_KTR_ARGS); KTR_INFO(KTR_IF_START, if_start, contend_sched, 3, IF_START_KTR_STRING, IF_START_KTR_ARGS); KTR_INFO(KTR_IF_START, if_start, chase_sched, 4, IF_START_KTR_STRING, IF_START_KTR_ARGS); #define logifstart(name, arg) KTR_LOG(if_start_ ## name, arg) #endif /* notyet */ /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ /* ARGSUSED */ static void ifinit(void *dummy) { lockinit(&ifgroup_lock, "ifgroup", 0, 0); callout_init_mp(&if_slowtimo_timer); netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport, MSGF_PRIORITY, if_slowtimo_dispatch); /* Start if_slowtimo */ lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg); } static void ifsq_ifstart_ipifunc(void *arg) { struct ifaltq_subque *ifsq = arg; struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid); crit_enter(); if (lmsg->ms_flags & MSGF_DONE) lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg); crit_exit(); } static __inline void ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) { KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); TAILQ_REMOVE(&head->stg_head, stage, stg_link); stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED); stage->stg_cnt = 0; stage->stg_len = 0; } static __inline void ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage) { KKASSERT((stage->stg_flags & (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); stage->stg_flags |= IFSQ_STAGE_FLAG_QUED; TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link); } /* * Schedule ifnet.if_start on the subqueue owner CPU */ static void ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force) { int cpu; if (!force && curthread->td_type == TD_TYPE_NETISR && ifsq_stage_cntmax > 0) { struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); stage->stg_cnt = 0; stage->stg_len = 0; if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage); stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED; return; } cpu = ifsq_get_cpuid(ifsq); if (cpu != mycpuid) lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq); else ifsq_ifstart_ipifunc(ifsq); } /* * NOTE: * This function will release ifnet.if_start subqueue interlock, * if ifnet.if_start for the subqueue does not need to be scheduled */ static __inline int ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running) { if (!running || ifsq_is_empty(ifsq) #ifdef ALTQ || ifsq->ifsq_altq->altq_tbr != NULL #endif ) { ALTQ_SQ_LOCK(ifsq); /* * ifnet.if_start subqueue interlock is released, if: * 1) Hardware can not take any packets, due to * o interface is marked down * o hardware queue is full (ifsq_is_oactive) * Under the second situation, hardware interrupt * or polling(4) will call/schedule ifnet.if_start * on the subqueue when hardware queue is ready * 2) There is no packet in the subqueue. * Further ifq_dispatch or ifq_handoff will call/ * schedule ifnet.if_start on the subqueue. * 3) TBR is used and it does not allow further * dequeueing. * TBR callout will call ifnet.if_start on the * subqueue. */ if (!running || !ifsq_data_ready(ifsq)) { ifsq_clr_started(ifsq); ALTQ_SQ_UNLOCK(ifsq); return 0; } ALTQ_SQ_UNLOCK(ifsq); } return 1; } static void ifsq_ifstart_dispatch(netmsg_t msg) { struct lwkt_msg *lmsg = &msg->base.lmsg; struct ifaltq_subque *ifsq = lmsg->u.ms_resultp; struct ifnet *ifp = ifsq_get_ifp(ifsq); struct globaldata *gd = mycpu; int running = 0, need_sched; crit_enter_gd(gd); lwkt_replymsg(lmsg, 0); /* reply ASAP */ if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) { /* * We need to chase the subqueue owner CPU change. */ ifsq_ifstart_schedule(ifsq, 1); crit_exit_gd(gd); return; } ifsq_serialize_hw(ifsq); if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { ifp->if_start(ifp, ifsq); if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) running = 1; } need_sched = ifsq_ifstart_need_schedule(ifsq, running); ifsq_deserialize_hw(ifsq); if (need_sched) { /* * More data need to be transmitted, ifnet.if_start is * scheduled on the subqueue owner CPU, and we keep going. * NOTE: ifnet.if_start subqueue interlock is not released. */ ifsq_ifstart_schedule(ifsq, 0); } crit_exit_gd(gd); } /* Device driver ifnet.if_start helper function */ void ifsq_devstart(struct ifaltq_subque *ifsq) { struct ifnet *ifp = ifsq_get_ifp(ifsq); int running = 0; ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq); ALTQ_SQ_LOCK(ifsq); if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) { ALTQ_SQ_UNLOCK(ifsq); return; } ifsq_set_started(ifsq); ALTQ_SQ_UNLOCK(ifsq); ifp->if_start(ifp, ifsq); if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) running = 1; if (ifsq_ifstart_need_schedule(ifsq, running)) { /* * More data need to be transmitted, ifnet.if_start is * scheduled on ifnet's CPU, and we keep going. * NOTE: ifnet.if_start interlock is not released. */ ifsq_ifstart_schedule(ifsq, 0); } } void if_devstart(struct ifnet *ifp) { ifsq_devstart(ifq_get_subq_default(&ifp->if_snd)); } /* Device driver ifnet.if_start schedule helper function */ void ifsq_devstart_sched(struct ifaltq_subque *ifsq) { ifsq_ifstart_schedule(ifsq, 1); } void if_devstart_sched(struct ifnet *ifp) { ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd)); } static void if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) { lwkt_serialize_enter(ifp->if_serializer); } static void if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) { lwkt_serialize_exit(ifp->if_serializer); } static int if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused) { return lwkt_serialize_try(ifp->if_serializer); } #ifdef INVARIANTS static void if_default_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz __unused, boolean_t serialized) { if (serialized) ASSERT_SERIALIZED(ifp->if_serializer); else ASSERT_NOT_SERIALIZED(ifp->if_serializer); } #endif /* * Attach an interface to the list of "active" interfaces. * * The serializer is optional. */ void if_attach(struct ifnet *ifp, lwkt_serialize_t serializer) { unsigned socksize; int namelen, masklen; struct sockaddr_dl *sdl, *sdl_addr; struct ifaddr *ifa; struct ifaltq *ifq; struct ifnet **old_ifindex2ifnet = NULL; struct ifnet_array *old_ifnet_array; int i, q, qlen; char qlenname[64]; static int if_indexlim = 8; if (ifp->if_serialize != NULL) { KASSERT(ifp->if_deserialize != NULL && ifp->if_tryserialize != NULL && ifp->if_serialize_assert != NULL, ("serialize functions are partially setup")); /* * If the device supplies serialize functions, * then clear if_serializer to catch any invalid * usage of this field. */ KASSERT(serializer == NULL, ("both serialize functions and default serializer " "are supplied")); ifp->if_serializer = NULL; } else { KASSERT(ifp->if_deserialize == NULL && ifp->if_tryserialize == NULL && ifp->if_serialize_assert == NULL, ("serialize functions are partially setup")); ifp->if_serialize = if_default_serialize; ifp->if_deserialize = if_default_deserialize; ifp->if_tryserialize = if_default_tryserialize; #ifdef INVARIANTS ifp->if_serialize_assert = if_default_serialize_assert; #endif /* * The serializer can be passed in from the device, * allowing the same serializer to be used for both * the interrupt interlock and the device queue. * If not specified, the netif structure will use an * embedded serializer. */ if (serializer == NULL) { serializer = &ifp->if_default_serializer; lwkt_serialize_init(serializer); } ifp->if_serializer = serializer; } /* * Make if_addrhead available on all CPUs, since they * could be accessed by any threads. */ ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead), M_IFADDR, M_WAITOK | M_ZERO); for (i = 0; i < ncpus; ++i) TAILQ_INIT(&ifp->if_addrheads[i]); TAILQ_INIT(&ifp->if_multiaddrs); TAILQ_INIT(&ifp->if_groups); getmicrotime(&ifp->if_lastchange); if_addgroup(ifp, IFG_ALL); /* * create a Link Level name for this device */ namelen = strlen(ifp->if_xname); masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = RT_ROUNDUP(socksize); ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize); sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_type = ifp->if_type; ifp->if_lladdr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; ifa_iflink(ifa, ifp, 0 /* Insert head */); /* * Make if_data available on all CPUs, since they could * be updated by hardware interrupt routing, which could * be bound to any CPU. */ ifp->if_data_pcpu = kmalloc(ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO | M_CACHEALIGN); if (ifp->if_mapsubq == NULL) ifp->if_mapsubq = ifq_mapsubq_default; ifq = &ifp->if_snd; ifq->altq_type = 0; ifq->altq_disc = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; ifq->altq_tbr = NULL; ifq->altq_ifp = ifp; if (ifq->altq_subq_cnt <= 0) ifq->altq_subq_cnt = 1; ifq->altq_subq = kmalloc(ifq->altq_subq_cnt * sizeof(struct ifaltq_subque), M_DEVBUF, M_WAITOK | M_ZERO | M_CACHEALIGN); if (ifq->altq_maxlen == 0) { if_printf(ifp, "driver didn't set altq_maxlen\n"); ifq_set_maxlen(ifq, ifqmaxlen); } /* Allow user to override driver's setting. */ ksnprintf(qlenname, sizeof(qlenname), "net.