/* * Copyright (c) 1995 Steven Wallace * Copyright (c) 1994, 1995 Scott Bartram * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Header: sun_misc.c,v 1.16 93/04/07 02:46:27 torek Exp * * @(#)sun_misc.c 8.1 (Berkeley) 6/18/93 * * $FreeBSD: src/sys/i386/ibcs2/ibcs2_misc.c,v 1.34 1999/09/29 15:12:09 marcel Exp $ * $DragonFly: src/sys/emulation/ibcs2/i386/Attic/ibcs2_misc.c,v 1.10 2004/10/12 19:20:36 dillon Exp $ */ /* * IBCS2 compatibility module. * * IBCS2 system calls that are implemented differently in BSD are * handled here. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ibcs2_dirent.h" #include "ibcs2_signal.h" #include "ibcs2_proto.h" #include "ibcs2_unistd.h" #include "ibcs2_util.h" #include "ibcs2_utime.h" #include "ibcs2_xenix.h" int ibcs2_ulimit(struct ibcs2_ulimit_args *uap) { #ifdef notyet int error; struct rlimit rl; struct setrlimit_args { int resource; struct rlimit *rlp; } sra; #endif struct proc *p = curproc; #define IBCS2_GETFSIZE 1 #define IBCS2_SETFSIZE 2 #define IBCS2_GETPSIZE 3 #define IBCS2_GETDTABLESIZE 4 switch (SCARG(uap, cmd)) { case IBCS2_GETFSIZE: uap->sysmsg_result = p->p_rlimit[RLIMIT_FSIZE].rlim_cur; if (uap->sysmsg_result == -1) uap->sysmsg_result = 0x7fffffff; return 0; case IBCS2_SETFSIZE: /* XXX - fix this */ #ifdef notyet rl.rlim_cur = SCARG(uap, newlimit); sra.resource = RLIMIT_FSIZE; sra.rlp = &rl; error = setrlimit(&sra); if (!error) uap->sysmsg_result = p->p_rlimit[RLIMIT_FSIZE].rlim_cur; else DPRINTF(("failed ")); return error; #else uap->sysmsg_result = SCARG(uap, newlimit); return 0; #endif case IBCS2_GETPSIZE: uap->sysmsg_result = p->p_rlimit[RLIMIT_RSS].rlim_cur; /* XXX */ return 0; case IBCS2_GETDTABLESIZE: uap->cmd = IBCS2_SC_OPEN_MAX; return ibcs2_sysconf((struct ibcs2_sysconf_args *)uap); default: return ENOSYS; } } #define IBCS2_WSTOPPED 0177 #define IBCS2_STOPCODE(sig) ((sig) << 8 | IBCS2_WSTOPPED) int ibcs2_wait(struct ibcs2_wait_args *uap) { struct proc *p = curproc; int error, status; struct wait_args w4; struct trapframe *tf = p->p_md.md_regs; SCARG(&w4, rusage) = NULL; if ((tf->tf_eflags & (PSL_Z|PSL_PF|PSL_N|PSL_V)) == (PSL_Z|PSL_PF|PSL_N|PSL_V)) { /* waitpid */ SCARG(&w4, pid) = SCARG(uap, a1); SCARG(&w4, status) = (int *)SCARG(uap, a2); SCARG(&w4, options) = SCARG(uap, a3); } else { /* wait */ SCARG(&w4, pid) = WAIT_ANY; SCARG(&w4, status) = (int *)SCARG(uap, a1); SCARG(&w4, options) = 0; } if ((error = wait4(&w4)) != 0) return error; uap->sysmsg_fds[0] = w4.sysmsg_fds[0]; if (SCARG(&w4, status)) { /* this is real iBCS brain-damage */ error = copyin((caddr_t)SCARG(&w4, status), (caddr_t)&status, sizeof(SCARG(&w4, status))); if(error) return error; /* convert status/signal result */ if(WIFSTOPPED(status)) status = IBCS2_STOPCODE(bsd_to_ibcs2_sig[_SIG_IDX(WSTOPSIG(status))]); else if(WIFSIGNALED(status)) status = bsd_to_ibcs2_sig[_SIG_IDX(WTERMSIG(status))]; /* else exit status -- identical */ /* record result/status */ uap->sysmsg_fds[1] = status; return copyout((caddr_t)&status, (caddr_t)SCARG(&w4, status), sizeof(SCARG(&w4, status))); } return 0; } int ibcs2_execv(struct ibcs2_execv_args *uap) { struct execve_args ea; caddr_t sg = stackgap_init(); int error; CHECKALTEXIST(&sg, uap->path); /* note: parts of result64 may be maintained or cleared by execve */ ea.sysmsg_result64 = uap->sysmsg_result64; ea.fname = uap->path; ea.argv = uap->argp; ea.envv = NULL; error = execve(&ea); uap->sysmsg_result64 = ea.sysmsg_result64; return(error); } int ibcs2_execve(struct ibcs2_execve_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); return execve((struct execve_args *)uap); } int ibcs2_umount(struct ibcs2_umount_args *uap) { struct unmount_args um; int error; SCARG(&um, path) = SCARG(uap, name); SCARG(&um, flags) = 0; error = unmount(&um); uap->sysmsg_result = um.sysmsg_result; return(error); } int ibcs2_mount(struct ibcs2_mount_args *uap) { #ifdef notyet int oflags = SCARG(uap, flags), nflags, error; char fsname[MFSNAMELEN]; if (oflags & (IBCS2_MS_NOSUB | IBCS2_MS_SYS5)) return (EINVAL); if ((oflags & IBCS2_MS_NEWTYPE) == 0) return (EINVAL); nflags = 0; if (oflags & IBCS2_MS_RDONLY) nflags |= MNT_RDONLY; if (oflags & IBCS2_MS_NOSUID) nflags |= MNT_NOSUID; if (oflags & IBCS2_MS_REMOUNT) nflags |= MNT_UPDATE; SCARG(uap, flags) = nflags; if (error = copyinstr((caddr_t)SCARG(uap, type), fsname, sizeof fsname, (u_int *)0)) return (error); if (strcmp(fsname, "4.2") == 0) { SCARG(uap, type) = (caddr_t)STACK_ALLOC(); if (error = copyout("ufs", SCARG(uap, type), sizeof("ufs"))) return (error); } else if (strcmp(fsname, "nfs") == 0) { struct ibcs2_nfs_args sna; struct sockaddr_in sain; struct nfs_args na; struct sockaddr sa; if (error = copyin(SCARG(uap, data), &sna, sizeof sna)) return (error); if (error = copyin(sna.addr, &sain, sizeof sain)) return (error); bcopy(&sain, &sa, sizeof sa); sa.sa_len = sizeof(sain); SCARG(uap, data) = (caddr_t)STACK_ALLOC(); na.addr = (struct sockaddr *)((int)SCARG(uap, data) + sizeof na); na.sotype = SOCK_DGRAM; na.proto = IPPROTO_UDP; na.fh = (nfsv2fh_t *)sna.fh; na.flags = sna.flags; na.wsize = sna.wsize; na.rsize = sna.rsize; na.timeo = sna.timeo; na.retrans = sna.retrans; na.hostname = sna.hostname; if (error = copyout(&sa, na.addr, sizeof sa)) return (error); if (error = copyout(&na, SCARG(uap, data), sizeof na)) return (error); } return (mount(uap)); #else return EINVAL; #endif } /* * Read iBCS2-style directory entries. We suck them into kernel space so * that they can be massaged before being copied out to user code. Like * SunOS, we squish out `empty' entries. * * This is quite ugly, but what do you expect from compatibility code? */ int ibcs2_getdents(struct ibcs2_getdents_args *uap) { struct thread *td = curthread; struct proc *p = td->td_proc; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* iBCS2-format */ int resid; /* iBCS2-format */ struct file *fp; struct uio auio; struct iovec aiov; struct ibcs2_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag; u_long *cookies = NULL, *cookiep; int ncookies; #define BSD_DIRENT(cp) ((struct dirent *)(cp)) #define IBCS2_RECLEN(reclen) (reclen + sizeof(u_short)) KKASSERT(p); if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) return (EBADF); vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) /* XXX vnode readdir op should do this */ return (EINVAL); off = fp->f_offset; #define DIRBLKSIZ 512 /* XXX we used to use ufs's DIRBLKSIZ */ buflen = max(DIRBLKSIZ, SCARG(uap, nbytes)); buflen = min(buflen, MAXBSIZE); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; if (cookies) { free(cookies, M_TEMP); cookies = NULL; } /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ if ((error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookies)) != 0) goto out; inp = buf; outp = SCARG(uap, buf); resid = SCARG(uap, nbytes); if ((len = buflen - auio.uio_resid) <= 0) goto eof; cookiep = cookies; if (cookies) { /* * When using cookies, the vfs has the option of reading from * a different offset than that supplied (UFS truncates the * offset to a block boundary to make sure that it never reads * partway through a directory entry, even if the directory * has been compacted). */ while (len > 0 && ncookies > 0 && *cookiep <= off) { len -= BSD_DIRENT(inp)->d_reclen; inp += BSD_DIRENT(inp)->d_reclen; cookiep++; ncookies--; } } for (; len > 0; len -= reclen) { if (cookiep && ncookies == 0) break; reclen = BSD_DIRENT(inp)->d_reclen; if (reclen & 3) { printf("ibcs2_getdents: reclen=%d\n", reclen); error = EFAULT; goto out; } if (BSD_DIRENT(inp)->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; continue; } if (reclen > len || resid < IBCS2_RECLEN(reclen)) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a iBCS2-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = (ibcs2_ino_t)BSD_DIRENT(inp)->d_fileno; idb.d_off = (ibcs2_off_t)off; idb.d_reclen = (u_short)IBCS2_RECLEN(reclen); if ((error = copyout((caddr_t)&idb, outp, 10)) != 0 || (error = copyout(BSD_DIRENT(inp)->d_name, outp + 10, BSD_DIRENT(inp)->d_namlen + 1)) != 0) goto out; /* advance past this real entry */ if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; inp += reclen; /* advance output past iBCS2-shaped entry */ outp += IBCS2_RECLEN(reclen); resid -= IBCS2_RECLEN(reclen); } /* if we squished out the whole block, try again */ if (outp == SCARG(uap, buf)) goto again; fp->f_offset = off; /* update the vnode offset */ eof: uap->sysmsg_result = SCARG(uap, nbytes) - resid; out: if (cookies) free(cookies, M_TEMP); VOP_UNLOCK(vp, 0, td); free(buf, M_TEMP); return (error); } int ibcs2_read(struct ibcs2_read_args *uap) { struct thread *td = curthread; struct proc *p = td->td_proc; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* iBCS2-format */ int resid; /* iBCS2-format */ struct file *fp; struct uio auio; struct iovec aiov; struct ibcs2_direct { ibcs2_ino_t ino; char name[14]; } idb; off_t off; /* true file offset */ int buflen, error, eofflag, size; u_long *cookies = NULL, *cookiep; int ncookies; KKASSERT(p); if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) { if (error == EINVAL) return read((struct read_args *)uap); else return error; } if ((fp->f_flag & FREAD) == 0) return (EBADF); vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) return read((struct read_args *)uap); DPRINTF(("ibcs2_read: read directory\n")); off = fp->f_offset; buflen = max(DIRBLKSIZ, SCARG(uap, nbytes)); buflen = min(buflen, MAXBSIZE); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; if (cookies) { free(cookies, M_TEMP); cookies = NULL; } /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ if ((error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookies)) != 