/* * Copyright © 2006 Keith Packard * Copyright © 2007-2008 Dave Airlie * Copyright © 2007-2008 Intel Corporation * Jesse Barnes * Copyright © 2011-2013 Intel Corporation * Copyright © 2015 Intel Corporation * Daniel Vetter * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef __DRM_MODESET_HELPER_VTABLES_H__ #define __DRM_MODESET_HELPER_VTABLES_H__ #include /** * DOC: overview * * The DRM mode setting helper functions are common code for drivers to use if * they wish. Drivers are not forced to use this code in their * implementations but it would be useful if the code they do use at least * provides a consistent interface and operation to userspace. Therefore it is * highly recommended to use the provided helpers as much as possible. * * Because there is only one pointer per modeset object to hold a vfunc table * for helper libraries they are by necessity shared among the different * helpers. * * To make this clear all the helper vtables are pulled together in this location here. */ enum mode_set_atomic; /** * struct drm_crtc_helper_funcs - helper operations for CRTCs * * These hooks are used by the legacy CRTC helpers, the transitional plane * helpers and the new atomic modesetting helpers. */ struct drm_crtc_helper_funcs { /** * @dpms: * * Callback to control power levels on the CRTC. If the mode passed in * is unsupported, the provider must use the next lowest power level. * This is used by the legacy CRTC helpers to implement DPMS * functionality in drm_helper_connector_dpms(). * * This callback is also used to disable a CRTC by calling it with * DRM_MODE_DPMS_OFF if the @disable hook isn't used. * * This callback is used by the legacy CRTC helpers. Atomic helpers * also support using this hook for enabling and disabling a CRTC to * facilitate transitions to atomic, but it is deprecated. Instead * @enable and @disable should be used. */ void (*dpms)(struct drm_crtc *crtc, int mode); /** * @prepare: * * This callback should prepare the CRTC for a subsequent modeset, which * in practice means the driver should disable the CRTC if it is * running. Most drivers ended up implementing this by calling their * @dpms hook with DRM_MODE_DPMS_OFF. * * This callback is used by the legacy CRTC helpers. Atomic helpers * also support using this hook for disabling a CRTC to facilitate * transitions to atomic, but it is deprecated. Instead @disable should * be used. */ void (*prepare)(struct drm_crtc *crtc); /** * @commit: * * This callback should commit the new mode on the CRTC after a modeset, * which in practice means the driver should enable the CRTC. Most * drivers ended up implementing this by calling their @dpms hook with * DRM_MODE_DPMS_ON. * * This callback is used by the legacy CRTC helpers. Atomic helpers * also support using this hook for enabling a CRTC to facilitate * transitions to atomic, but it is deprecated. Instead @enable should * be used. */ void (*commit)(struct drm_crtc *crtc); /** * @mode_fixup: * * This callback is used to validate a mode. The parameter mode is the * display mode that userspace requested, adjusted_mode is the mode the * encoders need to be fed with. Note that this is the inverse semantics * of the meaning for the &drm_encoder and &drm_bridge * ->mode_fixup() functions. If the CRTC cannot support the requested * conversion from mode to adjusted_mode it should reject the modeset. * * This function is used by both legacy CRTC helpers and atomic helpers. * With atomic helpers it is optional. * * NOTE: * * This function is called in the check phase of atomic modesets, which * can be aborted for any reason (including on userspace's request to * just check whether a configuration would be possible). Atomic drivers * MUST NOT touch any persistent state (hardware or software) or data * structures except the passed in adjusted_mode parameter. * * This is in contrast to the legacy CRTC helpers where this was * allowed. * * Atomic drivers which need to inspect and adjust more state should * instead use the @atomic_check callback. * * Also beware that neither core nor helpers filter modes before * passing them to the driver: While the list of modes that is * advertised to userspace is filtered using the connector's * ->mode_valid() callback, neither the core nor the helpers do any * filtering on modes passed in from userspace when setting a mode. It * is therefore possible for userspace to pass in a mode that was * previously filtered out using ->mode_valid() or add a custom mode * that wasn't probed from EDID or similar to begin with. Even though * this is an advanced feature and rarely used nowadays, some users rely * on being able to specify modes manually so drivers must be prepared * to deal with