/* * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/net80211/ieee80211_proto.c,v 1.17.2.9 2006/03/13 03:10:31 sam Exp $ * $DragonFly: src/sys/netproto/802_11/wlan/ieee80211_proto.c,v 1.12 2007/04/26 12:59:14 sephe Exp $ */ /* * IEEE 802.11 protocol support. */ #include "opt_inet.h" #include #include #include #include #include #include #include #include #include /* XXX for ether_sprintf */ #include /* XXX tunables */ #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ #define IEEE80211_RATE2MBS(r) (((r) & IEEE80211_RATE_VAL) / 2) const char *ieee80211_mgt_subtype_name[] = IEEE80211_MGT_SUBTYPE_NAMES; const char *ieee80211_ctl_subtype_name[] = IEEE80211_CTL_SUBTYPE_NAMES; const char *ieee80211_state_name[IEEE80211_S_MAX] = { "INIT", /* IEEE80211_S_INIT */ "SCAN", /* IEEE80211_S_SCAN */ "AUTH", /* IEEE80211_S_AUTH */ "ASSOC", /* IEEE80211_S_ASSOC */ "RUN" /* IEEE80211_S_RUN */ }; const char *ieee80211_wme_acnames[] = { "WME_AC_BE", "WME_AC_BK", "WME_AC_VI", "WME_AC_VO", "WME_UPSD", }; static int ieee80211_newstate(struct ieee80211com *, enum ieee80211_state, int); void ieee80211_proto_attach(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; /* XXX room for crypto */ ifp->if_hdrlen = sizeof(struct ieee80211_qosframe_addr4); ic->ic_rtsthreshold = IEEE80211_RTS_DEFAULT; ic->ic_fragthreshold = IEEE80211_FRAG_DEFAULT; ic->ic_fixed_rate = IEEE80211_FIXED_RATE_NONE; ic->ic_bmiss_max = IEEE80211_BMISS_MAX; callout_init(&ic->ic_swbmiss); ic->ic_mcast_rate = IEEE80211_MCAST_RATE_DEFAULT; ic->ic_protmode = IEEE80211_PROT_CTSONLY; ic->ic_roaming = IEEE80211_ROAMING_AUTO; ic->ic_wme.wme_hipri_switch_hysteresis = AGGRESSIVE_MODE_SWITCH_HYSTERESIS; /* protocol state change handler */ ic->ic_newstate = ieee80211_newstate; /* initialize management frame handlers */ ic->ic_recv_mgmt = ieee80211_recv_mgmt; ic->ic_send_mgmt = ieee80211_send_mgmt; } void ieee80211_proto_detach(struct ieee80211com *ic) { /* * This should not be needed as we detach when reseting * the state but be conservative here since the * authenticator may do things like spawn kernel threads. */ if (ic->ic_auth->ia_detach) ic->ic_auth->ia_detach(ic); ieee80211_drain_mgtq(&ic->ic_mgtq); /* * Detach any ACL'ator. */ if (ic->ic_acl != NULL) ic->ic_acl->iac_detach(ic); } /* * Simple-minded authenticator module support. */ #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) /* XXX well-known names */ static const char *auth_modnames[IEEE80211_AUTH_MAX] = { "wlan_internal", /* IEEE80211_AUTH_NONE */ "wlan_internal", /* IEEE80211_AUTH_OPEN */ "wlan_internal", /* IEEE80211_AUTH_SHARED */ "wlan_xauth", /* IEEE80211_AUTH_8021X */ "wlan_internal", /* IEEE80211_AUTH_AUTO */ "wlan_xauth", /* IEEE80211_AUTH_WPA */ }; static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; static const struct ieee80211_authenticator auth_internal = { .ia_name = "wlan_internal", .ia_attach = NULL, .ia_detach = NULL, .ia_node_join = NULL, .ia_node_leave = NULL, }; /* * Setup internal authenticators once; they are never unregistered. */ static void ieee80211_auth_setup(void) { ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); } SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); const struct ieee80211_authenticator * ieee80211_authenticator_get(int auth) { if (auth >= IEEE80211_AUTH_MAX) return NULL; if (authenticators[auth] == NULL) ieee80211_load_module(auth_modnames[auth]); return authenticators[auth]; } void ieee80211_authenticator_register(int type, const struct ieee80211_authenticator *auth) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = auth; } void ieee80211_authenticator_unregister(int type) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = NULL; } /* * Very simple-minded ACL module support. */ /* XXX just one for now */ static const