.rn '' }` ''' \$RCSfile\$\$Revision\$\$Date\$ ''' ''' \$Log\$ ''' .de Sh .br .if t .Sp .ne 5 .PP \fB\\\$1\fR .PP .. .de Sp .if t .sp .5v .if n .sp .. .de Ip .br .ie \\n(.\$>=3 .ne \\\$3 .el .ne 3 .IP "\\\$1" \\\$2 .. .de Vb .ft CW .nf .ne \\\$1 .. .de Ve .ft R .fi .. ''' ''' ''' Set up \*(-- to give an unbreakable dash; ''' string Tr holds user defined translation string. ''' Bell System Logo is used as a dummy character. ''' .tr \(*W-|\(bv\*(Tr .ie n \{\ .ds -- \(*W- .ds PI pi .if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch .if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch .ds L" "" .ds R" "" ''' \*(M", \*(S", \*(N" and \*(T" are the equivalent of ''' \*(L" and \*(R", except that they are used on ".xx" lines, ''' such as .IP and .SH, which do another additional levels of ''' double-quote interpretation .ds M" """ .ds S" """ .ds N" """"" .ds T" """"" .ds L' ' .ds R' ' .ds M' ' .ds S' ' .ds N' ' .ds T' ' 'br\} .el\{\ .ds -- \(em\| .tr \*(Tr .ds L" `` .ds R" '' .ds M" `` .ds S" '' .ds N" `` .ds T" '' .ds L' ` .ds R' ' .ds M' ` .ds S' ' .ds N' ` .ds T' ' .ds PI \(*p 'br\} .\" If the F register is turned on, we'll generate .\" index entries out stderr for the following things: .\" TH Title .\" SH Header .\" Sh Subsection .\" Ip Item .\" X<> Xref (embedded .\" Of course, you have to process the output yourself .\" in some meaninful fashion. .if \nF \{ .de IX .tm Index:\\\$1\t\\n%\t"\\\$2" .. .nr % 0 .rr F .\} .TH BIO_find_type 3 "0.9.7d" "2/Sep/2004" "OpenSSL" .UC .if n .hy 0 .if n .na .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .de CQ \" put \$1 in typewriter font .ft CW 'if n "\c 'if t \\&\\\$1\c 'if n \\&\\\$1\c 'if n \&" \\&\\\$2 \\\$3 \\\$4 \\\$5 \\\$6 \\\$7 '.ft R .. .\" @(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2 . \" AM - accent mark definitions .bd B 3 . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds ? ? . ds ! ! . ds / . ds q .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds ? \s-2c\h'-\w'c'u*7/10'\u\h'\*(#H'\zi\d\s+2\h'\w'c'u*8/10' . ds ! \s-2\(or\s+2\h'-\w'\(or'u'\v'-.8m'.\v'.8m' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' . ds q o\h'-\w'o'u*8/10'\s-4\v'.4m'\z\(*i\v'-.4m'\s+4\h'\w'o'u*8/10' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds v \\k:\h'-(\\n(.wu*9/10-\*(#H)'\v'-\*(#V'\*(#[\s-4v\s0\v'\*(#V'\h'|\\n:u'\*(#] .ds _ \\k:\h'-(\\n(.wu*9/10-\*(#H+(\*(#F*2/3))'\v'-.4m'\z\(hy\v'.4m'\h'|\\n:u' .ds . \\k:\h'-(\\n(.wu*8/10)'\v'\*(#V*4/10'\z.\v'-\*(#V*4/10'\h'|\\n:u' .ds 3 \*(#[\v'.2m'\s-2\&3\s0\v'-.2m'\*(#] .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E .ds oe o\h'-(\w'o'u*4/10)'e .ds Oe O\h'-(\w'O'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds v \h'-1'\o'\(aa\(ga' . ds _ \h'-1'^ . ds . \h'-1'. . ds 3 3 . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE . ds oe oe . ds Oe OE .