it. Specifically this means that all drivers need not * only validate modes in ->mode_valid() but also in ->mode_fixup() to * make sure invalid modes passed in from userspace are rejected. * * RETURNS: * * True if an acceptable configuration is possible, false if the modeset * operation should be rejected. */ bool (*mode_fixup)(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode); /** * @mode_set: * * This callback is used by the legacy CRTC helpers to set a new mode, * position and framebuffer. Since it ties the primary plane to every * mode change it is incompatible with universal plane support. And * since it can't update other planes it's incompatible with atomic * modeset support. * * This callback is only used by CRTC helpers and deprecated. * * RETURNS: * * 0 on success or a negative error code on failure. */ int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb); /** * @mode_set_nofb: * * This callback is used to update the display mode of a CRTC without * changing anything of the primary plane configuration. This fits the * requirement of atomic and hence is used by the atomic helpers. It is * also used by the transitional plane helpers to implement a * @mode_set hook in drm_helper_crtc_mode_set(). * * Note that the display pipe is completely off when this function is * called. Atomic drivers which need hardware to be running before they * program the new display mode (e.g. because they implement runtime PM) * should not use this hook. This is because the helper library calls * this hook only once per mode change and not every time the display * pipeline is suspended using either DPMS or the new "ACTIVE" property. * Which means register values set in this callback might get reset when * the CRTC is suspended, but not restored. Such drivers should instead * move all their CRTC setup into the @enable callback. * * This callback is optional. */ void (*mode_set_nofb)(struct drm_crtc *crtc); /** * @mode_set_base: * * This callback is used by the legacy CRTC helpers to set a new * framebuffer and scanout position. It is optional and used as an * optimized fast-path instead of a full mode set operation with all the * resulting flickering. If it is not present * drm_crtc_helper_set_config() will fall back to a full modeset, using * the ->mode_set() callback. Since it can't update other planes it's * incompatible with atomic modeset support. * * This callback is only used by the CRTC helpers and deprecated. * * RETURNS: * * 0 on success or a negative error code on failure. */ int (*mode_set_base)(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb); /** * @mode_set_base_atomic: * * This callback is used by the fbdev helpers to set a new framebuffer * and scanout without sleeping, i.e. from an atomic calling context. It * is only used to implement kgdb support. * * This callback is optional and only needed for kgdb support in the fbdev * helpers. * * RETURNS: * * 0 on success or a negative error code on failure. */ int (*mode_set_base_atomic)(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic); /** * @load_lut: * * Load a LUT prepared with the @gamma_set functions from * &drm_fb_helper_funcs. * * This callback is optional and is only used by the fbdev emulation * helpers. * * FIXME: * * This callback is functionally redundant with the core gamma table * support and simply exists because the fbdev hasn't yet been * refactored to use the core gamma table interfaces. */ void (*load_lut)(struct drm_crtc *crtc); /** * @disable: * * This callback should be used to disable the CRTC. With the atomic * drivers it is called after all encoders connected to this CRTC have * been shut off already using their own ->disable hook. If that * sequence is too simple drivers can just add their own hooks and call * it from this CRTC callback here by looping over all encoders * connected to it using for_each_encoder_on_crtc(). * * This hook is used both by legacy CRTC helpers and atomic helpers. * Atomic drivers don't need to implement it if there's no need to * disable anything at the CRTC level. To ensure that runtime PM * handling (using either DPMS or the new "ACTIVE" property) works * @disable must be the inverse of @enable for atomic drivers. * * NOTE: * * With legacy CRTC helpers there's a big semantic difference between * @disable and other hooks (like @prepare or @dpms) used to shut down a * CRTC: @disable is only called when also logically disabling the * display pipeline and needs to release any resources acquired in * @mode_set (like shared PLLs, or again release pinned framebuffers). * * Therefore @disable must be the inverse of @mode_set plus @commit for * drivers still using legacy CRTC helpers, which is different from