struct ieee80211_aclator *acl = NULL; void ieee80211_aclator_register(const struct ieee80211_aclator *iac) { kprintf("wlan: %s acl policy registered\n", iac->iac_name); acl = iac; } void ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) { if (acl == iac) acl = NULL; kprintf("wlan: %s acl policy unregistered\n", iac->iac_name); } const struct ieee80211_aclator * ieee80211_aclator_get(const char *name) { if (acl == NULL) ieee80211_load_module("wlan_acl"); return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; } void ieee80211_print_essid(const uint8_t *essid, int len) { const uint8_t *p; int i; if (len > IEEE80211_NWID_LEN) len = IEEE80211_NWID_LEN; /* determine printable or not */ for (i = 0, p = essid; i < len; i++, p++) { if (*p < ' ' || *p > 0x7e) break; } if (i == len) { kprintf("\""); for (i = 0, p = essid; i < len; i++, p++) kprintf("%c", *p); kprintf("\""); } else { kprintf("0x"); for (i = 0, p = essid; i < len; i++, p++) kprintf("%02x", *p); } } void ieee80211_print_rateset(const struct ieee80211_rateset *rs) { int i; for (i = 0; i < rs->rs_nrates; ++i) { kprintf("%d%s ", IEEE80211_RS_RATE(rs, i), (rs->rs_rates[i] & IEEE80211_RATE_BASIC) ? "*" : ""); } } void ieee80211_dump_pkt(const uint8_t *buf, int len, int rate, int rssi) { const struct ieee80211_frame *wh; int i; wh = (const struct ieee80211_frame *)buf; switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: kprintf("NODS %6D", wh->i_addr2, ":"); kprintf("->%6D", wh->i_addr1, ":"); kprintf("(%6D)", wh->i_addr3, ":"); break; case IEEE80211_FC1_DIR_TODS: kprintf("TODS %6D", wh->i_addr2, ":"); kprintf("->%6D", wh->i_addr3, ":"); kprintf("(%6D)", wh->i_addr1, ":"); break; case IEEE80211_FC1_DIR_FROMDS: kprintf("FRDS %6D", wh->i_addr3, ":"); kprintf("->%6D", wh->i_addr1, ":"); kprintf("(%6D)", wh->i_addr2, ":"); break; case IEEE80211_FC1_DIR_DSTODS: kprintf("DSDS %6D", (const uint8_t *)&wh[1], ":"); kprintf("->%6D", wh->i_addr3, ":"); kprintf("(%6D", wh->i_addr2, ":"); kprintf("->%6D)", wh->i_addr1, ":"); break; } switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_DATA: kprintf(" data"); break; case IEEE80211_FC0_TYPE_MGT: kprintf(" %s", ieee80211_mgt_subtype_name[ (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) >> IEEE80211_FC0_SUBTYPE_SHIFT]); break; default: kprintf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); break; } if (wh->i_fc[1] & IEEE80211_FC1_WEP) { int i; kprintf(" WEP [IV"); for (i = 0; i < IEEE80211_WEP_IVLEN; i++) kprintf(" %.02x", buf[sizeof(*wh)+i]); kprintf(" KID %u]", buf[sizeof(*wh)+i] >> 6); } if (rate >= 0) kprintf(" %dM", rate / 2); if (rssi >= 0) kprintf(" +%d", rssi); kprintf("\n"); if (len > 0) { for (i = 0; i < len; i++) { if ((i & 1) == 0) kprintf(" "); kprintf("%02x", buf[i]); } kprintf("\n"); } } int ieee80211_fix_rate(struct ieee80211_node *ni, int flags, int join) { #define RV(v) ((v) & IEEE80211_RATE_VAL) struct ieee80211com *ic = ni->ni_ic; int i, j, ignore, error, nbasicrates; int okrate, badrate, fixedrate; const struct ieee80211_rateset *srs; struct ieee80211_rateset *nrs; uint8_t r; /* * If the fixed rate check was requested but no * fixed has been defined then just remove it. */ if ((flags & IEEE80211_F_DOFRATE) && ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) flags &= ~IEEE80211_F_DOFRATE; error = 0; okrate = badrate = fixedrate = 0; nbasicrates = 0; srs = &ic->ic_sup_rates[ieee80211_chan2mode(ic, ni->ni_chan)]; nrs = &ni->ni_rates; for (i = 0; i < nrs->rs_nrates; ) { ignore = 0; if (flags & IEEE80211_F_DOSORT) { /* * Sort rates. */ for (j = i + 1; j < nrs->rs_nrates; j++) { if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { r = nrs->rs_rates[i]; nrs->rs_rates[i] = nrs->rs_rates[j]; nrs->rs_rates[j] = r; } } /* * Remove duplicated rate */ if (i > 0 && IEEE80211_RS_RATE(nrs, i) == IEEE80211_RS_RATE(nrs, i - 1)) { ignore = 1; goto delit; } } r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; badrate = r; if (flags & IEEE80211_F_DOFRATE) { /* * Check any fixed rate is included. */ if (r == RV(srs->rs_rates[ic->ic_fixed_rate])) fixedrate = r; } if (flags & (IEEE80211_F_DONEGO | IEEE80211_F_DODEL)) { /* * Check against supported rates. */ for (j = 0; j < srs->rs_nrates; j++) { if (r == RV(srs->rs_rates[j])) { /* * Overwrite with the supported rate * value so any basic rate bit is set. */ if ((flags & IEEE80211_F_DONEGO) && !join) { nrs->rs_rates[i] = srs->rs_rates[j]; if (nrs->rs_rates[i] & IEEE80211_RATE_BASIC) nbasicrates++; } break; } } if (j == srs->rs_nrates) { /* * A rate in the node's rate set is not * supported. If this is a basic rate and * we are operating as an STA then this is * an error. */ if ((flags & IEEE80211_F_DONEGO) && join && (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) error++; ignore++; } } if (flags & IEEE80211_F_DODEL) { delit: /* * Delete unacceptable rates. */ if (ignore) { nrs->rs_nrates--; for (j = i; j < nrs->rs_nrates; j++) nrs->rs_rates[j] = nrs->rs_rates[j + 1]; nrs->rs_rates[j] = 0; continue; } } if (!ignore) okrate = nrs->rs_rates[i]; i++; } /* * Prevent STA from associating, if it does not support * all of the rates in the basic rate set. */ if (ic->ic_opmode == IEEE80211_M_HOSTAP && (flags & IEEE80211_F_DONEGO) && !join && ic->ic_nbasicrates > nbasicrates) error++; if (okrate == 0 || error != 0 || ((flags & IEEE80211_F_DOFRATE) && fixedrate == 0)) return badrate | IEEE80211_RATE_BASIC; else return RV(okrate); #undef RV } /* * Reset 11g-related state. */ void ieee80211_reset_erp(struct ieee80211com *ic) { ic->ic_flags &= ~IEEE80211_F_USEPROT; ic->ic_nonerpsta = 0; ic->ic_longslotsta = 0; /* * Short slot time is enabled only when operating in 11g * and not in an IBSS. We must also honor whether or not * the driver is capable of doing it. */ ieee80211_set_shortslottime(ic, ic->ic_curmode == IEEE80211_MODE_11A || (ic->ic_curmode == IEEE80211_MODE_11G && ic->ic_opmode == IEEE80211_M_HOSTAP && (ic->ic_caps & IEEE80211_C_SHSLOT))); /* * Set short preamble and ERP barker-preamble flags. */ ieee80211_set_shortpreamble(ic, ic->ic_curmode == IEEE80211_MODE_11A || (ic->ic_caps & IEEE80211_C_SHPREAMBLE)); } /* * Set the short slot time state and notify the driver. */ void ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) { if (onoff) ic->ic_flags |= IEEE80211_F_SHSLOT; else ic->ic_flags &= ~IEEE80211_F_SHSLOT; /* Notify driver */ if (ic->ic_updateslot != NULL) ic->ic_updateslot(ic->ic_ifp); } /* * Set the short preamble state and notify driver. */ void ieee80211_set_shortpreamble(struct ieee80211com *ic, int onoff) { if (onoff) { ic->ic_flags |= IEEE80211_F_SHPREAMBLE; ic->ic_flags &= ~IEEE80211_F_USEBARKER; } else { ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; ic->ic_flags |= IEEE80211_F_USEBARKER; } /* Notify driver */ if (ic->ic_update_preamble != NULL) ic->ic_update_preamble(ic->ic_ifp); } /* * Check if the specified rate set supports ERP. * NB: the rate set is assumed to be sorted. */ int ieee80211_iserp_rateset(struct ieee80211com *ic, const struct ieee80211_rateset *rs) { #define N(a) (sizeof(a) / sizeof(a[0])) static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; int i, j; if (rs->rs_nrates < N(rates)) return 0; for (i = 0; i < N(rates); i++) { for (j = 0; j < rs->rs_nrates; j++) { int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; if (rates[i] == r) goto next; if (r > rates[i]) return 0; } return 0; next: ; } return 1; #undef N } /* * Mark the basic rates for the 11g rate table based on the * operating mode. For real 11g we mark all the 11b rates * and 6, 12, and 