0) { DPRINTF(("VOP_READDIR failed: %d\n", error)); goto out; } inp = buf; outp = SCARG(uap, buf); resid = SCARG(uap, nbytes); if ((len = buflen - auio.uio_resid) <= 0) goto eof; cookiep = cookies; if (cookies) { /* * When using cookies, the vfs has the option of reading from * a different offset than that supplied (UFS truncates the * offset to a block boundary to make sure that it never reads * partway through a directory entry, even if the directory * has been compacted). */ while (len > 0 && ncookies > 0 && *cookiep <= off) { len -= BSD_DIRENT(inp)->d_reclen; inp += BSD_DIRENT(inp)->d_reclen; cookiep++; ncookies--; } } for (; len > 0 && resid > 0; len -= reclen) { if (cookiep && ncookies == 0) break; reclen = BSD_DIRENT(inp)->d_reclen; if (reclen & 3) { printf("ibcs2_read: reclen=%d\n", reclen); error = EFAULT; goto out; } if (BSD_DIRENT(inp)->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; continue; } if (reclen > len || resid < sizeof(struct ibcs2_direct)) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a iBCS2-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). * * TODO: if length(filename) > 14, then break filename into * multiple entries and set inode = 0xffff except last */ idb.ino = (BSD_DIRENT(inp)->d_fileno > 0xfffe) ? 0xfffe : BSD_DIRENT(inp)->d_fileno; (void)copystr(BSD_DIRENT(inp)->d_name, idb.name, 14, &size); bzero(idb.name + size, 14 - size); if ((error = copyout(&idb, outp, sizeof(struct ibcs2_direct))) != 0) goto out; /* advance past this real entry */ if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; inp += reclen; /* advance output past iBCS2-shaped entry */ outp += sizeof(struct ibcs2_direct); resid -= sizeof(struct ibcs2_direct); } /* if we squished out the whole block, try again */ if (outp == SCARG(uap, buf)) goto again; fp->f_offset = off; /* update the vnode offset */ eof: uap->sysmsg_result = SCARG(uap, nbytes) - resid; out: if (cookies) free(cookies, M_TEMP); VOP_UNLOCK(vp, 0, td); free(buf, M_TEMP); return (error); } int ibcs2_mknod(struct ibcs2_mknod_args *uap) { caddr_t sg = stackgap_init(); int error; CHECKALTCREAT(&sg, SCARG(uap, path)); if (S_ISFIFO(SCARG(uap, mode))) { struct mkfifo_args ap; SCARG(&ap, path) = SCARG(uap, path); SCARG(&ap, mode) = SCARG(uap, mode); error = mkfifo(&ap); uap->sysmsg_result = ap.sysmsg_result; } else { struct mknod_args ap; SCARG(&ap, path) = SCARG(uap, path); SCARG(&ap, mode) = SCARG(uap, mode); SCARG(&ap, dev) = SCARG(uap, dev); error = mknod(&ap); uap->sysmsg_result = ap.sysmsg_result; } return(error); } int ibcs2_getgroups(struct ibcs2_getgroups_args *uap) { int error, i; ibcs2_gid_t *iset = NULL; struct getgroups_args sa; gid_t *gp; caddr_t sg = stackgap_init(); SCARG(&sa, gidsetsize) = SCARG(uap, gidsetsize); if (SCARG(uap, gidsetsize)) { SCARG(&sa, gidset) = stackgap_alloc(&sg, NGROUPS_MAX * sizeof(gid_t *)); iset = stackgap_alloc(&sg, SCARG(uap, gidsetsize) * sizeof(ibcs2_gid_t)); } if ((error = getgroups(&sa)) != 0) return error; uap->sysmsg_result = sa.sysmsg_result; if (SCARG(uap, gidsetsize) == 0) return 0; for (i = 0, gp = SCARG(&sa, gidset); i < uap->sysmsg_result; i++) iset[i] = (ibcs2_gid_t)*gp++; if (uap->sysmsg_result && (error = copyout((caddr_t)iset, (caddr_t)SCARG(uap, gidset), sizeof(ibcs2_gid_t) * uap->sysmsg_result))) return error; return 0; } int ibcs2_setgroups(struct ibcs2_setgroups_args *uap) { int error, i; ibcs2_gid_t *iset; struct setgroups_args sa; gid_t *gp; caddr_t sg = stackgap_init(); SCARG(&sa, gidsetsize) = SCARG(uap, gidsetsize); SCARG(&sa, gidset) = stackgap_alloc(&sg, SCARG(&sa, gidsetsize) * sizeof(gid_t *)); iset = stackgap_alloc(&sg, SCARG(&sa, gidsetsize) * sizeof(ibcs2_gid_t *)); if (SCARG(&sa, gidsetsize)) { if ((error = copyin((caddr_t)SCARG(uap, gidset), (caddr_t)iset, sizeof(ibcs2_gid_t *) * SCARG(uap, gidsetsize))) != 0) return error; } for (i = 0, gp = SCARG(&sa, gidset); i < SCARG(&sa, gidsetsize); i++) *gp++ = (gid_t)iset[i]; error = setgroups(&sa); uap->sysmsg_result = sa.sysmsg_result; return(error); } int ibcs2_setuid(struct ibcs2_setuid_args *uap) { struct setuid_args sa; int error; SCARG(&sa, uid) = (uid_t)SCARG(uap, uid); error = setuid(&sa); uap->sysmsg_result = sa.sysmsg_result; return(error); } int ibcs2_setgid(struct ibcs2_setgid_args *uap) { struct setgid_args sa; int error; SCARG(&sa, gid) = (gid_t)SCARG(uap, gid); error = setgid(&sa); uap->sysmsg_result = sa.sysmsg_result; return(error); } int ibcs2_time(struct ibcs2_time_args *uap) { struct timeval tv; microtime(&tv); uap->sysmsg_result = tv.tv_sec; if (SCARG(uap, tp)) return copyout((caddr_t)&tv.tv_sec, (caddr_t)SCARG(uap, tp), sizeof(ibcs2_time_t)); else return 0; } int ibcs2_pathconf(struct ibcs2_pathconf_args *uap) { SCARG(uap, name)++; /* iBCS2 _PC_* defines are offset by one */ return pathconf((struct pathconf_args *)uap); } int ibcs2_fpathconf(struct ibcs2_fpathconf_args *uap) { SCARG(uap, name)++; /* iBCS2 _PC_* defines are offset by one */ return fpathconf((struct fpathconf_args *)uap); } int ibcs2_sysconf(struct ibcs2_sysconf_args *uap) { int mib[2], value, len, error; struct sysctl_args sa; struct __getrlimit_args ga; switch(SCARG(uap, name)) { case IBCS2_SC_ARG_MAX: mib[1] = KERN_ARGMAX; break; case IBCS2_SC_CHILD_MAX: { caddr_t sg = stackgap_init(); SCARG(&ga, which) = RLIMIT_NPROC; SCARG(&ga, rlp) = stackgap_alloc(&sg, sizeof(struct rlimit *)); if ((error = getrlimit(&ga)) != 0) return error; uap->sysmsg_result = SCARG(&ga, rlp)->rlim_cur; return 0; } case IBCS2_SC_CLK_TCK: uap->sysmsg_result = hz; return 0; case IBCS2_SC_NGROUPS_MAX: mib[1] = KERN_NGROUPS; break; case IBCS2_SC_OPEN_MAX: { caddr_t sg = stackgap_init(); SCARG(&ga, which) = RLIMIT_NOFILE; SCARG(&ga, rlp) = stackgap_alloc(&sg, sizeof(struct rlimit *)); if ((error = getrlimit(&ga)) != 0) return error; uap->sysmsg_result = SCARG(&ga, rlp)->rlim_cur; return 0; } case IBCS2_SC_JOB_CONTROL: mib[1] = KERN_JOB_CONTROL; break; case IBCS2_SC_SAVED_IDS: mib[1] = KERN_SAVED_IDS; break; case IBCS2_SC_VERSION: mib[1] = KERN_POSIX1; break; case IBCS2_SC_PASS_MAX: uap->sysmsg_result = 128; /* XXX - should we create PASS_MAX ? */ return 0; case IBCS2_SC_XOPEN_VERSION: uap->sysmsg_result = 2; /* XXX: What should that be? */ return 0; default: return EINVAL; } mib[0] = CTL_KERN; len = sizeof(value); SCARG(&sa, name) = mib; SCARG(&sa, namelen) = 2; SCARG(&sa, old) = &value; SCARG(&sa, oldlenp) = &len; SCARG(&sa, new) = NULL; SCARG(&sa, newlen) = 0; if ((error = __sysctl(&sa)) != 0) return error; uap->sysmsg_result = value; return 0; } int ibcs2_alarm(struct ibcs2_alarm_args *uap) { int error; struct itimerval *itp, *oitp; struct setitimer_args sa; caddr_t sg = stackgap_init(); itp = stackgap_alloc(&sg, sizeof(*itp)); oitp = stackgap_alloc(&sg, sizeof(*oitp)); timevalclear(&itp->it_interval); itp->it_value.tv_sec = SCARG(uap, sec); itp->it_value.tv_usec = 0; SCARG(&sa, which) = ITIMER_REAL; SCARG(&sa, itv) = itp; SCARG(&sa, oitv) = oitp; error = setitimer(&sa); if (error) return error; if (oitp->it_value.tv_usec) oitp->it_value.tv_sec++; uap->sysmsg_result = oitp->it_value.tv_sec; return 0; } int ibcs2_times(struct ibcs2_times_args *uap) { int error; struct getrusage_args ga; struct tms tms; struct timeval t; caddr_t sg = stackgap_init(); struct rusage *ru = stackgap_alloc(&sg, sizeof(*ru)); #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) SCARG(&ga, who) = RUSAGE_SELF; SCARG(&ga, rusage) = ru; error = getrusage(&ga); if (error) return error; tms.tms_utime = CONVTCK(ru->ru_utime); tms.tms_stime = CONVTCK(ru->ru_stime); SCARG(&ga, who) = RUSAGE_CHILDREN; error = getrusage(&ga); if (error) return error; tms.tms_cutime = CONVTCK(ru->ru_utime); tms.tms_cstime = CONVTCK(ru->ru_stime); microtime(&t); uap->sysmsg_result = CONVTCK(t); return copyout((caddr_t)&tms, (caddr_t)SCARG(uap, tp), sizeof(struct tms)); } int ibcs2_stime(struct ibcs2_stime_args *uap) { int error; struct settimeofday_args sa; caddr_t sg = stackgap_init(); SCARG(&sa, tv) = stackgap_alloc(&sg, sizeof(*SCARG(&sa, tv))); SCARG(&sa, tzp) = NULL; if ((error = copyin((caddr_t)SCARG(uap, timep), &(SCARG(&sa, tv)->tv_sec), sizeof(long))) != 0) return error; SCARG(&sa, tv)->tv_usec = 0; if ((error = settimeofday(&sa)) != 0) return EPERM; uap->sysmsg_result = sa.sysmsg_result; return 0; } int ibcs2_utime(struct ibcs2_utime_args *uap) { int error; struct utimes_args sa; struct timeval *tp; caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); SCARG(&sa, path) = SCARG(uap, path); if (SCARG(uap, buf)) { struct ibcs2_utimbuf ubuf; if ((error = copyin((caddr_t)SCARG(uap, buf), (caddr_t)&ubuf, sizeof(ubuf))) != 0) return error; SCARG(&sa, tptr) = stackgap_alloc(&sg, 2 * sizeof(struct timeval *)); tp = (struct timeval *)SCARG(&sa, tptr); tp->tv_sec = ubuf.actime; tp->tv_usec = 0; tp++; tp->tv_sec = ubuf.modtime; tp->tv_usec = 0; } else SCARG(&sa, tptr) = NULL; error = utimes(&sa); uap->sysmsg_result = sa.sysmsg_result; return(error); } int ibcs2_nice(struct ibcs2_nice_args *uap) { struct proc *p = curproc; int error; struct setpriority_args sa; SCARG(&sa, which) = PRIO_PROCESS; SCARG(&sa, who) = 0; SCARG(&sa, prio) = p->p_nice + SCARG(uap, incr); if ((error = setpriority(&sa)) != 0) return EPERM; uap->sysmsg_result = p->p_nice; return 0; } /* * iBCS2 getpgrp, setpgrp, setsid, and setpgid */ int ibcs2_pgrpsys(struct ibcs2_pgrpsys_args *uap) { struct proc *p = curproc; switch (SCARG(uap, type)) { case 0: /* getpgrp */ uap->sysmsg_result = p->p_pgrp->pg_id; return 0; case 1: /* setpgrp */ { struct setpgid_args sa; SCARG(&sa, pid) = 0; SCARG(&sa, pgid) = 0; setpgid(&sa); uap->sysmsg_result = p->p_pgrp->pg_id; return 0; } case 2: /* setpgid */ { struct