the * rules under atomic. */ void (*disable)(struct drm_crtc *crtc); /** * @enable: * * This callback should be used to enable the CRTC. With the atomic * drivers it is called before all encoders connected to this CRTC are * enabled through the encoder's own ->enable hook. If that sequence is * too simple drivers can just add their own hooks and call it from this * CRTC callback here by looping over all encoders connected to it using * for_each_encoder_on_crtc(). * * This hook is used only by atomic helpers, for symmetry with @disable. * Atomic drivers don't need to implement it if there's no need to * enable anything at the CRTC level. To ensure that runtime PM handling * (using either DPMS or the new "ACTIVE" property) works * @enable must be the inverse of @disable for atomic drivers. */ void (*enable)(struct drm_crtc *crtc); /** * @atomic_check: * * Drivers should check plane-update related CRTC constraints in this * hook. They can also check mode related limitations but need to be * aware of the calling order, since this hook is used by * drm_atomic_helper_check_planes() whereas the preparations needed to * check output routing and the display mode is done in * drm_atomic_helper_check_modeset(). Therefore drivers that want to * check output routing and display mode constraints in this callback * must ensure that drm_atomic_helper_check_modeset() has been called * beforehand. This is calling order used by the default helper * implementation in drm_atomic_helper_check(). * * When using drm_atomic_helper_check_planes() CRTCs' ->atomic_check() * hooks are called after the ones for planes, which allows drivers to * assign shared resources requested by planes in the CRTC callback * here. For more complicated dependencies the driver can call the provided * check helpers multiple times until the computed state has a final * configuration and everything has been checked. * * This function is also allowed to inspect any other object's state and * can add more state objects to the atomic commit if needed. Care must * be taken though to ensure that state check&compute functions for * these added states are all called, and derived state in other objects * all updated. Again the recommendation is to just call check helpers * until a maximal configuration is reached. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. * * NOTE: * * This function is called in the check phase of an atomic update. The * driver is not allowed to change anything outside of the free-standing * state objects passed-in or assembled in the overall &drm_atomic_state * update tracking structure. * * RETURNS: * * 0 on success, -EINVAL if the state or the transition can't be * supported, -ENOMEM on memory allocation failure and -EDEADLK if an * attempt to obtain another state object ran into a &drm_modeset_lock * deadlock. */ int (*atomic_check)(struct drm_crtc *crtc, struct drm_crtc_state *state); /** * @atomic_begin: * * Drivers should prepare for an atomic update of multiple planes on * a CRTC in this hook. Depending upon hardware this might be vblank * evasion, blocking updates by setting bits or doing preparatory work * for e.g. manual update display. * * This hook is called before any plane commit functions are called. * * Note that the power state of the display pipe when this function is * called depends upon the exact helpers and calling sequence the driver * has picked. See drm_atomic_commit_planes() for a discussion of the * tradeoffs and variants of plane commit helpers. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. */ void (*atomic_begin)(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state); /** * @atomic_flush: * * Drivers should finalize an atomic update of multiple planes on * a CRTC in this hook. Depending upon hardware this might include * checking that vblank evasion was successful, unblocking updates by * setting bits or setting the GO bit to flush out all updates. * * Simple hardware or hardware with special requirements can commit and * flush out all updates for all planes from this hook and forgo all the * other commit hooks for plane updates. * * This hook is called after any plane commit functions are called. * * Note that the power state of the display pipe when this function is * called depends upon the exact helpers and calling sequence the driver * has picked. See drm_atomic_commit_planes() for a discussion of the * tradeoffs and variants of plane commit helpers. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. */ void (*atomic_flush)(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state); }; /** * drm_crtc_helper_add - sets the helper vtable for a crtc * @crtc: DRM CRTC * @funcs: helper vtable to set for @crtc */ static inline void drm_crtc_helper_add(struct drm_crtc *crtc, const struct drm_crtc_helper_funcs *funcs) { crtc->helper_private = funcs; } /** * struct drm_encoder_helper_funcs - helper operations for encoders * * These hooks are used by the legacy CRTC helpers, the transitional plane * helpers and the new atomic modesetting helpers. */ struct drm_encoder_helper_funcs { /** * @dpms: * * Callback to control power levels on the encoder. If the mode passed in * is unsupported, the provider must use the next lowest power level. * This is used by the legacy encoder helpers to implement DPMS * functionality in drm_helper_connector_dpms(). * * This callback is also used to disable an encoder by calling it with * DRM_MODE_DPMS_OFF if the @disable hook isn't used. * * This callback is used by the legacy CRTC helpers. Atomic helpers * also support using this hook for enabling and disabling an encoder to * facilitate transitions to atomic, but it is deprecated. Instead * @enable and @disable should be used. */ void (*dpms)(struct drm_encoder *encoder, int mode); /** * @mode_fixup: * * This callback is used to validate and adjust a mode. The parameter * mode is the display mode that should be fed to the next element in * the display chain, either the final &drm_connector or a &drm_bridge. * The parameter adjusted_mode is the input mode the encoder requires. It * can be modified by this callback and does not need to match mode. * * This function is used by both legacy CRTC helpers and atomic helpers. * This hook is optional. * * NOTE: * * This function is called in the check phase of atomic modesets, which * can be aborted for any reason (including on userspace's request to * just check whether a configuration would be possible). Atomic drivers * MUST NOT touch any persistent state (hardware or software) or data * structures except the passed in adjusted_mode parameter. * * This is in contrast to the legacy CRTC helpers where this was * allowed. * * Atomic drivers which need to inspect and adjust more state should * instead use the @atomic_check callback. * * Also beware that neither core nor helpers filter modes before * passing them to the driver: While the list of modes that is * advertised to userspace is filtered using the connector's * ->mode_valid() callback, neither the core nor the helpers do any * filtering on modes passed in from userspace when setting a mode. It * is therefore possible for userspace to pass in a mode that was * previously filtered out using ->mode_valid() or add a custom mode * that wasn't probed from EDID or similar to begin with. Even though * this is an advanced feature and rarely used nowadays, some users rely * on being able to specify modes manually so drivers must be prepared * to deal with it. Specifically this means that all drivers need not * only validate modes in ->mode_valid() but also in ->mode_fixup() to * make sure invalid modes passed in from userspace are rejected. * * RETURNS: * * True if an acceptable configuration is possible, false if the modeset * operation should be rejected. */ bool (*mode_fixup)(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode); /** * @prepare: * * This callback should prepare the encoder for a subsequent modeset, * which in practice means the driver should disable the encoder if it * is running. Most drivers ended up implementing this by calling their * @dpms hook with DRM_MODE_DPMS_OFF. * * This callback is used by the legacy CRTC helpers. Atomic helpers * also support using this hook for disabling an encoder to facilitate * transitions to atomic, but it is deprecated. Instead @disable should * be used. */ void (*prepare)(struct drm_encoder *encoder); /** * @commit: * * This callback should commit the new mode on the encoder after a modeset, * which in practice means the driver should enable the encoder. Most * drivers ended up implementing this by calling their @dpms hook with * DRM_MODE_DPMS_ON. * * This callback is used by the legacy CRTC helpers. Atomic helpers * also support using this hook for enabling an encoder to facilitate * transitions to atomic, but it is deprecated. Instead @enable should * be used. */ void (*commit)(struct drm_encoder *encoder); /** * @mode_set: * * This callback is used to update the display mode of an encoder. * * Note that the display pipe is completely off when this function is * called. Drivers which need hardware to be running before they program * the new display mode (because they implement runtime PM) should not * use this hook, because the helper library calls it only once and not * every time the display pipeline is suspend using either DPMS or the * new "ACTIVE" property. Such drivers should instead move all