/*- * Copyright (c) 2006-2007 Broadcom Corporation * David Christensen . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Broadcom Corporation nor the name of its contributors * may be used to endorse or promote products derived from this software * without specific prior written consent. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/bce/if_bce.c,v 1.31 2007/05/16 23:34:11 davidch Exp $ */ /* * The following controllers are supported by this driver: * BCM5706C A2, A3 * BCM5706S A2, A3 * BCM5708C B1, B2 * BCM5708S B1, B2 * BCM5709C A1, B2, C0 * BCM5716 C0 * * The following controllers are not supported by this driver: * BCM5706C A0, A1 * BCM5706S A0, A1 * BCM5708C A0, B0 * BCM5708S A0, B0 * BCM5709C A0, B0, B1 * BCM5709S A0, A1, B0, B1, B2, C0 * * * Note about MSI-X on 5709/5716: * - 9 MSI-X vectors are supported. * - MSI-X vectors, RX/TX rings and status blocks' association * are fixed: * o The first RX ring and the first TX ring use the first * status block. * o The first MSI-X vector is associated with the first * status block. * o The second RX ring and the second TX ring use the second * status block. * o The second MSI-X vector is associated with the second * status block. * ... * and so on so forth. * - Status blocks must reside in physically contiguous memory * and each status block consumes 128bytes. In addition to * this, the memory for the status blocks is aligned on 128bytes * in this driver. (see bce_dma_alloc() and HC_CONFIG) * - Each status block has its own coalesce parameters, which also * serve as the related MSI-X vector's interrupt moderation * parameters. (see bce_coal_change()) */ #include "opt_bce.h" #include "opt_ifpoll.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miibus_if.h" #include #include #define BCE_MSI_CKINTVL ((10 * hz) / 1000) /* 10ms */ #ifdef BCE_RSS_DEBUG #define BCE_RSS_DPRINTF(sc, lvl, fmt, ...) \ do { \ if (sc->rss_debug >= lvl) \ if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \ } while (0) #else /* !BCE_RSS_DEBUG */ #define BCE_RSS_DPRINTF(sc, lvl, fmt, ...) ((void)0) #endif /* BCE_RSS_DEBUG */ /****************************************************************************/ /* PCI Device ID Table */ /* */ /* Used by bce_probe() to identify the devices supported by this driver. */ /****************************************************************************/ #define BCE_DEVDESC_MAX 64 static struct bce_type bce_devs[] = { /* BCM5706C Controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101, "HP NC370T Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106, "HP NC370i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070, "HP NC380T PCIe DP Multifunc Gig Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709, "HP NC371i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID, "Broadcom NetXtreme II BCM5706 1000Base-T" }, /* BCM5706S controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102, "HP NC370F Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID, "Broadcom NetXtreme II BCM5706 1000Base-SX" }, /* BCM5708C controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037, "HP NC373T PCIe Multifunction Gig Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038, "HP NC373i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045, "HP NC374m PCIe Multifunction Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID, "Broadcom NetXtreme II BCM5708 1000Base-T" }, /* BCM5708S controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706, "HP NC373m Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b, "HP NC373i Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d, "HP NC373F PCIe Multifunc Giga Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID, "Broadcom NetXtreme II BCM5708S 1000Base-T" }, /* BCM5709C controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055, "HP NC382i DP Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059, "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID, "Broadcom NetXtreme II BCM5709 1000Base-T" }, /* BCM5709S controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d, "HP NC382m DP 1GbE Multifunction BL-c Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056, "HP NC382i DP Multifunction Gigabit Server Adapter" }, { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID, "Broadcom NetXtreme II BCM5709 1000Base-SX" }, /* BCM5716 controllers and OEM boards. */ { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID, "Broadcom NetXtreme II BCM5716 1000Base-T" }, { 0, 0, 0, 0, NULL } }; /****************************************************************************/ /* Supported Flash NVRAM device data. */ /****************************************************************************/ static const struct flash_spec flash_table[] = { #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE) #define NONBUFFERED_FLAGS (BCE_NV_WREN) /* Slow EEPROM */ {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - slow"}, /* Expansion entry 0001 */ {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0001"}, /* Saifun SA25F010 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, "Non-buffered flash (128kB)"}, /* Saifun SA25F020 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, "Non-buffered flash (256kB)"}, /* Expansion entry 0100 */ {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 0100"}, /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, /* Entry 0110: ST M45PE20 (non-buffered flash)*/ {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, /* Saifun SA25F005 (non-buffered flash) */ /* strap, cfg1, & write1 need updates */ {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, "Non-buffered flash (64kB)"}, /* Fast EEPROM */ {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, "EEPROM - fast"}, /* Expansion entry 1001 */ {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1001"}, /* Expansion entry 1010 */ {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1010"}, /* ATMEL AT45DB011B (buffered flash) */ {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, "Buffered flash (128kB)"}, /* Expansion entry 1100 */ {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1100"}, /* Expansion entry 1101 */ {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, SAIFUN_FLASH_BYTE_ADDR_MASK, 0, "Entry 1101"}, /* Ateml Expansion entry 1110 */ {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, 0, "Entry 1110 (Atmel)"}, /* ATMEL AT45DB021B (buffered flash) */ {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, "Buffered flash (256kB)"}, }; /* * The BCM5709 controllers transparently handle the * differences between Atmel 264 byte pages and all * flash devices which use 256 byte pages, so no * logical-to-physical mapping is required in the * driver. */ static struct flash_spec flash_5709 = { .flags = BCE_NV_BUFFERED, .page_bits = BCM5709_FLASH_PAGE_BITS, .page_size = BCM5709_FLASH_PAGE_SIZE, .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, .name = "5709/5716 buffered flash (256kB)", }; /****************************************************************************/ /* DragonFly device entry points. */ /****************************************************************************/ static int bce_probe(device_t); static int bce_attach(device_t); static int bce_detach(device_t); static void bce_shutdown(device_t); static int bce_miibus_read_reg(device_t, int, int); static int bce_miibus_write_reg(device_t, int, int, int); static void bce_miibus_statchg(device_t); /****************************************************************************/ /* BCE Register/Memory Access Routines */ /****************************************************************************/ static uint32_t bce_reg_rd_ind(struct bce_softc *, uint32_t); static void bce_reg_wr_ind(struct bce_softc *, uint32_t, uint32_t); static void bce_shmem_wr(struct bce_softc *, uint32_t, uint32_t); static uint32_t bce_shmem_rd(struct bce_softc *, u32); static void bce_ctx_wr(struct bce_softc *, uint32_t, uint32_t, uint32_t); /****************************************************************************/ /* BCE NVRAM Access Routines */ /****************************************************************************/ static int bce_acquire_nvram_lock(struct bce_softc *); static int bce_release_nvram_lock(struct bce_softc *); static void bce_enable_nvram_access(struct bce_softc *); static void bce_disable_nvram_access(struct bce_softc *); static int bce_nvram_read_dword(struct bce_softc *, uint32_t, uint8_t *, uint32_t); static int bce_init_nvram(struct bce_softc *); static int bce_nvram_read(struct bce_softc *, uint32_t, uint8_t *, int); static int bce_nvram_test(struct bce_softc *); /****************************************************************************/ /* BCE DMA Allocate/Free Routines */ /****************************************************************************/ static int bce_dma_alloc(struct bce_softc *); static void bce_dma_free(struct bce_softc *); static void bce_dma_map_addr(void *, bus_dma_segment_t *, int, int); /****************************************************************************/ /* BCE Firmware Synchronization and Load */ /****************************************************************************/ static int bce_fw_sync(struct bce_softc *, uint32_t); static void bce_load_rv2p_fw(struct bce_softc *, uint32_t *, uint32_t, uint32_t); static void bce_load_cpu_fw(struct bce_softc *, struct cpu_reg *, struct fw_info *); static void bce_start_cpu(struct bce_softc *, struct cpu_reg *); static void bce_halt_cpu(struct bce_softc *, struct cpu_reg *); static void bce_start_rxp_cpu(struct bce_softc *); static void bce_init_rxp_cpu(struct bce_softc *); static void bce_init_txp_cpu(struct bce_softc *); static void bce_init_tpat_cpu(struct bce_softc *); static void bce_init_cp_cpu(struct bce_softc *); static void bce_init_com_cpu(struct bce_softc *); static void bce_init_cpus(struct bce_softc *); static void bce_setup_msix_table(struct bce_softc *); static void bce_init_rss(struct bce_softc *); static void bce_stop(struct bce_softc *); static int bce_reset(struct bce_softc *, uint32_t); static int bce_chipinit(struct bce_softc *); static int bce_blockinit(struct bce_softc *); static void bce_probe_pci_caps(struct bce_softc *); static void bce_print_adapter_info(struct bce_softc *); static void bce_get_media(struct bce_softc *); static void bce_mgmt_init(struct bce_softc *); static int bce_init_ctx(struct bce_softc *); static void bce_get_mac_addr(struct bce_softc *); static void bce_set_mac_addr(struct bce_softc *); static void bce_set_rx_mode(struct bce_softc *); static void bce_coal_change(struct bce_softc *); static void bce_npoll_coal_change(struct bce_softc *); static void bce_setup_serialize(struct bce_softc *); static void bce_serialize_skipmain(struct bce_softc *); static void bce_deserialize_skipmain(struct bce_softc *); static void bce_set_timer_cpuid(struct bce_softc *, boolean_t); static int bce_alloc_intr(struct bce_softc *); static void bce_free_intr(struct bce_softc *); static void bce_try_alloc_msix(struct bce_softc *); static void bce_free_msix(struct bce_softc *, boolean_t); static void bce_setup_ring_cnt(struct bce_softc *); static int bce_setup_intr(struct bce_softc *); static void bce_teardown_intr(struct bce_softc *); static int bce_setup_msix(struct bce_softc *); static void bce_teardown_msix(struct bce_softc *, int); static int bce_create_tx_ring(struct bce_tx_ring *); static void bce_destroy_tx_ring(struct bce_tx_ring *); static void bce_init_tx_context(struct bce_tx_ring *); static int bce_init_tx_chain(struct bce_tx_ring *); static void bce_free_tx_chain(struct bce_tx_ring *); static void bce_xmit(struct bce_tx_ring *); static int bce_encap(struct bce_tx_ring *, struct mbuf **, int *); static int bce_tso_setup(struct bce_tx_ring *, struct mbuf **, uint16_t *, uint16_t *); static int bce_create_rx_ring(struct bce_rx_ring *); static void bce_destroy_rx_ring(struct bce_rx_ring *); static void bce_init_rx_context(struct bce_rx_ring *); static int bce_init_rx_chain(struct bce_rx_ring *); static void bce_free_rx_chain(struct bce_rx_ring *); static int bce_newbuf_std(struct bce_rx_ring *, uint16_t *, uint16_t, uint32_t *, int); static void bce_setup_rxdesc_std(struct bce_rx_ring *, uint16_t, uint32_t *); static void bce_start(struct ifnet *, struct ifaltq_subque *); static int bce_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void bce_watchdog(struct ifaltq_subque *); static int bce_ifmedia_upd(struct ifnet *); static void bce_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void bce_init(void *); #ifdef IFPOLL_ENABLE static void bce_npoll(struct ifnet *, struct ifpoll_info *); static void bce_npoll_rx(struct ifnet *, void *, int); static void bce_npoll_tx(struct ifnet *, void *, int); static void bce_npoll_status(struct ifnet *); static void bce_npoll_rx_pack(struct ifnet *, void *, int); #endif static void bce_serialize(struct ifnet *, enum ifnet_serialize); static void bce_deserialize(struct ifnet *, enum ifnet_serialize); static int bce_tryserialize(struct ifnet *, enum ifnet_serialize); #ifdef INVARIANTS static void bce_serialize_assert(struct ifnet *, enum ifnet_serialize, boolean_t); #endif static void bce_intr(struct bce_softc *); static void bce_intr_legacy(void *); static void bce_intr_msi(void *); static void bce_intr_msi_oneshot(void *); static void bce_intr_msix_rxtx(void *); static void bce_intr_msix_rx(void *); static void bce_tx_intr(struct bce_tx_ring *, uint16_t); static void bce_rx_intr(struct bce_rx_ring *, int, uint16_t); static void bce_phy_intr(struct bce_softc *); static void bce_disable_intr(struct bce_softc *); static void bce_enable_intr(struct bce_softc *); static void bce_reenable_intr(struct bce_rx_ring *); static void bce_check_msi(void *); static void bce_stats_update(struct bce_softc *); static void bce_tick(void *); static void bce_tick_serialized(struct bce_softc *); static void bce_pulse(void *); static void bce_add_sysctls(struct bce_softc *); static int bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS); static int bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS); static int bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS); static int bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS); static int bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS); static int bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS); static int bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS); static int bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS); #ifdef IFPOLL_ENABLE static int bce_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS); #endif static int bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t); /* * NOTE: * Don't set bce_tx_ticks_int/bce_tx_ticks to 1023. Linux's bnx2 * takes 1023 as the TX ticks limit. However, using 1023 will * cause 5708(B2) to generate extra interrupts (~2000/s) even when * there is _no_ network activity on the NIC. */ static uint32_t bce_tx_bds_int = 255; /* bcm: 20 */ static uint32_t bce_tx_bds = 255; /* bcm: 20 */ static uint32_t bce_tx_ticks_int = 1022; /* bcm: 80 */ static uint32_t bce_tx_ticks = 1022; /* bcm: 80 */ static uint32_t bce_rx_bds_int = 128; /* bcm: 6 */ static uint32_t bce_rx_bds = 0; /* bcm: 6 */ static uint32_t bce_rx_ticks_int = 150; /* bcm: 18 */ static uint32_t bce_rx_ticks = 150; /* bcm: 18 */ static int bce_tx_wreg = 8; static int bce_msi_enable = 1; static int bce_msix_enable = 1; static int bce_rx_pages = RX_PAGES_DEFAULT; static int bce_tx_pages = TX_PAGES_DEFAULT; static int bce_rx_rings = 0; /* auto */ static int bce_tx_rings = 0; /* auto */ TUNABLE_INT("hw.bce.tx_bds_int", &bce_tx_bds_int); TUNABLE_INT("hw.bce.tx_bds", &bce_tx_bds); TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int); TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks); TUNABLE_INT("hw.bce.rx_bds_int", &bce_rx_bds_int); TUNABLE_INT("hw.bce.rx_bds", &bce_rx_bds); TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int); TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks); TUNABLE_INT("hw.bce.msi.enable", &bce_msi_enable); TUNABLE_INT("hw.bce.msix.enable", &bce_msix_enable); TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages); TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages); TUNABLE_INT("hw.bce.tx_wreg", &bce_tx_wreg); TUNABLE_INT("hw.bce.tx_rings", &bce_tx_rings); TUNABLE_INT("hw.bce.rx_rings", &bce_rx_rings); /****************************************************************************/ /* DragonFly device dispatch table. */ /****************************************************************************/ static device_method_t bce_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bce_probe), DEVMETHOD(device_attach, bce_attach), DEVMETHOD(device_detach, bce_detach), DEVMETHOD(device_shutdown, bce_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, bce_miibus_read_reg), DEVMETHOD(miibus_writereg, bce_miibus_write_reg), DEVMETHOD(miibus_statchg, bce_miibus_statchg), DEVMETHOD_END }; static driver_t bce_driver = { "bce", bce_methods, sizeof(struct bce_softc) }; static devclass_t bce_devclass; DECLARE_DUMMY_MODULE(if_bce); MODULE_DEPEND(bce, miibus, 1, 1, 1); DRIVER_MODULE(if_bce, pci, bce_driver, bce_devclass, NULL, NULL); DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL); /****************************************************************************/ /* Device probe function. */ /* */ /* Compares the device to the driver's list of supported devices and */ /* reports back to the OS whether this is the right driver for the device. */ /* */ /* Returns: */ /* BUS_PROBE_DEFAULT on success, positive value on failure. */ /****************************************************************************/ static int bce_probe(device_t dev) { struct bce_type *t; uint16_t vid, did, svid, sdid; /* Get the data for the device to be probed. */ vid = pci_get_vendor(dev); did = pci_get_device(dev); svid = pci_get_subvendor(dev); sdid = pci_get_subdevice(dev); /* Look through the list of known devices for a match. */ for (t = bce_devs; t->bce_name != NULL; ++t) { if (vid == t->bce_vid && did == t->bce_did && (svid == t->bce_svid || t->bce_svid == PCI_ANY_ID) && (sdid == t->bce_sdid || t->bce_sdid == PCI_ANY_ID)) { uint32_t revid = pci_read_config(dev, PCIR_REVID, 4); char *descbuf; descbuf = kmalloc(BCE_DEVDESC_MAX, M_TEMP, M_WAITOK); /* Print out the device identity. */ ksnprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)", t->bce_name, ((revid & 0xf0) >> 4) + 'A', revid & 0xf); device_set_desc_copy(dev, descbuf); kfree(descbuf, M_TEMP); return 0; } } return ENXIO; } /****************************************************************************/ /* PCI Capabilities Probe Function. */ /* */ /* Walks the PCI capabiites list for the device to find what features are */ /* supported. */ /* */ /* Returns: */ /* None. */ /****************************************************************************/ static void bce_print_adapter_info(struct bce_softc *sc) { device_printf(sc->bce_dev, "ASIC (0x%08X); ", sc->bce_chipid); kprintf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4)); /* Bus info. */ if (sc->bce_flags & BCE_PCIE_FLAG) { kprintf("Bus (PCIe x%d, ", sc->link_width); switch (sc->link_speed) { case 1: kprintf("2.5Gbps); "); break; case 2: kprintf("5Gbps); "); break; default: kprintf("Unknown link speed); "); break; } } else { kprintf("Bus (PCI%s, %s, %dMHz); ", ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""), ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), sc->bus_speed_mhz); } /* Firmware version and device features. */ kprintf("B/C (%s)", sc->bce_bc_ver); if ((sc->bce_flags & BCE_MFW_ENABLE_FLAG) || (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) { kprintf("; Flags("); if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) kprintf("MFW[%s]", sc->bce_mfw_ver); if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) kprintf(" 2.5G"); kprintf(")"); } kprintf("\n"); } /****************************************************************************/ /* PCI Capabilities Probe Function. */ /* */ /* Walks the PCI capabiites list for the device to find what features are */ /* supported. */ /* */ /* Returns: */ /* None. */ /****************************************************************************/ static void bce_probe_pci_caps(struct bce_softc *sc) { device_t dev = sc->bce_dev; uint8_t ptr; if (pci_is_pcix(dev)) sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG; ptr = pci_get_pciecap_ptr(dev); if (ptr) { uint16_t link_status = pci_read_config(dev, ptr + 0x12, 2); sc->link_speed = link_status & 0xf; sc->link_width = (link_status >> 4) & 0x3f; sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG; sc->bce_flags |= BCE_PCIE_FLAG; } } /****************************************************************************/ /* Device attach function. */ /* */ /* Allocates device resources, performs secondary chip identification, */ /* resets and initializes the hardware, and initializes driver instance */ /* variables. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_attach(device_t dev) { struct bce_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t val; int rid, rc = 0; int i, j; struct mii_probe_args mii_args; uintptr_t mii_priv = 0; #ifdef IFPOLL_ENABLE int offset, offset_def; #endif sc->bce_dev = dev; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); lwkt_serialize_init(&sc->main_serialize); for (i = 0; i < BCE_MSIX_MAX; ++i) { struct bce_msix_data *msix = &sc->bce_msix[i]; msix->msix_cpuid = -1; msix->msix_rid = -1; } pci_enable_busmaster(dev); bce_probe_pci_caps(sc); /* Allocate PCI memory resources. */ rid = PCIR_BAR(0); sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE | PCI_RF_DENSE); if (sc->bce_res_mem == NULL) { device_printf(dev, "PCI memory allocation failed\n"); return ENXIO; } sc->bce_btag = rman_get_bustag(sc->bce_res_mem); sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem); /* * Configure byte swap and enable indirect register access. * Rely on CPU to do target byte swapping on big endian systems. * Access to registers outside of PCI configurtion space are not * valid until this is done. */ pci_write_config(dev, BCE_PCICFG_MISC_CONFIG, BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4); /* Save ASIC revsion info. */ sc->bce_chipid = REG_RD(sc, BCE_MISC_ID); /* Weed out any non-production controller revisions. */ switch (BCE_CHIP_ID(sc)) { case BCE_CHIP_ID_5706_A0: case BCE_CHIP_ID_5706_A1: case BCE_CHIP_ID_5708_A0: case BCE_CHIP_ID_5708_B0: case BCE_CHIP_ID_5709_A0: case BCE_CHIP_ID_5709_B0: case BCE_CHIP_ID_5709_B1: #ifdef foo /* 5709C B2 seems to work fine */ case BCE_CHIP_ID_5709_B2: #endif device_printf(dev, "Unsupported chip id 0x%08x!\n", BCE_CHIP_ID(sc)); rc = ENODEV; goto fail; } mii_priv |= BRGPHY_FLAG_WIRESPEED; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax || BCE_CHIP_REV(sc) == BCE_CHIP_REV_Bx) mii_priv |= BRGPHY_FLAG_NO_EARLYDAC; } else { mii_priv |= BRGPHY_FLAG_BER_BUG; } /* * Find the base address for shared memory access. * Newer versions of bootcode use a signature and offset * while older versions use a fixed address. */ val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE); if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG) { /* Multi-port devices use different offsets in shared memory. */ sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2)); } else { sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE; } /* Fetch the bootcode revision. */ val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV); for (i = 0, j = 0; i < 3; i++) { uint8_t num; int k, skip0; num = (uint8_t)(val >> (24 - (i * 8))); for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) { if (num >= k || !skip0 || k == 1) { sc->bce_bc_ver[j++] = (num / k) + '0'; skip0 = 0; } } if (i != 2) sc->bce_bc_ver[j++] = '.'; } /* Check if any management firwmare is running. */ val = bce_shmem_rd(sc, BCE_PORT_FEATURE); if (val & BCE_PORT_FEATURE_ASF_ENABLED) { sc->bce_flags |= BCE_MFW_ENABLE_FLAG; /* Allow time for firmware to enter the running state. */ for (i = 0; i < 30; i++) { val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); if (val & BCE_CONDITION_MFW_RUN_MASK) break; DELAY(10000); } } /* Check the current bootcode state. */ val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION) & BCE_CONDITION_MFW_RUN_MASK; if (val != BCE_CONDITION_MFW_RUN_UNKNOWN && val != BCE_CONDITION_MFW_RUN_NONE) { uint32_t addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR); for (i = 0, j = 0; j < 3; j++) { val = bce_reg_rd_ind(sc, addr + j * 4); val = bswap32(val); memcpy(&sc->bce_mfw_ver[i], &val, 4); i += 4; } } /* Get PCI bus information (speed and type). */ val = REG_RD(sc, BCE_PCICFG_MISC_STATUS); if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) { uint32_t clkreg; sc->bce_flags |= BCE_PCIX_FLAG; clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS) & BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; switch (clkreg) { case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: sc->bus_speed_mhz = 133; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: sc->bus_speed_mhz = 100; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: sc->bus_speed_mhz = 66; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: sc->bus_speed_mhz = 50; break; case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: sc->bus_speed_mhz = 33; break; } } else { if (val & BCE_PCICFG_MISC_STATUS_M66EN) sc->bus_speed_mhz = 66; else sc->bus_speed_mhz = 33; } if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET) sc->bce_flags |= BCE_PCI_32BIT_FLAG; /* Reset the controller. */ rc = bce_reset(sc, BCE_DRV_MSG_CODE_RESET); if (rc != 0) goto fail; /* Initialize the controller. */ rc = bce_chipinit(sc); if (rc != 0) { device_printf(dev, "Controller initialization failed!\n"); goto fail; } /* Perform NVRAM test. */ rc = bce_nvram_test(sc); if (rc != 0) { device_printf(dev, "NVRAM test failed!\n"); goto fail; } /* Fetch the permanent Ethernet MAC address. */ bce_get_mac_addr(sc); /* * Trip points control how many BDs * should be ready before generating an * interrupt while ticks control how long * a BD can sit in the chain before * generating an interrupt. Set the default * values for the RX and TX rings. */ #ifdef BCE_DRBUG /* Force more frequent interrupts. */ sc->bce_tx_quick_cons_trip_int = 1; sc->bce_tx_quick_cons_trip = 1; sc->bce_tx_ticks_int = 0; sc->bce_tx_ticks = 0; sc->bce_rx_quick_cons_trip_int = 1; sc->bce_rx_quick_cons_trip = 1; sc->bce_rx_ticks_int = 0; sc->bce_rx_ticks = 0; #else sc->bce_tx_quick_cons_trip_int = bce_tx_bds_int; sc->bce_tx_quick_cons_trip = bce_tx_bds; sc->bce_tx_ticks_int = bce_tx_ticks_int; sc->bce_tx_ticks = bce_tx_ticks; sc->bce_rx_quick_cons_trip_int = bce_rx_bds_int; sc->bce_rx_quick_cons_trip = bce_rx_bds; sc->bce_rx_ticks_int = bce_rx_ticks_int; sc->bce_rx_ticks = bce_rx_ticks; #endif /* Update statistics once every second. */ sc->bce_stats_ticks = 1000000 & 0xffff00; /* Find the media type for the adapter. */ bce_get_media(sc); /* Find out RX/TX ring count */ bce_setup_ring_cnt(sc); /* Allocate DMA memory resources. */ rc = bce_dma_alloc(sc); if (rc != 0) { device_printf(dev, "DMA resource allocation failed!\n"); goto fail; } #ifdef IFPOLL_ENABLE /* * NPOLLING RX/TX CPU offset */ if (sc->rx_ring_cnt2 == ncpus2) { offset = 0; } else { offset_def = (sc->rx_ring_cnt2 * device_get_unit(dev)) % ncpus2; offset = device_getenv_int(dev, "npoll.offset", offset_def); if (offset >= ncpus2 || offset % sc->rx_ring_cnt2 != 0) { device_printf(dev, "invalid npoll.offset %d, use %d\n", offset, offset_def); offset = offset_def; } } sc->npoll_ofs = offset; #endif /* Allocate PCI IRQ resources. */ rc = bce_alloc_intr(sc); if (rc != 0) goto fail; /* Setup serializer */ bce_setup_serialize(sc); /* Initialize the ifnet interface. */ ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bce_ioctl; ifp->if_start = bce_start; ifp->if_init = bce_init; ifp->if_serialize = bce_serialize; ifp->if_deserialize = bce_deserialize; ifp->if_tryserialize = bce_tryserialize; #ifdef INVARIANTS ifp->if_serialize_assert = bce_serialize_assert; #endif #ifdef IFPOLL_ENABLE ifp->if_npoll = bce_npoll; #endif ifp->if_mtu = ETHERMTU; ifp->if_hwassist = BCE_CSUM_FEATURES | CSUM_TSO; ifp->if_capabilities = BCE_IF_CAPABILITIES; ifp->if_capenable = ifp->if_capabilities; if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) ifp->if_baudrate = IF_Gbps(2.5); else ifp->if_baudrate = IF_Gbps(1); ifq_set_maxlen(&ifp->if_snd, USABLE_TX_BD(&sc->tx_rings[0])); ifq_set_ready(&ifp->if_snd); ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt); if (sc->tx_ring_cnt > 1) { ifp->if_mapsubq = ifq_mapsubq_mask; ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_cnt - 1); } /* * Look for our PHY. */ mii_probe_args_init(&mii_args, bce_ifmedia_upd, bce_ifmedia_sts); mii_args.mii_probemask = 1 << sc->bce_phy_addr; mii_args.mii_privtag = MII_PRIVTAG_BRGPHY; mii_args.mii_priv = mii_priv; rc = mii_probe(dev, &sc->bce_miibus, &mii_args); if (rc != 0) { device_printf(dev, "PHY probe failed!\n"); goto fail; } /* Attach to the Ethernet interface list. */ ether_ifattach(ifp, sc->eaddr, NULL); callout_init_mp(&sc->bce_tick_callout); callout_init_mp(&sc->bce_pulse_callout); callout_init_mp(&sc->bce_ckmsi_callout); rc = bce_setup_intr(sc); if (rc != 0) { device_printf(dev, "Failed to setup IRQ!\n"); ether_ifdetach(ifp); goto fail; } for (i = 0; i < sc->tx_ring_cnt; ++i) { struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i); struct bce_tx_ring *txr = &sc->tx_rings[i]; ifsq_set_cpuid(ifsq, sc->bce_msix[i].msix_cpuid); ifsq_set_priv(ifsq, txr); txr->ifsq = ifsq; ifsq_watchdog_init(&txr->tx_watchdog, ifsq, bce_watchdog); } /* Set timer CPUID */ bce_set_timer_cpuid(sc, FALSE); /* Add the supported sysctls to the kernel. */ bce_add_sysctls(sc); /* * The chip reset earlier notified the bootcode that * a driver is present. We now need to start our pulse * routine so that the bootcode is reminded that we're * still running. */ bce_pulse(sc); /* Get the firmware running so IPMI still works */ bce_mgmt_init(sc); if (bootverbose) bce_print_adapter_info(sc); return 0; fail: bce_detach(dev); return(rc); } /****************************************************************************/ /* Device detach function. */ /* */ /* Stops the controller, resets the controller, and releases resources. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_detach(device_t dev) { struct bce_softc *sc = device_get_softc(dev); if (device_is_attached(dev)) { struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t msg; ifnet_serialize_all(ifp); /* Stop and reset the controller. */ callout_stop(&sc->bce_pulse_callout); bce_stop(sc); if (sc->bce_flags & BCE_NO_WOL_FLAG) msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; else msg = BCE_DRV_MSG_CODE_UNLOAD; bce_reset(sc, msg); bce_teardown_intr(sc); ifnet_deserialize_all(ifp); ether_ifdetach(ifp); } /* If we have a child device on the MII bus remove it too. */ if (sc->bce_miibus) device_delete_child(dev, sc->bce_miibus); bus_generic_detach(dev); bce_free_intr(sc); if (sc->bce_res_mem != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->bce_res_mem); } bce_dma_free(sc); if (sc->bce_sysctl_tree != NULL) sysctl_ctx_free(&sc->bce_sysctl_ctx); if (sc->serializes != NULL) kfree(sc->serializes, M_DEVBUF); return 0; } /****************************************************************************/ /* Device shutdown function. */ /* */ /* Stops and resets the controller. */ /* */ /* Returns: */ /* Nothing */ /****************************************************************************/ static void bce_shutdown(device_t dev) { struct bce_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t msg; ifnet_serialize_all(ifp); bce_stop(sc); if (sc->bce_flags & BCE_NO_WOL_FLAG) msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN; else msg = BCE_DRV_MSG_CODE_UNLOAD; bce_reset(sc, msg); ifnet_deserialize_all(ifp); } /****************************************************************************/ /* Indirect register read. */ /* */ /* Reads NetXtreme II registers using an index/data register pair in PCI */ /* configuration space. Using this mechanism avoids issues with posted */ /* reads but is much slower than memory-mapped I/O. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ static uint32_t bce_reg_rd_ind(struct bce_softc *sc, uint32_t offset) { device_t dev = sc->bce_dev; pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4); } /****************************************************************************/ /* Indirect register write. */ /* */ /* Writes NetXtreme II registers using an index/data register pair in PCI */ /* configuration space. Using this mechanism avoids issues with posted */ /* writes but is muchh slower than memory-mapped I/O. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_reg_wr_ind(struct bce_softc *sc, uint32_t offset, uint32_t val) { device_t dev = sc->bce_dev; pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4); pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4); } /****************************************************************************/ /* Shared memory write. */ /* */ /* Writes NetXtreme II shared memory region. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_shmem_wr(struct bce_softc *sc, uint32_t offset, uint32_t val) { bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val); } /****************************************************************************/ /* Shared memory read. */ /* */ /* Reads NetXtreme II shared memory region. */ /* */ /* Returns: */ /* The 32 bit value read. */ /****************************************************************************/ static u32 bce_shmem_rd(struct bce_softc *sc, uint32_t offset) { return bce_reg_rd_ind(sc, sc->bce_shmem_base + offset); } /****************************************************************************/ /* Context memory write. */ /* */ /* The NetXtreme II controller uses context memory to track connection */ /* information for L2 and higher network protocols. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_ctx_wr(struct bce_softc *sc, uint32_t cid_addr, uint32_t ctx_offset, uint32_t ctx_val) { uint32_t idx, offset = ctx_offset + cid_addr; uint32_t val, retry_cnt = 5; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val); REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ)); for (idx = 0; idx < retry_cnt; idx++) { val = REG_RD(sc, BCE_CTX_CTX_CTRL); if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0) break; DELAY(5); } if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) { device_printf(sc->bce_dev, "Unable to write CTX memory: " "cid_addr = 0x%08X, offset = 0x%08X!\n", cid_addr, ctx_offset); } } else { REG_WR(sc, BCE_CTX_DATA_ADR, offset); REG_WR(sc, BCE_CTX_DATA, ctx_val); } } /****************************************************************************/ /* PHY register read. */ /* */ /* Implements register reads on the MII bus. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ static int bce_miibus_read_reg(device_t dev, int phy, int reg) { struct bce_softc *sc = device_get_softc(dev); uint32_t val; int i; /* Make sure we are accessing the correct PHY address. */ KASSERT(phy == sc->bce_phy_addr, ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr)); if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val = REG_RD(sc, BCE_EMAC_MDIO_MODE); val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } val = BCE_MIPHY(phy) | BCE_MIREG(reg) | BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT | BCE_EMAC_MDIO_COMM_START_BUSY; REG_WR(sc, BCE_EMAC_MDIO_COMM, val); for (i = 0; i < BCE_PHY_TIMEOUT; i++) { DELAY(10); val = REG_RD(sc, BCE_EMAC_MDIO_COMM); if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); val = REG_RD(sc, BCE_EMAC_MDIO_COMM); val &= BCE_EMAC_MDIO_COMM_DATA; break; } } if (val & BCE_EMAC_MDIO_COMM_START_BUSY) { if_printf(&sc->arpcom.ac_if, "Error: PHY read timeout! phy = %d, reg = 0x%04X\n", phy, reg); val = 0x0; } else { val = REG_RD(sc, BCE_EMAC_MDIO_COMM); } if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val = REG_RD(sc, BCE_EMAC_MDIO_MODE); val |= BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } return (val & 0xffff); } /****************************************************************************/ /* PHY register write. */ /* */ /* Implements register writes on the MII bus. */ /* */ /* Returns: */ /* The value of the register. */ /****************************************************************************/ static int bce_miibus_write_reg(device_t dev, int phy, int reg, int val) { struct bce_softc *sc = device_get_softc(dev); uint32_t val1; int i; /* Make sure we are accessing the correct PHY address. */ KASSERT(phy == sc->bce_phy_addr, ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr)); if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val | BCE_EMAC_MDIO_COMM_COMMAND_WRITE | BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT; REG_WR(sc, BCE_EMAC_MDIO_COMM, val1); for (i = 0; i < BCE_PHY_TIMEOUT; i++) { DELAY(10); val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM); if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) { DELAY(5); break; } } if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY) if_printf(&sc->arpcom.ac_if, "PHY write timeout!\n"); if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) { val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE); val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL; REG_WR(sc, BCE_EMAC_MDIO_MODE, val1); REG_RD(sc, BCE_EMAC_MDIO_MODE); DELAY(40); } return 0; } /****************************************************************************/ /* MII bus status change. */ /* */ /* Called by the MII bus driver when the PHY establishes link to set the */ /* MAC interface registers. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_miibus_statchg(device_t dev) { struct bce_softc *sc = device_get_softc(dev); struct mii_data *mii = device_get_softc(sc->bce_miibus); BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT); /* * Set MII or GMII interface based on the speed negotiated * by the PHY. */ if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) { BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII); } else { BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII); } /* * Set half or full duplex based on the duplicity negotiated * by the PHY. */ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX); } else { BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX); } } /****************************************************************************/ /* Acquire NVRAM lock. */ /* */ /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ /* for use by the driver. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_acquire_nvram_lock(struct bce_softc *sc) { uint32_t val; int j; /* Request access to the flash interface. */ REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(sc, BCE_NVM_SW_ARB); if (val & BCE_NVM_SW_ARB_ARB_ARB2) break; DELAY(5); } if (j >= NVRAM_TIMEOUT_COUNT) { return EBUSY; } return 0; } /****************************************************************************/ /* Release NVRAM lock. */ /* */ /* When the caller is finished accessing NVRAM the lock must be released. */ /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ /* for use by the driver. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_release_nvram_lock(struct bce_softc *sc) { int j; uint32_t val; /* * Relinquish nvram interface. */ REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2); for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { val = REG_RD(sc, BCE_NVM_SW_ARB); if (!(val & BCE_NVM_SW_ARB_ARB_ARB2)) break; DELAY(5); } if (j >= NVRAM_TIMEOUT_COUNT) { return EBUSY; } return 0; } /****************************************************************************/ /* Enable NVRAM access. */ /* */ /* Before accessing NVRAM for read or write operations the caller must */ /* enabled NVRAM access. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_enable_nvram_access(struct bce_softc *sc) { uint32_t val; val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); /* Enable both bits, even on read. */ REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN); } /****************************************************************************/ /* Disable NVRAM access. */ /* */ /* When the caller is finished accessing NVRAM access must be disabled. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_disable_nvram_access(struct bce_softc *sc) { uint32_t val; val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE); /* Disable both bits, even after read. */ REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN)); } /****************************************************************************/ /* Read a dword (32 bits) from NVRAM. */ /* */ /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ /* */ /* Returns: */ /* 0 on success and the 32 bit value read, positive value on failure. */ /****************************************************************************/ static int bce_nvram_read_dword(struct bce_softc *sc, uint32_t offset, uint8_t *ret_val, uint32_t cmd_flags) { uint32_t cmd; int i, rc = 0; /* Build the command word. */ cmd = BCE_NVM_COMMAND_DOIT | cmd_flags; /* Calculate the offset for buffered flash. */ if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) { offset = ((offset / sc->bce_flash_info->page_size) << sc->bce_flash_info->page_bits) + (offset % sc->bce_flash_info->page_size); } /* * Clear the DONE bit separately, set the address to read, * and issue the read. */ REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE); REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE); REG_WR(sc, BCE_NVM_COMMAND, cmd); /* Wait for completion. */ for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { uint32_t val; DELAY(5); val = REG_RD(sc, BCE_NVM_COMMAND); if (val & BCE_NVM_COMMAND_DONE) { val = REG_RD(sc, BCE_NVM_READ); val = be32toh(val); memcpy(ret_val, &val, 4); break; } } /* Check for errors. */ if (i >= NVRAM_TIMEOUT_COUNT) { if_printf(&sc->arpcom.ac_if, "Timeout error reading NVRAM at offset 0x%08X!\n", offset); rc = EBUSY; } return rc; } /****************************************************************************/ /* Initialize NVRAM access. */ /* */ /* Identify the NVRAM device in use and prepare the NVRAM interface to */ /* access that device. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_init_nvram(struct bce_softc *sc) { uint32_t val; int j, entry_count, rc = 0; const struct flash_spec *flash; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { sc->bce_flash_info = &flash_5709; goto bce_init_nvram_get_flash_size; } /* Determine the selected interface. */ val = REG_RD(sc, BCE_NVM_CFG1); entry_count = sizeof(flash_table) / sizeof(struct flash_spec); /* * Flash reconfiguration is required to support additional * NVRAM devices not directly supported in hardware. * Check if the flash interface was reconfigured * by the bootcode. */ if (val & 0x40000000) { /* Flash interface reconfigured by bootcode. */ for (j = 0, flash = flash_table; j < entry_count; j++, flash++) { if ((val & FLASH_BACKUP_STRAP_MASK) == (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { sc->bce_flash_info = flash; break; } } } else { /* Flash interface not yet reconfigured. */ uint32_t mask; if (val & (1 << 23)) mask = FLASH_BACKUP_STRAP_MASK; else mask = FLASH_STRAP_MASK; /* Look for the matching NVRAM device configuration data. */ for (j = 0, flash = flash_table; j < entry_count; j++, flash++) { /* Check if the device matches any of the known devices. */ if ((val & mask) == (flash->strapping & mask)) { /* Found a device match. */ sc->bce_flash_info = flash; /* Request access to the flash interface. */ rc = bce_acquire_nvram_lock(sc); if (rc != 0) return rc; /* Reconfigure the flash interface. */ bce_enable_nvram_access(sc); REG_WR(sc, BCE_NVM_CFG1, flash->config1); REG_WR(sc, BCE_NVM_CFG2, flash->config2); REG_WR(sc, BCE_NVM_CFG3, flash->config3); REG_WR(sc, BCE_NVM_WRITE1, flash->write1); bce_disable_nvram_access(sc); bce_release_nvram_lock(sc); break; } } } /* Check if a matching device was found. */ if (j == entry_count) { sc->bce_flash_info = NULL; if_printf(&sc->arpcom.ac_if, "Unknown Flash NVRAM found!\n"); return ENODEV; } bce_init_nvram_get_flash_size: /* Write the flash config data to the shared memory interface. */ val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2) & BCE_SHARED_HW_CFG2_NVM_SIZE_MASK; if (val) sc->bce_flash_size = val; else sc->bce_flash_size = sc->bce_flash_info->total_size; return rc; } /****************************************************************************/ /* Read an arbitrary range of data from NVRAM. */ /* */ /* Prepares the NVRAM interface for access and reads the requested data */ /* into the supplied buffer. */ /* */ /* Returns: */ /* 0 on success and the data read, positive value on failure. */ /****************************************************************************/ static int bce_nvram_read(struct bce_softc *sc, uint32_t offset, uint8_t *ret_buf, int buf_size) { uint32_t cmd_flags, offset32, len32, extra; int rc = 0; if (buf_size == 0) return 0; /* Request access to the flash interface. */ rc = bce_acquire_nvram_lock(sc); if (rc != 0) return rc; /* Enable access to flash interface */ bce_enable_nvram_access(sc); len32 = buf_size; offset32 = offset; extra = 0; cmd_flags = 0; /* XXX should we release nvram lock if read_dword() fails? */ if (offset32 & 3) { uint8_t buf[4]; uint32_t pre_len; offset32 &= ~3; pre_len = 4 - (offset & 3); if (pre_len >= len32) { pre_len = len32; cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; } else { cmd_flags = BCE_NVM_COMMAND_FIRST; } rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); if (rc) return rc; memcpy(ret_buf, buf + (offset & 3), pre_len); offset32 += 4; ret_buf += pre_len; len32 -= pre_len; } if (len32 & 3) { extra = 4 - (len32 & 3); len32 = (len32 + 4) & ~3; } if (len32 == 4) { uint8_t buf[4]; if (cmd_flags) cmd_flags = BCE_NVM_COMMAND_LAST; else cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST; rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } else if (len32 > 0) { uint8_t buf[4]; /* Read the first word. */ if (cmd_flags) cmd_flags = 0; else cmd_flags = BCE_NVM_COMMAND_FIRST; rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; while (len32 > 4 && rc == 0) { rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0); /* Advance to the next dword. */ offset32 += 4; ret_buf += 4; len32 -= 4; } if (rc) goto bce_nvram_read_locked_exit; cmd_flags = BCE_NVM_COMMAND_LAST; rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags); memcpy(ret_buf, buf, 4 - extra); } bce_nvram_read_locked_exit: /* Disable access to flash interface and release the lock. */ bce_disable_nvram_access(sc); bce_release_nvram_lock(sc); return rc; } /****************************************************************************/ /* Verifies that NVRAM is accessible and contains valid data. */ /* */ /* Reads the configuration data from NVRAM and verifies that the CRC is */ /* correct. */ /* */ /* Returns: */ /* 0 on success, positive value on failure. */ /****************************************************************************/ static int bce_nvram_test(struct bce_softc *sc) { uint32_t buf[BCE_NVRAM_SIZE / 4]; uint32_t magic, csum; uint8_t *data = (uint8_t *)buf; int rc = 0; /* * Check that the device NVRAM is valid by reading * the magic value at offset 0. */ rc = bce_nvram_read(sc, 0, data, 4); if (rc != 0) return rc; magic = be32toh(buf[0]); if (magic != BCE_NVRAM_MAGIC) { if_printf(&sc->arpcom.ac_if, "Invalid NVRAM magic value! Expected: 0x%08X, " "Found: 0x%08X\n", BCE_NVRAM_MAGIC, magic); return ENODEV; } /* * Verify that the device NVRAM includes valid * configuration data. */ rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE); if (rc != 0) return rc; csum = ether_crc32_le(data, 0x100); if (csum != BCE_CRC32_RESIDUAL) { if_printf(&sc->arpcom.ac_if, "Invalid Manufacturing Information NVRAM CRC! " "Expected: 0x%08X, Found: 0x%08X\n", BCE_CRC32_RESIDUAL, csum); return ENODEV; } csum = ether_crc32_le(data + 0x100, 0x100); if (csum != BCE_CRC32_RESIDUAL) { if_printf(&sc->arpcom.ac_if, "Invalid Feature Configuration Information " "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", BCE_CRC32_RESIDUAL, csum); rc = ENODEV; } return rc; } /****************************************************************************/ /* Identifies the current media type of the controller and sets the PHY */ /* address. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_get_media(struct bce_softc *sc) { uint32_t val; sc->bce_phy_addr = 1; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { uint32_t val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL); uint32_t bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID; uint32_t strap; /* * The BCM5709S is software configurable * for Copper or SerDes operation. */ if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { return; } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; return; } if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) { strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; } else { strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8; } if (pci_get_function(sc->bce_dev) == 0) { switch (strap) { case 0x4: case 0x5: case 0x6: sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; break; } } else { switch (strap) { case 0x1: case 0x2: case 0x4: sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; break; } } } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) { sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG; } if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) { sc->bce_flags |= BCE_NO_WOL_FLAG; if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) { sc->bce_phy_addr = 2; val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG); if (val & BCE_SHARED_HW_CFG_PHY_2_5G) sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG; } } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) || (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) { sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG; } } static void bce_destroy_tx_ring(struct bce_tx_ring *txr) { int i; /* Destroy the TX buffer descriptor DMA stuffs. */ if (txr->tx_bd_chain_tag != NULL) { for (i = 0; i < txr->tx_pages; i++) { if (txr->tx_bd_chain[i] != NULL) { bus_dmamap_unload(txr->tx_bd_chain_tag, txr->tx_bd_chain_map[i]); bus_dmamem_free(txr->tx_bd_chain_tag, txr->tx_bd_chain[i], txr->tx_bd_chain_map[i]); } } bus_dma_tag_destroy(txr->tx_bd_chain_tag); } /* Destroy the TX mbuf DMA stuffs. */ if (txr->tx_mbuf_tag != NULL) { for (i = 0; i < TOTAL_TX_BD(txr); i++) { /* Must have been unloaded in bce_stop() */ KKASSERT(txr->tx_bufs[i].tx_mbuf_ptr == NULL); bus_dmamap_destroy(txr->tx_mbuf_tag, txr->tx_bufs[i].tx_mbuf_map); } bus_dma_tag_destroy(txr->tx_mbuf_tag); } if (txr->tx_bd_chain_map != NULL) kfree(txr->tx_bd_chain_map, M_DEVBUF); if (txr->tx_bd_chain != NULL) kfree(txr->tx_bd_chain, M_DEVBUF); if (txr->tx_bd_chain_paddr != NULL) kfree(txr->tx_bd_chain_paddr, M_DEVBUF); if (txr->tx_bufs != NULL) kfree(txr->tx_bufs, M_DEVBUF); } static void bce_destroy_rx_ring(struct bce_rx_ring *rxr) { int i; /* Destroy the RX buffer descriptor DMA stuffs. */ if (rxr->rx_bd_chain_tag != NULL) { for (i = 0; i < rxr->rx_pages; i++) { if (rxr->rx_bd_chain[i] != NULL) { bus_dmamap_unload(rxr->rx_bd_chain_tag, rxr->rx_bd_chain_map[i]); bus_dmamem_free(rxr->rx_bd_chain_tag, rxr->rx_bd_chain[i], rxr->rx_bd_chain_map[i]); } } bus_dma_tag_destroy(rxr->rx_bd_chain_tag); } /* Destroy the RX mbuf DMA stuffs. */ if (rxr->rx_mbuf_tag != NULL) { for (i = 0; i < TOTAL_RX_BD(rxr); i++) { /* Must have been unloaded in bce_stop() */ KKASSERT(rxr->rx_bufs[i].rx_mbuf_ptr == NULL); bus_dmamap_destroy(rxr->rx_mbuf_tag, rxr->rx_bufs[i].rx_mbuf_map); } bus_dmamap_destroy(rxr->rx_mbuf_tag, rxr->rx_mbuf_tmpmap); bus_dma_tag_destroy(rxr->rx_mbuf_tag); } if (rxr->rx_bd_chain_map != NULL) kfree(rxr->rx_bd_chain_map, M_DEVBUF); if (rxr->rx_bd_chain != NULL) kfree(rxr->rx_bd_chain, M_DEVBUF); if (rxr->rx_bd_chain_paddr != NULL) kfree(rxr->rx_bd_chain_paddr, M_DEVBUF); if (rxr->rx_bufs != NULL) kfree(rxr->rx_bufs, M_DEVBUF); } /****************************************************************************/ /* Free any DMA memory owned by the driver. */ /* */ /* Scans through each data structre that requires DMA memory and frees */ /* the memory if allocated. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_dma_free(struct bce_softc *sc) { int i; /* Destroy the status block. */ if (sc->status_tag != NULL) { if (sc->status_block != NULL) { bus_dmamap_unload(sc->status_tag, sc->status_map); bus_dmamem_free(sc->status_tag, sc->status_block, sc->status_map); } bus_dma_tag_destroy(sc->status_tag); } /* Destroy the statistics block. */ if (sc->stats_tag != NULL) { if (sc->stats_block != NULL) { bus_dmamap_unload(sc->stats_tag, sc->stats_map); bus_dmamem_free(sc->stats_tag, sc->stats_block, sc->stats_map); } bus_dma_tag_destroy(sc->stats_tag); } /* Destroy the CTX DMA stuffs. */ if (sc->ctx_tag != NULL) { for (i = 0; i < sc->ctx_pages; i++) { if (sc->ctx_block[i] != NULL) { bus_dmamap_unload(sc->ctx_tag, sc->ctx_map[i]); bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i], sc->ctx_map[i]); } } bus_dma_tag_destroy(sc->ctx_tag); } /* Free TX rings */ if (sc->tx_rings != NULL) { for (i = 0; i < sc->tx_ring_cnt; ++i) bce_destroy_tx_ring(&sc->tx_rings[i]); kfree(sc->tx_rings, M_DEVBUF); } /* Free RX rings */ if (sc->rx_rings != NULL) { for (i = 0; i < sc->rx_ring_cnt; ++i) bce_destroy_rx_ring(&sc->rx_rings[i]); kfree(sc->rx_rings, M_DEVBUF); } /* Destroy the parent tag */ if (sc->parent_tag != NULL) bus_dma_tag_destroy(sc->parent_tag); } /****************************************************************************/ /* Get DMA memory from the OS. */ /* */ /* Validates that the OS has provided DMA buffers in response to a */ /* bus_dmamap_load() call and saves the physical address of those buffers. */ /* When the callback is used the OS will return 0 for the mapping function */ /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */ /* failures back to the caller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *busaddr = arg; /* Check for an error and signal the caller that an error occurred. */ if (error) return; KASSERT(nseg == 1, ("only one segment is allowed")); *busaddr = segs->ds_addr; } static int bce_create_tx_ring(struct bce_tx_ring *txr) { int pages, rc, i; lwkt_serialize_init(&txr->tx_serialize); txr->tx_wreg = bce_tx_wreg; pages = device_getenv_int(txr->sc->bce_dev, "tx_pages", bce_tx_pages); if (pages <= 0 || pages > TX_PAGES_MAX || !powerof2(pages)) { device_printf(txr->sc->bce_dev, "invalid # of TX pages\n"); pages = TX_PAGES_DEFAULT; } txr->tx_pages = pages; txr->tx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * txr->tx_pages, M_DEVBUF, M_WAITOK | M_ZERO); txr->tx_bd_chain = kmalloc(sizeof(struct tx_bd *) * txr->tx_pages, M_DEVBUF, M_WAITOK | M_ZERO); txr->tx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * txr->tx_pages, M_DEVBUF, M_WAITOK | M_ZERO); txr->tx_bufs = kmalloc_cachealign( sizeof(struct bce_tx_buf) * TOTAL_TX_BD(txr), M_DEVBUF, M_WAITOK | M_ZERO); /* * Create a DMA tag for the TX buffer descriptor chain, * allocate and clear the memory, and fetch the * physical address of the block. */ rc = bus_dma_tag_create(txr->sc->parent_tag, BCM_PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0, &txr->tx_bd_chain_tag); if (rc != 0) { device_printf(txr->sc->bce_dev, "Could not allocate " "TX descriptor chain DMA tag!\n"); return rc; } for (i = 0; i < txr->tx_pages; i++) { bus_addr_t busaddr; rc = bus_dmamem_alloc(txr->tx_bd_chain_tag, (void **)&txr->tx_bd_chain[i], BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &txr->tx_bd_chain_map[i]); if (rc != 0) { device_printf(txr->sc->bce_dev, "Could not allocate %dth TX descriptor " "chain DMA memory!\n", i); return rc; } rc = bus_dmamap_load(txr->tx_bd_chain_tag, txr->tx_bd_chain_map[i], txr->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr, &busaddr, BUS_DMA_WAITOK); if (rc != 0) { if (rc == EINPROGRESS) { panic("%s coherent memory loading " "is still in progress!", txr->sc->arpcom.ac_if.if_xname); } device_printf(txr->sc->bce_dev, "Could not map %dth " "TX descriptor chain DMA memory!\n", i); bus_dmamem_free(txr->tx_bd_chain_tag, txr->tx_bd_chain[i], txr->tx_bd_chain_map[i]); txr->tx_bd_chain[i] = NULL; return rc; } txr->tx_bd_chain_paddr[i] = busaddr; } /* Create a DMA tag for TX mbufs. */ rc = bus_dma_tag_create(txr->sc->parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, IP_MAXPACKET + sizeof(struct ether_vlan_header), BCE_MAX_SEGMENTS, PAGE_SIZE, BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txr->tx_mbuf_tag); if (rc != 0) { device_printf(txr->sc->bce_dev, "Could not allocate TX mbuf DMA tag!\n"); return rc; } /* Create DMA maps for the TX mbufs clusters. */ for (i = 0; i < TOTAL_TX_BD(txr); i++) { rc = bus_dmamap_create(txr->tx_mbuf_tag, BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txr->tx_bufs[i].tx_mbuf_map); if (rc != 0) { int j; for (j = 0; j < i; ++j) { bus_dmamap_destroy(txr->tx_mbuf_tag, txr->tx_bufs[j].tx_mbuf_map); } bus_dma_tag_destroy(txr->tx_mbuf_tag); txr->tx_mbuf_tag = NULL; device_printf(txr->sc->bce_dev, "Unable to create " "%dth TX mbuf DMA map!\n", i); return rc; } } return 0; } static int bce_create_rx_ring(struct bce_rx_ring *rxr) { int pages, rc, i; lwkt_serialize_init(&rxr->rx_serialize); pages = device_getenv_int(rxr->sc->bce_dev, "rx_pages", bce_rx_pages); if (pages <= 0 || pages > RX_PAGES_MAX || !powerof2(pages)) { device_printf(rxr->sc->bce_dev, "invalid # of RX pages\n"); pages = RX_PAGES_DEFAULT; } rxr->rx_pages = pages; rxr->rx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * rxr->rx_pages, M_DEVBUF, M_WAITOK | M_ZERO); rxr->rx_bd_chain = kmalloc(sizeof(struct rx_bd *) * rxr->rx_pages, M_DEVBUF, M_WAITOK | M_ZERO); rxr->rx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * rxr->rx_pages, M_DEVBUF, M_WAITOK | M_ZERO); rxr->rx_bufs = kmalloc_cachealign( sizeof(struct bce_rx_buf) * TOTAL_RX_BD(rxr), M_DEVBUF, M_WAITOK | M_ZERO); /* * Create a DMA tag for the RX buffer descriptor chain, * allocate and clear the memory, and fetch the physical * address of the blocks. */ rc = bus_dma_tag_create(rxr->sc->parent_tag, BCM_PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ, 0, &rxr->rx_bd_chain_tag); if (rc != 0) { device_printf(rxr->sc->bce_dev, "Could not allocate " "RX descriptor chain DMA tag!\n"); return rc; } for (i = 0; i < rxr->rx_pages; i++) { bus_addr_t busaddr; rc = bus_dmamem_alloc(rxr->rx_bd_chain_tag, (void **)&rxr->rx_bd_chain[i], BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &rxr->rx_bd_chain_map[i]); if (rc != 0) { device_printf(rxr->sc->bce_dev, "Could not allocate %dth RX descriptor " "chain DMA memory!\n", i); return rc; } rc = bus_dmamap_load(rxr->rx_bd_chain_tag, rxr->rx_bd_chain_map[i], rxr->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr, &busaddr, BUS_DMA_WAITOK); if (rc != 0) { if (rc == EINPROGRESS) { panic("%s coherent memory loading " "is still in progress!", rxr->sc->arpcom.ac_if.if_xname); } device_printf(rxr->sc->bce_dev, "Could not map %dth RX descriptor " "chain DMA memory!\n", i); bus_dmamem_free(rxr->rx_bd_chain_tag, rxr->rx_bd_chain[i], rxr->rx_bd_chain_map[i]); rxr->rx_bd_chain[i] = NULL; return rc; } rxr->rx_bd_chain_paddr[i] = busaddr; } /* Create a DMA tag for RX mbufs. */ rc = bus_dma_tag_create(rxr->sc->parent_tag, BCE_DMA_RX_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED | BUS_DMA_WAITOK, &rxr->rx_mbuf_tag); if (rc != 0) { device_printf(rxr->sc->bce_dev, "Could not allocate RX mbuf DMA tag!\n"); return rc; } /* Create tmp DMA map for RX mbuf clusters. */ rc = bus_dmamap_create(rxr->rx_mbuf_tag, BUS_DMA_WAITOK, &rxr->rx_mbuf_tmpmap); if (rc != 0) { bus_dma_tag_destroy(rxr->rx_mbuf_tag); rxr->rx_mbuf_tag = NULL; device_printf(rxr->sc->bce_dev, "Could not create RX mbuf tmp DMA map!\n"); return rc; } /* Create DMA maps for the RX mbuf clusters. */ for (i = 0; i < TOTAL_RX_BD(rxr); i++) { rc = bus_dmamap_create(rxr->rx_mbuf_tag, BUS_DMA_WAITOK, &rxr->rx_bufs[i].rx_mbuf_map); if (rc != 0) { int j; for (j = 0; j < i; ++j) { bus_dmamap_destroy(rxr->rx_mbuf_tag, rxr->rx_bufs[j].rx_mbuf_map); } bus_dma_tag_destroy(rxr->rx_mbuf_tag); rxr->rx_mbuf_tag = NULL; device_printf(rxr->sc->bce_dev, "Unable to create " "%dth RX mbuf DMA map!\n", i); return rc; } } return 0; } /****************************************************************************/ /* Allocate any DMA memory needed by the driver. */ /* */ /* Allocates DMA memory needed for the various global structures needed by */ /* hardware. */ /* */ /* Memory alignment requirements: */ /* -----------------+----------+----------+----------+----------+ */ /* Data Structure | 5706 | 5708 | 5709 | 5716 | */ /* -----------------+----------+----------+----------+----------+ */ /* Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ /* Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */ /* RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */ /* PG Buffers | none | none | none | none | */ /* TX Buffers | none | none | none | none | */ /* Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */ /* Context Pages(1) | N/A | N/A | 4KiB | 4KiB | */ /* -----------------+----------+----------+----------+----------+ */ /* */ /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_dma_alloc(struct bce_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int i, rc = 0; bus_addr_t busaddr, max_busaddr; bus_size_t status_align, stats_align, status_size; /* * The embedded PCIe to PCI-X bridge (EPB) * in the 5708 cannot address memory above * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) max_busaddr = BCE_BUS_SPACE_MAXADDR; else max_busaddr = BUS_SPACE_MAXADDR; /* * BCM5709 and BCM5716 uses host memory as cache for context memory. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { sc->ctx_pages = BCE_CTX_BLK_SZ / BCM_PAGE_SIZE; if (sc->ctx_pages == 0) sc->ctx_pages = 1; if (sc->ctx_pages > BCE_CTX_PAGES) { device_printf(sc->bce_dev, "excessive ctx pages %d\n", sc->ctx_pages); return ENOMEM; } status_align = 16; stats_align = 16; } else { status_align = 8; stats_align = 8; } /* * Each MSI-X vector needs a status block; each status block * consumes 128bytes and is 128bytes aligned. */ if (sc->rx_ring_cnt > 1) { status_size = BCE_MSIX_MAX * BCE_STATUS_BLK_MSIX_ALIGN; status_align = BCE_STATUS_BLK_MSIX_ALIGN; } else { status_size = BCE_STATUS_BLK_SZ; } /* * Allocate the parent bus DMA tag appropriate for PCI. */ rc = bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY, max_busaddr, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, &sc->parent_tag); if (rc != 0) { if_printf(ifp, "Could not allocate parent DMA tag!\n"); return rc; } /* * Allocate status block. */ sc->status_block = bus_dmamem_coherent_any(sc->parent_tag, status_align, status_size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->status_tag, &sc->status_map, &sc->status_block_paddr); if (sc->status_block == NULL) { if_printf(ifp, "Could not allocate status block!\n"); return ENOMEM; } /* * Allocate statistics block. */ sc->stats_block = bus_dmamem_coherent_any(sc->parent_tag, stats_align, BCE_STATS_BLK_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->stats_tag, &sc->stats_map, &sc->stats_block_paddr); if (sc->stats_block == NULL) { if_printf(ifp, "Could not allocate statistics block!\n"); return ENOMEM; } /* * Allocate context block, if needed */ if (sc->ctx_pages != 0) { rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE, 0, &sc->ctx_tag); if (rc != 0) { if_printf(ifp, "Could not allocate " "context block DMA tag!\n"); return rc; } for (i = 0; i < sc->ctx_pages; i++) { rc = bus_dmamem_alloc(sc->ctx_tag, (void **)&sc->ctx_block[i], BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->ctx_map[i]); if (rc != 0) { if_printf(ifp, "Could not allocate %dth context " "DMA memory!\n", i); return rc; } rc = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i], sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr, &busaddr, BUS_DMA_WAITOK); if (rc != 0) { if (rc == EINPROGRESS) { panic("%s coherent memory loading " "is still in progress!", ifp->if_xname); } if_printf(ifp, "Could not map %dth context " "DMA memory!