/* $OpenBSD: gmac.c,v 1.3 2011/01/11 15:44:23 deraadt Exp $ */ /* * Copyright (c) 2010 Mike Belopuhov * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * This code implements the Message Authentication part of the * Galois/Counter Mode (as being described in the RFC 4543) using * the AES cipher. FIPS SP 800-38D describes the algorithm details. */ #include #include #include #include #include void ghash_gfmul(uint32_t *, uint32_t *, uint32_t *); void ghash_update(GHASH_CTX *, uint8_t *, size_t); /* Computes a block multiplication in the GF(2^128) */ void ghash_gfmul(uint32_t *X, uint32_t *Y, uint32_t *product) { uint32_t v[4]; uint32_t z[4] = { 0, 0, 0, 0}; uint8_t *x = (uint8_t *)X; uint32_t mul; int i; v[0] = be32toh(Y[0]); v[1] = be32toh(Y[1]); v[2] = be32toh(Y[2]); v[3] = be32toh(Y[3]); for (i = 0; i < GMAC_BLOCK_LEN * 8; i++) { /* update Z */ if (x[i >> 3] & (1 << (~i & 7))) { z[0] ^= v[0]; z[1] ^= v[1]; z[2] ^= v[2]; z[3] ^= v[3]; } /* else: we preserve old values */ /* update V */ mul = v[3] & 1; v[3] = (v[2] << 31) | (v[3] >> 1); v[2] = (v[1] << 31) | (v[2] >> 1); v[1] = (v[0] << 31) | (v[1] >> 1); v[0] = (v[0] >> 1) ^ (0xe1000000 * mul); } product[0] = htobe32(z[0]); product[1] = htobe32(z[1]); product[2] = htobe32(z[2]); product[3] = htobe32(z[3]); } void ghash_update(GHASH_CTX *ctx, uint8_t *X, size_t len) { uint32_t *x = (uint32_t *)X; uint32_t *s = (uint32_t *)ctx->S; uint32_t *y = (uint32_t *)ctx->Z; int i; for (i = 0; i < len / GMAC_BLOCK_LEN; i++) { s[0] = y[0] ^ x[0]; s[1] = y[1] ^ x[1]; s[2] = y[2] ^ x[2]; s[3] = y[3] ^ x[3]; ghash_gfmul((uint32_t *)ctx->S, (uint32_t *)ctx->H, (uint32_t *)ctx->S); y = s; x += 4; } bcopy(ctx->S, ctx->Z, GMAC_BLOCK_LEN); } #define AESCTR_NONCESIZE 4 void AES_GMAC_Init(AES_GMAC_CTX *ctx) { bzero(ctx->ghash.H, GMAC_BLOCK_LEN); bzero(ctx->ghash.S, GMAC_BLOCK_LEN); bzero(ctx->ghash.Z, GMAC_BLOCK_LEN); bzero(ctx->J, GMAC_BLOCK_LEN); } void AES_GMAC_Setkey(AES_GMAC_CTX *ctx, const uint8_t *key, uint16_t klen) { ctx->rounds = rijndaelKeySetupEnc(ctx->K, __DECONST(u_char *, key), (klen - AESCTR_NONCESIZE) * 8); /* copy out salt to the counter block */ bcopy(key + klen - AESCTR_NONCESIZE, ctx->J, AESCTR_NONCESIZE); /* prepare a hash subkey */ rijndaelEncrypt(ctx->K, ctx->rounds, ctx->ghash.H, ctx->ghash.H); } void AES_GMAC_Reinit(AES_GMAC_CTX *ctx, const uint8_t *iv, uint16_t ivlen) { /* copy out IV to the counter block */ bcopy(iv, ctx->J + AESCTR_NONCESIZE, ivlen); } int AES_GMAC_Update(AES_GMAC_CTX *ctx, uint8_t *data, uint16_t len) { uint32_t blk[4] = { 0, 0, 0, 0 }; int plen; if (len > 0) { plen = len % GMAC_BLOCK_LEN; if (len >= GMAC_BLOCK_LEN) ghash_update(&ctx->ghash, data, len - plen); if (plen) { bcopy(data + (len - plen), (uint8_t *)blk, plen); ghash_update(&ctx->ghash, (uint8_t *)blk, GMAC_BLOCK_LEN); } } return (0); } void AES_GMAC_Final(uint8_t digest[GMAC_DIGEST_LEN], AES_GMAC_CTX *ctx) { uint8_t keystream[GMAC_BLOCK_LEN]; int i; /* do one round of GCTR */ ctx->J[GMAC_BLOCK_LEN - 1] = 1; rijndaelEncrypt(ctx->K, ctx->rounds, ctx->J, keystream); for (i = 0; i < GMAC_DIGEST_LEN; i++) digest[i] = ctx->ghash.S[i] ^ keystream[i]; bzero(keystream, sizeof(keystream)); }