their * encoder setup into the ->enable() callback. * * This callback is used both by the legacy CRTC helpers and the atomic * modeset helpers. It is optional in the atomic helpers. */ void (*mode_set)(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode); /** * @get_crtc: * * This callback is used by the legacy CRTC helpers to work around * deficiencies in its own book-keeping. * * Do not use, use atomic helpers instead, which get the book keeping * right. * * FIXME: * * Currently only nouveau is using this, and as soon as nouveau is * atomic we can ditch this hook. */ struct drm_crtc *(*get_crtc)(struct drm_encoder *encoder); /** * @detect: * * This callback can be used by drivers who want to do detection on the * encoder object instead of in connector functions. * * It is not used by any helper and therefore has purely driver-specific * semantics. New drivers shouldn't use this and instead just implement * their own private callbacks. * * FIXME: * * This should just be converted into a pile of driver vfuncs. * Currently radeon, amdgpu and nouveau are using it. */ enum drm_connector_status (*detect)(struct drm_encoder *encoder, struct drm_connector *connector); /** * @disable: * * This callback should be used to disable the encoder. With the atomic * drivers it is called before this encoder's CRTC has been shut off * using the CRTC's own ->disable hook. If that sequence is too simple * drivers can just add their own driver private encoder hooks and call * them from CRTC's callback by looping over all encoders connected to * it using for_each_encoder_on_crtc(). * * This hook is used both by legacy CRTC helpers and atomic helpers. * Atomic drivers don't need to implement it if there's no need to * disable anything at the encoder level. To ensure that runtime PM * handling (using either DPMS or the new "ACTIVE" property) works * @disable must be the inverse of @enable for atomic drivers. * * NOTE: * * With legacy CRTC helpers there's a big semantic difference between * @disable and other hooks (like @prepare or @dpms) used to shut down a * encoder: @disable is only called when also logically disabling the * display pipeline and needs to release any resources acquired in * @mode_set (like shared PLLs, or again release pinned framebuffers). * * Therefore @disable must be the inverse of @mode_set plus @commit for * drivers still using legacy CRTC helpers, which is different from the * rules under atomic. */ void (*disable)(struct drm_encoder *encoder); /** * @enable: * * This callback should be used to enable the encoder. With the atomic * drivers it is called after this encoder's CRTC has been enabled using * the CRTC's own ->enable hook. If that sequence is too simple drivers * can just add their own driver private encoder hooks and call them * from CRTC's callback by looping over all encoders connected to it * using for_each_encoder_on_crtc(). * * This hook is used only by atomic helpers, for symmetry with @disable. * Atomic drivers don't need to implement it if there's no need to * enable anything at the encoder level. To ensure that runtime PM handling * (using either DPMS or the new "ACTIVE" property) works * @enable must be the inverse of @disable for atomic drivers. */ void (*enable)(struct drm_encoder *encoder); /** * @atomic_check: * * This callback is used to validate encoder state for atomic drivers. * Since the encoder is the object connecting the CRTC and connector it * gets passed both states, to be able to validate interactions and * update the CRTC to match what the encoder needs for the requested * connector. * * This function is used by the atomic helpers, but it is optional. * * NOTE: * * This function is called in the check phase of an atomic update. The * driver is not allowed to change anything outside of the free-standing * state objects passed-in or assembled in the overall &drm_atomic_state * update tracking structure. * * RETURNS: * * 0 on success, -EINVAL if the state or the transition can't be * supported, -ENOMEM on memory allocation failure and -EDEADLK if an * attempt to obtain another state object ran into a &drm_modeset_lock * deadlock. */ int (*atomic_check)(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state); }; /** * drm_encoder_helper_add - sets the helper vtable for an encoder * @encoder: DRM encoder * @funcs: helper vtable to set for @encoder */ static inline void drm_encoder_helper_add(struct drm_encoder *encoder, const struct drm_encoder_helper_funcs *funcs) { encoder->helper_private = funcs; } /** * struct drm_connector_helper_funcs - helper operations for connectors * * These functions are used by the atomic and legacy modeset helpers and by the * probe helpers. */ struct