%s.qlenmax", ifp->if_xname); qlen = -1; TUNABLE_INT_FETCH(qlenname, &qlen); if (qlen > 0) { if_printf(ifp, "qlenmax -> %d\n", qlen); ifq_set_maxlen(ifq, qlen); } for (q = 0; q < ifq->altq_subq_cnt; ++q) { struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; ALTQ_SQ_LOCK_INIT(ifsq); ifsq->ifsq_index = q; ifsq->ifsq_altq = ifq; ifsq->ifsq_ifp = ifp; ifsq->ifsq_maxlen = ifq->altq_maxlen; ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES; ifsq->ifsq_prepended = NULL; ifsq->ifsq_started = 0; ifsq->ifsq_hw_oactive = 0; ifsq_set_cpuid(ifsq, 0); if (ifp->if_serializer != NULL) ifsq_set_hw_serialize(ifsq, ifp->if_serializer); /* XXX: netisr_ncpus */ ifsq->ifsq_stage = kmalloc(ncpus * sizeof(struct ifsubq_stage), M_DEVBUF, M_WAITOK | M_ZERO | M_CACHEALIGN); for (i = 0; i < ncpus; ++i) ifsq->ifsq_stage[i].stg_subq = ifsq; /* * Allocate one if_start message for each CPU, since * the hardware TX ring could be assigned to any CPU. * * NOTE: * If the hardware TX ring polling CPU and the hardware * TX ring interrupt CPU are same, one if_start message * should be enough. */ ifsq->ifsq_ifstart_nmsg = kmalloc(ncpus * sizeof(struct netmsg_base), M_LWKTMSG, M_WAITOK); for (i = 0; i < ncpus; ++i) { netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL, &netisr_adone_rport, 0, ifsq_ifstart_dispatch); ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq; } } ifq_set_classic(ifq); /* * Increase mbuf cluster/jcluster limits for the mbufs that * could sit on the device queues for quite some time. */ if (ifp->if_nmbclusters > 0) mcl_inclimit(ifp->if_nmbclusters); if (ifp->if_nmbjclusters > 0) mjcl_inclimit(ifp->if_nmbjclusters); /* * Install this ifp into ifindex2inet, ifnet queue and ifnet * array after it is setup. * * Protect ifindex2ifnet, ifnet queue and ifnet array changes * by ifnet lock, so that non-netisr threads could get a * consistent view. */ ifnet_lock(); /* Don't update if_index until ifindex2ifnet is setup */ ifp->if_index = if_index + 1; sdl_addr->sdl_index = ifp->if_index; /* * Install this ifp into ifindex2ifnet */ if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { unsigned int n; struct ifnet **q; /* * Grow ifindex2ifnet */ if_indexlim <<= 1; n = if_indexlim * sizeof(*q); q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO); if (ifindex2ifnet != NULL) { bcopy(ifindex2ifnet, q, n/2); /* Free old ifindex2ifnet after sync all netisrs */ old_ifindex2ifnet = ifindex2ifnet; } ifindex2ifnet = q; } ifindex2ifnet[ifp->if_index] = ifp; /* * Update if_index after this ifp is installed into ifindex2ifnet, * so that netisrs could get a consistent view of ifindex2ifnet. */ cpu_sfence(); if_index = ifp->if_index; /* * Install this ifp into ifnet array. */ /* Free old ifnet array after sync all netisrs */ old_ifnet_array = ifnet_array; ifnet_array = ifnet_array_add(ifp, old_ifnet_array); /* * Install this ifp into ifnet queue. */ TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link); ifnet_unlock(); /* * Sync all netisrs so that the old ifindex2ifnet and ifnet array * are no longer accessed and we can free them safely later on. */ netmsg_service_sync(); if (old_ifindex2ifnet != NULL) kfree(old_ifindex2ifnet, M_IFADDR); ifnet_array_free(old_ifnet_array); if (!SLIST_EMPTY(&domains)) if_attachdomain1(ifp); /* Announce the interface. */ EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_attachdomain(void *dummy) { struct ifnet *ifp; ifnet_lock(); TAILQ_FOREACH(ifp, &ifnetlist, if_list) if_attachdomain1(ifp); ifnet_unlock(); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; crit_enter(); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); SLIST_FOREACH(dp, &domains, dom_next) if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); crit_exit(); } /* * Purge all addresses whose type is _not_ AF_LINK */ static void if_purgeaddrs_nolink_dispatch(netmsg_t nmsg) { struct ifnet *ifp = nmsg->lmsg.u.ms_resultp; struct ifaddr_container *ifac, *next; ASSERT_NETISR0; /* * The ifaddr processing in the following loop will block, * however, this function is called in netisr0, in which * ifaddr list changes happen, so we don't care about the * blockness of the ifaddr processing here. */ TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid], ifa_link, next) { struct ifaddr *ifa = ifac->ifa; /* Ignore marker */ if (ifa->ifa_addr->sa_family == AF_UNSPEC) continue; /* Leave link ifaddr as it is */ if (ifa->ifa_addr->sa_family == AF_LINK) continue; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; struct sockaddr_in saved_addr, saved_dst; #ifdef IFADDR_DEBUG_VERBOSE int i; kprintf("purge in4 addr %p: ", ifa); for (i = 0; i < ncpus; ++i) { kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); } kprintf("\n"); #endif /* Save information for panic. */ memcpy(&saved_addr, ifa->ifa_addr, sizeof(saved_addr)); if (ifa->ifa_dstaddr != NULL) { memcpy(&saved_dst, ifa->ifa_dstaddr, sizeof(saved_dst)); } else { memset(&saved_dst, 0, sizeof(saved_dst)); } bzero(&ifr, sizeof ifr); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; /* MUST NOT HAPPEN */ panic("%s: in_control failed %x, dst %x", ifp->if_xname, ntohl(saved_addr.sin_addr.s_addr), ntohl(saved_dst.sin_addr.s_addr)); } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { #ifdef IFADDR_DEBUG_VERBOSE int i; kprintf("purge in6 addr %p: ", ifa); for (i = 0; i < ncpus; ++i) { kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt); } kprintf("\n"); #endif in6_purgeaddr(ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ if_printf(ifp, "destroy ifaddr family %d\n", ifa->ifa_addr->sa_family); ifa_ifunlink(ifa, ifp); ifa_destroy(ifa); } netisr_replymsg(&nmsg->base, 0); } void if_purgeaddrs_nolink(struct ifnet *ifp) { struct netmsg_base nmsg; netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0, if_purgeaddrs_nolink_dispatch); nmsg.lmsg.u.ms_resultp = ifp; netisr_domsg(&nmsg, 0); } static void ifq_stage_detach_handler(netmsg_t nmsg) { struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp; int q; for (q = 0; q < ifq->altq_subq_cnt; ++q) { struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid); if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage); } lwkt_replymsg(&nmsg->lmsg, 0); } static void ifq_stage_detach(struct ifaltq *ifq) { struct netmsg_base base; int cpu; netmsg_init(&base, NULL, &curthread->td_msgport, 0, ifq_stage_detach_handler); base.lmsg.u.ms_resultp = ifq; /* XXX netisr_ncpus */ for (cpu = 0; cpu < ncpus; ++cpu) lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0); } struct netmsg_if_rtdel { struct netmsg_base base; struct ifnet *ifp; }; static void if_rtdel_dispatch(netmsg_t msg) { struct netmsg_if_rtdel *rmsg = (void *)msg; int i, cpu; cpu = mycpuid; ASSERT_NETISR_NCPUS(cpu); for (i = 1; i <= AF_MAX; i++) { struct radix_node_head *rnh; if ((rnh = rt_tables[cpu][i]) == NULL) continue; rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp); } netisr_forwardmsg(&msg->base, cpu + 1); } /* * Detach an interface, removing it from the * list of "active" interfaces. */ void if_detach(struct ifnet *ifp) { struct ifnet_array *old_ifnet_array; struct ifg_list *ifgl; struct netmsg_if_rtdel msg; struct domain *dp; int q; /* Announce that the interface is gone. */ EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); rt_ifannouncemsg(ifp, IFAN_DEPARTURE); devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); /* * Remove this ifp from ifindex2inet, ifnet queue and ifnet * array before it is whacked. * * Protect ifindex2ifnet, ifnet queue and ifnet array changes * by ifnet lock, so that non-netisr threads could get a * consistent view. */ ifnet_lock(); /* * Remove this ifp from ifindex2ifnet and maybe decrement if_index. */ ifindex2ifnet[ifp->if_index] = NULL; while (if_index > 0 && ifindex2ifnet[if_index] == NULL) if_index--; /* * Remove this ifp from ifnet queue. */ TAILQ_REMOVE(&ifnetlist, ifp, if_link); /* * Remove this ifp from ifnet array. */ /* Free old ifnet array after sync all netisrs */ old_ifnet_array = ifnet_array; ifnet_array = ifnet_array_del(ifp, old_ifnet_array); ifnet_unlock(); ifgroup_lockmgr(LK_EXCLUSIVE); while ((ifgl = TAILQ_FIRST(&ifp->if_groups)) != NULL) if_delgroup_locked(ifp, ifgl->ifgl_group->ifg_group); ifgroup_lockmgr(LK_RELEASE); /* * Sync all netisrs so that the old ifnet array is no longer * accessed and we can free it safely later on. */ netmsg_service_sync(); ifnet_array_free(old_ifnet_array); /* * Remove routes and flush queues. */ crit_enter(); #ifdef IFPOLL_ENABLE if (ifp->if_flags & IFF_NPOLLING) ifpoll_deregister(ifp); #endif if_down(ifp); /* Decrease the mbuf clusters/jclusters limits increased by us */ if (ifp->if_nmbclusters > 0) mcl_inclimit(-ifp->if_nmbclusters); if (ifp->if_nmbjclusters > 0) mjcl_inclimit(-ifp->if_nmbjclusters); #ifdef ALTQ if (ifq_is_enabled(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ifq_is_attached(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif /* * Clean up all addresses. */ ifp->if_lladdr = NULL; if_purgeaddrs_nolink(ifp); if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) { struct ifaddr *ifa; ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; KASSERT(ifa->ifa_addr->sa_family == AF_LINK, ("non-link ifaddr is left on if_addrheads")); ifa_ifunlink(ifa, ifp); ifa_destroy(ifa); KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]), ("there are still ifaddrs left on if_addrheads")); } #ifdef INET /* * Remove all IPv4 kernel structures related to ifp. */ in_ifdetach(ifp); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif /* * Delete all remaining routes using this interface */ netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY, if_rtdel_dispatch); msg.ifp = ifp; netisr_domsg_global(&msg.base); SLIST_FOREACH(dp, &domains, dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } kfree(ifp->if_addrheads, M_IFADDR); lwkt_synchronize_ipiqs("if_detach"); ifq_stage_detach(&ifp->if_snd); for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) { struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q]; kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG); kfree(ifsq->ifsq_stage, M_DEVBUF); } kfree(ifp->if_snd.altq_subq, M_DEVBUF); kfree(ifp->if_data_pcpu, M_DEVBUF); crit_exit(); } int