\n", i); bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i], sc->ctx_map[i]); sc->ctx_block[i] = NULL; return rc; } sc->ctx_paddr[i] = busaddr; } } sc->tx_rings = kmalloc_cachealign( sizeof(struct bce_tx_ring) * sc->tx_ring_cnt, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < sc->tx_ring_cnt; ++i) { sc->tx_rings[i].sc = sc; if (i == 0) { sc->tx_rings[i].tx_cid = TX_CID; sc->tx_rings[i].tx_hw_cons = &sc->status_block->status_tx_quick_consumer_index0; } else { struct status_block_msix *sblk = (struct status_block_msix *) (((uint8_t *)(sc->status_block)) + (i * BCE_STATUS_BLK_MSIX_ALIGN)); sc->tx_rings[i].tx_cid = TX_TSS_CID + i - 1; sc->tx_rings[i].tx_hw_cons = &sblk->status_tx_quick_consumer_index; } rc = bce_create_tx_ring(&sc->tx_rings[i]); if (rc != 0) { device_printf(sc->bce_dev, "can't create %dth tx ring\n", i); return rc; } } sc->rx_rings = kmalloc_cachealign( sizeof(struct bce_rx_ring) * sc->rx_ring_cnt, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < sc->rx_ring_cnt; ++i) { sc->rx_rings[i].sc = sc; sc->rx_rings[i].idx = i; if (i == 0) { sc->rx_rings[i].rx_cid = RX_CID; sc->rx_rings[i].rx_hw_cons = &sc->status_block->status_rx_quick_consumer_index0; sc->rx_rings[i].hw_status_idx = &sc->status_block->status_idx; } else { struct status_block_msix *sblk = (struct status_block_msix *) (((uint8_t *)(sc->status_block)) + (i * BCE_STATUS_BLK_MSIX_ALIGN)); sc->rx_rings[i].rx_cid = RX_RSS_CID + i - 1; sc->rx_rings[i].rx_hw_cons = &sblk->status_rx_quick_consumer_index; sc->rx_rings[i].hw_status_idx = &sblk->status_idx; } rc = bce_create_rx_ring(&sc->rx_rings[i]); if (rc != 0) { device_printf(sc->bce_dev, "can't create %dth rx ring\n", i); return rc; } } return 0; } /****************************************************************************/ /* Firmware synchronization. */ /* */ /* Before performing certain events such as a chip reset, synchronize with */ /* the firmware first. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_fw_sync(struct bce_softc *sc, uint32_t msg_data) { int i, rc = 0; uint32_t val; /* Don't waste any time if we've timed out before. */ if (sc->bce_fw_timed_out) return EBUSY; /* Increment the message sequence number. */ sc->bce_fw_wr_seq++; msg_data |= sc->bce_fw_wr_seq; /* Send the message to the bootcode driver mailbox. */ bce_shmem_wr(sc, BCE_DRV_MB, msg_data); /* Wait for the bootcode to acknowledge the message. */ for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { /* Check for a response in the bootcode firmware mailbox. */ val = bce_shmem_rd(sc, BCE_FW_MB); if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ)) break; DELAY(1000); } /* If we've timed out, tell the bootcode that we've stopped waiting. */ if ((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ) && (msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0) { if_printf(&sc->arpcom.ac_if, "Firmware synchronization timeout! " "msg_data = 0x%08X\n", msg_data); msg_data &= ~BCE_DRV_MSG_CODE; msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT; bce_shmem_wr(sc, BCE_DRV_MB, msg_data); sc->bce_fw_timed_out = 1; rc = EBUSY; } return rc; } /****************************************************************************/ /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_load_rv2p_fw(struct bce_softc *sc, uint32_t *rv2p_code, uint32_t rv2p_code_len, uint32_t rv2p_proc) { int i; uint32_t val; for (i = 0; i < rv2p_code_len; i += 8) { REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code); rv2p_code++; REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code); rv2p_code++; if (rv2p_proc == RV2P_PROC1) { val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR; REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val); } else { val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR; REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val); } } /* Reset the processor, un-stall is done later. */ if (rv2p_proc == RV2P_PROC1) REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET); else REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET); } /****************************************************************************/ /* Load RISC processor firmware. */ /* */ /* Loads firmware from the file if_bcefw.h into the scratchpad memory */ /* associated with a particular processor. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg, struct fw_info *fw) { uint32_t offset; int j; bce_halt_cpu(sc, cpu_reg); /* Load the Text area. */ offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); if (fw->text) { for (j = 0; j < (fw->text_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->text[j]); } /* Load the Data area. */ offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); if (fw->data) { for (j = 0; j < (fw->data_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->data[j]); } /* Load the SBSS area. */ offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); if (fw->sbss) { for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->sbss[j]); } /* Load the BSS area. */ offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); if (fw->bss) { for (j = 0; j < (fw->bss_len/4); j++, offset += 4) REG_WR_IND(sc, offset, fw->bss[j]); } /* Load the Read-Only area. */ offset = cpu_reg->spad_base + (fw->rodata_addr - cpu_reg->mips_view_base); if (fw->rodata) { for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) REG_WR_IND(sc, offset, fw->rodata[j]); } /* Clear the pre-fetch instruction and set the FW start address. */ REG_WR_IND(sc, cpu_reg->inst, 0); REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); } /****************************************************************************/ /* Starts the RISC processor. */ /* */ /* Assumes the CPU starting address has already been set. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) { uint32_t val; /* Start the CPU. */ val = REG_RD_IND(sc, cpu_reg->mode); val &= ~cpu_reg->mode_value_halt; REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); REG_WR_IND(sc, cpu_reg->mode, val); } /****************************************************************************/ /* Halts the RISC processor. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg) { uint32_t val; /* Halt the CPU. */ val = REG_RD_IND(sc, cpu_reg->mode); val |= cpu_reg->mode_value_halt; REG_WR_IND(sc, cpu_reg->mode, val); REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); } /****************************************************************************/ /* Start the RX CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_start_rxp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; cpu_reg.mode = BCE_RXP_CPU_MODE; cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_RXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_RXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; bce_start_cpu(sc, &cpu_reg); } /****************************************************************************/ /* Initialize the RX CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_rxp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; cpu_reg.mode = BCE_RXP_CPU_MODE; cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_RXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE; cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK; cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION; cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_RXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { fw.ver_major = bce_RXP_b09FwReleaseMajor; fw.ver_minor = bce_RXP_b09FwReleaseMinor; fw.ver_fix = bce_RXP_b09FwReleaseFix; fw.start_addr = bce_RXP_b09FwStartAddr; fw.text_addr = bce_RXP_b09FwTextAddr; fw.text_len = bce_RXP_b09FwTextLen; fw.text_index = 0; fw.text = bce_RXP_b09FwText; fw.data_addr = bce_RXP_b09FwDataAddr; fw.data_len = bce_RXP_b09FwDataLen; fw.data_index = 0; fw.data = bce_RXP_b09FwData; fw.sbss_addr = bce_RXP_b09FwSbssAddr; fw.sbss_len = bce_RXP_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_RXP_b09FwSbss; fw.bss_addr = bce_RXP_b09FwBssAddr; fw.bss_len = bce_RXP_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_RXP_b09FwBss; fw.rodata_addr = bce_RXP_b09FwRodataAddr; fw.rodata_len = bce_RXP_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_RXP_b09FwRodata; } else { fw.ver_major = bce_RXP_b06FwReleaseMajor; fw.ver_minor = bce_RXP_b06FwReleaseMinor; fw.ver_fix = bce_RXP_b06FwReleaseFix; fw.start_addr = bce_RXP_b06FwStartAddr; fw.text_addr = bce_RXP_b06FwTextAddr; fw.text_len = bce_RXP_b06FwTextLen; fw.text_index = 0; fw.text = bce_RXP_b06FwText; fw.data_addr = bce_RXP_b06FwDataAddr; fw.data_len = bce_RXP_b06FwDataLen; fw.data_index = 0; fw.data = bce_RXP_b06FwData; fw.sbss_addr = bce_RXP_b06FwSbssAddr; fw.sbss_len = bce_RXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_RXP_b06FwSbss; fw.bss_addr = bce_RXP_b06FwBssAddr; fw.bss_len = bce_RXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_RXP_b06FwBss; fw.rodata_addr = bce_RXP_b06FwRodataAddr; fw.rodata_len = bce_RXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_RXP_b06FwRodata; } bce_load_cpu_fw(sc, &cpu_reg, &fw); /* Delay RXP start until initialization is complete. */ } /****************************************************************************/ /* Initialize the TX CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_txp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; cpu_reg.mode = BCE_TXP_CPU_MODE; cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_TXP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE; cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK; cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION; cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_TXP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { fw.ver_major = bce_TXP_b09FwReleaseMajor; fw.ver_minor = bce_TXP_b09FwReleaseMinor; fw.ver_fix = bce_TXP_b09FwReleaseFix; fw.start_addr = bce_TXP_b09FwStartAddr; fw.text_addr = bce_TXP_b09FwTextAddr; fw.text_len = bce_TXP_b09FwTextLen; fw.text_index = 0; fw.text = bce_TXP_b09FwText; fw.data_addr = bce_TXP_b09FwDataAddr; fw.data_len = bce_TXP_b09FwDataLen; fw.data_index = 0; fw.data = bce_TXP_b09FwData; fw.sbss_addr = bce_TXP_b09FwSbssAddr; fw.sbss_len = bce_TXP_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TXP_b09FwSbss; fw.bss_addr = bce_TXP_b09FwBssAddr; fw.bss_len = bce_TXP_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_TXP_b09FwBss; fw.rodata_addr = bce_TXP_b09FwRodataAddr; fw.rodata_len = bce_TXP_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TXP_b09FwRodata; } else { fw.ver_major = bce_TXP_b06FwReleaseMajor; fw.ver_minor = bce_TXP_b06FwReleaseMinor; fw.ver_fix = bce_TXP_b06FwReleaseFix; fw.start_addr = bce_TXP_b06FwStartAddr; fw.text_addr = bce_TXP_b06FwTextAddr; fw.text_len = bce_TXP_b06FwTextLen; fw.text_index = 0; fw.text = bce_TXP_b06FwText; fw.data_addr = bce_TXP_b06FwDataAddr; fw.data_len = bce_TXP_b06FwDataLen; fw.data_index = 0; fw.data = bce_TXP_b06FwData; fw.sbss_addr = bce_TXP_b06FwSbssAddr; fw.sbss_len = bce_TXP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TXP_b06FwSbss; fw.bss_addr = bce_TXP_b06FwBssAddr; fw.bss_len = bce_TXP_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_TXP_b06FwBss; fw.rodata_addr = bce_TXP_b06FwRodataAddr; fw.rodata_len = bce_TXP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TXP_b06FwRodata; } bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); } /****************************************************************************/ /* Initialize the TPAT CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_tpat_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; cpu_reg.mode = BCE_TPAT_CPU_MODE; cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_TPAT_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE; cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK; cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION; cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_TPAT_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { fw.ver_major = bce_TPAT_b09FwReleaseMajor; fw.ver_minor = bce_TPAT_b09FwReleaseMinor; fw.ver_fix = bce_TPAT_b09FwReleaseFix; fw.start_addr = bce_TPAT_b09FwStartAddr; fw.text_addr = bce_TPAT_b09FwTextAddr; fw.text_len = bce_TPAT_b09FwTextLen; fw.text_index = 0; fw.text = bce_TPAT_b09FwText; fw.data_addr = bce_TPAT_b09FwDataAddr; fw.data_len = bce_TPAT_b09FwDataLen; fw.data_index = 0; fw.data = bce_TPAT_b09FwData; fw.sbss_addr = bce_TPAT_b09FwSbssAddr; fw.sbss_len = bce_TPAT_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TPAT_b09FwSbss; fw.bss_addr = bce_TPAT_b09FwBssAddr; fw.bss_len = bce_TPAT_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_TPAT_b09FwBss; fw.rodata_addr = bce_TPAT_b09FwRodataAddr; fw.rodata_len = bce_TPAT_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TPAT_b09FwRodata; } else { fw.ver_major = bce_TPAT_b06FwReleaseMajor; fw.ver_minor = bce_TPAT_b06FwReleaseMinor; fw.ver_fix = bce_TPAT_b06FwReleaseFix; fw.start_addr = bce_TPAT_b06FwStartAddr; fw.text_addr = bce_TPAT_b06FwTextAddr; fw.text_len = bce_TPAT_b06FwTextLen; fw.text_index = 0; fw.text = bce_TPAT_b06FwText; fw.data_addr = bce_TPAT_b06FwDataAddr; fw.data_len = bce_TPAT_b06FwDataLen; fw.data_index = 0; fw.data = bce_TPAT_b06FwData; fw.sbss_addr = bce_TPAT_b06FwSbssAddr; fw.sbss_len = bce_TPAT_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_TPAT_b06FwSbss; fw.bss_addr = bce_TPAT_b06FwBssAddr; fw.bss_len = bce_TPAT_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_TPAT_b06FwBss; fw.rodata_addr = bce_TPAT_b06FwRodataAddr; fw.rodata_len = bce_TPAT_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_TPAT_b06FwRodata; } bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); } /****************************************************************************/ /* Initialize the CP CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_cp_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; cpu_reg.mode = BCE_CP_CPU_MODE; cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_CP_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE; cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK; cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_CP_CPU_INSTRUCTION; cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_CP_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { fw.ver_major = bce_CP_b09FwReleaseMajor; fw.ver_minor = bce_CP_b09FwReleaseMinor; fw.ver_fix = bce_CP_b09FwReleaseFix; fw.start_addr = bce_CP_b09FwStartAddr; fw.text_addr = bce_CP_b09FwTextAddr; fw.text_len = bce_CP_b09FwTextLen; fw.text_index = 0; fw.text = bce_CP_b09FwText; fw.data_addr = bce_CP_b09FwDataAddr; fw.data_len = bce_CP_b09FwDataLen; fw.data_index = 0; fw.data = bce_CP_b09FwData; fw.sbss_addr = bce_CP_b09FwSbssAddr; fw.sbss_len = bce_CP_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_CP_b09FwSbss; fw.bss_addr = bce_CP_b09FwBssAddr; fw.bss_len = bce_CP_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_CP_b09FwBss; fw.rodata_addr = bce_CP_b09FwRodataAddr; fw.rodata_len = bce_CP_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_CP_b09FwRodata; } else { fw.ver_major = bce_CP_b06FwReleaseMajor; fw.ver_minor = bce_CP_b06FwReleaseMinor; fw.ver_fix = bce_CP_b06FwReleaseFix; fw.start_addr = bce_CP_b06FwStartAddr; fw.text_addr = bce_CP_b06FwTextAddr; fw.text_len = bce_CP_b06FwTextLen; fw.text_index = 0; fw.text = bce_CP_b06FwText; fw.data_addr = bce_CP_b06FwDataAddr; fw.data_len = bce_CP_b06FwDataLen; fw.data_index = 0; fw.data = bce_CP_b06FwData; fw.sbss_addr = bce_CP_b06FwSbssAddr; fw.sbss_len = bce_CP_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_CP_b06FwSbss; fw.bss_addr = bce_CP_b06FwBssAddr; fw.bss_len = bce_CP_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_CP_b06FwBss; fw.rodata_addr = bce_CP_b06FwRodataAddr; fw.rodata_len = bce_CP_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_CP_b06FwRodata; } bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); } /****************************************************************************/ /* Initialize the COM CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_com_cpu(struct bce_softc *sc) { struct cpu_reg cpu_reg; struct fw_info fw; cpu_reg.mode = BCE_COM_CPU_MODE; cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT; cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA; cpu_reg.state = BCE_COM_CPU_STATE; cpu_reg.state_value_clear = 0xffffff; cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE; cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK; cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER; cpu_reg.inst = BCE_COM_CPU_INSTRUCTION; cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT; cpu_reg.spad_base = BCE_COM_SCRATCH; cpu_reg.mips_view_base = 0x8000000; if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { fw.ver_major = bce_COM_b09FwReleaseMajor; fw.ver_minor = bce_COM_b09FwReleaseMinor; fw.ver_fix = bce_COM_b09FwReleaseFix; fw.start_addr = bce_COM_b09FwStartAddr; fw.text_addr = bce_COM_b09FwTextAddr; fw.text_len = bce_COM_b09FwTextLen; fw.text_index = 0; fw.text = bce_COM_b09FwText; fw.data_addr = bce_COM_b09FwDataAddr; fw.data_len = bce_COM_b09FwDataLen; fw.data_index = 0; fw.data = bce_COM_b09FwData; fw.sbss_addr = bce_COM_b09FwSbssAddr; fw.sbss_len = bce_COM_b09FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_COM_b09FwSbss; fw.bss_addr = bce_COM_b09FwBssAddr; fw.bss_len = bce_COM_b09FwBssLen; fw.bss_index = 0; fw.bss = bce_COM_b09FwBss; fw.rodata_addr = bce_COM_b09FwRodataAddr; fw.rodata_len = bce_COM_b09FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_COM_b09FwRodata; } else { fw.ver_major = bce_COM_b06FwReleaseMajor; fw.ver_minor = bce_COM_b06FwReleaseMinor; fw.ver_fix = bce_COM_b06FwReleaseFix; fw.start_addr = bce_COM_b06FwStartAddr; fw.text_addr = bce_COM_b06FwTextAddr; fw.text_len = bce_COM_b06FwTextLen; fw.text_index = 0; fw.text = bce_COM_b06FwText; fw.data_addr = bce_COM_b06FwDataAddr; fw.data_len = bce_COM_b06FwDataLen; fw.data_index = 0; fw.data = bce_COM_b06FwData; fw.sbss_addr = bce_COM_b06FwSbssAddr; fw.sbss_len = bce_COM_b06FwSbssLen; fw.sbss_index = 0; fw.sbss = bce_COM_b06FwSbss; fw.bss_addr = bce_COM_b06FwBssAddr; fw.bss_len = bce_COM_b06FwBssLen; fw.bss_index = 0; fw.bss = bce_COM_b06FwBss; fw.rodata_addr = bce_COM_b06FwRodataAddr; fw.rodata_len = bce_COM_b06FwRodataLen; fw.rodata_index = 0; fw.rodata = bce_COM_b06FwRodata; } bce_load_cpu_fw(sc, &cpu_reg, &fw); bce_start_cpu(sc, &cpu_reg); } /****************************************************************************/ /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */ /* */ /* Loads the firmware for each CPU and starts the CPU. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init_cpus(struct bce_softc *sc) { if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax) { bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1, sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1); bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2, sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2); } else { bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1, sizeof(bce_xi_rv2p_proc1), RV2P_PROC1); bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2, sizeof(bce_xi_rv2p_proc2), RV2P_PROC2); } } else { bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1), RV2P_PROC1); bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2), RV2P_PROC2); } bce_init_rxp_cpu(sc); bce_init_txp_cpu(sc); bce_init_tpat_cpu(sc); bce_init_com_cpu(sc); bce_init_cp_cpu(sc); } /****************************************************************************/ /* Initialize context memory. */ /* */ /* Clears the memory associated with each Context ID (CID). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static int bce_init_ctx(struct bce_softc *sc) { if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { /* DRC: Replace this constant value with a #define. */ int i, retry_cnt = 10; uint32_t val; /* * BCM5709 context memory may be cached * in host memory so prepare the host memory * for access. */ val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT | (1 << 12); val |= (BCM_PAGE_BITS - 8) << 16; REG_WR(sc, BCE_CTX_COMMAND, val); /* Wait for mem init command to complete. */ for (i = 0; i < retry_cnt; i++) { val = REG_RD(sc, BCE_CTX_COMMAND); if (!(val & BCE_CTX_COMMAND_MEM_INIT)) break; DELAY(2); } if (i == retry_cnt) { device_printf(sc->bce_dev, "Context memory initialization failed!\n"); return ETIMEDOUT; } for (i = 0; i < sc->ctx_pages; i++) { int j; /* * Set the physical address of the context * memory cache. */ REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0, BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) | BCE_CTX_HOST_PAGE_TBL_DATA0_VALID); REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1, BCE_ADDR_HI(sc->ctx_paddr[i])); REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); /* * Verify that the context memory write was successful. */ for (j = 0; j < retry_cnt; j++) { val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL); if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) break; DELAY(5); } if (j == retry_cnt) { device_printf(sc->bce_dev, "Failed to initialize context page!\n"); return ETIMEDOUT; } } } else { uint32_t vcid_addr, offset; /* * For the 5706/5708, context memory is local to * the controller, so initialize the controller * context memory. */ vcid_addr = GET_CID_ADDR(96); while (vcid_addr) { vcid_addr -= PHY_CTX_SIZE; REG_WR(sc, BCE_CTX_VIRT_ADDR, 0); REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) CTX_WR(sc, 0x00, offset, 0); REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr); REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr); } } return 0; } /****************************************************************************/ /* Fetch the permanent MAC address of the controller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_get_mac_addr(struct bce_softc *sc) { uint32_t mac_lo = 0, mac_hi = 0; /* * The NetXtreme II bootcode populates various NIC * power-on and runtime configuration items in a * shared memory area. The factory configured MAC * address is available from both NVRAM and the * shared memory area so we'll read the value from * shared memory for speed. */ mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER); mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER); if (mac_lo == 0 && mac_hi == 0) { if_printf(&sc->arpcom.ac_if, "Invalid Ethernet address!