/* * Copyright (c) 2003 Stuart Walsh * and Duncan Barclay * Modifications for FreeBSD-stable by Edwin Groothuis * > */ /* * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS 'AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/bfe/if_bfe.c 1.4.4.7 2004/03/02 08:41:33 julian Exp v * $DragonFly: src/sys/dev/netif/bfe/if_bfe.c,v 1.31 2007/07/14 08:01:24 sephe Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "if_bfereg.h" MODULE_DEPEND(bfe, pci, 1, 1, 1); MODULE_DEPEND(bfe, miibus, 1, 1, 1); /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #define BFE_DEVDESC_MAX 64 /* Maximum device description length */ static struct bfe_type bfe_devs[] = { { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401, "Broadcom BCM4401 Fast Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401B0, "Broadcom BCM4401-B0 Fast Ethernet" }, { 0, 0, NULL } }; static int bfe_probe(device_t); static int bfe_attach(device_t); static int bfe_detach(device_t); static void bfe_intr(void *); static void bfe_start(struct ifnet *); static int bfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void bfe_init(void *); static void bfe_stop(struct bfe_softc *); static void bfe_watchdog(struct ifnet *); static void bfe_shutdown(device_t); static void bfe_tick(void *); static void bfe_txeof(struct bfe_softc *); static void bfe_rxeof(struct bfe_softc *); static void bfe_set_rx_mode(struct bfe_softc *); static int bfe_list_rx_init(struct bfe_softc *); static int bfe_list_newbuf(struct bfe_softc *, int, struct mbuf*); static void bfe_rx_ring_free(struct bfe_softc *); static void bfe_pci_setup(struct bfe_softc *, uint32_t); static int bfe_ifmedia_upd(struct ifnet *); static void bfe_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int bfe_miibus_readreg(device_t, int, int); static int bfe_miibus_writereg(device_t, int, int, int); static void bfe_miibus_statchg(device_t); static int bfe_wait_bit(struct bfe_softc *, uint32_t, uint32_t, u_long, const int); static void bfe_get_config(struct bfe_softc *sc); static void bfe_read_eeprom(struct bfe_softc *, uint8_t *); static void bfe_stats_update(struct bfe_softc *); static void bfe_clear_stats (struct bfe_softc *); static int bfe_readphy(struct bfe_softc *, uint32_t, uint32_t*); static int bfe_writephy(struct bfe_softc *, uint32_t, uint32_t); static int bfe_resetphy(struct bfe_softc *); static int bfe_setupphy(struct bfe_softc *); static void bfe_chip_reset(struct bfe_softc *); static void bfe_chip_halt(struct bfe_softc *); static void bfe_core_reset(struct bfe_softc *); static void bfe_core_disable(struct bfe_softc *); static int bfe_dma_alloc(device_t); static void bfe_dma_free(struct bfe_softc *); static void bfe_dma_map_desc(void *, bus_dma_segment_t *, int, int); static void bfe_dma_map(void *, bus_dma_segment_t *, int, int); static void bfe_cam_write(struct bfe_softc *, u_char *, int); static device_method_t bfe_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bfe_probe), DEVMETHOD(device_attach, bfe_attach), DEVMETHOD(device_detach, bfe_detach), DEVMETHOD(device_shutdown, bfe_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, bfe_miibus_readreg), DEVMETHOD(miibus_writereg, bfe_miibus_writereg), DEVMETHOD(miibus_statchg, bfe_miibus_statchg), { 0, 0 } }; static driver_t bfe_driver = { "bfe", bfe_methods, sizeof(struct bfe_softc) }; static devclass_t bfe_devclass; DRIVER_MODULE(bfe, pci, bfe_driver, bfe_devclass, 0, 0); DRIVER_MODULE(miibus, bfe, miibus_driver, miibus_devclass, 0, 0); /* * Probe for a Broadcom 4401 chip. */ static int bfe_probe(device_t dev) { struct bfe_type *t; uint16_t vendor, product; vendor = pci_get_vendor(dev); product = pci_get_device(dev); for (t = bfe_devs; t->bfe_name != NULL; t++) { if (vendor == t->bfe_vid && product == t->bfe_did) { device_set_desc(dev, t->bfe_name); return(0); } } return(ENXIO); } static int bfe_dma_alloc(device_t dev) { struct bfe_softc *sc = device_get_softc(dev); int error, i, tx_pos, rx_pos; /* * parent tag. Apparently the chip cannot