ifgroup_lockmgr(u_int flags) { return lockmgr(&ifgroup_lock, flags); } /* * Create an empty interface group. */ static struct ifg_group * if_creategroup(const char *groupname) { struct ifg_group *ifg; ifg = kmalloc(sizeof(*ifg), M_IFNET, M_WAITOK); strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; ifg->ifg_carp_demoted = 0; TAILQ_INIT(&ifg->ifg_members); ifgroup_lockmgr(LK_EXCLUSIVE); TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); ifgroup_lockmgr(LK_RELEASE); EVENTHANDLER_INVOKE(group_attach_event, ifg); return (ifg); } /* * Destroy an empty interface group. */ static int if_destroygroup(struct ifg_group *ifg) { KASSERT(ifg->ifg_refcnt == 0, ("trying to delete a non-empty interface group")); ifgroup_lockmgr(LK_EXCLUSIVE); TAILQ_REMOVE(&ifg_head, ifg, ifg_next); ifgroup_lockmgr(LK_RELEASE); EVENTHANDLER_INVOKE(group_detach_event, ifg); kfree(ifg, M_IFNET); return (0); } /* * Add the interface to a group. * The target group will be created if it doesn't exist. */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg; struct ifg_member *ifgm; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); ifgroup_lockmgr(LK_SHARED); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) { ifgroup_lockmgr(LK_RELEASE); return (EEXIST); } } TAILQ_FOREACH(ifg, &ifg_head, ifg_next) { if (strcmp(ifg->ifg_group, groupname) == 0) break; } ifgroup_lockmgr(LK_RELEASE); if (ifg == NULL) ifg = if_creategroup(groupname); ifgl = kmalloc(sizeof(*ifgl), M_IFNET, M_WAITOK); ifgm = kmalloc(sizeof(*ifgm), M_IFNET, M_WAITOK); ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; ifg->ifg_refcnt++; ifgroup_lockmgr(LK_EXCLUSIVE); TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); ifgroup_lockmgr(LK_RELEASE); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove the interface from a group. * The group will be destroyed if it becomes empty. * * The 'ifgroup_lock' must be hold exclusively when calling this. */ static int if_delgroup_locked(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_member *ifgm; KKASSERT(lockstatus(&ifgroup_lock, curthread) == LK_EXCLUSIVE); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) break; } if (ifgl == NULL) return (ENOENT); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { if (ifgm->ifgm_ifp == ifp) break; } if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); ifgroup_lockmgr(LK_RELEASE); EVENTHANDLER_INVOKE(group_change_event, groupname); ifgroup_lockmgr(LK_EXCLUSIVE); kfree(ifgm, M_IFNET); ifgl->ifgl_group->ifg_refcnt--; } if (ifgl->ifgl_group->ifg_refcnt == 0) { ifgroup_lockmgr(LK_RELEASE); if_destroygroup(ifgl->ifgl_group); ifgroup_lockmgr(LK_EXCLUSIVE); } kfree(ifgl, M_IFNET); return (0); } int if_delgroup(struct ifnet *ifp, const char *groupname) { int error; ifgroup_lockmgr(LK_EXCLUSIVE); error = if_delgroup_locked(ifp, groupname); ifgroup_lockmgr(LK_RELEASE); return (error); } /* * Store all the groups that the interface belongs to in memory * pointed to by data. */ static int if_getgroups(struct ifgroupreq *ifgr, struct ifnet *ifp) { struct ifg_list *ifgl; struct ifg_req *ifgrq, *p; int len, error; len = 0; ifgroup_lockmgr(LK_SHARED); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) len += sizeof(struct ifg_req); ifgroup_lockmgr(LK_RELEASE); if (ifgr->ifgr_len == 0) { /* * Caller is asking how much memory should be allocated in * the next request in order to hold all the groups. */ ifgr->ifgr_len = len; return (0); } else if (ifgr->ifgr_len != len) { return (EINVAL); } ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO); if (ifgrq == NULL) return (ENOMEM); ifgroup_lockmgr(LK_SHARED); p = ifgrq; TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(struct ifg_req)) { ifgroup_lockmgr(LK_RELEASE); return (EINVAL); } strlcpy(p->ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq->ifgrq_group)); len -= sizeof(struct ifg_req); p++; } ifgroup_lockmgr(LK_RELEASE); error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len); kfree(ifgrq, M_TEMP); if (error) return (error); return (0); } /* * Store all the members of a group in memory pointed to by data. */ static int if_getgroupmembers(struct ifgroupreq *ifgr) { struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req *ifgrq, *p; int len, error; ifgroup_lockmgr(LK_SHARED); TAILQ_FOREACH(ifg, &ifg_head, ifg_next) { if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) break; } if (ifg == NULL) { ifgroup_lockmgr(LK_RELEASE); return (ENOENT); } len = 0; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) len += sizeof(struct ifg_req); ifgroup_lockmgr(LK_RELEASE); if (ifgr->ifgr_len == 0) { ifgr->ifgr_len = len; return (0); } else if (ifgr->ifgr_len != len) { return (EINVAL); } ifgrq = kmalloc(len, M_TEMP, M_INTWAIT | M_NULLOK | M_ZERO); if (ifgrq == NULL) return (ENOMEM); ifgroup_lockmgr(LK_SHARED); p = ifgrq; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(struct ifg_req)) { ifgroup_lockmgr(LK_RELEASE); return (EINVAL); } strlcpy(p->ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(p->ifgrq_member)); len -= sizeof(struct ifg_req); p++; } ifgroup_lockmgr(LK_RELEASE); error = copyout(ifgrq, ifgr->ifgr_groups, ifgr->ifgr_len); kfree(ifgrq, M_TEMP); if (error) return (error); return (0); } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rn pointer to node in the routing table * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated * */ static int if_rtdel(struct radix_node *rn, void *arg) { struct rtentry *rt = (struct rtentry *)rn; struct ifnet *ifp = arg; int err; if (rt->rt_ifp == ifp) { /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if (!(rt->rt_flags & RTF_UP)) return (0); err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); if (err) { log(LOG_WARNING, "if_rtdel: error %d\n", err); } } return (0); } static __inline boolean_t ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa) { if (old_ifa == NULL) return TRUE; if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 && (cur_ifa->ifa_ifp->if_flags & IFF_UP)) return TRUE; if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 && (cur_ifa->ifa_flags & IFA_ROUTE)) return TRUE; return FALSE; } /* * Locate an interface based on a complete address. */ struct ifaddr * ifa_ifwithaddr(struct sockaddr *addr) { const struct ifnet_array *arr; int i; arr = ifnet_array_get(); for (i = 0; i < arr->ifnet_count; ++i) { struct ifnet *ifp = arr->ifnet_arr[i]; struct ifaddr_container *ifac; TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { struct ifaddr *ifa = ifac->ifa; if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) return (ifa); if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && /* IPv6 doesn't have broadcast */ ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) return (ifa); } } return (NULL); } /* * Locate the point to point interface with a given destination address. */ struct ifaddr * ifa_ifwithdstaddr(struct sockaddr *addr) { const struct ifnet_array *arr; int i; arr = ifnet_array_get(); for (i = 0; i < arr->ifnet_count; ++i) { struct ifnet *ifp = arr->ifnet_arr[i]; struct ifaddr_container *ifac; if (!(ifp->if_flags & IFF_POINTOPOINT)) continue; TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { struct ifaddr *ifa = ifac->ifa; if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr)) return (ifa); } } return (NULL); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(struct sockaddr *addr) { struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; char *addr_data = addr->sa_data, *cplim; const struct ifnet_array *arr; int i; /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= if_index) return (ifindex2ifnet[sdl->sdl_index]->if_lladdr); } /* * Scan though each interface, looking for ones that have * addresses in this address family. */ arr = ifnet_array_get(); for (i = 0; i < arr->ifnet_count; ++i) { struct ifnet *ifp = arr->ifnet_arr[i]; struct ifaddr_container *ifac; TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { struct ifaddr *ifa = ifac->ifa; char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) return (ifa); } else { /* * if we have a special address handler, * then use it instead of the generic one. */ if (ifa->ifa_claim_addr) { if ((*ifa->ifa_claim_addr)(ifa, addr)) { return (ifa); } else { continue; } } /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one) then remember the new one * before continuing to search for an even * better one. If the netmasks are equal, * we prefer the this ifa based on the result * of ifa_prefer(). */ if (ifa_maybe == NULL || rn_refines((char *)ifa->ifa_netmask, (char *)ifa_maybe->ifa_netmask) || (sa_equal(ifa_maybe->ifa_netmask, ifa->ifa_netmask) && ifa_prefer(ifa, ifa_maybe))) ifa_maybe = ifa; } } } return (ifa_maybe); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr_container *ifac; char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (0); TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { struct ifaddr *ifa = ifac->ifa; if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == NULL) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr))) return (ifa); continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) return (ifa); } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) return (ifa); } } return (ifa_maybe); } /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ static void link_rtrequest(int cmd, struct rtentry *rt) { struct ifaddr *ifa; struct sockaddr *dst; struct ifnet *ifp; if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa != NULL) { IFAFREE(rt->rt_ifa); IFAREF(ifa); rt->rt_ifa = ifa; if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt); } } struct netmsg_ifroute { struct netmsg_base base; struct ifnet *ifp; int flag; int fam; }; /* * Mark an interface down and notify protocols of the transition. */ static void if_unroute_dispatch(netmsg_t nmsg) { struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg; struct ifnet *ifp = msg->ifp; int flag = msg->flag, fam = msg->fam; struct ifaddr_container *ifac; ASSERT_NETISR0; ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); /* * The ifaddr processing in the following loop will block, * however, this function is called in netisr0, in which * ifaddr list changes happen, so we don't care about the * blockness of the ifaddr processing here. */ TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { struct ifaddr *ifa = ifac->ifa; /* Ignore marker */ if (ifa->ifa_addr->sa_family == AF_UNSPEC) continue; if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) kpfctlinput(PRC_IFDOWN, ifa->ifa_addr); } ifq_purge_all(&ifp->if_snd); netisr_replymsg(&nmsg->base, 0); } static void if_unroute(struct ifnet *ifp, int flag, int fam) { struct netmsg_ifroute msg; netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, if_unroute_dispatch); msg.ifp = ifp; msg.flag = flag; msg.fam = fam; netisr_domsg(&msg.base, 0); } /* * Mark an interface up and notify protocols of the transition. */ static void if_route_dispatch(netmsg_t nmsg) { struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg; struct ifnet *ifp = msg->ifp; int flag = msg->flag, fam = msg->fam; struct ifaddr_container *ifac; ASSERT_NETISR0; ifq_purge_all(&ifp->if_snd); ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); /* * The ifaddr processing in the following loop will block, * however, this function is called in netisr0, in which * ifaddr list changes happen, so we don't care about the * blockness of the ifaddr processing here. */ TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { struct ifaddr *ifa = ifac->ifa; /* Ignore marker */ if (ifa->ifa_addr->sa_family == AF_UNSPEC) continue; if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) kpfctlinput(PRC_IFUP, ifa->ifa_addr); } #ifdef INET6 in6_if_up(ifp); #endif netisr_replymsg(&nmsg->base, 0); } static void if_route(struct ifnet *ifp, int flag, int fam) { struct netmsg_ifroute msg; netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, if_route_dispatch); msg.ifp = ifp; msg.flag = flag; msg.fam = fam; netisr_domsg(&msg.base, 0); } /* * Mark an interface down and notify protocols of the transition. An * interface going down is also considered to be a synchronizing event. * We must ensure that all packet processing related to the interface * has completed before we return so e.g. the caller can free the ifnet * structure that the mbufs may be referencing. * * NOTE: must be called at splnet or eqivalent. */ void if_down(struct ifnet *ifp) { EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); if_unroute(ifp, IFF_UP, AF_UNSPEC); netmsg_service_sync(); } /* * Mark an interface up and notify protocols of * the transition. * NOTE: must be called at splnet or eqivalent. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); } /* * Process a link state change. * NOTE: must be called at splsoftnet or equivalent. */ void if_link_state_change(struct ifnet *ifp) { int link_state = ifp->if_link_state; rt_ifmsg(ifp); devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); } /* * Handle interface watchdog timer routines. Called * from softclock, we decrement timers (if set) and * call the appropriate interface routine on expiration. */ static void if_slowtimo_dispatch(netmsg_t nmsg) { struct globaldata *gd = mycpu; const struct ifnet_array *arr; int i; ASSERT_NETISR0; crit_enter_gd(gd); lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */ crit_exit_gd(gd); arr = ifnet_array_get(); for (i = 0; i < arr->ifnet_count; ++i) { struct ifnet *ifp = arr->ifnet_arr[i]; crit_enter_gd(gd); if (if_stats_compat) { IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets); IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors); IFNET_STAT_GET(ifp, opackets, ifp->if_opackets); IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors); IFNET_STAT_GET(ifp, collisions, ifp->if_collisions); IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes); IFNET_STAT_GET(ifp, obytes, ifp->if_obytes); IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts); IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts); IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops); IFNET_STAT_GET(ifp, noproto, ifp->if_noproto); IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops); } if (ifp->if_timer == 0 || --ifp->if_timer) { crit_exit_gd(gd); continue; } if (ifp->if_watchdog) { if (ifnet_tryserialize_all(ifp)) { (*ifp->if_watchdog)(ifp); ifnet_deserialize_all(ifp); } else { /* try again next timeout */ ++ifp->if_timer; } } crit_exit_gd(gd); } callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL); } static void if_slowtimo(void *arg __unused) { struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg; KASSERT(mycpuid == 0, ("not on cpu0")); crit_enter(); if (lmsg->ms_flags & MSGF_DONE) lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg); crit_exit(); } /* * Map interface name to * interface structure pointer. */ struct ifnet * ifunit(const char *name) { struct ifnet *ifp; /* * Search all the interfaces for this name/number */ KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked")); TAILQ_FOREACH(ifp, &ifnetlist, if_link) { if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) break; } return (ifp); } struct ifnet * ifunit_netisr(const char *name) { const struct ifnet_array *arr; int i; /* * Search all the interfaces for this name/number */ arr = ifnet_array_get(); for (i = 0; i < arr->ifnet_count; ++i) { struct ifnet *ifp = arr->ifnet_arr[i]; if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0) return ifp; } return NULL; } /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred) { struct ifnet *ifp; struct ifgroupreq *ifgr; struct ifreq *ifr; struct ifstat *ifs; int error, do_ifup = 0; short oif_flags; int new_flags; size_t namelen, onamelen; char new_name[IFNAMSIZ]; struct ifaddr *ifa; struct sockaddr_dl *sdl; switch (cmd) { case SIOCGIFCONF: return (ifconf(cmd, data, cred)); default: break; } ifr = (struct ifreq *)data; switch (cmd) { case SIOCIFCREATE: case SIOCIFCREATE2: if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) return (error); return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL)); case SIOCIFDESTROY: if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0) return (error); return (if_clone_destroy(ifr->ifr_name)); case SIOCIFGCLONERS: return (if_clone_list((struct if_clonereq *)data)); case SIOCGIFGMEMB: return (if_getgroupmembers((struct ifgroupreq *)data)); default: break; } /* * Nominal ioctl through interface, lookup the ifp and obtain a * lock to serialize the ifconfig ioctl operation. */ ifnet_lock(); ifp = ifunit(ifr->ifr_name); if (ifp == NULL) { ifnet_unlock(); return (ENXIO); } error = 0; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: ifr->ifr_flags = ifp->if_flags; ifr->ifr_flagshigh = ifp->if_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFTSOLEN: ifr->ifr_tsolen = ifp->if_tsolen; break; case SIOCGIFDATA: error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data, sizeof(ifp->if_data)); break; case SIOCGIFPHYS: ifr->ifr_phys = ifp->if_physical; break; case SIOCGIFPOLLCPU: ifr->ifr_pollcpu = -1; break; case SIOCSIFPOLLCPU: break; case SIOCSIFFLAGS: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_SMART) { /* Smart drivers twiddle their own routes */ } else if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { if_down(ifp); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { do_ifup = 1; } #ifdef IFPOLL_ENABLE if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) { if (new_flags & IFF_NPOLLING) ifpoll_register(ifp); else ifpoll_deregister(ifp); } #endif ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (new_flags & IFF_PPROMISC) { /* Permanently promiscuous mode requested */ ifp->if_flags |= IFF_PROMISC; } else if (ifp->if_pcount == 0) { ifp->if_flags &= ~IFF_PROMISC; } if (ifp->if_ioctl) { ifnet_serialize_all(ifp); ifp->if_ioctl(ifp, cmd, data, cred); ifnet_deserialize_all(ifp); } if (do_ifup) if_up(ifp); getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; if (ifr->ifr_reqcap & ~ifp->if_capabilities) { error = EINVAL; break; } ifnet_serialize_all(ifp); ifp->if_ioctl(ifp, cmd, data, cred); ifnet_deserialize_all(ifp); break; case SIOCSIFNAME: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); if (error) break; if (new_name[0] == '\0') { error = EINVAL; break; } if (ifunit(new_name) != NULL) { error = EEXIST; break; } EVENTHANDLER_INVOKE(ifnet_detach_event, ifp); /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa; sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; EVENTHANDLER_INVOKE(ifnet_attach_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); break; case SIOCSIFMETRIC: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; break; } ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, cmd, data, cred); ifnet_deserialize_all(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; break; } if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) { error = EINVAL; break; } ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, cmd, data, cred); ifnet_deserialize_all(ifp); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif } break; } case SIOCSIFTSOLEN: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; /* XXX need driver supplied upper limit */ if (ifr->ifr_tsolen <= 0) { error = EINVAL; break; } ifp->if_tsolen = ifr->ifr_tsolen; break; case SIOCADDMULTI: case SIOCDELMULTI: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) { error = EOPNOTSUPP; break; } /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) { error = EINVAL; break; } if (cmd == SIOCADDMULTI) { struct ifmultiaddr *ifma; error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSLIFPHYADDR: case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; break; } ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, cmd, data, cred); ifnet_deserialize_all(ifp); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: ifs = (struct ifstat *)data; ifs->ascii[0] = '\0'; /* fall through */ case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGLIFPHYADDR: case SIOCGIFMEDIA: case SIOCGIFGENERIC: if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; break; } ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, cmd, data, cred); ifnet_deserialize_all(ifp); break; case SIOCSIFLLADDR: error = priv_check_cred(cred, PRIV_ROOT, 0); if (error) break; error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); EVENTHANDLER_INVOKE(iflladdr_event, ifp); break; case SIOCAIFGROUP: ifgr = (struct ifgroupreq *)ifr; if ((error = priv_check_cred(cred, PRIV_NET_ADDIFGROUP, 0))) return (error); if ((error = if_addgroup(ifp, ifgr->ifgr_group))) return (error); break; case SIOCDIFGROUP: ifgr = (struct ifgroupreq *)ifr; if ((error = priv_check_cred(cred, PRIV_NET_DELIFGROUP, 0))) return (error); if ((error = if_delgroup(ifp, ifgr->ifgr_group))) return (error); break; case SIOCGIFGROUP: ifgr = (struct ifgroupreq *)ifr; if ((error = if_getgroups(ifgr, ifp))) return (error); break; default: oif_flags = ifp->if_flags; if (so->so_proto == 0) { error = EOPNOTSUPP; break; } error = so_pru_control_direct(so, cmd, data, ifp); /* * If the socket control method returns EOPNOTSUPP, pass the * request directly to the interface. * * Exclude the SIOCSIF{ADDR,BRDADDR,DSTADDR,NETMASK} ioctls, * because drivers may trust these ioctls to come from an * already privileged layer and thus do not perform credentials * checks or input validation. */ if (error == EOPNOTSUPP && ifp->if_ioctl != NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) { ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, cmd, data, cred); ifnet_deserialize_all(ifp); } if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 DELAY(100);/* XXX: temporary workaround for fxp issue*/ if (ifp->if_flags & IFF_UP) { crit_enter(); in6_if_up(ifp); crit_exit(); } #endif } break; } ifnet_unlock(); return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { struct ifreq ifr; int error; int oldflags; oldflags = ifp->if_flags; if (ifp->if_flags & IFF_PPROMISC) { /* Do nothing if device is in permanently promiscuous mode */ ifp->if_pcount += pswitch ? 1 : -1; return (0); } if (pswitch) { /* * If the device is not configured up, we cannot put it in * promiscuous mode. */ if ((ifp->if_flags & IFF_UP) == 0) return (ENETDOWN); if (ifp->if_pcount++ != 0) return (0); ifp->if_flags |= IFF_PROMISC; log(LOG_INFO, "%s: promiscuous mode enabled\n", ifp->if_xname); } else { if (--ifp->if_pcount > 0) return (0); ifp->if_flags &= ~IFF_PROMISC; log(LOG_INFO, "%s: promiscuous mode disabled\n", ifp->if_xname); } ifr.ifr_flags = ifp->if_flags; ifr.ifr_flagshigh = ifp->if_flags >> 16; ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); ifnet_deserialize_all(ifp); if (error == 0) rt_ifmsg(ifp); else ifp->if_flags = oldflags; return error; } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ static int ifconf(u_long cmd, caddr_t data, struct ucred *cred) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct sockaddr *sa; struct ifreq ifr, *ifrp; int space = ifc->ifc_len, error = 0; ifrp = ifc->ifc_req; ifnet_lock(); TAILQ_FOREACH(ifp, &ifnetlist, if_link) { struct ifaddr_container *ifac, *ifac_mark; struct ifaddr_marker mark; struct ifaddrhead *head; int addrs; if (space <= sizeof ifr) break; /* * Zero the stack declared structure first to prevent * memory disclosure. */ bzero(&ifr, sizeof(ifr)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { error = ENAMETOOLONG; break; } /* * Add a marker, since copyout() could block and during that * period the list could be changed. Inserting the marker to * the header of the list will not cause trouble for the code * assuming that the first element of the list is AF_LINK; the * marker will be moved to the next position w/o blocking. */ ifa_marker_init(&mark, ifp); ifac_mark = &mark.ifac; head = &ifp->if_addrheads[mycpuid]; addrs = 0; TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link); while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) { struct ifaddr *ifa = ifac->ifa; TAILQ_REMOVE(head, ifac_mark, ifa_link); TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link); /* Ignore marker */ if (ifa->ifa_addr->sa_family == AF_UNSPEC) continue; if (space <= sizeof ifr) break; sa = ifa->ifa_addr; if (cred->cr_prison && prison_if(cred, sa)) continue; addrs++; /* * Keep a reference on this ifaddr, so that it will * not be destroyed when its address is copied to * the userland, which could block. */ IFAREF(ifa); if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; error = copyout(&ifr, ifrp, sizeof ifr); ifrp++; } else { if (space < (sizeof ifr) + sa->sa_len - sizeof(*sa)) { IFAFREE(ifa); break; } space -= sa->sa_len - sizeof(*sa); error = copyout(&ifr, ifrp, sizeof ifr.ifr_name); if (error == 0) error = copyout(sa, &ifrp->ifr_addr, sa->sa_len); ifrp = (struct ifreq *) (sa->sa_len + (caddr_t)&ifrp->ifr_addr); } IFAFREE(ifa); if (error) break; space -= sizeof ifr; } TAILQ_REMOVE(head, ifac_mark, ifa_link); if (error) break; if (!addrs) { bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr); error = copyout(&ifr, ifrp, sizeof ifr); if (error) break; space -= sizeof ifr; ifrp++; } } ifnet_unlock(); ifc->ifc_len -= space; return (error); } /* * Just like if_promisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { int error = 0; struct ifreq ifr; crit_enter(); if (onswitch) { if (ifp->if_amcount++ == 0) { ifp->if_flags |= IFF_ALLMULTI; ifr.ifr_flags = ifp->if_flags; ifr.ifr_flagshigh = ifp->if_flags >> 16; ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); ifnet_deserialize_all(ifp); } } else { if (ifp->if_amcount > 1) { ifp->if_amcount--; } else { ifp->if_amcount = 0; ifp->if_flags &= ~IFF_ALLMULTI; ifr.ifr_flags = ifp->if_flags; ifr.ifr_flagshigh = ifp->if_flags >> 16; ifnet_serialize_all(ifp); error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); ifnet_deserialize_all(ifp); } } crit_exit(); if (error == 0) rt_ifmsg(ifp); return error; } /* * Add a multicast listenership to the interface in question. * The link layer provides a routine which converts */ int if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct sockaddr *llsa, *dupsa; int error; struct ifmultiaddr *ifma; ASSERT_IFNET_SERIALIZED_ALL(ifp); /* * If the matching multicast address already exists * then don't add a new one, just add a reference */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa_equal(sa, ifma->ifma_addr)) { ifma->ifma_refcount++; if (retifma) *retifma = ifma; return 0; } } /* * Give the link layer a chance to accept/reject it, and also * find out which AF_LINK address this maps to, if it isn't one * already. */ if (ifp->if_resolvemulti) { error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) return error; } else { llsa = NULL; } ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT); dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT); bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_lladdr = llsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; rt_newmaddrmsg(RTM_NEWMADDR, ifma); TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma) *retifma = ifma; if (llsa != NULL) { TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa_equal(ifma->ifma_addr, llsa)) break; } if (ifma) { ifma->ifma_refcount++; } else { ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT); dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT); bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); } } /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if (ifp->if_ioctl) ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL); return 0; } int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { int error; ifnet_serialize_all(ifp); error = if_addmulti_serialized(ifp, sa, retifma); ifnet_deserialize_all(ifp); return error; } /* * Remove a reference to a multicast address on this interface. Yell * if the request does not match an existing membership. */ static int if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; ASSERT_IFNET_SERIALIZED_ALL(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (sa_equal(sa, ifma->ifma_addr)) break; if (ifma == NULL) return ENOENT; if (ifma->ifma_refcount > 1) { ifma->ifma_refcount--; return 0; } rt_newmaddrmsg(RTM_DELMADDR, ifma); sa = ifma->ifma_lladdr; TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); /* * Make sure the interface driver is notified * in the case of a link layer mcast group being left. */ if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL) ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); kfree(ifma->ifma_addr, M_IFMADDR); kfree(ifma, M_IFMADDR); if (sa == NULL) return 0; /* * Now look for the link-layer address which corresponds to * this network address. It had been squirreled away in * ifma->ifma_lladdr for this purpose (so we don't have * to call ifp->if_resolvemulti() again), and we saved that * value in sa above. If some nasty deleted the * link-layer address out from underneath us, we can deal because * the address we stored was is not the same as the one which was * in the record for the link-layer address. (So we don't complain * in that case.) */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (sa_equal(sa, ifma->ifma_addr)) break; if (ifma == NULL) return 0; if (ifma->ifma_refcount > 1) { ifma->ifma_refcount--; return 0; } TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL); kfree(ifma->ifma_addr, M_IFMADDR); kfree(sa, M_IFMADDR); kfree(ifma, M_IFMADDR); return 0; } int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { int error; ifnet_serialize_all(ifp); error = if_delmulti_serialized(ifp, sa); ifnet_deserialize_all(ifp); return error; } /* * Delete all multicast group membership for an interface. * Should be used to quickly flush all multicast filters. */ void if_delallmulti_serialized(struct ifnet *ifp) { struct ifmultiaddr *ifma, mark; struct sockaddr sa; ASSERT_IFNET_SERIALIZED_ALL(ifp); bzero(&sa, sizeof(sa)); sa.sa_family = AF_UNSPEC; sa.sa_len = sizeof(sa); bzero(&mark, sizeof(mark)); mark.ifma_addr = &sa; TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link); while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) { TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link); TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark, ifma_link); if (ifma->ifma_addr->sa_family == AF_UNSPEC) continue; if_delmulti_serialized(ifp, ifma->ifma_addr); } TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link); } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. */ int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifreq ifr; sdl = IF_LLSOCKADDR(ifp); if (sdl == NULL) return (EINVAL); if (len != sdl->sdl_alen) /* don't allow length to change */ return (EINVAL); switch (ifp->if_type) { case IFT_ETHER: /* these types use struct arpcom */ case IFT_XETHER: case IFT_L2VLAN: case IFT_IEEE8023ADLAG: bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len); bcopy(lladdr, LLADDR(sdl), len); break; default: return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ ifnet_serialize_all(ifp); if ((ifp->if_flags & IFF_UP) != 0) { #ifdef INET struct ifaddr_container *ifac; #endif ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags; ifr.ifr_flagshigh = ifp->if_flags >> 16; ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags; ifr.ifr_flagshigh = ifp->if_flags >> 16; ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL); #ifdef INET /* * Also send gratuitous ARPs to notify other nodes about * the address change. */ TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) { struct ifaddr *ifa = ifac->ifa; if (ifa->ifa_addr != NULL && ifa->ifa_addr->sa_family == AF_INET) arp_gratuitous(ifp, ifa); } #endif } ifnet_deserialize_all(ifp); return (0); } /* * Locate an interface based on a complete address. */ struct ifnet * if_bylla(const void *lla, unsigned char lla_len) { const struct ifnet_array *arr; struct ifnet *ifp; struct sockaddr_dl *sdl; int i; arr = ifnet_array_get(); for (i = 0; i < arr->ifnet_count; ++i) { ifp = arr->ifnet_arr[i]; if (ifp->if_addrlen != lla_len) continue; sdl = IF_LLSOCKADDR(ifp); if (memcmp(lla, LLADDR(sdl), lla_len) == 0) return (ifp); } return (NULL); } struct ifmultiaddr * ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp) { struct ifmultiaddr *ifma; /* TODO: need ifnet_serialize_main */ ifnet_serialize_all(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (sa_equal(ifma->ifma_addr, sa)) break; ifnet_deserialize_all(ifp); return ifma; } /* * This function locates the first real ethernet MAC from a network * card and loads it into node, returning 0 on success or ENOENT if * no suitable interfaces were found. It is used by the uuid code to * generate a unique 6-byte number. */ int if_getanyethermac(uint16_t *node, int minlen) { struct ifnet *ifp; struct sockaddr_dl *sdl; ifnet_lock(); TAILQ_FOREACH(ifp, &ifnetlist, if_link) { if (ifp->if_type != IFT_ETHER) continue; sdl = IF_LLSOCKADDR(ifp); if (sdl->sdl_alen < minlen) continue; bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node, minlen); ifnet_unlock(); return(0); } ifnet_unlock(); return (ENOENT); } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } int if_printf(struct ifnet *ifp, const char *fmt, ...) { __va_list ap; int retval; retval = kprintf("%s: ", ifp->if_xname); __va_start(ap, fmt); retval += kvprintf(fmt, ap); __va_end(ap); return (retval); } struct ifnet * if_alloc(uint8_t type) { struct ifnet *ifp; size_t size; /* * XXX temporary hack until arpcom is setup in if_l2com */ if (type == IFT_ETHER) size = sizeof(struct arpcom); else size = sizeof(struct ifnet); ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO); ifp->if_type = type; if (if_com_alloc[type] != NULL) { ifp->if_l2com = if_com_alloc[type](type, ifp); if (ifp->if_l2com == NULL) { kfree(ifp, M_IFNET); return (NULL); } } return (ifp); } void if_free(struct ifnet *ifp) { kfree(ifp, M_IFNET); } void ifq_set_classic(struct ifaltq *ifq) { ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq, ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request); } void ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq, ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request) { int q; KASSERT(mapsubq != NULL, ("mapsubq is not specified")); KASSERT(enqueue != NULL, ("enqueue is not specified")); KASSERT(dequeue != NULL, ("dequeue is not specified")); KASSERT(request != NULL, ("request is not specified")); ifq->altq_mapsubq = mapsubq; for (q = 0; q < ifq->altq_subq_cnt; ++q) { struct ifaltq_subque *ifsq = &ifq->altq_subq[q]; ifsq->ifsq_enqueue = enqueue; ifsq->ifsq_dequeue = dequeue; ifsq->ifsq_request = request; } } static void ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) { classq_add(&ifsq->ifsq_norm, m); ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); } static void ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m) { classq_add(&ifsq->ifsq_prio, m); ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len); ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len); } static struct mbuf * ifsq_norm_dequeue(struct ifaltq_subque *ifsq) { struct mbuf *m; m = classq_get(&ifsq->ifsq_norm); if (m != NULL) ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); return (m); } static struct mbuf * ifsq_prio_dequeue(struct ifaltq_subque *ifsq) { struct mbuf *m; m = classq_get(&ifsq->ifsq_prio); if (m != NULL) { ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len); ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len); } return (m); } int ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m, struct altq_pktattr *pa __unused) { M_ASSERTPKTHDR(m); again: if (ifsq->ifsq_len >= ifsq->ifsq_maxlen || ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) { struct mbuf *m_drop; if (m->m_flags & M_PRIO) { m_drop = NULL; if (ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen >> 1) && ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt >> 1)) { /* Try dropping some from normal queue. */ m_drop = ifsq_norm_dequeue(ifsq); } if (m_drop == NULL) m_drop = ifsq_prio_dequeue(ifsq); } else { m_drop = ifsq_norm_dequeue(ifsq); } if (m_drop != NULL) { IFNET_STAT_INC(ifsq->ifsq_ifp, oqdrops, 1); m_freem(m_drop); goto again; } /* * No old packets could be dropped! * NOTE: Caller increases oqdrops. */ m_freem(m); return (ENOBUFS); } else { if (m->m_flags & M_PRIO) ifsq_prio_enqueue(ifsq, m); else ifsq_norm_enqueue(ifsq, m); return (0); } } struct mbuf * ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op) { struct mbuf *m; switch (op) { case ALTDQ_POLL: m = classq_head(&ifsq->ifsq_prio); if (m == NULL) m = classq_head(&ifsq->ifsq_norm); break; case ALTDQ_REMOVE: m = ifsq_prio_dequeue(ifsq); if (m == NULL) m = ifsq_norm_dequeue(ifsq); break; default: panic("unsupported ALTQ dequeue op: %d", op); } return m; } int ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg) { switch (req) { case ALTRQ_PURGE: for (;;) { struct mbuf *m; m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE); if (m == NULL) break; m_freem(m); } break; default: panic("unsupported ALTQ request: %d", req); } return 0; } static void ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched) { struct ifnet *ifp = ifsq_get_ifp(ifsq); int running = 0, need_sched; /* * Try to do direct ifnet.if_start on the subqueue first, if there is * contention on the subqueue hardware serializer, ifnet.if_start on * the subqueue will be scheduled on the subqueue owner CPU. */ if (!ifsq_tryserialize_hw(ifsq)) { /* * Subqueue hardware serializer contention happened, * ifnet.if_start on the subqueue is scheduled on * the subqueue owner CPU, and we keep going. */ ifsq_ifstart_schedule(ifsq, 1); return; } if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) { ifp->if_start(ifp, ifsq); if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) running = 1; } need_sched = ifsq_ifstart_need_schedule(ifsq, running); ifsq_deserialize_hw(ifsq); if (need_sched) { /* * More data need to be transmitted, ifnet.if_start on the * subqueue is scheduled on the subqueue owner CPU, and we * keep going. * NOTE: ifnet.if_start subqueue interlock is not released. */ ifsq_ifstart_schedule(ifsq, force_sched); } } /* * Subqeue