\n"); } else { sc->eaddr[0] = (u_char)(mac_hi >> 8); sc->eaddr[1] = (u_char)(mac_hi >> 0); sc->eaddr[2] = (u_char)(mac_lo >> 24); sc->eaddr[3] = (u_char)(mac_lo >> 16); sc->eaddr[4] = (u_char)(mac_lo >> 8); sc->eaddr[5] = (u_char)(mac_lo >> 0); } } /****************************************************************************/ /* Program the MAC address. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_set_mac_addr(struct bce_softc *sc) { const uint8_t *mac_addr = sc->eaddr; uint32_t val; val = (mac_addr[0] << 8) | mac_addr[1]; REG_WR(sc, BCE_EMAC_MAC_MATCH0, val); val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | (mac_addr[4] << 8) | mac_addr[5]; REG_WR(sc, BCE_EMAC_MAC_MATCH1, val); } /****************************************************************************/ /* Stop the controller. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_stop(struct bce_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int i; ASSERT_IFNET_SERIALIZED_ALL(ifp); callout_stop(&sc->bce_tick_callout); /* Disable the transmit/receive blocks. */ REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT); REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); DELAY(20); bce_disable_intr(sc); ifp->if_flags &= ~IFF_RUNNING; for (i = 0; i < sc->tx_ring_cnt; ++i) { ifsq_clr_oactive(sc->tx_rings[i].ifsq); ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog); } /* Free the RX lists. */ for (i = 0; i < sc->rx_ring_cnt; ++i) bce_free_rx_chain(&sc->rx_rings[i]); /* Free TX buffers. */ for (i = 0; i < sc->tx_ring_cnt; ++i) bce_free_tx_chain(&sc->tx_rings[i]); sc->bce_link = 0; sc->bce_coalchg_mask = 0; } static int bce_reset(struct bce_softc *sc, uint32_t reset_code) { uint32_t val; int i, rc = 0; /* Wait for pending PCI transactions to complete. */ REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS); DELAY(5); /* Disable DMA */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); } /* Assume bootcode is running. */ sc->bce_fw_timed_out = 0; sc->bce_drv_cardiac_arrest = 0; /* Give the firmware a chance to prepare for the reset. */ rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code); if (rc) { if_printf(&sc->arpcom.ac_if, "Firmware is not ready for reset\n"); return rc; } /* Set a firmware reminder that this is a soft reset. */ bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC); /* Dummy read to force the chip to complete all current transactions. */ val = REG_RD(sc, BCE_MISC_ID); /* Chip reset. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET); REG_RD(sc, BCE_MISC_COMMAND); DELAY(5); val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4); } else { val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val); /* Allow up to 30us for reset to complete. */ for (i = 0; i < 10; i++) { val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG); if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) break; DELAY(10); } /* Check that reset completed successfully. */ if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ | BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { if_printf(&sc->arpcom.ac_if, "Reset failed!\n"); return EBUSY; } } /* Make sure byte swapping is properly configured. */ val = REG_RD(sc, BCE_PCI_SWAP_DIAG0); if (val != 0x01020304) { if_printf(&sc->arpcom.ac_if, "Byte swap is incorrect!\n"); return ENODEV; } /* Just completed a reset, assume that firmware is running again. */ sc->bce_fw_timed_out = 0; sc->bce_drv_cardiac_arrest = 0; /* Wait for the firmware to finish its initialization. */ rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code); if (rc) { if_printf(&sc->arpcom.ac_if, "Firmware did not complete initialization!\n"); } if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) { bce_setup_msix_table(sc); /* Prevent MSIX table reads and write from timing out */ REG_WR(sc, BCE_MISC_ECO_HW_CTL, BCE_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN); } return rc; } static int bce_chipinit(struct bce_softc *sc) { uint32_t val; int rc = 0; /* Make sure the interrupt is not active. */ REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT); REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); /* * Initialize DMA byte/word swapping, configure the number of DMA * channels and PCI clock compensation delay. */ val = BCE_DMA_CONFIG_DATA_BYTE_SWAP | BCE_DMA_CONFIG_DATA_WORD_SWAP | #if BYTE_ORDER == BIG_ENDIAN BCE_DMA_CONFIG_CNTL_BYTE_SWAP | #endif BCE_DMA_CONFIG_CNTL_WORD_SWAP | DMA_READ_CHANS << 12 | DMA_WRITE_CHANS << 16; val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY; if ((sc->bce_flags & BCE_PCIX_FLAG) && sc->bus_speed_mhz == 133) val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP; /* * This setting resolves a problem observed on certain Intel PCI * chipsets that cannot handle multiple outstanding DMA operations. * See errata E9_5706A1_65. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706 && BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0 && !(sc->bce_flags & BCE_PCIX_FLAG)) val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA; REG_WR(sc, BCE_DMA_CONFIG, val); /* Enable the RX_V2P and Context state machines before access. */ REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); /* Initialize context mapping and zero out the quick contexts. */ rc = bce_init_ctx(sc); if (rc != 0) return rc; /* Initialize the on-boards CPUs */ bce_init_cpus(sc); /* Enable management frames (NC-SI) to flow to the MCP. */ if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); } /* Prepare NVRAM for access. */ rc = bce_init_nvram(sc); if (rc != 0) return rc; /* Set the kernel bypass block size */ val = REG_RD(sc, BCE_MQ_CONFIG); val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE; val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; /* Enable bins used on the 5709/5716. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { val |= BCE_MQ_CONFIG_BIN_MQ_MODE; if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1) val |= BCE_MQ_CONFIG_HALT_DIS; } REG_WR(sc, BCE_MQ_CONFIG, val); val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val); REG_WR(sc, BCE_MQ_KNL_WIND_END, val); /* Set the page size and clear the RV2P processor stall bits. */ val = (BCM_PAGE_BITS - 8) << 24; REG_WR(sc, BCE_RV2P_CONFIG, val); /* Configure page size. */ val = REG_RD(sc, BCE_TBDR_CONFIG); val &= ~BCE_TBDR_CONFIG_PAGE_SIZE; val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; REG_WR(sc, BCE_TBDR_CONFIG, val); /* Set the perfect match control register to default. */ REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0); return 0; } /****************************************************************************/ /* Initialize the controller in preparation to send/receive traffic. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_blockinit(struct bce_softc *sc) { uint32_t reg, val; int i; /* Load the hardware default MAC address. */ bce_set_mac_addr(sc); /* Set the Ethernet backoff seed value */ val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) + sc->eaddr[3] + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val); sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE; /* Set up link change interrupt generation. */ REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK); /* Program the physical address of the status block. */ REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr)); REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr)); /* Program the physical address of the statistics block. */ REG_WR(sc, BCE_HC_STATISTICS_ADDR_L, BCE_ADDR_LO(sc->stats_block_paddr)); REG_WR(sc, BCE_HC_STATISTICS_ADDR_H, BCE_ADDR_HI(sc->stats_block_paddr)); /* Program various host coalescing parameters. */ REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); REG_WR(sc, BCE_HC_COMP_PROD_TRIP, (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip); REG_WR(sc, BCE_HC_TX_TICKS, (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); REG_WR(sc, BCE_HC_RX_TICKS, (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); REG_WR(sc, BCE_HC_COM_TICKS, (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks); REG_WR(sc, BCE_HC_CMD_TICKS, (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks); REG_WR(sc, BCE_HC_STATS_TICKS, (sc->bce_stats_ticks & 0xffff00)); REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL); val = BCE_HC_CONFIG_TX_TMR_MODE | BCE_HC_CONFIG_COLLECT_STATS; if ((sc->bce_flags & BCE_ONESHOT_MSI_FLAG) || sc->bce_irq_type == PCI_INTR_TYPE_MSIX) { if (bootverbose) { if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) { if_printf(&sc->arpcom.ac_if, "using MSI-X\n"); } else { if_printf(&sc->arpcom.ac_if, "using oneshot MSI\n"); } } val |= BCE_HC_CONFIG_ONE_SHOT | BCE_HC_CONFIG_USE_INT_PARAM; if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) val |= BCE_HC_CONFIG_SB_ADDR_INC_128B; } REG_WR(sc, BCE_HC_CONFIG, val); for (i = 1; i < sc->rx_ring_cnt; ++i) { uint32_t base; base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1; KKASSERT(base <= BCE_HC_SB_CONFIG_8); REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE | /* BCE_HC_SB_CONFIG_1_RX_TMR_MODE | */ BCE_HC_SB_CONFIG_1_ONE_SHOT); REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); REG_WR(sc, base + BCE_HC_RX_QUICK_CONS_TRIP_OFF, (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); REG_WR(sc, base + BCE_HC_RX_TICKS_OFF, (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); } /* Clear the internal statistics counters. */ REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW); /* Verify that bootcode is running. */ reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE); if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) != BCE_DEV_INFO_SIGNATURE_MAGIC) { if_printf(&sc->arpcom.ac_if, "Bootcode not running! Found: 0x%08X, " "Expected: 08%08X\n", reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK, BCE_DEV_INFO_SIGNATURE_MAGIC); return ENODEV; } /* Enable DMA */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL); val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE; REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val); } /* Allow bootcode to apply any additional fixes before enabling MAC. */ bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET); /* Enable link state change interrupt generation. */ REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); /* Enable the RXP. */ bce_start_rxp_cpu(sc); /* Disable management frames (NC-SI) from flowing to the MCP. */ if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) & ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN; REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val); } /* Enable all remaining blocks in the MAC. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI); } else { REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); } REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); DELAY(20); /* Save the current host coalescing block settings. */ sc->hc_command = REG_RD(sc, BCE_HC_COMMAND); return 0; } /****************************************************************************/ /* Encapsulate an mbuf cluster into the rx_bd chain. */ /* */ /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ /* This routine will map an mbuf cluster into 1 or more rx_bd's as */ /* necessary. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_newbuf_std(struct bce_rx_ring *rxr, uint16_t *prod, uint16_t chain_prod, uint32_t *prod_bseq, int init) { struct bce_rx_buf *rx_buf; bus_dmamap_t map; bus_dma_segment_t seg; struct mbuf *m_new; int error, nseg; /* This is a new mbuf allocation. */ m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR); if (m_new == NULL) return ENOBUFS; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; /* Map the mbuf cluster into device memory. */ error = bus_dmamap_load_mbuf_segment(rxr->rx_mbuf_tag, rxr->rx_mbuf_tmpmap, m_new, &seg, 1, &nseg, BUS_DMA_NOWAIT); if (error) { m_freem(m_new); if (init) { if_printf(&rxr->sc->arpcom.ac_if, "Error mapping mbuf into RX chain!\n"); } return error; } rx_buf = &rxr->rx_bufs[chain_prod]; if (rx_buf->rx_mbuf_ptr != NULL) bus_dmamap_unload(rxr->rx_mbuf_tag, rx_buf->rx_mbuf_map); map = rx_buf->rx_mbuf_map; rx_buf->rx_mbuf_map = rxr->rx_mbuf_tmpmap; rxr->rx_mbuf_tmpmap = map; /* Save the mbuf and update our counter. */ rx_buf->rx_mbuf_ptr = m_new; rx_buf->rx_mbuf_paddr = seg.ds_addr; rxr->free_rx_bd--; bce_setup_rxdesc_std(rxr, chain_prod, prod_bseq); return 0; } static void bce_setup_rxdesc_std(struct bce_rx_ring *rxr, uint16_t chain_prod, uint32_t *prod_bseq) { const struct bce_rx_buf *rx_buf; struct rx_bd *rxbd; bus_addr_t paddr; int len; rx_buf = &rxr->rx_bufs[chain_prod]; paddr = rx_buf->rx_mbuf_paddr; len = rx_buf->rx_mbuf_ptr->m_len; /* Setup the rx_bd for the first segment. */ rxbd = &rxr->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)]; rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(paddr)); rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(paddr)); rxbd->rx_bd_len = htole32(len); rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START); *prod_bseq += len; rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END); } /****************************************************************************/ /* Initialize the TX context memory. */ /* */ /* Returns: */ /* Nothing */ /****************************************************************************/ static void bce_init_tx_context(struct bce_tx_ring *txr) { uint32_t val; /* Initialize the context ID for an L2 TX chain. */ if (BCE_CHIP_NUM(txr->sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(txr->sc) == BCE_CHIP_NUM_5716) { /* Set the CID type to support an L2 connection. */ val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_TYPE_XI, val); val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_CMD_TYPE_XI, val); /* Point the hardware to the first page in the chain. */ val = BCE_ADDR_HI(txr->tx_bd_chain_paddr[0]); CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val); val = BCE_ADDR_LO(txr->tx_bd_chain_paddr[0]); CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val); } else { /* Set the CID type to support an L2 connection. */ val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2; CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_TYPE, val); val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16); CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_CMD_TYPE, val); /* Point the hardware to the first page in the chain. */ val = BCE_ADDR_HI(txr->tx_bd_chain_paddr[0]); CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_TBDR_BHADDR_HI, val); val = BCE_ADDR_LO(txr->tx_bd_chain_paddr[0]); CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid), BCE_L2CTX_TX_TBDR_BHADDR_LO, val); } } /****************************************************************************/ /* Allocate memory and initialize the TX data structures. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_init_tx_chain(struct bce_tx_ring *txr) { struct tx_bd *txbd; int i, rc = 0; /* Set the initial TX producer/consumer indices. */ txr->tx_prod = 0; txr->tx_cons = 0; txr->tx_prod_bseq = 0; txr->used_tx_bd = 0; txr->max_tx_bd = USABLE_TX_BD(txr); /* * The NetXtreme II supports a linked-list structre called * a Buffer Descriptor Chain (or BD chain). A BD chain * consists of a series of 1 or more chain pages, each of which * consists of a fixed number of BD entries. * The last BD entry on each page is a pointer to the next page * in the chain, and the last pointer in the BD chain * points back to the beginning of the chain. */ /* Set the TX next pointer chain entries. */ for (i = 0; i < txr->tx_pages; i++) { int j; txbd = &txr->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; /* Check if we've reached the last page. */ if (i == (txr->tx_pages - 1)) j = 0; else j = i + 1; txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(txr->tx_bd_chain_paddr[j])); txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(txr->tx_bd_chain_paddr[j])); } bce_init_tx_context(txr); return(rc); } /****************************************************************************/ /* Free memory and clear the TX data structures. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_free_tx_chain(struct bce_tx_ring *txr) { int i; /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ for (i = 0; i < TOTAL_TX_BD(txr); i++) { struct bce_tx_buf *tx_buf = &txr->tx_bufs[i]; if (tx_buf->tx_mbuf_ptr != NULL) { bus_dmamap_unload(txr->tx_mbuf_tag, tx_buf->tx_mbuf_map); m_freem(tx_buf->tx_mbuf_ptr); tx_buf->tx_mbuf_ptr = NULL; } } /* Clear each TX chain page. */ for (i = 0; i < txr->tx_pages; i++) bzero(txr->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ); txr->used_tx_bd = 0; } /****************************************************************************/ /* Initialize the RX context memory. */ /* */ /* Returns: */ /* Nothing */ /****************************************************************************/ static void bce_init_rx_context(struct bce_rx_ring *rxr) { uint32_t val; /* Initialize the context ID for an L2 RX chain. */ val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << 8); /* * Set the level for generating pause frames * when the number of available rx_bd's gets * too low (the low watermark) and the level * when pause frames can be stopped (the high * watermark). */ if (BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5716) { uint32_t lo_water, hi_water; lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT; hi_water = USABLE_RX_BD(rxr) / 4; lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE; hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE; if (hi_water > 0xf) hi_water = 0xf; else if (hi_water == 0) lo_water = 0; val |= lo_water | (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT); } CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid), BCE_L2CTX_RX_CTX_TYPE, val); /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ if (BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5716) { val = REG_RD(rxr->sc, BCE_MQ_MAP_L2_5); REG_WR(rxr->sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM); } /* Point the hardware to the first page in the chain. */ val = BCE_ADDR_HI(rxr->rx_bd_chain_paddr[0]); CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid), BCE_L2CTX_RX_NX_BDHADDR_HI, val); val = BCE_ADDR_LO(rxr->rx_bd_chain_paddr[0]); CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid), BCE_L2CTX_RX_NX_BDHADDR_LO, val); } /****************************************************************************/ /* Allocate memory and initialize the RX data structures. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_init_rx_chain(struct bce_rx_ring *rxr) { struct rx_bd *rxbd; int i, rc = 0; uint16_t prod, chain_prod; uint32_t prod_bseq; /* Initialize the RX producer and consumer indices. */ rxr->rx_prod = 0; rxr->rx_cons = 0; rxr->rx_prod_bseq = 0; rxr->free_rx_bd = USABLE_RX_BD(rxr); rxr->max_rx_bd = USABLE_RX_BD(rxr); /* Clear cache status index */ rxr->last_status_idx = 0; /* Initialize the RX next pointer chain entries. */ for (i = 0; i < rxr->rx_pages; i++) { int j; rxbd = &rxr->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; /* Check if we've reached the last page. */ if (i == (rxr->rx_pages - 1)) j = 0; else j = i + 1; /* Setup the chain page pointers. */ rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(rxr->rx_bd_chain_paddr[j])); rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(rxr->rx_bd_chain_paddr[j])); } /* Allocate mbuf clusters for the rx_bd chain. */ prod = prod_bseq = 0; while (prod < TOTAL_RX_BD(rxr)) { chain_prod = RX_CHAIN_IDX(rxr, prod); if (bce_newbuf_std(rxr, &prod, chain_prod, &prod_bseq, 1)) { if_printf(&rxr->sc->arpcom.ac_if, "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod); rc = ENOBUFS; break; } prod = NEXT_RX_BD(prod); } /* Save the RX chain producer index. */ rxr->rx_prod = prod; rxr->rx_prod_bseq = prod_bseq; /* Tell the chip about the waiting rx_bd's. */ REG_WR16(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BDIDX, rxr->rx_prod); REG_WR(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BSEQ, rxr->rx_prod_bseq); bce_init_rx_context(rxr); return(rc); } /****************************************************************************/ /* Free memory and clear the RX data structures. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_free_rx_chain(struct bce_rx_ring *rxr) { int i; /* Free any mbufs still in the RX mbuf chain. */ for (i = 0; i < TOTAL_RX_BD(rxr); i++) { struct bce_rx_buf *rx_buf = &rxr->rx_bufs[i]; if (rx_buf->rx_mbuf_ptr != NULL) { bus_dmamap_unload(rxr->rx_mbuf_tag, rx_buf->rx_mbuf_map); m_freem(rx_buf->rx_mbuf_ptr); rx_buf->rx_mbuf_ptr = NULL; } } /* Clear each RX chain page. */ for (i = 0; i < rxr->rx_pages; i++) bzero(rxr->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ); } /****************************************************************************/ /* Set media options. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_ifmedia_upd(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; struct mii_data *mii = device_get_softc(sc->bce_miibus); int error = 0; /* * 'mii' will be NULL, when this function is called on following * code path: bce_attach() -> bce_mgmt_init() */ if (mii != NULL) { /* Make sure the MII bus has been enumerated. */ sc->bce_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } error = mii_mediachg(mii); } return error; } /****************************************************************************/ /* Reports current media status. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bce_softc *sc = ifp->if_softc; struct mii_data *mii = device_get_softc(sc->bce_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } /****************************************************************************/ /* Handles PHY generated interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_phy_intr(struct bce_softc *sc) { uint32_t new_link_state, old_link_state; struct ifnet *ifp = &sc->arpcom.ac_if; ASSERT_SERIALIZED(&sc->main_serialize); new_link_state = sc->status_block->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE; old_link_state = sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE; /* Handle any changes if the link state has changed. */ if (new_link_state != old_link_state) { /* XXX redundant? */ /* Update the status_attn_bits_ack field in the status block. */ if (new_link_state) { REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD, STATUS_ATTN_BITS_LINK_STATE); if (bootverbose) if_printf(ifp, "Link is now UP.\n"); } else { REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD, STATUS_ATTN_BITS_LINK_STATE); if (bootverbose) if_printf(ifp, "Link is now DOWN.\n"); } /* * Assume link is down and allow tick routine to * update the state based on the actual media state. */ sc->bce_link = 0; callout_stop(&sc->bce_tick_callout); bce_tick_serialized(sc); } /* Acknowledge the link change interrupt. */ REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE); } /****************************************************************************/ /* Reads the receive consumer value from the status block (skipping over */ /* chain page pointer if necessary). */ /* */ /* Returns: */ /* hw_cons */ /****************************************************************************/ static __inline uint16_t bce_get_hw_rx_cons(struct bce_rx_ring *rxr) { uint16_t hw_cons = *rxr->rx_hw_cons; if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) hw_cons++; return hw_cons; } /****************************************************************************/ /* Handles received frame interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_rx_intr(struct bce_rx_ring *rxr, int count, uint16_t hw_cons) { struct ifnet *ifp = &rxr->sc->arpcom.ac_if; uint16_t sw_cons, sw_chain_cons, sw_prod, sw_chain_prod; uint32_t sw_prod_bseq; ASSERT_SERIALIZED(&rxr->rx_serialize); /* Get working copies of the driver's view of the RX indices. */ sw_cons = rxr->rx_cons; sw_prod = rxr->rx_prod; sw_prod_bseq = rxr->rx_prod_bseq; /* Scan through the receive chain as long as there is work to do. */ while (sw_cons != hw_cons) { struct bce_rx_buf *rx_buf; struct mbuf *m = NULL; struct l2_fhdr *l2fhdr = NULL; unsigned int len; uint32_t status = 0; #ifdef IFPOLL_ENABLE if (count >= 0 && count-- == 0) break; #endif /* * Convert the producer/consumer indices * to an actual rx_bd index. */ sw_chain_cons = RX_CHAIN_IDX(rxr, sw_cons); sw_chain_prod = RX_CHAIN_IDX(rxr, sw_prod); rx_buf = &rxr->rx_bufs[sw_chain_cons]; rxr->free_rx_bd++; /* The mbuf is stored with the last rx_bd entry of a packet. */ if (rx_buf->rx_mbuf_ptr != NULL) { if (sw_chain_cons != sw_chain_prod) { if_printf(ifp, "RX cons(%d) != prod(%d), " "drop!\n", sw_chain_cons, sw_chain_prod); IFNET_STAT_INC(ifp, ierrors, 1); bce_setup_rxdesc_std(rxr, sw_chain_cons, &sw_prod_bseq); m = NULL; goto bce_rx_int_next_rx; } /* Unmap the mbuf from DMA space. */ bus_dmamap_sync(rxr->rx_mbuf_tag, rx_buf->rx_mbuf_map, BUS_DMASYNC_POSTREAD); /* Save the mbuf from the driver's chain. */ m = rx_buf->rx_mbuf_ptr; /* * Frames received on the NetXteme II are prepended * with an l2_fhdr structure which provides status * information about the received frame (including * VLAN tags and checksum info). The frames are also * automatically adjusted to align the IP header * (i.e. two null bytes are inserted before the * Ethernet header). As a result the data DMA'd by * the controller into the mbuf is as follows: * * +---------+-----+---------------------+-----+ * | l2_fhdr | pad | packet data | FCS | * +---------+-----+---------------------+-----+ * * The l2_fhdr needs to be checked and skipped and the * FCS needs to be stripped before sending the packet * up the stack. */ l2fhdr = mtod(m, struct l2_fhdr *); len = l2fhdr->l2_fhdr_pkt_len; status = l2fhdr->l2_fhdr_status; len -= ETHER_CRC_LEN; /* Check the received frame for errors. */ if (status & (L2_FHDR_ERRORS_BAD_CRC | L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT | L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) { IFNET_STAT_INC(ifp, ierrors, 1); /* Reuse the mbuf for a new frame. */ bce_setup_rxdesc_std(rxr, sw_chain_prod, &sw_prod_bseq); m = NULL; goto bce_rx_int_next_rx; } /* * Get a new mbuf for the rx_bd. If no new * mbufs are available then reuse the current mbuf, * log an ierror on the interface, and generate * an error in the system log. */ if (bce_newbuf_std(rxr, &sw_prod, sw_chain_prod, &sw_prod_bseq, 0)) { IFNET_STAT_INC(ifp, ierrors, 1); /* Try and reuse the exisitng mbuf. */ bce_setup_rxdesc_std(rxr, sw_chain_prod, &sw_prod_bseq); m = NULL; goto bce_rx_int_next_rx; } /* * Skip over the l2_fhdr when passing * the data up the stack. */ m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN); m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = ifp; /* Validate the checksum if offload enabled. */ if (ifp->if_capenable & IFCAP_RXCSUM) { /* Check for an IP datagram. */ if (status & L2_FHDR_STATUS_IP_DATAGRAM) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; /* Check if the IP checksum is valid. */ if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0) { m->m_pkthdr.csum_flags |= CSUM_IP_VALID; } } /* Check for a valid TCP/UDP frame. */ if (status & (L2_FHDR_STATUS_TCP_SEGMENT | L2_FHDR_STATUS_UDP_DATAGRAM)) { /* Check for a good TCP/UDP checksum. */ if ((status & (L2_FHDR_ERRORS_TCP_XSUM | L2_FHDR_ERRORS_UDP_XSUM)) == 0) { m->m_pkthdr.csum_data = l2fhdr->l2_fhdr_tcp_udp_xsum; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; } } } IFNET_STAT_INC(ifp, ipackets, 1); bce_rx_int_next_rx: sw_prod = NEXT_RX_BD(sw_prod); } sw_cons = NEXT_RX_BD(sw_cons); /* If we have a packet, pass it up the stack */ if (m) { if (status & L2_FHDR_STATUS_L2_VLAN_TAG) { m->m_flags |= M_VLANTAG; m->m_pkthdr.ether_vlantag = l2fhdr->l2_fhdr_vlan_tag; } ifp->if_input(ifp, m); #ifdef BCE_RSS_DEBUG rxr->rx_pkts++; #endif } } rxr->rx_cons = sw_cons; rxr->rx_prod = sw_prod; rxr->rx_prod_bseq = sw_prod_bseq; REG_WR16(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BDIDX, rxr->rx_prod); REG_WR(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BSEQ, rxr->rx_prod_bseq); } /****************************************************************************/ /* Reads the transmit consumer value from the status block (skipping over */ /* chain page pointer if necessary). */ /* */ /* Returns: */ /* hw_cons */ /****************************************************************************/ static __inline uint16_t bce_get_hw_tx_cons(struct bce_tx_ring *txr) { uint16_t hw_cons = *txr->tx_hw_cons; if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) hw_cons++; return hw_cons; } /****************************************************************************/ /* Handles transmit completion interrupt events. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_tx_intr(struct bce_tx_ring *txr, uint16_t hw_tx_cons) { struct ifnet *ifp = &txr->sc->arpcom.ac_if; uint16_t sw_tx_cons, sw_tx_chain_cons; ASSERT_SERIALIZED(&txr->tx_serialize); /* Get the hardware's view of the TX consumer index. */ sw_tx_cons = txr->tx_cons; /* Cycle through any completed TX chain page entries. */ while (sw_tx_cons != hw_tx_cons) { struct bce_tx_buf *tx_buf; sw_tx_chain_cons = TX_CHAIN_IDX(txr, sw_tx_cons); tx_buf = &txr->tx_bufs[sw_tx_chain_cons]; /* * Free the associated mbuf. Remember * that only the last tx_bd of a packet * has an mbuf pointer and DMA map. */ if (tx_buf->tx_mbuf_ptr != NULL) { /* Unmap the mbuf. */ bus_dmamap_unload(txr->tx_mbuf_tag, tx_buf->tx_mbuf_map); /* Free the mbuf. */ m_freem(tx_buf->tx_mbuf_ptr); tx_buf->tx_mbuf_ptr = NULL; IFNET_STAT_INC(ifp, opackets, 1); #ifdef BCE_TSS_DEBUG txr->tx_pkts++; #endif } txr->used_tx_bd--; sw_tx_cons = NEXT_TX_BD(sw_tx_cons); } if (txr->used_tx_bd == 0) { /* Clear the TX timeout timer. */ txr->tx_watchdog.wd_timer = 0; } /* Clear the tx hardware queue full flag. */ if (txr->max_tx_bd - txr->used_tx_bd >= BCE_TX_SPARE_SPACE) ifsq_clr_oactive(txr->ifsq); txr->tx_cons = sw_tx_cons; } /****************************************************************************/ /* Disables interrupt generation. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_disable_intr(struct bce_softc *sc) { int i; for (i = 0; i < sc->rx_ring_cnt; ++i) { REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, (sc->rx_rings[i].idx << 24) | BCE_PCICFG_INT_ACK_CMD_MASK_INT); } REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); callout_stop(&sc->bce_ckmsi_callout); sc->bce_msi_maylose = FALSE; sc->bce_check_rx_cons = 0; sc->bce_check_tx_cons = 0; sc->bce_check_status_idx = 0xffff; for (i = 0; i < sc->rx_ring_cnt; ++i) lwkt_serialize_handler_disable(sc->bce_msix[i].msix_serialize); } /****************************************************************************/ /* Enables interrupt generation. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_enable_intr(struct bce_softc *sc) { int i; for (i = 0; i < sc->rx_ring_cnt; ++i) lwkt_serialize_handler_enable(sc->bce_msix[i].msix_serialize); for (i = 0; i < sc->rx_ring_cnt; ++i) { struct bce_rx_ring *rxr = &sc->rx_rings[i]; REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) | BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | BCE_PCICFG_INT_ACK_CMD_MASK_INT | rxr->last_status_idx); REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) | BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | rxr->last_status_idx); } REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW); if (sc->bce_flags & BCE_CHECK_MSI_FLAG) { sc->bce_msi_maylose = FALSE; sc->bce_check_rx_cons = 0; sc->bce_check_tx_cons = 0; sc->bce_check_status_idx = 0xffff; if (bootverbose) if_printf(&sc->arpcom.ac_if, "check msi\n"); callout_reset_bycpu(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL, bce_check_msi, sc, sc->bce_msix[0].msix_cpuid); } } /****************************************************************************/ /* Reenables interrupt generation during interrupt handling. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_reenable_intr(struct bce_rx_ring *rxr) { REG_WR(rxr->sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) | BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | rxr->last_status_idx); } /****************************************************************************/ /* Handles controller initialization. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_init(void *xsc) { struct bce_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t ether_mtu; int error, i; boolean_t polling; ASSERT_IFNET_SERIALIZED_ALL(ifp); /* Check if the driver is still running and bail out if it is. */ if (ifp->if_flags & IFF_RUNNING) return; bce_stop(sc); error = bce_reset(sc, BCE_DRV_MSG_CODE_RESET); if (error) { if_printf(ifp, "Controller reset failed!\n"); goto back; } error = bce_chipinit(sc); if (error) { if_printf(ifp, "Controller initialization failed!\n"); goto back; } error = bce_blockinit(sc); if (error) { if_printf(ifp, "Block initialization failed!\n"); goto back; } /* Load our MAC address. */ bcopy(IF_LLADDR(ifp), sc->eaddr, ETHER_ADDR_LEN); bce_set_mac_addr(sc); /* Calculate and program the Ethernet MTU size. */ ether_mtu = ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN; /* * Program the mtu, enabling jumbo frame * support if necessary. Also set the mbuf * allocation count for RX frames. */ if (ether_mtu > ETHER_MAX_LEN + EVL_ENCAPLEN) { #ifdef notyet REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) | BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA); #else panic("jumbo buffer is not supported yet"); #endif } else { REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu); } /* Program appropriate promiscuous/multicast filtering. */ bce_set_rx_mode(sc); /* * Init RX buffer descriptor chain. */ REG_WR(sc, BCE_RLUP_RSS_CONFIG, 0); bce_reg_wr_ind(sc, BCE_RXP_SCRATCH_RSS_TBL_SZ, 0); for (i = 0; i < sc->rx_ring_cnt; ++i) bce_init_rx_chain(&sc->rx_rings[i]); /* XXX return value */ if (sc->rx_ring_cnt > 1) bce_init_rss(sc); /* * Init TX buffer descriptor chain. */ REG_WR(sc, BCE_TSCH_TSS_CFG, 0); for (i = 0; i < sc->tx_ring_cnt; ++i) bce_init_tx_chain(&sc->tx_rings[i]); if (sc->tx_ring_cnt > 1) { REG_WR(sc, BCE_TSCH_TSS_CFG, ((sc->tx_ring_cnt - 1) << 24) | (TX_TSS_CID << 7)); } polling = FALSE; #ifdef IFPOLL_ENABLE if (ifp->if_flags & IFF_NPOLLING) polling = TRUE; #endif if (polling) { /* Disable interrupts if we are polling. */ bce_disable_intr(sc); /* Change coalesce parameters */ bce_npoll_coal_change(sc); } else { /* Enable host interrupts. */ bce_enable_intr(sc); } bce_set_timer_cpuid(sc, polling); bce_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; for (i = 0; i < sc->tx_ring_cnt; ++i) { ifsq_clr_oactive(sc->tx_rings[i].ifsq); ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog); } callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc, sc->bce_timer_cpuid); back: if (error) bce_stop(sc); } /****************************************************************************/ /* Initialize the controller just enough so that any management firmware */ /* running on the device will continue to operate corectly. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_mgmt_init(struct bce_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; /* Bail out if management firmware is not running. */ if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) return; /* Enable all critical blocks in the MAC. */ if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 || BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) { REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT_XI); } else { REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT); } REG_RD(sc, BCE_MISC_ENABLE_SET_BITS); DELAY(20); bce_ifmedia_upd(ifp); } /****************************************************************************/ /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ /* memory visible to the controller. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_encap(struct bce_tx_ring *txr, struct mbuf **m_head, int *nsegs_used) { bus_dma_segment_t segs[BCE_MAX_SEGMENTS]; bus_dmamap_t map, tmp_map; struct mbuf *m0 = *m_head; struct tx_bd *txbd = NULL; uint16_t vlan_tag = 0, flags = 0, mss = 0; uint16_t chain_prod, chain_prod_start, prod; uint32_t prod_bseq; int i, error, maxsegs, nsegs; /* Transfer any checksum offload flags to the bd. */ if (m0->m_pkthdr.csum_flags & CSUM_TSO) { error = bce_tso_setup(txr, m_head, &flags, &mss); if (error) return ENOBUFS; m0 = *m_head; } else if (m0->m_pkthdr.csum_flags & BCE_CSUM_FEATURES) { if (m0->m_pkthdr.csum_flags & CSUM_IP) flags |= TX_BD_FLAGS_IP_CKSUM; if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; } /* Transfer any VLAN tags to the bd. */ if (m0->m_flags & M_VLANTAG) { flags |= TX_BD_FLAGS_VLAN_TAG; vlan_tag = m0->m_pkthdr.ether_vlantag; } prod = txr->tx_prod; chain_prod_start = chain_prod = TX_CHAIN_IDX(txr, prod); /* Map the mbuf into DMAable memory. */ map = txr->tx_bufs[chain_prod_start].tx_mbuf_map; maxsegs = txr->max_tx_bd - txr->used_tx_bd; KASSERT(maxsegs >= BCE_TX_SPARE_SPACE, ("not enough segments %d", maxsegs)); if (maxsegs > BCE_MAX_SEGMENTS) maxsegs = BCE_MAX_SEGMENTS; /* Map the mbuf into our DMA address space. */ error = bus_dmamap_load_mbuf_defrag(txr->tx_mbuf_tag, map, m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT); if (error) goto back; bus_dmamap_sync(txr->tx_mbuf_tag, map, BUS_DMASYNC_PREWRITE); *nsegs_used += nsegs; /* Reset m0 */ m0 = *m_head; /* prod points to an empty tx_bd at this point. */ prod_bseq = txr->tx_prod_bseq; /* * Cycle through each mbuf segment that makes up * the outgoing frame, gathering the mapping info * for that segment and creating a tx_bd to for * the mbuf. */ for (i = 0; i < nsegs; i++) { chain_prod = TX_CHAIN_IDX(txr, prod); txbd = &txr->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr)); txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr)); txbd->tx_bd_mss_nbytes = htole32(mss << 16) | htole16(segs[i].ds_len); txbd->tx_bd_vlan_tag = htole16(vlan_tag); txbd->tx_bd_flags = htole16(flags); prod_bseq += segs[i].ds_len; if (i == 0) txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); prod = NEXT_TX_BD(prod); } /* Set the END flag on the last TX buffer descriptor. */ txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); /* * Ensure that the mbuf pointer for this transmission * is placed at the array index of the last * descriptor in this chain. This is done * because a single map is used for all * segments of the mbuf and we don't want to * unload the map before all of the segments * have been freed. */ txr->tx_bufs[chain_prod].tx_mbuf_ptr = m0; tmp_map = txr->tx_bufs[chain_prod].tx_mbuf_map; txr->tx_bufs[chain_prod].tx_mbuf_map = map; txr->tx_bufs[chain_prod_start].tx_mbuf_map = tmp_map; txr->used_tx_bd += nsegs; /* prod points to the next free tx_bd at this point. */ txr->tx_prod = prod; txr->tx_prod_bseq = prod_bseq; back: if (error) { m_freem(*m_head); *m_head = NULL; } return error; } static void bce_xmit(struct bce_tx_ring *txr) { /* Start the transmit. */ REG_WR16(txr->sc, MB_GET_CID_ADDR(txr->tx_cid) + BCE_L2CTX_TX_HOST_BIDX, txr->tx_prod); REG_WR(txr->sc, MB_GET_CID_ADDR(txr->tx_cid) + BCE_L2CTX_TX_HOST_BSEQ, txr->tx_prod_bseq); } /****************************************************************************/ /* Main transmit routine when called from another routine with a lock. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct bce_softc *sc = ifp->if_softc; struct bce_tx_ring *txr = ifsq_get_priv(ifsq); int count = 0; KKASSERT(txr->ifsq == ifsq); ASSERT_SERIALIZED(&txr->tx_serialize); /* If there's no link or the transmit queue is empty then just exit. */ if (!sc->bce_link) { ifsq_purge(ifsq); return; } if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq)) return; for (;;) { struct mbuf *m_head; /* * We keep BCE_TX_SPARE_SPACE entries, so bce_encap() is * unlikely to fail. */ if (txr->max_tx_bd - txr->used_tx_bd < BCE_TX_SPARE_SPACE) { ifsq_set_oactive(ifsq); break; } /* Check for any frames to send. */ m_head = ifsq_dequeue(ifsq, NULL); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, place the mbuf back at the * head of the queue and set the OACTIVE flag * to wait for the NIC to drain the chain. */ if (bce_encap(txr, &m_head, &count)) { IFNET_STAT_INC(ifp, oerrors, 1); if (txr->used_tx_bd == 0) { continue; } else { ifsq_set_oactive(ifsq); break; } } if (count >= txr->tx_wreg) { bce_xmit(txr); count = 0; } /* Send a copy of the frame to any BPF listeners. */ ETHER_BPF_MTAP(ifp, m_head); /* Set the tx timeout. */ txr->tx_watchdog.wd_timer = BCE_TX_TIMEOUT; } if (count > 0) bce_xmit(txr); } /****************************************************************************/ /* Handles any IOCTL calls from the operating system. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static int bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct bce_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int mask, error = 0; ASSERT_IFNET_SERIALIZED_ALL(ifp); switch(command) { case SIOCSIFMTU: /* Check that the MTU setting is supported. */ if (ifr->ifr_mtu < BCE_MIN_MTU || #ifdef notyet ifr->ifr_mtu > BCE_MAX_JUMBO_MTU #else ifr->ifr_mtu > ETHERMTU #endif ) { error = EINVAL; break; } ifp->if_mtu = ifr->ifr_mtu; ifp->if_flags &= ~IFF_RUNNING; /* Force reinitialize */ bce_init(sc); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) { mask = ifp->if_flags ^ sc->bce_if_flags; if (mask & (IFF_PROMISC | IFF_ALLMULTI)) bce_set_rx_mode(sc); } else { bce_init(sc); } } else if (ifp->if_flags & IFF_RUNNING) { bce_stop(sc); /* If MFW is running, restart the controller a bit. */ if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) { bce_reset(sc, BCE_DRV_MSG_CODE_RESET); bce_chipinit(sc); bce_mgmt_init(sc); } } sc->bce_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) bce_set_rx_mode(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->bce_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= (mask & IFCAP_HWCSUM); if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= BCE_CSUM_FEATURES; else ifp->if_hwassist &= ~BCE_CSUM_FEATURES; } if (mask & IFCAP_TSO) { ifp->if_capenable ^= IFCAP_TSO; if (ifp->if_capenable & IFCAP_TSO) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } break; default: error = ether_ioctl(ifp, command, data); break; } return error; } /****************************************************************************/ /* Transmit timeout handler. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_watchdog(struct ifaltq_subque *ifsq) { struct ifnet *ifp = ifsq_get_ifp(ifsq); struct bce_softc *sc = ifp->if_softc; int i; ASSERT_IFNET_SERIALIZED_ALL(ifp); /* * If we are in this routine because of pause frames, then * don't reset the hardware. */ if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) return; if_printf(ifp, "Watchdog timeout occurred, resetting!