drm_connector_helper_funcs { /** * @get_modes: * * This function should fill in all modes currently valid for the sink * into the connector->probed_modes list. It should also update the * EDID property by calling drm_mode_connector_update_edid_property(). * * The usual way to implement this is to cache the EDID retrieved in the * probe callback somewhere in the driver-private connector structure. * In this function drivers then parse the modes in the EDID and add * them by calling drm_add_edid_modes(). But connectors that driver a * fixed panel can also manually add specific modes using * drm_mode_probed_add(). Drivers which manually add modes should also * make sure that the @display_info, @width_mm and @height_mm fields of the * struct #drm_connector are filled in. * * Virtual drivers that just want some standard VESA mode with a given * resolution can call drm_add_modes_noedid(), and mark the preferred * one using drm_set_preferred_mode(). * * Finally drivers that support audio probably want to update the ELD * data, too, using drm_edid_to_eld(). * * This function is only called after the ->detect() hook has indicated * that a sink is connected and when the EDID isn't overridden through * sysfs or the kernel commandline. * * This callback is used by the probe helpers in e.g. * drm_helper_probe_single_connector_modes(). * * RETURNS: * * The number of modes added by calling drm_mode_probed_add(). */ int (*get_modes)(struct drm_connector *connector); /** * @mode_valid: * * Callback to validate a mode for a connector, irrespective of the * specific display configuration. * * This callback is used by the probe helpers to filter the mode list * (which is usually derived from the EDID data block from the sink). * See e.g. drm_helper_probe_single_connector_modes(). * * NOTE: * * This only filters the mode list supplied to userspace in the * GETCONNECOTR IOCTL. Userspace is free to create modes of its own and * ask the kernel to use them. It this case the atomic helpers or legacy * CRTC helpers will not call this function. Drivers therefore must * still fully validate any mode passed in in a modeset request. * * RETURNS: * * Either MODE_OK or one of the failure reasons in enum * &drm_mode_status. */ enum drm_mode_status (*mode_valid)(struct drm_connector *connector, struct drm_display_mode *mode); /** * @best_encoder: * * This function should select the best encoder for the given connector. * * This function is used by both the atomic helpers (in the * drm_atomic_helper_check_modeset() function) and in the legacy CRTC * helpers. * * NOTE: * * In atomic drivers this function is called in the check phase of an * atomic update. The driver is not allowed to change or inspect * anything outside of arguments passed-in. Atomic drivers which need to * inspect dynamic configuration state should instead use * @atomic_best_encoder. * * RETURNS: * * Encoder that should be used for the given connector and connector * state, or NULL if no suitable encoder exists. Note that the helpers * will ensure that encoders aren't used twice, drivers should not check * for this. */ struct drm_encoder *(*best_encoder)(struct drm_connector *connector); /** * @atomic_best_encoder: * * This is the atomic version of @best_encoder for atomic drivers which * need to select the best encoder depending upon the desired * configuration and can't select it statically. * * This function is used by drm_atomic_helper_check_modeset() and either * this or @best_encoder is required. * * NOTE: * * This function is called in the check phase of an atomic update. The * driver is not allowed to change anything outside of the free-standing * state objects passed-in or assembled in the overall &drm_atomic_state * update tracking structure. * * RETURNS: * * Encoder that should be used for the given connector and connector * state, or NULL if no suitable encoder exists. Note that the helpers * will ensure that encoders aren't used twice, drivers should not check * for this. */ struct drm_encoder *(*atomic_best_encoder)(struct drm_connector *connector, struct drm_connector_state *connector_state); }; /** * drm_connector_helper_add - sets the helper vtable for a connector * @connector: DRM connector * @funcs: helper vtable to set for @connector */ static inline void drm_connector_helper_add(struct drm_connector *connector, const struct drm_connector_helper_funcs *funcs) { connector->helper_private = funcs; } /** * struct drm_plane_helper_funcs - helper operations for planes * * These functions are used by the atomic helpers and by the transitional plane * helpers. */ struct drm_plane_helper_funcs { /** * @prepare_fb: * * This hook is to prepare a framebuffer for scanout by e.g. pinning * it's backing storage or relocating it into a contiguous block of * VRAM. Other possible preparatory work includes flushing caches. * * This function must not block for outstanding rendering, since it is * called in the context of the atomic IOCTL even for async commits to * be able to return any errors to userspace. Instead the recommended * way is to fill out the fence member of the passed-in * &drm_plane_state. If the driver doesn't support native fences then * equivalent functionality should be implemented through private * members in the plane structure. * * The helpers will call @cleanup_fb with matching arguments for every * successful call to this hook. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. * * RETURNS: * * 0 on success or one of the following negative error codes allowed by * the atomic_commit hook in &drm_mode_config_funcs. When using helpers * this callback is the only one which can fail an atomic commit, * everything else must complete successfully. */ int (*prepare_fb)(struct drm_plane *plane, struct drm_plane_state *new_state); /** * @cleanup_fb: * * This hook is called to clean up any resources allocated for the given * framebuffer and plane configuration in @prepare_fb. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. */ void (*cleanup_fb)(struct drm_plane *plane, struct drm_plane_state *old_state); /** * @atomic_check: * * Drivers should check plane specific constraints in this hook. * * When using drm_atomic_helper_check_planes() plane's ->atomic_check() * hooks are called before the ones for CRTCs, which allows drivers to * request shared resources that the CRTC controls here. For more * complicated dependencies the driver can call the provided check helpers * multiple times until the computed state has a final configuration and * everything has been checked. * * This function is also allowed to inspect any other object's state and * can add more state objects to the atomic commit if needed. Care must * be taken though to ensure that state check&compute functions for * these added states are all called, and derived state in other objects * all updated. Again the recommendation is to just call check helpers * until a maximal configuration is reached. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. * * NOTE: * * This function is called in the check phase of an atomic update. The * driver is not allowed to change anything outside of the free-standing * state objects passed-in or assembled in the overall &drm_atomic_state * update tracking structure. * * RETURNS: * * 0 on success, -EINVAL if the state or the transition can't be * supported, -ENOMEM on memory allocation failure and -EDEADLK if an * attempt to obtain another state object ran into a &drm_modeset_lock * deadlock. */ int (*atomic_check)(struct drm_plane *plane, struct drm_plane_state *state); /** * @atomic_update: * * Drivers should use this function to update the plane state. This * hook is called in-between the ->atomic_begin() and * ->atomic_flush() of &drm_crtc_helper_funcs. * * Note that the power state of the display pipe when this function is * called depends upon the exact helpers and calling sequence the driver * has picked. See drm_atomic_commit_planes() for a discussion of the * tradeoffs and variants of plane commit helpers. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. */ void (*atomic_update)(struct drm_plane *plane, struct drm_plane_state *old_state); /** * @atomic_disable: * * Drivers should use this function to unconditionally disable a plane. * This hook is called in-between the ->atomic_begin() and * ->atomic_flush() of &drm_crtc_helper_funcs. It is an alternative to * @atomic_update, which will be called for disabling planes, too, if * the @atomic_disable hook isn't implemented. * * This hook is also useful to disable planes in preparation of a modeset, * by calling drm_atomic_helper_disable_planes_on_crtc() from the * ->disable() hook in &drm_crtc_helper_funcs. * * Note that the power state of the display pipe when this function is * called depends upon the exact helpers and calling sequence the driver * has picked. See drm_atomic_commit_planes() for a discussion of the * tradeoffs and variants of plane commit helpers. * * This callback is used by the atomic modeset helpers and by the * transitional plane helpers, but it is optional. */ void (*atomic_disable)(struct drm_plane *plane, struct drm_plane_state *old_state); }; /** * drm_plane_helper_add - sets the helper vtable for a plane * @plane: DRM plane * @funcs: helper vtable to set for @plane */ static inline void drm_plane_helper_add(struct drm_plane *plane, const struct drm_plane_helper_funcs *funcs) { plane->helper_private = funcs; } #endif