packets staging mechanism: * * The packets enqueued into the subqueue are staged to a certain amount * before the ifnet.if_start on the subqueue is called. In this way, the * driver could avoid writing to hardware registers upon every packet, * instead, hardware registers could be written when certain amount of * packets are put onto hardware TX ring. The measurement on several modern * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware * registers writing aggregation could save ~20% CPU time when 18bytes UDP * datagrams are transmitted at 1.48Mpps. The performance improvement by * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's * netmap paper (http://info.iet.unipi.it/~luigi/netmap/). * * Subqueue packets staging is performed for two entry points into drivers' * transmission function: * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try() * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule() * * Subqueue packets staging will be stopped upon any of the following * conditions: * - If the count of packets enqueued on the current CPU is great than or * equal to ifsq_stage_cntmax. (XXX this should be per-interface) * - If the total length of packets enqueued on the current CPU is great * than or equal to the hardware's MTU - max_protohdr. max_protohdr is * cut from the hardware's MTU mainly bacause a full TCP segment's size * is usually less than hardware's MTU. * - ifsq_ifstart_schedule() is not pending on the current CPU and * ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not * released. * - The if_start_rollup(), which is registered as low priority netisr * rollup function, is called; probably because no more work is pending * for netisr. * * NOTE: * Currently subqueue packet staging is only performed in netisr threads. */ int ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa) { struct ifaltq *ifq = &ifp->if_snd; struct ifaltq_subque *ifsq; int error, start = 0, len, mcast = 0, avoid_start = 0; struct ifsubq_stage_head *head = NULL; struct ifsubq_stage *stage = NULL; struct globaldata *gd = mycpu; struct thread *td = gd->gd_curthread; crit_enter_quick(td); ifsq = ifq_map_subq(ifq, gd->gd_cpuid); ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq); len = m->m_pkthdr.len; if (m->m_flags & M_MCAST) mcast = 1; if (td->td_type == TD_TYPE_NETISR) { head = &ifsubq_stage_heads[mycpuid]; stage = ifsq_get_stage(ifsq, mycpuid); stage->stg_cnt++; stage->stg_len += len; if (stage->stg_cnt < ifsq_stage_cntmax && stage->stg_len < (ifp->if_mtu - max_protohdr)) avoid_start = 1; } ALTQ_SQ_LOCK(ifsq); error = ifsq_enqueue_locked(ifsq, m, pa); if (error) { IFNET_STAT_INC(ifp, oqdrops, 1); if (!ifsq_data_ready(ifsq)) { ALTQ_SQ_UNLOCK(ifsq); crit_exit_quick(td); return error; } avoid_start = 0; } if (!ifsq_is_started(ifsq)) { if (avoid_start) { ALTQ_SQ_UNLOCK(ifsq); KKASSERT(!error); if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0) ifsq_stage_insert(head, stage); IFNET_STAT_INC(ifp, obytes, len); if (mcast) IFNET_STAT_INC(ifp, omcasts, 1); crit_exit_quick(td); return error; } /* * Hold the subqueue interlock of ifnet.if_start */ ifsq_set_started(ifsq); start = 1; } ALTQ_SQ_UNLOCK(ifsq); if (!error) { IFNET_STAT_INC(ifp, obytes, len); if (mcast) IFNET_STAT_INC(ifp, omcasts, 1); } if (stage != NULL) { if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) { KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED); if (!avoid_start) { ifsq_stage_remove(head, stage); ifsq_ifstart_schedule(ifsq, 1); } crit_exit_quick(td); return error; } if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) { ifsq_stage_remove(head, stage); } else { stage->stg_cnt = 0; stage->stg_len = 0; } } if (!start) { crit_exit_quick(td); return error; } ifsq_ifstart_try(ifsq, 0); crit_exit_quick(td); return error; } void * ifa_create(int size) { struct ifaddr *ifa; int i; KASSERT(size >= sizeof(*ifa), ("ifaddr size too small")); ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO); /* * Make ifa_container availabel on all CPUs, since they * could be accessed by any threads. */ ifa->ifa_containers = kmalloc(ncpus * sizeof(struct ifaddr_container), M_IFADDR, M_INTWAIT | M_ZERO | M_CACHEALIGN); ifa->ifa_ncnt = ncpus; for (i = 0; i < ncpus; ++i) { struct ifaddr_container *ifac = &ifa->ifa_containers[i]; ifac->ifa_magic = IFA_CONTAINER_MAGIC; ifac->ifa = ifa; ifac->ifa_refcnt = 1; } #ifdef IFADDR_DEBUG kprintf("alloc ifa %p %d\n", ifa, size); #endif return ifa; } void ifac_free(struct ifaddr_container *ifac, int cpu_id) { struct ifaddr *ifa = ifac->ifa; KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC); KKASSERT(ifac->ifa_refcnt == 0); KASSERT(ifac->ifa_listmask == 0, ("ifa is still on %#x lists", ifac->ifa_listmask)); ifac->ifa_magic = IFA_CONTAINER_DEAD; #ifdef IFADDR_DEBUG_VERBOSE kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id); #endif KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus, ("invalid # of ifac, %d", ifa->ifa_ncnt)); if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) { #ifdef IFADDR_DEBUG kprintf("free ifa %p\n", ifa); #endif kfree(ifa->ifa_containers, M_IFADDR); kfree(ifa, M_IFADDR); } } static void ifa_iflink_dispatch(netmsg_t nmsg) { struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; struct ifaddr *ifa = msg->ifa; struct ifnet *ifp = msg->ifp; int cpu = mycpuid; struct ifaddr_container *ifac; crit_enter(); ifac = &ifa->ifa_containers[cpu]; ASSERT_IFAC_VALID(ifac); KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0, ("ifaddr is on if_addrheads")); ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD; if (msg->tail) TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link); else TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link); crit_exit(); netisr_forwardmsg_all(&nmsg->base, cpu + 1); } void ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail) { struct netmsg_ifaddr msg; netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, ifa_iflink_dispatch); msg.ifa = ifa; msg.ifp = ifp; msg.tail = tail; netisr_domsg(&msg.base, 0); } static void ifa_ifunlink_dispatch(netmsg_t nmsg) { struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; struct ifaddr *ifa = msg->ifa; struct ifnet *ifp = msg->ifp; int cpu = mycpuid; struct ifaddr_container *ifac; crit_enter(); ifac = &ifa->ifa_containers[cpu]; ASSERT_IFAC_VALID(ifac); KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD, ("ifaddr is not on if_addrhead")); TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link); ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD; crit_exit(); netisr_forwardmsg_all(&nmsg->base, cpu + 1); } void ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp) { struct netmsg_ifaddr msg; netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, ifa_ifunlink_dispatch); msg.ifa = ifa; msg.ifp = ifp; netisr_domsg(&msg.base, 0); } static void ifa_destroy_dispatch(netmsg_t nmsg) { struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg; IFAFREE(msg->ifa); netisr_forwardmsg_all(&nmsg->base, mycpuid + 1); } void ifa_destroy(struct ifaddr *ifa) { struct netmsg_ifaddr msg; netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0, ifa_destroy_dispatch); msg.ifa = ifa; netisr_domsg(&msg.base, 0); } static void if_start_rollup(void) { struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid]; struct ifsubq_stage *stage; crit_enter(); while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) { struct ifaltq_subque *ifsq = stage->stg_subq; int is_sched = 0; if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED) is_sched = 1; ifsq_stage_remove(head, stage); if (is_sched) { ifsq_ifstart_schedule(ifsq, 1); } else { int start = 0; ALTQ_SQ_LOCK(ifsq); if (!ifsq_is_started(ifsq)) { /* * Hold the subqueue interlock of * ifnet.if_start */ ifsq_set_started(ifsq); start = 1; } ALTQ_SQ_UNLOCK(ifsq); if (start) ifsq_ifstart_try(ifsq, 1); } KKASSERT((stage->stg_flags & (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0); } crit_exit(); } static void ifnetinit(void *dummy __unused) { int i; /* XXX netisr_ncpus */ for (i = 0; i < ncpus; ++i) TAILQ_INIT(&ifsubq_stage_heads[i].stg_head); netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART); } void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f) { KASSERT(if_com_alloc[type] == NULL, ("if_register_com_alloc: %d already registered", type)); KASSERT(if_com_free[type] == NULL, ("if_register_com_alloc: %d free already registered", type)); if_com_alloc[type] = a; if_com_free[type] = f; } void if_deregister_com_alloc(u_char type) { KASSERT(if_com_alloc[type] != NULL, ("if_deregister_com_alloc: %d not registered", type)); KASSERT(if_com_free[type] != NULL, ("if_deregister_com_alloc: %d free not registered", type)); if_com_alloc[type] = NULL; if_com_free[type] = NULL; } void ifq_set_maxlen(struct ifaltq *ifq, int len) { ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax); } int ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused) { return ALTQ_SUBQ_INDEX_DEFAULT; } int ifq_mapsubq_modulo(struct ifaltq *ifq, int cpuid) { return (cpuid % ifq->altq_subq_mappriv); } static void ifsq_watchdog(void *arg) { struct ifsubq_watchdog *wd = arg; struct ifnet *ifp; if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer)) goto done; ifp = ifsq_get_ifp(wd->wd_subq); if (ifnet_tryserialize_all(ifp)) { wd->wd_watchdog(wd->wd_subq); ifnet_deserialize_all(ifp); } else { /* try again next timeout */ wd->wd_timer = 1; } done: ifsq_watchdog_reset(wd); } static void ifsq_watchdog_reset(struct ifsubq_watchdog *wd) { callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd, ifsq_get_cpuid(wd->wd_subq)); } void ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq, ifsq_watchdog_t watchdog) { callout_init_mp(&wd->wd_callout); wd->wd_timer = 0; wd->wd_subq = ifsq; wd->wd_watchdog = watchdog; } void ifsq_watchdog_start(struct ifsubq_watchdog *wd) { wd->wd_timer = 0; ifsq_watchdog_reset(wd); } void ifsq_watchdog_stop(struct ifsubq_watchdog *wd) { wd->wd_timer = 0; callout_stop(&wd->wd_callout); } void ifnet_lock(void) { KASSERT(curthread->td_type != TD_TYPE_NETISR, ("try holding ifnet lock in netisr")); mtx_lock(&ifnet_mtx); } void ifnet_unlock(void) { KASSERT(curthread->td_type != TD_TYPE_NETISR, ("try holding ifnet lock in netisr")); mtx_unlock(&ifnet_mtx); } static struct ifnet_array * ifnet_array_alloc(int count) { struct ifnet_array *arr; arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]), M_IFNET, M_WAITOK); arr->ifnet_count = count; return arr; } static void ifnet_array_free(struct ifnet_array *arr) { if (arr == &ifnet_array0) return; kfree(arr, M_IFNET); } static struct ifnet_array * ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr) { struct ifnet_array *arr; int count, i; KASSERT(old_arr->ifnet_count >= 0, ("invalid ifnet array count %d", old_arr->ifnet_count)); count = old_arr->ifnet_count + 1; arr = ifnet_array_alloc(count); /* * Save the old ifnet array and append this ifp to the end of * the new ifnet array. */ for (i = 0; i < old_arr->ifnet_count; ++i) { KASSERT(old_arr->ifnet_arr[i] != ifp, ("%s is already in ifnet array", ifp->if_xname)); arr->ifnet_arr[i] = old_arr->ifnet_arr[i]; } KASSERT(i == count - 1, ("add %s, ifnet array index mismatch, should be %d, but got %d", ifp->if_xname, count - 1, i)); arr->ifnet_arr[i] = ifp; return arr; } static struct ifnet_array * ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr) { struct ifnet_array *arr; int count, i, idx, found = 0; KASSERT(old_arr->ifnet_count > 0, ("invalid ifnet array count %d", old_arr->ifnet_count)); count = old_arr->ifnet_count - 1; arr = ifnet_array_alloc(count); /* * Save the old ifnet array, but skip this ifp. */ idx = 0; for (i = 0; i < old_arr->ifnet_count; ++i) { if (old_arr->ifnet_arr[i] == ifp) { KASSERT(!found, ("dup %s is in ifnet array", ifp->if_xname)); found = 1; continue; } KASSERT(idx < count, ("invalid ifnet array index %d, count %d", idx, count)); arr->ifnet_arr[idx] = old_arr->ifnet_arr[i]; ++idx; } KASSERT(found, ("%s is not in ifnet array", ifp->if_xname)); KASSERT(idx == count, ("del %s, ifnet array count mismatch, should be %d, but got %d ", ifp->if_xname, count, idx)); return arr; } const struct ifnet_array * ifnet_array_get(void) { const struct ifnet_array *ret; KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); ret = ifnet_array; /* Make sure 'ret' is really used. */ cpu_ccfence(); return (ret); } int ifnet_array_isempty(void) { KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr")); if (ifnet_array->ifnet_count == 0) return 1; else return 0; } void ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp) { struct ifaddr *ifa; memset(mark, 0, sizeof(*mark)); ifa = &mark->ifa; mark->ifac.ifa = ifa; ifa->ifa_addr = &mark->addr; ifa->ifa_dstaddr = &mark->dstaddr; ifa->ifa_netmask = &mark->netmask; ifa->ifa_ifp = ifp; } static int if_ringcnt_fixup(int ring_cnt, int ring_cntmax) { KASSERT(ring_cntmax > 0, ("invalid ring count max %d", ring_cntmax)); if (ring_cnt <= 0 || ring_cnt > ring_cntmax) ring_cnt = ring_cntmax; if (ring_cnt > netisr_ncpus) ring_cnt = netisr_ncpus; return (ring_cnt); } static void if_ringmap_set_grid(device_t dev, struct if_ringmap *rm, int grid) { int i, offset; KASSERT(grid > 0, ("invalid if_ringmap grid %d", grid)); KASSERT(grid >= rm->rm_cnt, ("invalid if_ringmap grid %d, count %d", grid, rm->rm_cnt)); rm->rm_grid = grid; offset = (rm->rm_grid * device_get_unit(dev)) % netisr_ncpus; for (i = 0; i < rm->rm_cnt; ++i) { rm->rm_cpumap[i] = offset + i; KASSERT(rm->rm_cpumap[i] < netisr_ncpus, ("invalid cpumap[%d] = %d, offset %d", i, rm->rm_cpumap[i], offset)); } } static struct if_ringmap * if_ringmap_alloc_flags(device_t dev, int ring_cnt, int ring_cntmax, uint32_t flags) { struct if_ringmap *rm; int i, grid = 0, prev_grid; ring_cnt = if_ringcnt_fixup(ring_cnt, ring_cntmax); rm = kmalloc(__offsetof(struct if_ringmap, rm_cpumap[ring_cnt]), M_DEVBUF, M_WAITOK | M_ZERO); rm->rm_cnt = ring_cnt; if (flags & RINGMAP_FLAG_POWEROF2) rm->rm_cnt = 1 << (fls(rm->rm_cnt) - 1); prev_grid = netisr_ncpus; for (i = 0; i < netisr_ncpus; ++i) { if (netisr_ncpus % (i + 1) != 0) continue; grid = netisr_ncpus / (i + 1); if (rm->rm_cnt > grid) { grid = prev_grid; break; } if (rm->rm_cnt > netisr_ncpus / (i + 2)) break; prev_grid = grid; } if_ringmap_set_grid(dev, rm, grid); return (rm); } struct if_ringmap * if_ringmap_alloc(device_t dev, int ring_cnt, int ring_cntmax) { return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax, RINGMAP_FLAG_NONE)); } struct if_ringmap * if_ringmap_alloc2(device_t dev, int ring_cnt, int ring_cntmax) { return (if_ringmap_alloc_flags(dev, ring_cnt, ring_cntmax, RINGMAP_FLAG_POWEROF2)); } void if_ringmap_free(struct if_ringmap *rm) { kfree(rm, M_DEVBUF); } /* * Align the two ringmaps. * * e.g. 8 netisrs, rm0 contains 4 rings, rm1 contains 2 rings. * * Before: * * CPU 0 1 2 3 4 5 6 7 * NIC_RX n0 n1 n2 n3 * NIC_TX N0 N1 * * After: * * CPU 0 1 2 3 4 5 6 7 * NIC_RX n0 n1 n2 n3 * NIC_TX N0 N1 */ void if_ringmap_align(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1) { if (rm0->rm_grid > rm1->rm_grid) if_ringmap_set_grid(dev, rm1, rm0->rm_grid); else if (rm0->rm_grid < rm1->rm_grid) if_ringmap_set_grid(dev, rm0, rm1->rm_grid); } void if_ringmap_match(device_t dev, struct if_ringmap *rm0, struct if_ringmap *rm1) { int subset_grid, cnt, divisor, mod, offset, i; struct if_ringmap *subset_rm, *rm; int old_rm0_grid, old_rm1_grid; if (rm0->rm_grid == rm1->rm_grid) return; /* Save grid for later use */ old_rm0_grid = rm0->rm_grid; old_rm1_grid = rm1->rm_grid; if_ringmap_align(dev, rm0, rm1); /* * Re-shuffle rings to get more even distribution. * * e.g. 12 netisrs, rm0 contains 4 rings, rm1 contains 2 rings. * * CPU 0 1 2 3 4 5 6 7 8 9 10 11 * * NIC_RX a0 a1 a2 a3 b0 b1 b2 b3 c0 c1 c2 c3 * NIC_TX A0 A1 B0 B1 C0 C1 * * NIC_RX d0 d1 d2 d3 e0 e1 e2 e3 f0 f1 f2 f3 * NIC_TX D0 D1 E0 E1 F0 F1 */ if (rm0->rm_cnt >= (2 * old_rm1_grid)) { cnt = rm0->rm_cnt; subset_grid = old_rm1_grid; subset_rm = rm1; rm = rm0; } else if (rm1->rm_cnt > (2 * old_rm0_grid)) { cnt = rm1->rm_cnt; subset_grid = old_rm0_grid; subset_rm = rm0; rm = rm1; } else { /* No space to shuffle. */ return; } mod = cnt / subset_grid; KKASSERT(mod >= 2); divisor = netisr_ncpus / rm->rm_grid; offset = ((device_get_unit(dev) / divisor) % mod) * subset_grid; for (i = 0; i < subset_rm->rm_cnt; ++i) { subset_rm->rm_cpumap[i] += offset; KASSERT(subset_rm->rm_cpumap[i] < netisr_ncpus, ("match: invalid cpumap[%d] = %d, offset %d", i, subset_rm->rm_cpumap[i], offset)); } #ifdef INVARIANTS for (i = 0; i < subset_rm->rm_cnt; ++i) { int j; for (j = 0; j < rm->rm_cnt; ++j) { if (rm->rm_cpumap[j] == subset_rm->rm_cpumap[i]) break; } KASSERT(j < rm->rm_cnt, ("subset cpumap[%d] = %d not found in superset", i, subset_rm->rm_cpumap[i])); } #endif } int if_ringmap_count(const struct if_ringmap *rm) { return (rm->rm_cnt); } int if_ringmap_cpumap(const struct if_ringmap *rm, int ring) { KASSERT(ring >= 0 && ring < rm->rm_cnt, ("invalid ring %d", ring)); return (rm->rm_cpumap[ring]); } void if_ringmap_rdrtable(const struct if_ringmap *rm, int table[], int table_nent) { int i, grid_idx, grid_cnt, patch_off, patch_cnt, ncopy; KASSERT(table_nent > 0 && (table_nent & NETISR_CPUMASK) == 0, ("invalid redirect table entries %d", table_nent)); grid_idx = 0; for (i = 0; i < NETISR_CPUMAX; ++i) { table[i] = grid_idx++ % rm->rm_cnt; if (grid_idx == rm->rm_grid) grid_idx = 0; } /* * Make the ring distributed more evenly for the remainder * of each grid. * * e.g. 12 netisrs, rm contains 8 rings. * * Redirect table before: * * 0 1 2 3 4 5 6 7 0 1 2 3 0 1 2 3 * 4 5 6 7 0 1 2 3 0 1 2 3 4 5 6 7 * 0 1 2 3 0 1 2 3 4 5 6 7 0 1 2 3 * .... * * Redirect table after being patched (pX, patched entries): * * 0 1 2 3 4 5 6 7 p0 p1 p2 p3 0 1 2 3 * 4 5 6 7 p4 p5 p6 p7 0 1 2 3 4 5 6 7 * p0 p1 p2 p3 0 1 2 3 4 5 6 7 p4 p5 p6 p7 * .... */ patch_cnt = rm->rm_grid % rm->rm_cnt; if (patch_cnt == 0) goto done; patch_off = rm->rm_grid - (rm->rm_grid % rm->rm_cnt); grid_cnt = roundup(NETISR_CPUMAX, rm->rm_grid) / rm->rm_grid; grid_idx = 0; for (i = 0; i < grid_cnt; ++i) { int j; for (j = 0; j < patch_cnt; ++j) { int fix_idx; fix_idx = (i * rm->rm_grid) + patch_off + j; if (fix_idx >= NETISR_CPUMAX) goto done; table[fix_idx] = grid_idx++ % rm->rm_cnt; } } done: /* * If the device supports larger redirect table, duplicate * the first NETISR_CPUMAX entries to the rest of the table, * so that it matches upper layer's expectation: * (hash & NETISR_CPUMASK) % netisr_ncpus */ ncopy = table_nent / NETISR_CPUMAX; for (i = 1; i < ncopy; ++i) { memcpy(&table[i * NETISR_CPUMAX], table, NETISR_CPUMAX * sizeof(table[0])); } if (if_ringmap_dumprdr) { for (i = 0; i < table_nent; ++i) { if (i != 0 && i % 16 == 0) kprintf("\n"); kprintf("%03d ", table[i]); } kprintf("\n"); } } int if_ringmap_cpumap_sysctl(SYSCTL_HANDLER_ARGS) { struct if_ringmap *rm = arg1; int i, error = 0; for (i = 0; i < rm->rm_cnt; ++i) { int cpu = rm->rm_cpumap[i]; error = SYSCTL_OUT(req, &cpu, sizeof(cpu)); if (error) break; } return (error); }