24 OFDM. For 11b compatibility we mark only * 11b rates. There's also a pseudo 11a-mode used to mark only * the basic OFDM rates. */ void ieee80211_set_basicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode, int pureg) { static const struct ieee80211_rateset basic[] = { [IEEE80211_MODE_AUTO] = { 0 }, [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, [IEEE80211_MODE_FH] = { 0 }, [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } } }; static const struct ieee80211_rateset basic_pureg = { 7, { 2, 4, 11, 22, 12, 24, 48 } }; const struct ieee80211_rateset *basic_rs; int i, j; KASSERT(mode < IEEE80211_MODE_MAX, ("invalid phymode %u\n", mode)); if ((mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_TURBO_G) && pureg) basic_rs = &basic_pureg; else basic_rs = &basic[mode]; for (i = 0; i < rs->rs_nrates; i++) { rs->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < basic_rs->rs_nrates; j++) { if (basic_rs->rs_rates[j] == rs->rs_rates[i]) { rs->rs_rates[i] |= IEEE80211_RATE_BASIC; break; } } } } int ieee80211_copy_basicrates(struct ieee80211_rateset *to, const struct ieee80211_rateset *from) { int i, nbasicrates = 0; for (i = 0; i < to->rs_nrates; ++i) { int j; to->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < from->rs_nrates; ++j) { if ((from->rs_rates[j] & IEEE80211_RATE_BASIC) && IEEE80211_RS_RATE(from, j) == to->rs_rates[i]) { to->rs_rates[i] |= IEEE80211_RATE_BASIC; ++nbasicrates; break; } } } return nbasicrates; } /* * WME protocol support. The following parameters come from the spec. */ typedef struct phyParamType { uint8_t aifsn; uint8_t logcwmin; uint8_t logcwmax; uint16_t txopLimit; uint8_t acm; } paramType; static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { { 3, 4, 6 }, /* IEEE80211_MODE_AUTO */ { 3, 4, 6 }, /* IEEE80211_MODE_11A */ { 3, 5, 7 }, /* IEEE80211_MODE_11B */ { 3, 4, 6 }, /* IEEE80211_MODE_11G */ { 3, 5, 7 }, /* IEEE80211_MODE_FH */ { 2, 3, 5 }, /* IEEE80211_MODE_TURBO_A */ { 2, 3, 5 }, /* IEEE80211_MODE_TURBO_G */ }; static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { { 7, 4, 10 }, /* IEEE80211_MODE_AUTO */ { 7, 4, 10 }, /* IEEE80211_MODE_11A */ { 7, 5, 10 }, /* IEEE80211_MODE_11B */ { 7, 4, 10 }, /* IEEE80211_MODE_11G */ { 7, 5, 10 }, /* IEEE80211_MODE_FH */ { 7, 3, 10 }, /* IEEE80211_MODE_TURBO_A */ { 7, 3, 10 }, /* IEEE80211_MODE_TURBO_G */ }; static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { { 1, 3, 4, 94 }, /* IEEE80211_MODE_AUTO */ { 1, 3, 4, 94 }, /* IEEE80211_MODE_11A */ { 1, 4, 5, 188 }, /* IEEE80211_MODE_11B */ { 1, 3, 4, 94 }, /* IEEE80211_MODE_11G */ { 1, 4, 5, 188 }, /* IEEE80211_MODE_FH */ { 1, 2, 3, 94 }, /* IEEE80211_MODE_TURBO_A */ { 1, 2, 3, 94 }, /* IEEE80211_MODE_TURBO_G */ }; static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { { 1, 2, 3, 47 }, /* IEEE80211_MODE_AUTO */ { 1, 2, 3, 47 }, /* IEEE80211_MODE_11A */ { 1, 3, 4, 102 }, /* IEEE80211_MODE_11B */ { 1, 2, 3, 47 }, /* IEEE80211_MODE_11G */ { 1, 3, 4, 102 }, /* IEEE80211_MODE_FH */ { 1, 2, 2, 47 }, /* IEEE80211_MODE_TURBO_A */ { 1, 2, 2, 47 }, /* IEEE80211_MODE_TURBO_G */ }; static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { { 3, 4, 10 }, /* IEEE80211_MODE_AUTO */ { 3, 4, 10 }, /* IEEE80211_MODE_11A */ { 3, 5, 10 }, /* IEEE80211_MODE_11B */ { 3, 4, 10 }, /* IEEE80211_MODE_11G */ { 3, 5, 10 }, /* IEEE80211_MODE_FH */ { 2, 3, 10 }, /* IEEE80211_MODE_TURBO_A */ { 2, 3, 10 }, /* IEEE80211_MODE_TURBO_G */ }; static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { { 2, 3, 4, 94 }, /* IEEE80211_MODE_AUTO */ { 2, 3, 4, 94 }, /* IEEE80211_MODE_11A */ { 2, 4, 5, 188 }, /* IEEE80211_MODE_11B */ { 2, 3, 4, 94 }, /* IEEE80211_MODE_11G */ { 2, 4, 5, 188 }, /* IEEE80211_MODE_FH */ { 2, 2, 3, 94 }, /* IEEE80211_MODE_TURBO_A */ { 2, 2, 3, 