handle any DMA address * greater than 1GB. */ error = bus_dma_tag_create(NULL, /* parent */ 4096, 0, /* alignment, boundary */ 0x3FFFFFFF, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* num of segments */ BUS_SPACE_MAXSIZE_32BIT, /* max segment size */ 0, /* flags */ &sc->bfe_parent_tag); if (error) { device_printf(dev, "could not allocate parent dma tag\n"); return(error); } /* tag for TX ring */ error = bus_dma_tag_create(sc->bfe_parent_tag, 4096, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BFE_TX_LIST_SIZE, 1, BUS_SPACE_MAXSIZE_32BIT, 0, &sc->bfe_tx_tag); if (error) { device_printf(dev, "could not allocate dma tag for TX list\n"); return(error); } /* tag for RX ring */ error = bus_dma_tag_create(sc->bfe_parent_tag, 4096, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BFE_RX_LIST_SIZE, 1, BUS_SPACE_MAXSIZE_32BIT, 0, &sc->bfe_rx_tag); if (error) { device_printf(dev, "could not allocate dma tag for RX list\n"); return(error); } /* tag for mbufs */ error = bus_dma_tag_create(sc->bfe_parent_tag, ETHER_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, &sc->bfe_tag); if (error) { device_printf(dev, "could not allocate dma tag for mbufs\n"); return(error); } rx_pos = tx_pos = 0; /* pre allocate dmamaps for RX list */ for (i = 0; i < BFE_RX_LIST_CNT; i++) { error = bus_dmamap_create(sc->bfe_tag, 0, &sc->bfe_rx_ring[i].bfe_map); if (error) { rx_pos = i; device_printf(dev, "cannot create DMA map for RX\n"); goto ring_fail; } } rx_pos = BFE_RX_LIST_CNT; /* pre allocate dmamaps for TX list */ for (i = 0; i < BFE_TX_LIST_CNT; i++) { error = bus_dmamap_create(sc->bfe_tag, 0, &sc->bfe_tx_ring[i].bfe_map); if (error) { tx_pos = i; device_printf(dev, "cannot create DMA map for TX\n"); goto ring_fail; } } /* Alloc dma for rx ring */ error = bus_dmamem_alloc(sc->bfe_rx_tag, (void *)&sc->bfe_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->bfe_rx_map); if (error) { device_printf(dev, "cannot allocate DMA mem for RX\n"); return(error); } error = bus_dmamap_load(sc->bfe_rx_tag, sc->bfe_rx_map, sc->bfe_rx_list, sizeof(struct bfe_desc), bfe_dma_map, &sc->bfe_rx_dma, BUS_DMA_WAITOK); if (error) { device_printf(dev, "cannot load DMA map for RX\n"); return(error); } bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREWRITE); /* Alloc dma for tx ring */ error = bus_dmamem_alloc(sc->bfe_tx_tag, (void *)&sc->bfe_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->bfe_tx_map); if (error) { device_printf(dev, "cannot allocate DMA mem for TX\n"); return(error); } error = bus_dmamap_load(sc->bfe_tx_tag, sc->bfe_tx_map, sc->bfe_tx_list, sizeof(struct bfe_desc), bfe_dma_map, &sc->bfe_tx_dma, BUS_DMA_WAITOK); if (error) { device_printf(dev, "cannot load DMA map for TX\n"); return(error); } bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREWRITE); return(0); ring_fail: for (i = 0; i < rx_pos; ++i) bus_dmamap_destroy(sc->bfe_tag, sc->bfe_rx_ring[i].bfe_map); for (i = 0; i < tx_pos; ++i) bus_dmamap_destroy(sc->bfe_tag, sc->bfe_tx_ring[i].bfe_map); bus_dma_tag_destroy(sc->bfe_tag); sc->bfe_tag = NULL; return error; } static int bfe_attach(device_t dev) { struct ifnet *ifp; struct bfe_softc *sc; int error = 0, rid; sc = device_get_softc(dev); sc->bfe_dev = dev; callout_init(&sc->bfe_stat_timer); /* * Handle power management nonsense. */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { uint32_t membase, irq; /* Save important PCI config data. */ membase = pci_read_config(dev, BFE_PCI_MEMLO, 4); irq = pci_read_config(dev, BFE_PCI_INTLINE, 4); /* Reset the power state. */ device_printf(dev, "chip is in D%d power mode" " -- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); /* Restore PCI config data. */ pci_write_config(dev, BFE_PCI_MEMLO, membase, 4); pci_write_config(dev, BFE_PCI_INTLINE, irq, 4); } /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = BFE_PCI_MEMLO; sc->bfe_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->bfe_res == NULL) { device_printf(dev, "couldn't map memory\n"); return ENXIO; } sc->bfe_btag = rman_get_bustag(sc->bfe_res); sc->bfe_bhandle = rman_get_bushandle(sc->bfe_res); /* Allocate interrupt */ rid = 0; sc->bfe_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->bfe_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } error = bfe_dma_alloc(dev); if (error != 0) { device_printf(dev, "failed to allocate DMA resources\n"); goto fail; } /* Set up ifnet structure */ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bfe_ioctl; ifp->if_start = bfe_start; ifp->if_watchdog = bfe_watchdog; ifp->if_init = bfe_init; ifp->if_mtu = ETHERMTU; ifp->if_baudrate = 100000000; ifp->if_capabilities |= IFCAP_VLAN_MTU; ifp->if_capenable |= IFCAP_VLAN_MTU; ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifq_set_maxlen(&ifp->if_snd, BFE_TX_QLEN); ifq_set_ready(&ifp->if_snd); bfe_get_config(sc); /* Reset the chip and turn on the PHY */ bfe_chip_reset(sc); if (mii_phy_probe(dev, &sc->bfe_miibus, bfe_ifmedia_upd, bfe_ifmedia_sts)) { device_printf(dev, "MII without any PHY!\n"); error = ENXIO; goto fail; } ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL); /* * Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->bfe_irq, INTR_NETSAFE, bfe_intr, sc, &sc->bfe_intrhand, sc->arpcom.ac_if.if_serializer); if (error) { ether_ifdetach(ifp); device_printf(dev, "couldn't set up irq\n"); goto fail; } return 0; fail: bfe_detach(dev); return(error); } static int bfe_detach(device_t dev) { struct bfe_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; if (device_is_attached(dev)) { lwkt_serialize_enter(ifp->if_serializer); bfe_stop(sc); bfe_chip_reset(sc); bus_teardown_intr(dev, sc->bfe_irq, sc->bfe_intrhand); lwkt_serialize_exit(ifp->if_serializer); ether_ifdetach(ifp); } if (sc->bfe_miibus != NULL) device_delete_child(dev, sc->bfe_miibus); bus_generic_detach(dev); if (sc->bfe_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bfe_irq); if (sc->bfe_res != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, BFE_PCI_MEMLO, sc->bfe_res); } bfe_dma_free(sc); return(0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void bfe_shutdown(device_t dev) { struct bfe_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); bfe_stop(sc); lwkt_serialize_exit(ifp->if_serializer); } static int bfe_miibus_readreg(device_t dev, int phy, int reg) { struct bfe_softc *sc; uint32_t ret; sc = device_get_softc(dev); if (phy != sc->bfe_phyaddr) return(0); bfe_readphy(sc, reg, &ret); return(ret); } static int bfe_miibus_writereg(device_t dev, int phy, int reg, int val) { struct bfe_softc *sc; sc = device_get_softc(dev); if (phy != sc->bfe_phyaddr) return(0); bfe_writephy(sc, reg, val); return(0); } static void bfe_miibus_statchg(device_t dev) { return; } static void bfe_tx_ring_free(struct bfe_softc *sc) { int i; for (i = 0; i < BFE_TX_LIST_CNT; i++) { bus_dmamap_unload(sc->bfe_tag, sc->bfe_tx_ring[i].bfe_map); if (sc->bfe_tx_ring[i].bfe_mbuf != NULL) { m_freem(sc->bfe_tx_ring[i].bfe_mbuf); sc->bfe_tx_ring[i].bfe_mbuf = NULL; } } bzero(sc->bfe_tx_list, BFE_TX_LIST_SIZE); bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREWRITE); } static void bfe_rx_ring_free(struct bfe_softc *sc) { int i; for (i = 0; i < BFE_RX_LIST_CNT; i++) { if (sc->bfe_rx_ring[i].bfe_mbuf != NULL) { bus_dmamap_unload(sc->bfe_tag, sc->bfe_rx_ring[i].bfe_map); m_freem(sc->bfe_rx_ring[i].bfe_mbuf); sc->bfe_rx_ring[i].bfe_mbuf = NULL; } } bzero(sc->bfe_rx_list, BFE_RX_LIST_SIZE); bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREWRITE); } static int bfe_list_rx_init(struct bfe_softc *sc) { int i; for (i = 0; i < BFE_RX_LIST_CNT; i++) if (bfe_list_newbuf(sc, i, NULL) == ENOBUFS) return(ENOBUFS); bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, BFE_DMARX_PTR, (i * sizeof(struct bfe_desc))); sc->bfe_rx_cons = 0; return(0); } static int bfe_list_newbuf(struct bfe_softc *sc, int c, struct mbuf *m) { struct bfe_rxheader *rx_header; struct bfe_desc *d; struct bfe_data *r; uint32_t ctrl; if ((c < 0) || (c >= BFE_RX_LIST_CNT)) return(EINVAL); if (m == NULL) { m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return(ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; } else m->m_data = m->m_ext.ext_buf; rx_header = mtod(m, struct bfe_rxheader *); rx_header->len = 0; rx_header->flags = 0; /* Map the mbuf into DMA */ sc->bfe_rx_cnt = c; d = &sc->bfe_rx_list[c]; r = &sc->bfe_rx_ring[c]; /* XXX error? */ bus_dmamap_load(sc->bfe_tag, r->bfe_map, mtod(m, void *), MCLBYTES, bfe_dma_map_desc, d, BUS_DMA_NOWAIT); bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_PREWRITE); ctrl = ETHER_MAX_LEN + 32; if(c == BFE_RX_LIST_CNT - 1) ctrl |= BFE_DESC_EOT; d->bfe_ctrl = ctrl; r->bfe_mbuf = m; bus_dmamap_sync(sc->bfe_rx_tag, sc->bfe_rx_map, BUS_DMASYNC_PREWRITE); return(0); } static void bfe_get_config(struct bfe_softc *sc) { uint8_t eeprom[128]; bfe_read_eeprom(sc, eeprom); sc->arpcom.ac_enaddr[0] = eeprom[79]; sc->arpcom.ac_enaddr[1] = eeprom[78]; sc->arpcom.ac_enaddr[2] = eeprom[81]; sc->arpcom.ac_enaddr[3] = eeprom[80]; sc->arpcom.ac_enaddr[4] = eeprom[83]; sc->arpcom.ac_enaddr[5] = eeprom[82]; sc->bfe_phyaddr = eeprom[90] & 0x1f; sc->bfe_mdc_port = (eeprom[90] >> 14) & 0x1; sc->bfe_core_unit = 0; sc->bfe_dma_offset = BFE_PCI_DMA; } static void bfe_pci_setup(struct bfe_softc *sc, uint32_t cores) { uint32_t bar_orig, pci_rev, val; bar_orig = pci_read_config(sc->bfe_dev, BFE_BAR0_WIN, 4); pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, BFE_REG_PCI, 4); pci_rev = CSR_READ_4(sc, BFE_SBIDHIGH) & BFE_RC_MASK; val = CSR_READ_4(sc, BFE_SBINTVEC); val |= cores; CSR_WRITE_4(sc, BFE_SBINTVEC, val); val = CSR_READ_4(sc, BFE_SSB_PCI_TRANS_2); val |= BFE_SSB_PCI_PREF | BFE_SSB_PCI_BURST; CSR_WRITE_4(sc, BFE_SSB_PCI_TRANS_2, val); pci_write_config(sc->bfe_dev, BFE_BAR0_WIN, bar_orig, 4); } static void bfe_clear_stats(struct bfe_softc *sc) { u_long reg; CSR_WRITE_4(sc, BFE_MIB_CTRL, BFE_MIB_CLR_ON_READ); for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4) CSR_READ_4(sc, reg); for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4) CSR_READ_4(sc, reg); } static int bfe_resetphy(struct bfe_softc *sc) { uint32_t val; bfe_writephy(sc, 0, BMCR_RESET); DELAY(100); bfe_readphy(sc, 0, &val); if (val & BMCR_RESET) { if_printf(&sc->arpcom.ac_if, "PHY Reset would not complete.\n"); return(ENXIO); } return(0); } static void bfe_chip_halt(struct bfe_softc *sc) { /* disable interrupts - not that it actually does..*/ CSR_WRITE_4(sc, BFE_IMASK, 0); CSR_READ_4(sc, BFE_IMASK); CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE); bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 200, 1); CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0); CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0); DELAY(10); } static void bfe_chip_reset(struct bfe_softc *sc) { uint32_t val; /* Set the interrupt vector for the enet core */ bfe_pci_setup(sc, BFE_INTVEC_ENET0); /* is core up? */ val = CSR_READ_4(sc, BFE_SBTMSLOW) & (BFE_RESET | BFE_REJECT | BFE_CLOCK); if (val == BFE_CLOCK) { /* It is, so shut it down */ CSR_WRITE_4(sc, BFE_RCV_LAZY, 0); CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE); bfe_wait_bit(sc, BFE_ENET_CTRL, BFE_ENET_DISABLE, 100, 1); CSR_WRITE_4(sc, BFE_DMATX_CTRL, 0); sc->bfe_tx_cnt = sc->bfe_tx_prod = sc->bfe_tx_cons = 0; if (CSR_READ_4(sc, BFE_DMARX_STAT) & BFE_STAT_EMASK) bfe_wait_bit(sc, BFE_DMARX_STAT, BFE_STAT_SIDLE, 100, 0); CSR_WRITE_4(sc, BFE_DMARX_CTRL, 0); sc->bfe_rx_prod = sc->bfe_rx_cons = 0; } bfe_core_reset(sc); bfe_clear_stats(sc); /* * We want the phy registers to be accessible even when * the driver is "downed" so initialize MDC preamble, frequency, * and whether internal or external phy here. */ /* 4402 has 62.5Mhz SB clock and internal phy */ CSR_WRITE_4(sc, BFE_MDIO_CTRL, 0x8d); /* Internal or external PHY? */ val = CSR_READ_4(sc, BFE_DEVCTRL); if (!