setpgid_args sa; int error; SCARG(&sa, pid) = SCARG(uap, pid); SCARG(&sa, pgid) = SCARG(uap, pgid); error = setpgid(&sa); uap->sysmsg_result = sa.sysmsg_result; return(error); } case 3: /* setsid */ { struct setsid_args sida; int error; error = setsid(&sida); uap->sysmsg_result = sida.sysmsg_result; return(error); } default: return EINVAL; } } /* * XXX - need to check for nested calls */ int ibcs2_plock(struct ibcs2_plock_args *uap) { int error; #define IBCS2_UNLOCK 0 #define IBCS2_PROCLOCK 1 #define IBCS2_TEXTLOCK 2 #define IBCS2_DATALOCK 4 if ((error = suser(curthread)) != 0) return EPERM; switch(SCARG(uap, cmd)) { case IBCS2_UNLOCK: case IBCS2_PROCLOCK: case IBCS2_TEXTLOCK: case IBCS2_DATALOCK: return 0; /* XXX - TODO */ } return EINVAL; } int ibcs2_uadmin(struct ibcs2_uadmin_args *uap) { #define SCO_A_REBOOT 1 #define SCO_A_SHUTDOWN 2 #define SCO_A_REMOUNT 4 #define SCO_A_CLOCK 8 #define SCO_A_SETCONFIG 128 #define SCO_A_GETDEV 130 #define SCO_AD_HALT 0 #define SCO_AD_BOOT 1 #define SCO_AD_IBOOT 2 #define SCO_AD_PWRDOWN 3 #define SCO_AD_PWRNAP 4 #define SCO_AD_PANICBOOT 1 #define SCO_AD_GETBMAJ 0 #define SCO_AD_GETCMAJ 1 if (suser(curthread)) return EPERM; switch(SCARG(uap, cmd)) { case SCO_A_REBOOT: case SCO_A_SHUTDOWN: switch(SCARG(uap, func)) { struct reboot_args r; case SCO_AD_HALT: case SCO_AD_PWRDOWN: case SCO_AD_PWRNAP: r.opt = RB_HALT; reboot(&r); case SCO_AD_BOOT: case SCO_AD_IBOOT: r.opt = RB_AUTOBOOT; reboot(&r); } return EINVAL; case SCO_A_REMOUNT: case SCO_A_CLOCK: case SCO_A_SETCONFIG: return 0; case SCO_A_GETDEV: return EINVAL; /* XXX - TODO */ } return EINVAL; } int ibcs2_sysfs(struct ibcs2_sysfs_args *uap) { #define IBCS2_GETFSIND 1 #define IBCS2_GETFSTYP 2 #define IBCS2_GETNFSTYP 3 switch(SCARG(uap, cmd)) { case IBCS2_GETFSIND: case IBCS2_GETFSTYP: case IBCS2_GETNFSTYP: break; } return EINVAL; /* XXX - TODO */ } int ibcs2_unlink(struct ibcs2_unlink_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); return unlink((struct unlink_args *)uap); } int ibcs2_chdir(struct ibcs2_chdir_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); return chdir((struct chdir_args *)uap); } int ibcs2_chmod(struct ibcs2_chmod_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); return chmod((struct chmod_args *)uap); } int ibcs2_chown(struct ibcs2_chown_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); return chown((struct chown_args *)uap); } int ibcs2_rmdir(struct ibcs2_rmdir_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); return rmdir((struct rmdir_args *)uap); } int ibcs2_mkdir(struct ibcs2_mkdir_args *uap) { caddr_t sg = stackgap_init(); CHECKALTCREAT(&sg, SCARG(uap, path)); return mkdir((struct mkdir_args *)uap); } int ibcs2_symlink(struct ibcs2_symlink_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); CHECKALTCREAT(&sg, SCARG(uap, link)); return symlink((struct symlink_args *)uap); } int ibcs2_rename(struct ibcs2_rename_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, from)); CHECKALTCREAT(&sg, SCARG(uap, to)); return rename((struct rename_args *)uap); } int ibcs2_readlink(struct ibcs2_readlink_args *uap) { caddr_t sg = stackgap_init(); CHECKALTEXIST(&sg, SCARG(uap, path)); return readlink((struct readlink_args *) uap); }