94 }, /* IEEE80211_MODE_TURBO_G */ }; static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { { 2, 2, 3, 47 }, /* IEEE80211_MODE_AUTO */ { 2, 2, 3, 47 }, /* IEEE80211_MODE_11A */ { 2, 3, 4, 102 }, /* IEEE80211_MODE_11B */ { 2, 2, 3, 47 }, /* IEEE80211_MODE_11G */ { 2, 3, 4, 102 }, /* IEEE80211_MODE_FH */ { 1, 2, 2, 47 }, /* IEEE80211_MODE_TURBO_A */ { 1, 2, 2, 47 }, /* IEEE80211_MODE_TURBO_G */ }; void ieee80211_wme_initparams(struct ieee80211com *ic) { struct ieee80211_wme_state *wme = &ic->ic_wme; const paramType *pPhyParam, *pBssPhyParam; struct wmeParams *wmep; int i; if ((ic->ic_caps & IEEE80211_C_WME) == 0) return; for (i = 0; i < WME_NUM_AC; i++) { switch (i) { case WME_AC_BK: pPhyParam = &phyParamForAC_BK[ic->ic_curmode]; pBssPhyParam = &phyParamForAC_BK[ic->ic_curmode]; break; case WME_AC_VI: pPhyParam = &phyParamForAC_VI[ic->ic_curmode]; pBssPhyParam = &bssPhyParamForAC_VI[ic->ic_curmode]; break; case WME_AC_VO: pPhyParam = &phyParamForAC_VO[ic->ic_curmode]; pBssPhyParam = &bssPhyParamForAC_VO[ic->ic_curmode]; break; case WME_AC_BE: default: pPhyParam = &phyParamForAC_BE[ic->ic_curmode]; pBssPhyParam = &bssPhyParamForAC_BE[ic->ic_curmode]; break; } wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; if (ic->ic_opmode == IEEE80211_M_HOSTAP) { wmep->wmep_acm = pPhyParam->acm; wmep->wmep_aifsn = pPhyParam->aifsn; wmep->wmep_logcwmin = pPhyParam->logcwmin; wmep->wmep_logcwmax = pPhyParam->logcwmax; wmep->wmep_txopLimit = pPhyParam->txopLimit; } else { wmep->wmep_acm = pBssPhyParam->acm; wmep->wmep_aifsn = pBssPhyParam->aifsn; wmep->wmep_logcwmin = pBssPhyParam->logcwmin; wmep->wmep_logcwmax = pBssPhyParam->logcwmax; wmep->wmep_txopLimit = pBssPhyParam->txopLimit; } IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, "%s: %s chan [acm %u aifsn %u log2(cwmin) %u " "log2(cwmax) %u txpoLimit %u]\n", __func__ , ieee80211_wme_acnames[i] , wmep->wmep_acm , wmep->wmep_aifsn , wmep->wmep_logcwmin , wmep->wmep_logcwmax , wmep->wmep_txopLimit ); wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; wmep->wmep_acm = pBssPhyParam->acm; wmep->wmep_aifsn = pBssPhyParam->aifsn; wmep->wmep_logcwmin = pBssPhyParam->logcwmin; wmep->wmep_logcwmax = pBssPhyParam->logcwmax; wmep->wmep_txopLimit = pBssPhyParam->txopLimit; IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, "%s: %s bss [acm %u aifsn %u log2(cwmin) %u " "log2(cwmax) %u txpoLimit %u]\n", __func__ , ieee80211_wme_acnames[i] , wmep->wmep_acm , wmep->wmep_aifsn , wmep->wmep_logcwmin , wmep->wmep_logcwmax , wmep->wmep_txopLimit ); } /* NB: check ic_bss to avoid NULL deref on initial attach */ if (ic->ic_bss != NULL) { /* * Calculate agressive mode switching threshold based * on beacon interval. This doesn't need locking since * we're only called before entering the RUN state at * which point we start sending beacon frames. */ wme->wme_hipri_switch_thresh = (HIGH_PRI_SWITCH_THRESH * ic->ic_bss->ni_intval) / 100; ieee80211_wme_updateparams(ic); } } /* * Update WME parameters for ourself and the BSS. */ void ieee80211_wme_updateparams(struct ieee80211com *ic) { static const paramType phyParam[IEEE80211_MODE_MAX] = { { 2, 4, 10, 64 }, /* IEEE80211_MODE_AUTO */ { 2, 4, 10, 64 }, /* IEEE80211_MODE_11A */ { 2, 5, 10, 64 }, /* IEEE80211_MODE_11B */ { 2, 4, 10, 64 }, /* IEEE80211_MODE_11G */ { 2, 5, 10, 64 }, /* IEEE80211_MODE_FH */ { 1, 3, 10, 64 }, /* IEEE80211_MODE_TURBO_A */ { 1, 3, 10, 64 }, /* IEEE80211_MODE_TURBO_G */ }; struct ieee80211_wme_state *wme = &ic->ic_wme; const struct wmeParams *wmep; struct wmeParams *chanp, *bssp; int i; ASSERT_SERIALIZED(ic->ic_ifp->if_serializer); if ((ic->ic_caps & IEEE80211_C_WME) == 0) return; /* set up the channel access parameters for the physical device */ for (i = 0; i < WME_NUM_AC; i++) { chanp = &wme->wme_chanParams.cap_wmeParams[i]; wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; chanp->wmep_aifsn = wmep->wmep_aifsn; chanp->wmep_logcwmin = wmep->wmep_logcwmin; chanp->wmep_logcwmax = wmep->wmep_logcwmax; chanp->wmep_txopLimit = wmep->wmep_txopLimit; chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; chanp->wmep_aifsn = wmep->wmep_aifsn; chanp->wmep_logcwmin = wmep->wmep_logcwmin; chanp->wmep_logcwmax = wmep->wmep_logcwmax; chanp->wmep_txopLimit = wmep->wmep_txopLimit; } /* * This implements agressive mode as found in certain * vendors' AP's. When there is significant high * priority (VI/VO) traffic in the BSS throttle back BE * traffic by using conservative parameters. Otherwise * BE uses agressive params to optimize performance of * legacy/non-QoS traffic. */ if ((ic->ic_opmode == IEEE80211_M_HOSTAP && (wme->wme_flags & WME_F_AGGRMODE) != 0) || (ic->ic_opmode == IEEE80211_M_STA && (ic->ic_bss->ni_flags & IEEE80211_NODE_QOS) == 0) || (ic->ic_flags & IEEE80211_F_WME) == 0) { chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; chanp->wmep_aifsn = bssp->wmep_aifsn = phyParam[ic->ic_curmode].aifsn; chanp->wmep_logcwmin = bssp->wmep_logcwmin = phyParam[ic->ic_curmode].logcwmin; chanp->wmep_logcwmax = bssp->wmep_logcwmax = phyParam[ic->ic_curmode].logcwmax; chanp->wmep_txopLimit = bssp->wmep_txopLimit = (ic->ic_flags & IEEE80211_F_BURST) ? phyParam[ic->ic_curmode].txopLimit : 0; IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, "%s: %s [acm %u aifsn %u log2(cwmin) %u " "log2(cwmax) %u txpoLimit %u]\n", __func__ , ieee80211_wme_acnames[WME_AC_BE] , chanp->wmep_acm , chanp->wmep_aifsn , chanp->wmep_logcwmin , chanp->wmep_logcwmax , chanp->wmep_txopLimit ); } if (ic->ic_opmode == IEEE80211_M_HOSTAP && ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 3, /* IEEE80211_MODE_AUTO */ 3, /* IEEE80211_MODE_11A */ 4, /* IEEE80211_MODE_11B */ 3, /* IEEE80211_MODE_11G */ 4, /* IEEE80211_MODE_FH */ 3, /* IEEE80211_MODE_TURBO_A */ 3, /* IEEE80211_MODE_TURBO_G */ }; chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[ic->ic_curmode]; IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, "%s: %s log2(cwmin) %u\n", __func__ , ieee80211_wme_acnames[WME_AC_BE] , chanp->wmep_logcwmin ); } if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* XXX ibss? */ /* * Arrange for a beacon update and bump the parameter * set number so associated stations load the new values. */ wme->wme_bssChanParams.cap_info = (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; ic->ic_flags |= IEEE80211_F_WMEUPDATE; } wme->wme_update(ic); IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, "%s: WME params updated, cap_info 0x%x\n", __func__, ic->ic_opmode == IEEE80211_M_STA ? wme->wme_wmeChanParams.cap_info : wme->wme_bssChanParams.cap_info); } void ieee80211_beacon_miss(struct ieee80211com *ic) { if (ic->ic_flags & IEEE80211_F_SCAN) { /* XXX check ic_curchan != ic_bsschan? */ return; } IEEE80211_DPRINTF(ic, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "%s\n", "beacon miss"); /* * Our handling is only meaningful for stations that are * associated; any other conditions else will be handled * through different means (e.g. the tx timeout on mgt frames). */ if (ic->ic_opmode != IEEE80211_M_STA || ic->ic_state != IEEE80211_S_RUN) return; if (++ic->ic_bmiss_count < ic->ic_bmiss_max) { /* * Send a directed probe req before falling back to a scan; * if we receive a response ic_bmiss_count will be reset. * Some cards mistakenly report beacon miss so this avoids * the expensive scan if the ap is still there. */ ieee80211_send_probereq(ic->ic_bss, ic->ic_myaddr, ic->ic_bss->ni_bssid, ic->ic_bss->ni_bssid, ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen, ic->ic_opt_ie, ic->ic_opt_ie_len); return; } ic->ic_bmiss_count = 0; ieee80211_new_state(ic, IEEE80211_S_SCAN, 0); } /* * Software beacon miss handling. Check if any beacons * were received in the last period. If not post a * beacon miss; otherwise reset the counter. */ static void ieee80211_swbmiss(void *arg) { struct ieee80211com *ic = arg; struct ifnet *ifp = ic->ic_ifp; ifnet_serialize_all(ifp); if (ic->ic_swbmiss_count == 0) { ieee80211_beacon_miss(ic); if (ic->ic_bmiss_count == 0) /* don't re-arm timer */ goto back; } else ic->ic_swbmiss_count = 0; callout_reset(&ic->ic_swbmiss, ic->ic_swbmiss_period, ieee80211_swbmiss, ic); back: ifnet_deserialize_all(ifp); } static void sta_disconnect(void *arg, struct ieee80211_node *ni) { struct ieee80211com *ic = arg; if (ni->ni_associd != 0) { IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_DISASSOC, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_node_leave(ic, ni); } else if (ni->ni_flags & IEEE80211_NODE_AREF) { IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_node_leave(ic, ni); } } void ieee80211_reset_state(struct ieee80211com *ic, enum ieee80211_state cur_state) { struct ieee80211_node *ni; IEEE80211_DPRINTF(ic, IEEE80211_MSG_STATE, "%s reset internal state machine (%s)\n", __func__, ieee80211_state_name[cur_state]); ni = ic->ic_bss; KASSERT(ni != NULL, ("empty ic_bss\n")); switch (cur_state) { case IEEE80211_S_INIT: break; case IEEE80211_S_RUN: switch (ic->ic_opmode) { case IEEE80211_M_STA: /* * Avoid sending disassoc to self. This could happen * when operational mode is switched directly from * HOSTAP/IBSS to STA. */ if (!IEEE80211_ADDR_EQ(ic->ic_myaddr, ni->ni_macaddr)) { IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_DISASSOC, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_sta_leave(ic, ni); } break; case IEEE80211_M_HOSTAP: ieee80211_iterate_nodes(&ic->ic_sta, sta_disconnect, ic); break; default: break; } break; case IEEE80211_S_ASSOC: switch (ic->ic_opmode) { case IEEE80211_M_STA: /* * Avoid sending deauth to self. */ if (!IEEE80211_ADDR_EQ(ic->ic_myaddr, ni->ni_macaddr)) { IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_AUTH_LEAVE); } break; default: break; } break; case IEEE80211_S_SCAN: ieee80211_cancel_scan(ic); /* FALL THROUGH */ case IEEE80211_S_AUTH: break; } ieee80211_drain_mgtq(&ic->ic_mgtq); ieee80211_reset_bss(ic); } static int ieee80211_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct ieee80211_node *ni; enum ieee80211_state ostate; ostate = ic->ic_state; IEEE80211_DPRINTF(ic, IEEE80211_MSG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); ic->ic_state = nstate; /* state transition */ ni = ic->ic_bss; /* NB: no reference held */ if (ic->ic_flags_ext & IEEE80211_FEXT_SWBMISS) callout_stop(&ic->ic_swbmiss); switch (nstate) { case IEEE80211_S_INIT: ieee80211_reset_state(ic, ostate); ic->ic_mgt_timer = 0; if (ic->ic_auth->ia_detach != NULL) ic->ic_auth->ia_detach(ic); break; case IEEE80211_S_SCAN: switch (ostate) { case IEEE80211_S_INIT: if ((ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_AHDEMO) && ic->ic_des_chan != IEEE80211_CHAN_ANYC) { /* * AP operation and we already have a channel; * bypass the scan and startup immediately. */ ieee80211_create_ibss(ic, ic->ic_des_chan); } else { ieee80211_begin_scan(ic, arg); } break; case IEEE80211_S_SCAN: /* * Scan next. If doing an active scan probe * for the requested ap (if any). */ if (ic->ic_flags & IEEE80211_F_ASCAN) ieee80211_probe_curchan(ic, 0); break; case IEEE80211_S_RUN: /* beacon miss */ IEEE80211_DPRINTF(ic, IEEE80211_MSG_STATE, "no recent beacons from %6D; rescanning\n", ic->ic_bss->ni_bssid, ":"); ieee80211_sta_leave(ic, ni); ic->ic_flags &= ~IEEE80211_F_SIBSS; /* XXX */ /* FALLTHRU */ case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: /* timeout