(val & BFE_IPP)) CSR_WRITE_4(sc, BFE_ENET_CTRL, BFE_ENET_EPSEL); else if (CSR_READ_4(sc, BFE_DEVCTRL) & BFE_EPR) { BFE_AND(sc, BFE_DEVCTRL, ~BFE_EPR); DELAY(100); } /* Enable CRC32 generation and set proper LED modes */ BFE_OR(sc, BFE_MAC_CTRL, BFE_CTRL_CRC32_ENAB | BFE_CTRL_LED); /* Reset or clear powerdown control bit */ BFE_AND(sc, BFE_MAC_CTRL, ~BFE_CTRL_PDOWN); CSR_WRITE_4(sc, BFE_RCV_LAZY, ((1 << BFE_LAZY_FC_SHIFT) & BFE_LAZY_FC_MASK)); /* * We don't want lazy interrupts, so just send them at the end of a * frame, please */ BFE_OR(sc, BFE_RCV_LAZY, 0); /* Set max lengths, accounting for VLAN tags */ CSR_WRITE_4(sc, BFE_RXMAXLEN, ETHER_MAX_LEN+32); CSR_WRITE_4(sc, BFE_TXMAXLEN, ETHER_MAX_LEN+32); /* Set watermark XXX - magic */ CSR_WRITE_4(sc, BFE_TX_WMARK, 56); /* * Initialise DMA channels - not forgetting dma addresses need to be * added to BFE_PCI_DMA */ CSR_WRITE_4(sc, BFE_DMATX_CTRL, BFE_TX_CTRL_ENABLE); CSR_WRITE_4(sc, BFE_DMATX_ADDR, sc->bfe_tx_dma + BFE_PCI_DMA); CSR_WRITE_4(sc, BFE_DMARX_CTRL, (BFE_RX_OFFSET << BFE_RX_CTRL_ROSHIFT) | BFE_RX_CTRL_ENABLE); CSR_WRITE_4(sc, BFE_DMARX_ADDR, sc->bfe_rx_dma + BFE_PCI_DMA); bfe_resetphy(sc); bfe_setupphy(sc); } static void bfe_core_disable(struct bfe_softc *sc) { if ((CSR_READ_4(sc, BFE_SBTMSLOW)) & BFE_RESET) return; /* * Set reject, wait for it set, then wait for the core to stop being busy * Then set reset and reject and enable the clocks */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_CLOCK)); bfe_wait_bit(sc, BFE_SBTMSLOW, BFE_REJECT, 1000, 0); bfe_wait_bit(sc, BFE_SBTMSHIGH, BFE_BUSY, 1000, 1); CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_FGC | BFE_CLOCK | BFE_REJECT | BFE_RESET)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Leave reset and reject set */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_REJECT | BFE_RESET)); DELAY(10); } static void bfe_core_reset(struct bfe_softc *sc) { uint32_t val; /* Disable the core */ bfe_core_disable(sc); /* and bring it back up */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_RESET | BFE_CLOCK | BFE_FGC)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Chip bug, clear SERR, IB and TO if they are set. */ if (CSR_READ_4(sc, BFE_SBTMSHIGH) & BFE_SERR) CSR_WRITE_4(sc, BFE_SBTMSHIGH, 0); val = CSR_READ_4(sc, BFE_SBIMSTATE); if (val & (BFE_IBE | BFE_TO)) CSR_WRITE_4(sc, BFE_SBIMSTATE, val & ~(BFE_IBE | BFE_TO)); /* Clear reset and allow it to move through the core */ CSR_WRITE_4(sc, BFE_SBTMSLOW, (BFE_CLOCK | BFE_FGC)); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); /* Leave the clock set */ CSR_WRITE_4(sc, BFE_SBTMSLOW, BFE_CLOCK); CSR_READ_4(sc, BFE_SBTMSLOW); DELAY(10); } static void bfe_cam_write(struct bfe_softc *sc, u_char *data, int index) { uint32_t val; val = ((uint32_t) data[2]) << 24; val |= ((uint32_t) data[3]) << 16; val |= ((uint32_t) data[4]) << 8; val |= ((uint32_t) data[5]); CSR_WRITE_4(sc, BFE_CAM_DATA_LO, val); val = (BFE_CAM_HI_VALID | (((uint32_t) data[0]) << 8) | (((uint32_t) data[1]))); CSR_WRITE_4(sc, BFE_CAM_DATA_HI, val); CSR_WRITE_4(sc, BFE_CAM_CTRL, (BFE_CAM_WRITE | ((uint32_t)index << BFE_CAM_INDEX_SHIFT))); bfe_wait_bit(sc, BFE_CAM_CTRL, BFE_CAM_BUSY, 10000, 1); } static void bfe_set_rx_mode(struct bfe_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmultiaddr *ifma; uint32_t val; int i = 0; val = CSR_READ_4(sc, BFE_RXCONF); if (ifp->if_flags & IFF_PROMISC) val |= BFE_RXCONF_PROMISC; else val &= ~BFE_RXCONF_PROMISC; if (ifp->if_flags & IFF_BROADCAST) val &= ~BFE_RXCONF_DBCAST; else val |= BFE_RXCONF_DBCAST; CSR_WRITE_4(sc, BFE_CAM_CTRL, 0); bfe_cam_write(sc, sc->arpcom.ac_enaddr, i++); if (ifp->if_flags & IFF_ALLMULTI) { val |= BFE_RXCONF_ALLMULTI; } else { val &= ~BFE_RXCONF_ALLMULTI; LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; bfe_cam_write(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i++); } } CSR_WRITE_4(sc, BFE_RXCONF, val); BFE_OR(sc, BFE_CAM_CTRL, BFE_CAM_ENABLE); } static void bfe_dma_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) { uint32_t *ptr; ptr = arg; *ptr = segs->ds_addr; } static void bfe_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct bfe_desc *d; d = arg; /* The chip needs all addresses to