\} .rm #[ #] #H #V #F C .SH "NAME" BIO_find_type, BIO_next \- BIO chain traversal .SH "SYNOPSIS" .PP .Vb 1 \& #include .Ve .Vb 2 \& BIO * BIO_find_type(BIO *b,int bio_type); \& BIO * BIO_next(BIO *b); .Ve .Vb 1 \& #define BIO_method_type(b) ((b)->method->type) .Ve .Vb 3 \& #define BIO_TYPE_NONE 0 \& #define BIO_TYPE_MEM (1|0x0400) \& #define BIO_TYPE_FILE (2|0x0400) .Ve .Vb 16 \& #define BIO_TYPE_FD (4|0x0400|0x0100) \& #define BIO_TYPE_SOCKET (5|0x0400|0x0100) \& #define BIO_TYPE_NULL (6|0x0400) \& #define BIO_TYPE_SSL (7|0x0200) \& #define BIO_TYPE_MD (8|0x0200) \& #define BIO_TYPE_BUFFER (9|0x0200) \& #define BIO_TYPE_CIPHER (10|0x0200) \& #define BIO_TYPE_BASE64 (11|0x0200) \& #define BIO_TYPE_CONNECT (12|0x0400|0x0100) \& #define BIO_TYPE_ACCEPT (13|0x0400|0x0100) \& #define BIO_TYPE_PROXY_CLIENT (14|0x0200) \& #define BIO_TYPE_PROXY_SERVER (15|0x0200) \& #define BIO_TYPE_NBIO_TEST (16|0x0200) \& #define BIO_TYPE_NULL_FILTER (17|0x0200) \& #define BIO_TYPE_BER (18|0x0200) \& #define BIO_TYPE_BIO (19|0x0400) .Ve .Vb 3 \& #define BIO_TYPE_DESCRIPTOR 0x0100 \& #define BIO_TYPE_FILTER 0x0200 \& #define BIO_TYPE_SOURCE_SINK 0x0400 .Ve .SH "DESCRIPTION" The \fIBIO_find_type()\fR searches for a BIO of a given type in a chain, starting at BIO \fBb\fR. If \fBtype\fR is a specific type (such as BIO_TYPE_MEM) then a search is made for a BIO of that type. If \fBtype\fR is a general type (such as \fBBIO_TYPE_SOURCE_SINK\fR) then the next matching BIO of the given general type is searched for. \fIBIO_find_type()\fR returns the next matching BIO or NULL if none is found. .PP Note: not all the \fBBIO_TYPE_*\fR types above have corresponding BIO implementations. .PP \fIBIO_next()\fR returns the next BIO in a chain. It can be used to traverse all BIOs in a chain or used in conjunction with \fIBIO_find_type()\fR to find all BIOs of a certain type. .PP \fIBIO_method_type()\fR returns the type of a BIO. .SH "RETURN VALUES" \fIBIO_find_type()\fR returns a matching BIO or NULL for no match. .PP \fIBIO_next()\fR returns the next BIO in a chain. .PP \fIBIO_method_type()\fR returns the type of the BIO \fBb\fR. .SH "NOTES" \fIBIO_next()\fR was added to OpenSSL 0.9.6 to provide a \*(L'clean\*(R' way to traverse a BIO chain or find multiple matches using \fIBIO_find_type()\fR. Previous versions had to use: .PP .Vb 1 \& next = bio->next_bio; .Ve .SH "BUGS" \fIBIO_find_type()\fR in OpenSSL 0.9.5a and earlier could not be safely passed a NULL pointer for the \fBb\fR argument. .SH "EXAMPLE" Traverse a chain looking for digest BIOs: .PP .Vb 2 \& BIO *btmp; \& btmp = in_bio; /* in_bio is chain to search through */ .Ve .Vb 5 \& do { \& btmp = BIO_find_type(btmp, BIO_TYPE_MD); \& if(btmp == NULL) break; /* Not found */ \& /* btmp is a digest BIO, do something with it ...*/ \& ... .Ve .Vb 2 \& btmp = BIO_next(btmp); \& } while(btmp); .Ve .SH "SEE ALSO" TBA .rn }` '' .IX Title "BIO_find_type 3" .IX Name "BIO_find_type, BIO_next - BIO chain traversal" .IX Header "NAME" .IX Header "SYNOPSIS" .IX Header "DESCRIPTION" .IX Header "RETURN VALUES" .IX Header "NOTES" .IX Header "BUGS" .IX Header "EXAMPLE" .IX Header "SEE ALSO"