restart scan */ ni = ieee80211_find_node(&ic->ic_scan, ic->ic_bss->ni_macaddr); if (ni != NULL) { ni->ni_fails++; ieee80211_unref_node(&ni); } if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) ieee80211_begin_scan(ic, arg); break; } break; case IEEE80211_S_AUTH: switch (ostate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: switch (arg) { case IEEE80211_FC0_SUBTYPE_AUTH: /* ??? */ IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: /* ignore and retry scan on timeout */ break; } break; case IEEE80211_S_RUN: switch (arg) { case IEEE80211_FC0_SUBTYPE_AUTH: IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); ic->ic_state = ostate; /* stay RUN */ break; case IEEE80211_FC0_SUBTYPE_DEAUTH: ieee80211_sta_leave(ic, ni); if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) { /* try to reauth */ IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); } break; } break; } break; case IEEE80211_S_ASSOC: switch (ostate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: case IEEE80211_S_ASSOC: IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, "%s: invalid transition\n", __func__); break; case IEEE80211_S_AUTH: IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); break; case IEEE80211_S_RUN: ieee80211_sta_leave(ic, ni); if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) { IEEE80211_SEND_MGMT(ic, ni, IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 1); } break; } break; case IEEE80211_S_RUN: if (ic->ic_flags & IEEE80211_F_WPA) { /* XXX validate prerequisites */ } switch (ostate) { case IEEE80211_S_INIT: if (ic->ic_opmode == IEEE80211_M_MONITOR) break; /* fall thru... */ case IEEE80211_S_AUTH: IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, "%s: invalid transition\n", __func__); /* fall thru... */ case IEEE80211_S_RUN: break; case IEEE80211_S_SCAN: /* adhoc/hostap mode */ case IEEE80211_S_ASSOC: /* infra mode */ KASSERT(ni->ni_txrate < ni->ni_rates.rs_nrates, ("%s: bogus xmit rate %u setup\n", __func__, ni->ni_txrate)); #ifdef IEEE80211_DEBUG if (ieee80211_msg_debug(ic)) { if (ic->ic_opmode == IEEE80211_M_STA) if_printf(ifp, "associated "); else if_printf(ifp, "synchronized "); kprintf("with %6D ssid ", ni->ni_bssid, ":"); ieee80211_print_essid(ic->ic_bss->ni_essid, ni->ni_esslen); kprintf(" channel %d start %uMb\n", ieee80211_chan2ieee(ic, ic->ic_curchan), IEEE80211_RATE2MBS(ni->ni_rates.rs_rates[ni->ni_txrate])); } #endif ic->ic_mgt_timer = 0; if (ic->ic_opmode == IEEE80211_M_STA) ieee80211_notify_node_join(ic, ni, arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); ifp->if_start(ifp); /* XXX not authorized yet */ break; } if (ostate != IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA && (ic->ic_flags_ext & IEEE80211_FEXT_SWBMISS)) { /* * Start s/w beacon miss timer for devices w/o * hardware support. We fudge a bit here since * we're doing this in software. */ ic->ic_swbmiss_period = IEEE80211_TU_TO_TICKS( 2 * ic->ic_bmissthreshold * ni->ni_intval); ic->ic_swbmiss_count = 0; callout_reset(&ic->ic_swbmiss, ic->ic_swbmiss_period, ieee80211_swbmiss, ic); } /* * Start/stop the authenticator when operating as an * AP. We delay until here to allow configuration to * happen out of order. */ if (ic->ic_opmode == IEEE80211_M_HOSTAP && /* XXX IBSS/AHDEMO */ ic->ic_auth->ia_attach != NULL) { /* XXX check failure */ ic->ic_auth->ia_attach(ic); } else if (ic->ic_auth->ia_detach != NULL) { ic->ic_auth->ia_detach(ic); } /* * When 802.1x is not in use mark the port authorized * at this point so traffic can flow. */ if (ni->ni_authmode != IEEE80211_AUTH_8021X) ieee80211_node_authorize(ni); /* * Enable inactivity processing. * XXX */ ic->ic_scan.nt_inact_timer = IEEE80211_INACT_WAIT; ic->ic_sta.nt_inact_timer = IEEE80211_INACT_WAIT; break; } return 0; }