be added to BFE_PCI_DMA */ d->bfe_addr = segs->ds_addr + BFE_PCI_DMA; } static void bfe_dma_free(struct bfe_softc *sc) { if (sc->bfe_tx_tag != NULL) { bus_dmamap_unload(sc->bfe_tx_tag, sc->bfe_tx_map); if (sc->bfe_tx_list != NULL) { bus_dmamem_free(sc->bfe_tx_tag, sc->bfe_tx_list, sc->bfe_tx_map); sc->bfe_tx_list = NULL; } bus_dma_tag_destroy(sc->bfe_tx_tag); sc->bfe_tx_tag = NULL; } if (sc->bfe_rx_tag != NULL) { bus_dmamap_unload(sc->bfe_rx_tag, sc->bfe_rx_map); if (sc->bfe_rx_list != NULL) { bus_dmamem_free(sc->bfe_rx_tag, sc->bfe_rx_list, sc->bfe_rx_map); sc->bfe_rx_list = NULL; } bus_dma_tag_destroy(sc->bfe_rx_tag); sc->bfe_rx_tag = NULL; } if (sc->bfe_tag != NULL) { int i; for (i = 0; i < BFE_TX_LIST_CNT; i++) { bus_dmamap_destroy(sc->bfe_tag, sc->bfe_tx_ring[i].bfe_map); } for (i = 0; i < BFE_RX_LIST_CNT; i++) { bus_dmamap_destroy(sc->bfe_tag, sc->bfe_rx_ring[i].bfe_map); } bus_dma_tag_destroy(sc->bfe_tag); sc->bfe_tag = NULL; } if (sc->bfe_parent_tag != NULL) { bus_dma_tag_destroy(sc->bfe_parent_tag); sc->bfe_parent_tag = NULL; } } static void bfe_read_eeprom(struct bfe_softc *sc, uint8_t *data) { long i; uint16_t *ptr = (uint16_t *)data; for (i = 0; i < 128; i += 2) ptr[i/2] = CSR_READ_4(sc, 4096 + i); } static int bfe_wait_bit(struct bfe_softc *sc, uint32_t reg, uint32_t bit, u_long timeout, const int clear) { u_long i; for (i = 0; i < timeout; i++) { uint32_t val = CSR_READ_4(sc, reg); if (clear && !(val & bit)) break; if (!clear && (val & bit)) break; DELAY(10); } if (i == timeout) { if_printf(&sc->arpcom.ac_if, "BUG! Timeout waiting for bit %08x of register " "%x to %s.\n", bit, reg, (clear ? "clear" : "set")); return -1; } return 0; } static int bfe_readphy(struct bfe_softc *sc, uint32_t reg, uint32_t *val) { int err; /* Clear MII ISR */ CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII); CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START | (BFE_MDIO_OP_READ << BFE_MDIO_OP_SHIFT) | (sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) | (reg << BFE_MDIO_RA_SHIFT) | (BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT))); err = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0); *val = CSR_READ_4(sc, BFE_MDIO_DATA) & BFE_MDIO_DATA_DATA; return(err); } static int bfe_writephy(struct bfe_softc *sc, uint32_t reg, uint32_t val) { int status; CSR_WRITE_4(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII); CSR_WRITE_4(sc, BFE_MDIO_DATA, (BFE_MDIO_SB_START | (BFE_MDIO_OP_WRITE << BFE_MDIO_OP_SHIFT) | (sc->bfe_phyaddr << BFE_MDIO_PMD_SHIFT) | (reg << BFE_MDIO_RA_SHIFT) | (BFE_MDIO_TA_VALID << BFE_MDIO_TA_SHIFT) | (val & BFE_MDIO_DATA_DATA))); status = bfe_wait_bit(sc, BFE_EMAC_ISTAT, BFE_EMAC_INT_MII, 100, 0); return status; } /* * XXX - I think this is handled by the PHY driver, but it can't hurt to do it * twice */ static int bfe_setupphy(struct bfe_softc *sc) { uint32_t val; /* Enable activity LED */ bfe_readphy(sc, 26, &val); bfe_writephy(sc, 26, val & 0x7fff); bfe_readphy(sc, 26, &val); /* Enable traffic meter LED mode */ bfe_readphy(sc, 27, &val); bfe_writephy(sc, 27, val | (1 << 6)); return(0); } static void bfe_stats_update(struct bfe_softc *sc) { u_long reg; uint32_t *val; val = &sc->bfe_hwstats.tx_good_octets; for (reg = BFE_TX_GOOD_O; reg <= BFE_TX_PAUSE; reg += 4) *val++ += CSR_READ_4(sc, reg); val = &sc->bfe_hwstats.rx_good_octets; for (reg = BFE_RX_GOOD_O; reg <= BFE_RX_NPAUSE; reg += 4) *val++ += CSR_READ_4(sc, reg); } static void bfe_txeof(struct bfe_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t i, chipidx; chipidx = CSR_READ_4(sc, BFE_DMATX_STAT) & BFE_STAT_CDMASK; chipidx /= sizeof(struct bfe_desc); i = sc->bfe_tx_cons; /* Go through the mbufs and free those that have been transmitted */ while (i != chipidx) { struct bfe_data *r = &sc->bfe_tx_ring[i]; bus_dmamap_unload(sc->bfe_tag, r->bfe_map); if (r->bfe_mbuf != NULL) { ifp->if_opackets++; m_freem(r->bfe_mbuf); r->bfe_mbuf = NULL; } sc->bfe_tx_cnt--; BFE_INC(i, BFE_TX_LIST_CNT); } if (i != sc->bfe_tx_cons) { /* we freed up some mbufs */ sc->bfe_tx_cons = i; ifp->if_flags &= ~IFF_OACTIVE; } if (sc->bfe_tx_cnt == 0) ifp->if_timer = 0; else ifp->if_timer = 5; } /* Pass a received packet up the stack */ static void bfe_rxeof(struct bfe_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct mbuf *m; struct bfe_rxheader *rxheader; struct bfe_data *r; uint32_t cons, status, current, len, flags; cons = sc->bfe_rx_cons; status = CSR_READ_4(sc, BFE_DMARX_STAT); current = (status & BFE_STAT_CDMASK) / sizeof(struct bfe_desc); while (current != cons) { r = &sc->bfe_rx_ring[cons]; m = r->bfe_mbuf; rxheader = mtod(m, struct bfe_rxheader*); bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_POSTREAD); len = rxheader->len; r->bfe_mbuf = NULL; bus_dmamap_unload(sc->bfe_tag, r->bfe_map); flags = rxheader->flags; len -= ETHER_CRC_LEN; /* flag an error and try again */ if ((len > ETHER_MAX_LEN+32) || (flags & BFE_RX_FLAG_ERRORS)) { ifp->if_ierrors++; if (flags & BFE_RX_FLAG_SERR) ifp->if_collisions++; bfe_list_newbuf(sc, cons, m); BFE_INC(cons, BFE_RX_LIST_CNT); continue; } /* Go past the rx header */ if (bfe_list_newbuf(sc, cons, NULL) != 0) { bfe_list_newbuf(sc, cons, m); BFE_INC(cons, BFE_RX_LIST_CNT); ifp->if_ierrors++; continue; } m_adj(m, BFE_RX_OFFSET); m->m_len = m->m_pkthdr.len = len; ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; ifp->if_input(ifp, m); BFE_INC(cons, BFE_RX_LIST_CNT); } sc->bfe_rx_cons = cons; } static void bfe_intr(void *xsc) { struct bfe_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t istat, imask, flag; istat = CSR_READ_4(sc, BFE_ISTAT); imask = CSR_READ_4(sc, BFE_IMASK); /* * Defer unsolicited interrupts - This is necessary because setting the * chips interrupt mask register to 0 doesn't actually stop the * interrupts */ istat &= imask; CSR_WRITE_4(sc, BFE_ISTAT, istat); CSR_READ_4(sc, BFE_ISTAT); /* not expecting this interrupt, disregard it */ if (istat == 0) { return; } if (istat & BFE_ISTAT_ERRORS) { flag = CSR_READ_4(sc, BFE_DMATX_STAT); if (flag & BFE_STAT_EMASK) ifp->if_oerrors++; flag = CSR_READ_4(sc, BFE_DMARX_STAT); if (flag & BFE_RX_FLAG_ERRORS) ifp->if_ierrors++; ifp->if_flags &= ~IFF_RUNNING; bfe_init(sc); } /* A packet was received */ if (istat & BFE_ISTAT_RX) bfe_rxeof(sc); /* A packet was sent */ if (istat & BFE_ISTAT_TX) bfe_txeof(sc); /* We have packets pending, fire them out */ if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd)) bfe_start(ifp); } static int bfe_encap(struct bfe_softc *sc, struct mbuf **m_head, uint32_t *txidx) { struct bfe_desc *d = NULL; struct bfe_data *r = NULL; struct mbuf *m; uint32_t frag, cur, cnt = 0; int error, chainlen = 0; KKASSERT(BFE_TX_LIST_CNT >= (2 + sc->bfe_tx_cnt)); /* * Count the number of frags in this chain to see if * we need to m_defrag. Since the descriptor list is shared * by all packets, we'll m_defrag long chains so that they * do not use up the entire list, even if they would fit. */ for (m = *m_head; m != NULL; m = m->m_next) chainlen++; if (chainlen > (BFE_TX_LIST_CNT / 4) || BFE_TX_LIST_CNT < (2 + chainlen + sc->bfe_tx_cnt)) { m = m_defrag(*m_head, MB_DONTWAIT); if (m == NULL) { m_freem(*m_head); return (ENOBUFS); } *m_head = m; } /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ cur = frag = *txidx; cnt = 0; for (m = *m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { KKASSERT(BFE_TX_LIST_CNT >= (2 + sc->bfe_tx_cnt + cnt)); d = &sc->bfe_tx_list[cur]; r = &sc->bfe_tx_ring[cur]; d->bfe_ctrl = BFE_DESC_LEN & m->m_len; /* always intterupt on completion */ d->bfe_ctrl |= BFE_DESC_IOC; if (cnt == 0) { /* Set start of frame */ d->bfe_ctrl |= BFE_DESC_SOF; } if (cur == BFE_TX_LIST_CNT - 1) { /* * Tell the chip to wrap to the start of the * descriptor list */ d->bfe_ctrl |= BFE_DESC_EOT; } error = bus_dmamap_load(sc->bfe_tag, r->bfe_map, mtod(m, void *), m->m_len, bfe_dma_map_desc, d, BUS_DMA_NOWAIT); if (error) { /* XXX This should be a fatal error. */ if_printf(&sc->arpcom.ac_if, "%s bus_dmamap_load failed: %d", __func__, error); m_freem(*m_head); return (ENOBUFS); } bus_dmamap_sync(sc->bfe_tag, r->bfe_map, BUS_DMASYNC_PREWRITE); frag = cur; BFE_INC(cur, BFE_TX_LIST_CNT); cnt++; } } sc->bfe_tx_list[frag].bfe_ctrl |= BFE_DESC_EOF; sc->bfe_tx_ring[frag].bfe_mbuf = *m_head; bus_dmamap_sync(sc->bfe_tx_tag, sc->bfe_tx_map, BUS_DMASYNC_PREWRITE); *txidx = cur; sc->bfe_tx_cnt += cnt; return(0); } /* * Set up to transmit a packet */ static void bfe_start(struct ifnet *ifp) { struct bfe_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; int idx, need_trans; /* * Not much point trying to send if the link is down * or we have nothing to send. */ if (!sc->bfe_link) return; if (ifp->if_flags & IFF_OACTIVE) return; idx = sc->bfe_tx_prod; need_trans = 0; while (sc->bfe_tx_ring[idx].bfe_mbuf == NULL) { if (BFE_TX_LIST_CNT < (2 + sc->bfe_tx_cnt)) { ifp->if_flags |= IFF_OACTIVE; break; } m_head = ifq_dequeue(&ifp->if_snd, NULL); if (m_head == NULL) break; /* * Pack the data into the tx ring. If we don't have * enough room, let the chip drain the ring. */ if (bfe_encap(sc, &m_head, &idx)) { ifp->if_flags |= IFF_OACTIVE; break; } need_trans = 1; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } if (!need_trans) return; sc->bfe_tx_prod = idx; /* Transmit - twice due to apparent hardware bug */ CSR_WRITE_4(sc, BFE_DMATX_PTR, idx * sizeof(struct bfe_desc)); CSR_WRITE_4(sc, BFE_DMATX_PTR, idx * sizeof(struct bfe_desc)); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void bfe_init(void *xsc) { struct bfe_softc *sc = (struct bfe_softc*)xsc; struct ifnet *ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_RUNNING) return; bfe_stop(sc); bfe_chip_reset(sc); if (bfe_list_rx_init(sc) == ENOBUFS) { if_printf(ifp, "bfe_init failed. " " Not enough memory for list buffers\n"); bfe_stop(sc); return; } bfe_set_rx_mode(sc); /* Enable the chip and core */ BFE_OR(sc, BFE_ENET_CTRL, BFE_ENET_ENABLE); /* Enable interrupts */ CSR_WRITE_4(sc, BFE_IMASK, BFE_IMASK_DEF); bfe_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->bfe_stat_timer, hz, bfe_tick, sc); } /* * Set media options. */ static int bfe_ifmedia_upd(struct ifnet *ifp) { struct bfe_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->bfe_miibus); sc->bfe_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); bfe_setupphy(sc); return(0); } /* * Report current media status. */ static void bfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bfe_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->bfe_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int bfe_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct bfe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch (command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) if (ifp->if_flags & IFF_RUNNING) bfe_set_rx_mode(sc); else bfe_init(sc); else if (ifp->if_flags & IFF_RUNNING) bfe_stop(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) bfe_set_rx_mode(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->bfe_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return error; } static void bfe_watchdog(struct ifnet *ifp) { struct bfe_softc *sc = ifp->if_softc; if_printf(ifp, "watchdog timeout -- resetting\n"); ifp->if_flags &= ~IFF_RUNNING; bfe_init(sc); ifp->if_oerrors++; } static void bfe_tick(void *xsc) { struct bfe_softc *sc = xsc; struct mii_data *mii; struct ifnet *ifp = &sc->arpcom.ac_if; mii = device_get_softc(sc->bfe_miibus); lwkt_serialize_enter(ifp->if_serializer); bfe_stats_update(sc); callout_reset(&sc->bfe_stat_timer, hz, bfe_tick, sc); if (sc->bfe_link == NULL) { mii_tick(mii); if (!sc->bfe_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->bfe_link++; } if (!sc->bfe_link) sc->bfe_link++; } lwkt_serialize_exit(ifp->if_serializer); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bfe_stop(struct bfe_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; callout_stop(&sc->bfe_stat_timer); bfe_chip_halt(sc); bfe_tx_ring_free(sc); bfe_rx_ring_free(sc); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); }