\n"); ifp->if_flags &= ~IFF_RUNNING; /* Force reinitialize */ bce_init(sc); IFNET_STAT_INC(ifp, oerrors, 1); for (i = 0; i < sc->tx_ring_cnt; ++i) ifsq_devstart_sched(sc->tx_rings[i].ifsq); } #ifdef IFPOLL_ENABLE static void bce_npoll_status(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; struct status_block *sblk = sc->status_block; uint32_t status_attn_bits; ASSERT_SERIALIZED(&sc->main_serialize); status_attn_bits = sblk->status_attn_bits; /* Was it a link change interrupt? */ if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { bce_phy_intr(sc); /* * Clear any transient status updates during link state change. */ REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT); REG_RD(sc, BCE_HC_COMMAND); } /* * If any other attention is asserted then the chip is toast. */ if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) { if_printf(ifp, "Fatal attention detected: 0x%08X\n", sblk->status_attn_bits); bce_serialize_skipmain(sc); bce_init(sc); bce_deserialize_skipmain(sc); } } static void bce_npoll_rx(struct ifnet *ifp, void *arg, int count) { struct bce_rx_ring *rxr = arg; uint16_t hw_rx_cons; ASSERT_SERIALIZED(&rxr->rx_serialize); /* * Save the status block index value for use when enabling * the interrupt. */ rxr->last_status_idx = *rxr->hw_status_idx; /* Make sure status index is extracted before RX/TX cons */ cpu_lfence(); hw_rx_cons = bce_get_hw_rx_cons(rxr); /* Check for any completed RX frames. */ if (hw_rx_cons != rxr->rx_cons) bce_rx_intr(rxr, count, hw_rx_cons); } static void bce_npoll_rx_pack(struct ifnet *ifp, void *arg, int count) { struct bce_rx_ring *rxr = arg; KASSERT(rxr->idx == 0, ("not the first RX ring, but %d", rxr->idx)); bce_npoll_rx(ifp, rxr, count); KASSERT(rxr->sc->rx_ring_cnt != rxr->sc->rx_ring_cnt2, ("RX ring count %d, count2 %d", rxr->sc->rx_ring_cnt, rxr->sc->rx_ring_cnt2)); /* Last ring carries packets whose masked hash is 0 */ rxr = &rxr->sc->rx_rings[rxr->sc->rx_ring_cnt - 1]; lwkt_serialize_enter(&rxr->rx_serialize); bce_npoll_rx(ifp, rxr, count); lwkt_serialize_exit(&rxr->rx_serialize); } static void bce_npoll_tx(struct ifnet *ifp, void *arg, int count __unused) { struct bce_tx_ring *txr = arg; uint16_t hw_tx_cons; ASSERT_SERIALIZED(&txr->tx_serialize); hw_tx_cons = bce_get_hw_tx_cons(txr); /* Check for any completed TX frames. */ if (hw_tx_cons != txr->tx_cons) { bce_tx_intr(txr, hw_tx_cons); if (!ifsq_is_empty(txr->ifsq)) ifsq_devstart(txr->ifsq); } } static void bce_npoll(struct ifnet *ifp, struct ifpoll_info *info) { struct bce_softc *sc = ifp->if_softc; int i; ASSERT_IFNET_SERIALIZED_ALL(ifp); if (info != NULL) { info->ifpi_status.status_func = bce_npoll_status; info->ifpi_status.serializer = &sc->main_serialize; for (i = 0; i < sc->tx_ring_cnt; ++i) { struct bce_tx_ring *txr = &sc->tx_rings[i]; int idx = i + sc->npoll_ofs; KKASSERT(idx < ncpus2); info->ifpi_tx[idx].poll_func = bce_npoll_tx; info->ifpi_tx[idx].arg = txr; info->ifpi_tx[idx].serializer = &txr->tx_serialize; ifsq_set_cpuid(txr->ifsq, idx); } for (i = 0; i < sc->rx_ring_cnt2; ++i) { struct bce_rx_ring *rxr = &sc->rx_rings[i]; int idx = i + sc->npoll_ofs; KKASSERT(idx < ncpus2); if (i == 0 && sc->rx_ring_cnt2 != sc->rx_ring_cnt) { /* * If RSS is enabled, the packets whose * masked hash are 0 are queued to the * last RX ring; piggyback the last RX * ring's processing in the first RX * polling handler. (see also: comment * in bce_setup_ring_cnt()) */ if (bootverbose) { if_printf(ifp, "npoll pack last " "RX ring on cpu%d\n", idx); } info->ifpi_rx[idx].poll_func = bce_npoll_rx_pack; } else { info->ifpi_rx[idx].poll_func = bce_npoll_rx; } info->ifpi_rx[idx].arg = rxr; info->ifpi_rx[idx].serializer = &rxr->rx_serialize; } if (ifp->if_flags & IFF_RUNNING) { bce_set_timer_cpuid(sc, TRUE); bce_disable_intr(sc); bce_npoll_coal_change(sc); } } else { for (i = 0; i < sc->tx_ring_cnt; ++i) { ifsq_set_cpuid(sc->tx_rings[i].ifsq, sc->bce_msix[i].msix_cpuid); } if (ifp->if_flags & IFF_RUNNING) { bce_set_timer_cpuid(sc, FALSE); bce_enable_intr(sc); sc->bce_coalchg_mask |= BCE_COALMASK_TX_BDS_INT | BCE_COALMASK_RX_BDS_INT; bce_coal_change(sc); } } } #endif /* IFPOLL_ENABLE */ /* * Interrupt handler. */ /****************************************************************************/ /* Main interrupt entry point. Verifies that the controller generated the */ /* interrupt and then calls a separate routine for handle the various */ /* interrupt causes (PHY, TX, RX). */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static void bce_intr(struct bce_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct status_block *sblk; uint16_t hw_rx_cons, hw_tx_cons; uint32_t status_attn_bits; struct bce_tx_ring *txr = &sc->tx_rings[0]; struct bce_rx_ring *rxr = &sc->rx_rings[0]; ASSERT_SERIALIZED(&sc->main_serialize); sblk = sc->status_block; /* * Save the status block index value for use during * the next interrupt. */ rxr->last_status_idx = *rxr->hw_status_idx; /* Make sure status index is extracted before RX/TX cons */ cpu_lfence(); /* Check if the hardware has finished any work. */ hw_rx_cons = bce_get_hw_rx_cons(rxr); hw_tx_cons = bce_get_hw_tx_cons(txr); status_attn_bits = sblk->status_attn_bits; /* Was it a link change interrupt? */ if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { bce_phy_intr(sc); /* * Clear any transient status updates during link state * change. */ REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT); REG_RD(sc, BCE_HC_COMMAND); } /* * If any other attention is asserted then * the chip is toast. */ if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) { if_printf(ifp, "Fatal attention detected: 0x%08X\n", sblk->status_attn_bits); bce_serialize_skipmain(sc); bce_init(sc); bce_deserialize_skipmain(sc); return; } /* Check for any completed RX frames. */ lwkt_serialize_enter(&rxr->rx_serialize); if (hw_rx_cons != rxr->rx_cons) bce_rx_intr(rxr, -1, hw_rx_cons); lwkt_serialize_exit(&rxr->rx_serialize); /* Check for any completed TX frames. */ lwkt_serialize_enter(&txr->tx_serialize); if (hw_tx_cons != txr->tx_cons) { bce_tx_intr(txr, hw_tx_cons); if (!ifsq_is_empty(txr->ifsq)) ifsq_devstart(txr->ifsq); } lwkt_serialize_exit(&txr->tx_serialize); } static void bce_intr_legacy(void *xsc) { struct bce_softc *sc = xsc; struct bce_rx_ring *rxr = &sc->rx_rings[0]; struct status_block *sblk; sblk = sc->status_block; /* * If the hardware status block index matches the last value * read by the driver and we haven't asserted our interrupt * then there's nothing to do. */ if (sblk->status_idx == rxr->last_status_idx && (REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE)) return; /* Ack the interrupt and stop others from occuring. */ REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | BCE_PCICFG_INT_ACK_CMD_MASK_INT); /* * Read back to deassert IRQ immediately to avoid too * many spurious interrupts. */ REG_RD(sc, BCE_PCICFG_INT_ACK_CMD); bce_intr(sc); /* Re-enable interrupts. */ REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | BCE_PCICFG_INT_ACK_CMD_MASK_INT | rxr->last_status_idx); bce_reenable_intr(rxr); } static void bce_intr_msi(void *xsc) { struct bce_softc *sc = xsc; /* Ack the interrupt and stop others from occuring. */ REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | BCE_PCICFG_INT_ACK_CMD_MASK_INT); bce_intr(sc); /* Re-enable interrupts */ bce_reenable_intr(&sc->rx_rings[0]); } static void bce_intr_msi_oneshot(void *xsc) { struct bce_softc *sc = xsc; bce_intr(sc); /* Re-enable interrupts */ bce_reenable_intr(&sc->rx_rings[0]); } static void bce_intr_msix_rxtx(void *xrxr) { struct bce_rx_ring *rxr = xrxr; struct bce_tx_ring *txr; uint16_t hw_rx_cons, hw_tx_cons; ASSERT_SERIALIZED(&rxr->rx_serialize); KKASSERT(rxr->idx < rxr->sc->tx_ring_cnt); txr = &rxr->sc->tx_rings[rxr->idx]; /* * Save the status block index value for use during * the next interrupt. */ rxr->last_status_idx = *rxr->hw_status_idx; /* Make sure status index is extracted before RX/TX cons */ cpu_lfence(); /* Check if the hardware has finished any work. */ hw_rx_cons = bce_get_hw_rx_cons(rxr); if (hw_rx_cons != rxr->rx_cons) bce_rx_intr(rxr, -1, hw_rx_cons); /* Check for any completed TX frames. */ hw_tx_cons = bce_get_hw_tx_cons(txr); lwkt_serialize_enter(&txr->tx_serialize); if (hw_tx_cons != txr->tx_cons) { bce_tx_intr(txr, hw_tx_cons); if (!ifsq_is_empty(txr->ifsq)) ifsq_devstart(txr->ifsq); } lwkt_serialize_exit(&txr->tx_serialize); /* Re-enable interrupts */ bce_reenable_intr(rxr); } static void bce_intr_msix_rx(void *xrxr) { struct bce_rx_ring *rxr = xrxr; uint16_t hw_rx_cons; ASSERT_SERIALIZED(&rxr->rx_serialize); /* * Save the status block index value for use during * the next interrupt. */ rxr->last_status_idx = *rxr->hw_status_idx; /* Make sure status index is extracted before RX cons */ cpu_lfence(); /* Check if the hardware has finished any work. */ hw_rx_cons = bce_get_hw_rx_cons(rxr); if (hw_rx_cons != rxr->rx_cons) bce_rx_intr(rxr, -1, hw_rx_cons); /* Re-enable interrupts */ bce_reenable_intr(rxr); } /****************************************************************************/ /* Programs the various packet receive modes (broadcast and multicast). */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_set_rx_mode(struct bce_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmultiaddr *ifma; uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint32_t rx_mode, sort_mode; int h, i; ASSERT_IFNET_SERIALIZED_ALL(ifp); /* Initialize receive mode default settings. */ rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS | BCE_EMAC_RX_MODE_KEEP_VLAN_TAG); sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN; /* * ASF/IPMI/UMP firmware requires that VLAN tag stripping * be enbled. */ if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) && !(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG; /* * Check for promiscuous, all multicast, or selected * multicast address filtering. */ if (ifp->if_flags & IFF_PROMISC) { /* Enable promiscuous mode. */ rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS; sort_mode |= BCE_RPM_SORT_USER0_PROM_EN; } else if (ifp->if_flags & IFF_ALLMULTI) { /* Enable all multicast addresses. */ for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff); } sort_mode |= BCE_RPM_SORT_USER0_MC_EN; } else { /* Accept one or more multicast(s). */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_le( LLADDR((struct sockaddr_dl *)ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF; hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); } for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]); } sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN; } /* Only make changes if the recive mode has actually changed. */ if (rx_mode != sc->rx_mode) { sc->rx_mode = rx_mode; REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode); } /* Disable and clear the exisitng sort before enabling a new sort. */ REG_WR(sc, BCE_RPM_SORT_USER0, 0x0); REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode); REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA); } /****************************************************************************/ /* Called periodically to updates statistics from the controllers */ /* statistics block. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_stats_update(struct bce_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct statistics_block *stats = sc->stats_block; ASSERT_SERIALIZED(&sc->main_serialize); /* * Certain controllers don't report carrier sense errors correctly. * See errata E11_5708CA0_1165. */ if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) && !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) { IFNET_STAT_INC(ifp, oerrors, (u_long)stats->stat_Dot3StatsCarrierSenseErrors); } /* * Update the sysctl statistics from the hardware statistics. */ sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) + (uint64_t)stats->stat_IfHCInOctets_lo; sc->stat_IfHCInBadOctets = ((uint64_t)stats->stat_IfHCInBadOctets_hi << 32) + (uint64_t)stats->stat_IfHCInBadOctets_lo; sc->stat_IfHCOutOctets = ((uint64_t)stats->stat_IfHCOutOctets_hi << 32) + (uint64_t)stats->stat_IfHCOutOctets_lo; sc->stat_IfHCOutBadOctets = ((uint64_t)stats->stat_IfHCOutBadOctets_hi << 32) + (uint64_t)stats->stat_IfHCOutBadOctets_lo; sc->stat_IfHCInUcastPkts = ((uint64_t)stats->stat_IfHCInUcastPkts_hi << 32) + (uint64_t)stats->stat_IfHCInUcastPkts_lo; sc->stat_IfHCInMulticastPkts = ((uint64_t)stats->stat_IfHCInMulticastPkts_hi << 32) + (uint64_t)stats->stat_IfHCInMulticastPkts_lo; sc->stat_IfHCInBroadcastPkts = ((uint64_t)stats->stat_IfHCInBroadcastPkts_hi << 32) + (uint64_t)stats->stat_IfHCInBroadcastPkts_lo; sc->stat_IfHCOutUcastPkts = ((uint64_t)stats->stat_IfHCOutUcastPkts_hi << 32) + (uint64_t)stats->stat_IfHCOutUcastPkts_lo; sc->stat_IfHCOutMulticastPkts = ((uint64_t)stats->stat_IfHCOutMulticastPkts_hi << 32) + (uint64_t)stats->stat_IfHCOutMulticastPkts_lo; sc->stat_IfHCOutBroadcastPkts = ((uint64_t)stats->stat_IfHCOutBroadcastPkts_hi << 32) + (uint64_t)stats->stat_IfHCOutBroadcastPkts_lo; sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; sc->stat_Dot3StatsCarrierSenseErrors = stats->stat_Dot3StatsCarrierSenseErrors; sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors; sc->stat_Dot3StatsAlignmentErrors = stats->stat_Dot3StatsAlignmentErrors; sc->stat_Dot3StatsSingleCollisionFrames = stats->stat_Dot3StatsSingleCollisionFrames; sc->stat_Dot3StatsMultipleCollisionFrames = stats->stat_Dot3StatsMultipleCollisionFrames; sc->stat_Dot3StatsDeferredTransmissions = stats->stat_Dot3StatsDeferredTransmissions; sc->stat_Dot3StatsExcessiveCollisions = stats->stat_Dot3StatsExcessiveCollisions; sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions; sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions; sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments; sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers; sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts; sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts; sc->stat_EtherStatsPktsRx64Octets = stats->stat_EtherStatsPktsRx64Octets; sc->stat_EtherStatsPktsRx65Octetsto127Octets = stats->stat_EtherStatsPktsRx65Octetsto127Octets; sc->stat_EtherStatsPktsRx128Octetsto255Octets = stats->stat_EtherStatsPktsRx128Octetsto255Octets; sc->stat_EtherStatsPktsRx256Octetsto511Octets = stats->stat_EtherStatsPktsRx256Octetsto511Octets; sc->stat_EtherStatsPktsRx512Octetsto1023Octets = stats->stat_EtherStatsPktsRx512Octetsto1023Octets; sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; sc->stat_EtherStatsPktsTx64Octets = stats->stat_EtherStatsPktsTx64Octets; sc->stat_EtherStatsPktsTx65Octetsto127Octets = stats->stat_EtherStatsPktsTx65Octetsto127Octets; sc->stat_EtherStatsPktsTx128Octetsto255Octets = stats->stat_EtherStatsPktsTx128Octetsto255Octets; sc->stat_EtherStatsPktsTx256Octetsto511Octets = stats->stat_EtherStatsPktsTx256Octetsto511Octets; sc->stat_EtherStatsPktsTx512Octetsto1023Octets = stats->stat_EtherStatsPktsTx512Octetsto1023Octets; sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived; sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived; sc->stat_OutXonSent = stats->stat_OutXonSent; sc->stat_OutXoffSent = stats->stat_OutXoffSent; sc->stat_FlowControlDone = stats->stat_FlowControlDone; sc->stat_MacControlFramesReceived = stats->stat_MacControlFramesReceived; sc->stat_XoffStateEntered = stats->stat_XoffStateEntered; sc->stat_IfInFramesL2FilterDiscards = stats->stat_IfInFramesL2FilterDiscards; sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards; sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards; sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards; sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit; sc->stat_CatchupInRuleCheckerDiscards = stats->stat_CatchupInRuleCheckerDiscards; sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards; sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards; sc->stat_CatchupInRuleCheckerP4Hit = stats->stat_CatchupInRuleCheckerP4Hit; sc->com_no_buffers = REG_RD_IND(sc, 0x120084); /* * Update the interface statistics from the * hardware statistics. */ IFNET_STAT_SET(ifp, collisions, (u_long)sc->stat_EtherStatsCollisions); IFNET_STAT_SET(ifp, ierrors, (u_long)sc->stat_EtherStatsUndersizePkts + (u_long)sc->stat_EtherStatsOverrsizePkts + (u_long)sc->stat_IfInMBUFDiscards + (u_long)sc->stat_Dot3StatsAlignmentErrors + (u_long)sc->stat_Dot3StatsFCSErrors + (u_long)sc->stat_IfInRuleCheckerDiscards + (u_long)sc->stat_IfInFTQDiscards + (u_long)sc->com_no_buffers); IFNET_STAT_SET(ifp, oerrors, (u_long)sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + (u_long)sc->stat_Dot3StatsExcessiveCollisions + (u_long)sc->stat_Dot3StatsLateCollisions); } /****************************************************************************/ /* Periodic function to notify the bootcode that the driver is still */ /* present. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_pulse(void *xsc) { struct bce_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t msg; lwkt_serialize_enter(&sc->main_serialize); /* Tell the firmware that the driver is still running. */ msg = (uint32_t)++sc->bce_fw_drv_pulse_wr_seq; bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg); /* Update the bootcode condition. */ sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION); /* Report whether the bootcode still knows the driver is running. */ if (!sc->bce_drv_cardiac_arrest) { if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) { sc->bce_drv_cardiac_arrest = 1; if_printf(ifp, "Bootcode lost the driver pulse! " "(bc_state = 0x%08X)\n", sc->bc_state); } } else { /* * Not supported by all bootcode versions. * (v5.0.11+ and v5.2.1+) Older bootcode * will require the driver to reset the * controller to clear this condition. */ if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) { sc->bce_drv_cardiac_arrest = 0; if_printf(ifp, "Bootcode found the driver pulse! " "(bc_state = 0x%08X)\n", sc->bc_state); } } /* Schedule the next pulse. */ callout_reset_bycpu(&sc->bce_pulse_callout, hz, bce_pulse, sc, sc->bce_timer_cpuid); lwkt_serialize_exit(&sc->main_serialize); } /****************************************************************************/ /* Periodic function to check whether MSI is lost */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_check_msi(void *xsc) { struct bce_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct status_block *sblk = sc->status_block; struct bce_tx_ring *txr = &sc->tx_rings[0]; struct bce_rx_ring *rxr = &sc->rx_rings[0]; lwkt_serialize_enter(&sc->main_serialize); KKASSERT(mycpuid == sc->bce_msix[0].msix_cpuid); if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) { lwkt_serialize_exit(&sc->main_serialize); return; } if (bce_get_hw_rx_cons(rxr) != rxr->rx_cons || bce_get_hw_tx_cons(txr) != txr->tx_cons || (sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) { if (sc->bce_check_rx_cons == rxr->rx_cons && sc->bce_check_tx_cons == txr->tx_cons && sc->bce_check_status_idx == rxr->last_status_idx) { uint32_t msi_ctrl; if (!sc->bce_msi_maylose) { sc->bce_msi_maylose = TRUE; goto done; } msi_ctrl = REG_RD(sc, BCE_PCICFG_MSI_CONTROL); if (msi_ctrl & BCE_PCICFG_MSI_CONTROL_ENABLE) { if (bootverbose) if_printf(ifp, "lost MSI\n"); REG_WR(sc, BCE_PCICFG_MSI_CONTROL, msi_ctrl & ~BCE_PCICFG_MSI_CONTROL_ENABLE); REG_WR(sc, BCE_PCICFG_MSI_CONTROL, msi_ctrl); bce_intr_msi(sc); } else if (bootverbose) { if_printf(ifp, "MSI may be lost\n"); } } } sc->bce_msi_maylose = FALSE; sc->bce_check_rx_cons = rxr->rx_cons; sc->bce_check_tx_cons = txr->tx_cons; sc->bce_check_status_idx = rxr->last_status_idx; done: callout_reset(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL, bce_check_msi, sc); lwkt_serialize_exit(&sc->main_serialize); } /****************************************************************************/ /* Periodic function to perform maintenance tasks. */ /* */ /* Returns: */ /* Nothing. */ /****************************************************************************/ static void bce_tick_serialized(struct bce_softc *sc) { struct mii_data *mii; ASSERT_SERIALIZED(&sc->main_serialize); /* Update the statistics from the hardware statistics block. */ bce_stats_update(sc); /* Schedule the next tick. */ callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc, sc->bce_timer_cpuid); /* If link is up already up then we're done. */ if (sc->bce_link) return; mii = device_get_softc(sc->bce_miibus); mii_tick(mii); /* Check if the link has come up. */ if ((mii->mii_media_status & IFM_ACTIVE) && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { int i; sc->bce_link++; /* Now that link is up, handle any outstanding TX traffic. */ for (i = 0; i < sc->tx_ring_cnt; ++i) ifsq_devstart_sched(sc->tx_rings[i].ifsq); } } static void bce_tick(void *xsc) { struct bce_softc *sc = xsc; lwkt_serialize_enter(&sc->main_serialize); bce_tick_serialized(sc); lwkt_serialize_exit(&sc->main_serialize); } /****************************************************************************/ /* Adds any sysctl parameters for tuning or debugging purposes. */ /* */ /* Returns: */ /* 0 for success, positive value for failure. */ /****************************************************************************/ static void bce_add_sysctls(struct bce_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children; #if defined(BCE_TSS_DEBUG) || defined(BCE_RSS_DEBUG) char node[32]; int i; #endif sysctl_ctx_init(&sc->bce_sysctl_ctx); sc->bce_sysctl_tree = SYSCTL_ADD_NODE(&sc->bce_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_nameunit(sc->bce_dev), CTLFLAG_RD, 0, ""); if (sc->bce_sysctl_tree == NULL) { device_printf(sc->bce_dev, "can't add sysctl node\n"); return; } ctx = &sc->bce_sysctl_ctx; children = SYSCTL_CHILDREN(sc->bce_sysctl_tree); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds_int", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_tx_bds_int, "I", "Send max coalesced BD count during interrupt"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_tx_bds, "I", "Send max coalesced BD count"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks_int", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_tx_ticks_int, "I", "Send coalescing ticks during interrupt"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_tx_ticks, "I", "Send coalescing ticks"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds_int", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_rx_bds_int, "I", "Receive max coalesced BD count during interrupt"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_rx_bds, "I", "Receive max coalesced BD count"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks_int", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_rx_ticks_int, "I", "Receive coalescing ticks during interrupt"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bce_sysctl_rx_ticks, "I", "Receive coalescing ticks"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_rings", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_pages", CTLFLAG_RD, &sc->rx_rings[0].rx_pages, 0, "# of RX pages"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_rings", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_pages", CTLFLAG_RD, &sc->tx_rings[0].tx_pages, 0, "# of TX pages"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_wreg", CTLFLAG_RW, &sc->tx_rings[0].tx_wreg, 0, "# segments before write to hardware registers"); #ifdef IFPOLL_ENABLE SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "npoll_offset", CTLTYPE_INT|CTLFLAG_RW, sc, 0, bce_sysctl_npoll_offset, "I", "NPOLLING cpu offset"); #endif #ifdef BCE_RSS_DEBUG SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0, "RSS debug level"); for (i = 0; i < sc->rx_ring_cnt; ++i) { ksnprintf(node, sizeof(node), "rx%d_pkt", i); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, node, CTLFLAG_RW, &sc->rx_rings[i].rx_pkts, "RXed packets"); } #endif #ifdef BCE_TSS_DEBUG for (i = 0; i < sc->tx_ring_cnt; ++i) { ksnprintf(node, sizeof(node), "tx%d_pkt", i); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, node, CTLFLAG_RW, &sc->tx_rings[i].tx_pkts, "TXed packets"); } #endif SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCInOctets", CTLFLAG_RD, &sc->stat_IfHCInOctets, "Bytes received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCInBadOctets", CTLFLAG_RD, &sc->stat_IfHCInBadOctets, "Bad bytes received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCOutOctets", CTLFLAG_RD, &sc->stat_IfHCOutOctets, "Bytes sent"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCOutBadOctets", CTLFLAG_RD, &sc->stat_IfHCOutBadOctets, "Bad bytes sent"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCInUcastPkts", CTLFLAG_RD, &sc->stat_IfHCInUcastPkts, "Unicast packets received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCInMulticastPkts", CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts, "Multicast packets received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCInBroadcastPkts", CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts, "Broadcast packets received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCOutUcastPkts", CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts, "Unicast packets sent"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCOutMulticastPkts", CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts, "Multicast packets sent"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHCOutBroadcastPkts", CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts, "Broadcast packets sent"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_emac_tx_stat_dot3statsinternalmactransmiterrors", CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors, 0, "Internal MAC transmit errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsCarrierSenseErrors", CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors, 0, "Carrier sense errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsFCSErrors", CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors, 0, "Frame check sequence errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsAlignmentErrors", CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors, 0, "Alignment errors"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsSingleCollisionFrames", CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames, 0, "Single Collision Frames"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsMultipleCollisionFrames", CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames, 0, "Multiple Collision Frames"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsDeferredTransmissions", CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions, 0, "Deferred Transmissions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsExcessiveCollisions", CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions, 0, "Excessive Collisions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_Dot3StatsLateCollisions", CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions, 0, "Late Collisions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsCollisions", CTLFLAG_RD, &sc->stat_EtherStatsCollisions, 0, "Collisions"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsFragments", CTLFLAG_RD, &sc->stat_EtherStatsFragments, 0, "Fragments"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsJabbers", CTLFLAG_RD, &sc->stat_EtherStatsJabbers, 0, "Jabbers"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsUndersizePkts", CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts, 0, "Undersize packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsOverrsizePkts", CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts, 0, "stat_EtherStatsOverrsizePkts"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx64Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets, 0, "Bytes received in 64 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx65Octetsto127Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets, 0, "Bytes received in 65 to 127 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx128Octetsto255Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets, 0, "Bytes received in 128 to 255 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx256Octetsto511Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets, 0, "Bytes received in 256 to 511 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx512Octetsto1023Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets, 0, "Bytes received in 512 to 1023 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx1024Octetsto1522Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets, 0, "Bytes received in 1024 t0 1522 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsRx1523Octetsto9022Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets, 0, "Bytes received in 1523 to 9022 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx64Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets, 0, "Bytes sent in 64 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx65Octetsto127Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets, 0, "Bytes sent in 65 to 127 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx128Octetsto255Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets, 0, "Bytes sent in 128 to 255 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx256Octetsto511Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets, 0, "Bytes sent in 256 to 511 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx512Octetsto1023Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets, 0, "Bytes sent in 512 to 1023 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx1024Octetsto1522Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets, 0, "Bytes sent in 1024 to 1522 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_EtherStatsPktsTx1523Octetsto9022Octets", CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets, 0, "Bytes sent in 1523 to 9022 byte packets"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_XonPauseFramesReceived", CTLFLAG_RD, &sc->stat_XonPauseFramesReceived, 0, "XON pause frames receved"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_XoffPauseFramesReceived", CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived, 0, "XOFF pause frames received"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_OutXonSent", CTLFLAG_RD, &sc->stat_OutXonSent, 0, "XON pause frames sent"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_OutXoffSent", CTLFLAG_RD, &sc->stat_OutXoffSent, 0, "XOFF pause frames sent"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_FlowControlDone", CTLFLAG_RD, &sc->stat_FlowControlDone, 0, "Flow control done"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_MacControlFramesReceived", CTLFLAG_RD, &sc->stat_MacControlFramesReceived, 0, "MAC control frames received"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_XoffStateEntered", CTLFLAG_RD, &sc->stat_XoffStateEntered, 0, "XOFF state entered"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInFramesL2FilterDiscards", CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards, 0, "Received L2 packets discarded"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInRuleCheckerDiscards", CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards, 0, "Received packets discarded by rule"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInFTQDiscards", CTLFLAG_RD, &sc->stat_IfInFTQDiscards, 0, "Received packet FTQ discards"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInMBUFDiscards", CTLFLAG_RD, &sc->stat_IfInMBUFDiscards, 0, "Received packets discarded due to lack of controller buffer memory"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_IfInRuleCheckerP4Hit", CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit, 0, "Received packets rule checker hits"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInRuleCheckerDiscards", CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards, 0, "Received packets discarded in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInFTQDiscards", CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards, 0, "Received packets discarded in FTQ in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInMBUFDiscards", CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards, 0, "Received packets discarded in controller buffer memory in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "stat_CatchupInRuleCheckerP4Hit", CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit, 0, "Received packets rule checker hits in Catchup path"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "com_no_buffers", CTLFLAG_RD, &sc->com_no_buffers, 0, "Valid packets received but no RX buffers available"); } static int bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_tx_quick_cons_trip_int, BCE_COALMASK_TX_BDS_INT); } static int bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_tx_quick_cons_trip, BCE_COALMASK_TX_BDS); } static int bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_tx_ticks_int, BCE_COALMASK_TX_TICKS_INT); } static int bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_tx_ticks, BCE_COALMASK_TX_TICKS); } static int bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_rx_quick_cons_trip_int, BCE_COALMASK_RX_BDS_INT); } static int bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_rx_quick_cons_trip, BCE_COALMASK_RX_BDS); } static int bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_rx_ticks_int, BCE_COALMASK_RX_TICKS_INT); } static int bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = arg1; return bce_sysctl_coal_change(oidp, arg1, arg2, req, &sc->bce_rx_ticks, BCE_COALMASK_RX_TICKS); } static int bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *coal, uint32_t coalchg_mask) { struct bce_softc *sc = arg1; struct ifnet *ifp = &sc->arpcom.ac_if; int error = 0, v; ifnet_serialize_all(ifp); v = *coal; error = sysctl_handle_int(oidp, &v, 0, req); if (!error && req->newptr != NULL) { if (v < 0) { error = EINVAL; } else { *coal = v; sc->bce_coalchg_mask |= coalchg_mask; /* Commit changes */ bce_coal_change(sc); } } ifnet_deserialize_all(ifp); return error; } static void bce_coal_change(struct bce_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int i; ASSERT_SERIALIZED(&sc->main_serialize); if ((ifp->if_flags & IFF_RUNNING) == 0) { sc->bce_coalchg_mask = 0; return; } if (sc->bce_coalchg_mask & (BCE_COALMASK_TX_BDS | BCE_COALMASK_TX_BDS_INT)) { REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP, (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); for (i = 1; i < sc->rx_ring_cnt; ++i) { uint32_t base; base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1; REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF, (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip); } if (bootverbose) { if_printf(ifp, "tx_bds %u, tx_bds_int %u\n", sc->bce_tx_quick_cons_trip, sc->bce_tx_quick_cons_trip_int); } } if (sc->bce_coalchg_mask & (BCE_COALMASK_TX_TICKS | BCE_COALMASK_TX_TICKS_INT)) { REG_WR(sc, BCE_HC_TX_TICKS, (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); for (i = 1; i < sc->rx_ring_cnt; ++i) { uint32_t base; base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1; REG_WR(sc, base + BCE_HC_TX_TICKS_OFF, (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks); } if (bootverbose) { if_printf(ifp, "tx_ticks %u, tx_ticks_int %u\n", sc->bce_tx_ticks, sc->bce_tx_ticks_int); } } if (sc->bce_coalchg_mask & (BCE_COALMASK_RX_BDS | BCE_COALMASK_RX_BDS_INT)) { REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP, (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); for (i = 1; i < sc->rx_ring_cnt; ++i) { uint32_t base; base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1; REG_WR(sc, base + BCE_HC_RX_QUICK_CONS_TRIP_OFF, (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip); } if (bootverbose) { if_printf(ifp, "rx_bds %u, rx_bds_int %u\n", sc->bce_rx_quick_cons_trip, sc->bce_rx_quick_cons_trip_int); } } if (sc->bce_coalchg_mask & (BCE_COALMASK_RX_TICKS | BCE_COALMASK_RX_TICKS_INT)) { REG_WR(sc, BCE_HC_RX_TICKS, (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); for (i = 1; i < sc->rx_ring_cnt; ++i) { uint32_t base; base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1; REG_WR(sc, base + BCE_HC_RX_TICKS_OFF, (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks); } if (bootverbose) { if_printf(ifp, "rx_ticks %u, rx_ticks_int %u\n", sc->bce_rx_ticks, sc->bce_rx_ticks_int); } } sc->bce_coalchg_mask = 0; } static int bce_tso_setup(struct bce_tx_ring *txr, struct mbuf **mp, uint16_t *flags0, uint16_t *mss0) { struct mbuf *m; uint16_t flags; int thoff, iphlen, hoff; m = *mp; KASSERT(M_WRITABLE(m), ("TSO mbuf not writable")); hoff = m->m_pkthdr.csum_lhlen; iphlen = m->m_pkthdr.csum_iphlen; thoff = m->m_pkthdr.csum_thlen; KASSERT(hoff >= sizeof(struct ether_header), ("invalid ether header len %d", hoff)); KASSERT(iphlen >= sizeof(struct ip), ("invalid ip header len %d", iphlen)); KASSERT(thoff >= sizeof(struct tcphdr), ("invalid tcp header len %d", thoff)); if (__predict_false(m->m_len < hoff + iphlen + thoff)) { m = m_pullup(m, hoff + iphlen + thoff); if (m == NULL) { *mp = NULL; return ENOBUFS; } *mp = m; } /* Set the LSO flag in the TX BD */ flags = TX_BD_FLAGS_SW_LSO; /* Set the length of IP + TCP options (in 32 bit words) */ flags |= (((iphlen + thoff - sizeof(struct ip) - sizeof(struct tcphdr)) >> 2) << 8); *mss0 = htole16(m->m_pkthdr.tso_segsz); *flags0 = flags; return 0; } static void bce_setup_serialize(struct bce_softc *sc) { int i, j; /* * Allocate serializer array */ /* Main + TX + RX */ sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt; sc->serializes = kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *), M_DEVBUF, M_WAITOK | M_ZERO); /* * Setup serializers * * NOTE: Order is critical */ i = 0; KKASSERT(i < sc->serialize_cnt); sc->serializes[i++] = &sc->main_serialize; sc->rx_serialize = i; for (j = 0; j < sc->rx_ring_cnt; ++j) { KKASSERT(i < sc->serialize_cnt); sc->serializes[i++] = &sc->rx_rings[j].rx_serialize; } sc->tx_serialize = i; for (j = 0; j < sc->tx_ring_cnt; ++j) { KKASSERT(i < sc->serialize_cnt); sc->serializes[i++] = &sc->tx_rings[j].tx_serialize; } KKASSERT(i == sc->serialize_cnt); } static void bce_serialize(struct ifnet *ifp, enum ifnet_serialize slz) { struct bce_softc *sc = ifp->if_softc; ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, sc->tx_serialize, sc->rx_serialize, slz); } static void bce_deserialize(struct ifnet *ifp, enum ifnet_serialize slz) { struct bce_softc *sc = ifp->if_softc; ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, sc->tx_serialize, sc->rx_serialize, slz); } static int bce_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz) { struct bce_softc *sc = ifp->if_softc; return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt, sc->tx_serialize, sc->rx_serialize, slz); } #ifdef INVARIANTS static void bce_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz, boolean_t serialized) { struct bce_softc *sc = ifp->if_softc; ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt, sc->tx_serialize, sc->rx_serialize, slz, serialized); } #endif /* INVARIANTS */ static void bce_serialize_skipmain(struct bce_softc *sc) { lwkt_serialize_array_enter(sc->serializes, sc->serialize_cnt, 1); } static void bce_deserialize_skipmain(struct bce_softc *sc) { lwkt_serialize_array_exit(sc->serializes, sc->serialize_cnt, 1); } #ifdef IFPOLL_ENABLE static int bce_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS) { struct bce_softc *sc = (void *)arg1; struct ifnet *ifp = &sc->arpcom.ac_if; int error, off; off = sc->npoll_ofs; error = sysctl_handle_int(oidp, &off, 0, req); if (error || req->newptr == NULL) return error; if (off < 0) return EINVAL; ifnet_serialize_all(ifp); if (off >= ncpus2 || off % sc->rx_ring_cnt2 != 0) { error = EINVAL; } else { error = 0; sc->npoll_ofs = off; } ifnet_deserialize_all(ifp); return error; } #endif /* IFPOLL_ENABLE */ static void bce_set_timer_cpuid(struct bce_softc *sc, boolean_t polling) { if (polling) sc->bce_timer_cpuid = 0; /* XXX */ else sc->bce_timer_cpuid = sc->bce_msix[0].msix_cpuid; } static int bce_alloc_intr(struct bce_softc *sc) { u_int irq_flags; bce_try_alloc_msix(sc); if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) return 0; sc->bce_irq_type = pci_alloc_1intr(sc->bce_dev, bce_msi_enable, &sc->bce_irq_rid, &irq_flags); sc->bce_res_irq = bus_alloc_resource_any(sc->bce_dev, SYS_RES_IRQ, &sc->bce_irq_rid, irq_flags); if (sc->bce_res_irq == NULL) { device_printf(sc->bce_dev, "PCI map interrupt failed\n"); return ENXIO; } return 0; } static void bce_try_alloc_msix(struct bce_softc *sc) { struct bce_msix_data *msix; int offset, i, error; boolean_t setup = FALSE; if (sc->rx_ring_cnt == 1) return; if (sc->rx_ring_cnt2 == ncpus2) { offset = 0; } else { int offset_def = (sc->rx_ring_cnt2 * device_get_unit(sc->bce_dev)) % ncpus2; offset = device_getenv_int(sc->bce_dev, "msix.offset", offset_def); if (offset >= ncpus2 || offset % sc->rx_ring_cnt2 != 0) { device_printf(sc->bce_dev, "invalid msix.offset %d, use %d\n", offset, offset_def); offset = offset_def; } } msix = &sc->bce_msix[0]; msix->msix_serialize = &sc->main_serialize; msix->msix_func = bce_intr_msi_oneshot; msix->msix_arg = sc; KKASSERT(offset < ncpus2); msix->msix_cpuid = offset; ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s combo", device_get_nameunit(sc->bce_dev)); for (i = 1; i < sc->rx_ring_cnt; ++i) { struct bce_rx_ring *rxr = &sc->rx_rings[i]; msix = &sc->bce_msix[i]; msix->msix_serialize = &rxr->rx_serialize; msix->msix_arg = rxr; msix->msix_cpuid = offset + (i % sc->rx_ring_cnt2); KKASSERT(msix->msix_cpuid < ncpus2); if (i < sc->tx_ring_cnt) { msix->msix_func = bce_intr_msix_rxtx; ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rxtx%d", device_get_nameunit(sc->bce_dev), i); } else { msix->msix_func = bce_intr_msix_rx; ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d", device_get_nameunit(sc->bce_dev), i); } } /* * Setup MSI-X table */ bce_setup_msix_table(sc); REG_WR(sc, BCE_PCI_MSIX_CONTROL, BCE_MSIX_MAX - 1); REG_WR(sc, BCE_PCI_MSIX_TBL_OFF_BIR, BCE_PCI_GRC_WINDOW2_BASE); REG_WR(sc, BCE_PCI_MSIX_PBA_OFF_BIT, BCE_PCI_GRC_WINDOW3_BASE); /* Flush */ REG_RD(sc, BCE_PCI_MSIX_CONTROL); error = pci_setup_msix(sc->bce_dev); if (error) { device_printf(sc->bce_dev, "Setup MSI-X failed\n"); goto back; } setup = TRUE; for (i = 0; i < sc->rx_ring_cnt; ++i) { msix = &sc->bce_msix[i]; error = pci_alloc_msix_vector(sc->bce_dev, i, &msix->msix_rid, msix->msix_cpuid); if (error) { device_printf(sc->bce_dev, "Unable to allocate MSI-X %d on cpu%d\n", i, msix->msix_cpuid); goto back; } msix->msix_res = bus_alloc_resource_any(sc->bce_dev, SYS_RES_IRQ, &msix->msix_rid, RF_ACTIVE); if (msix->msix_res == NULL) { device_printf(sc->bce_dev, "Unable to allocate MSI-X %d resource\n", i); error = ENOMEM; goto back; } } pci_enable_msix(sc->bce_dev); sc->bce_irq_type = PCI_INTR_TYPE_MSIX; back: if (error) bce_free_msix(sc, setup); } static void bce_setup_ring_cnt(struct bce_softc *sc) { int msix_enable, ring_max, msix_cnt2, msix_cnt, i; sc->rx_ring_cnt = 1; sc->rx_ring_cnt2 = 1; sc->tx_ring_cnt = 1; if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5709) return; msix_enable = device_getenv_int(sc->bce_dev, "msix.enable", bce_msix_enable); if (!msix_enable) return; if (ncpus2 == 1) return; msix_cnt = pci_msix_count(sc->bce_dev); if (msix_cnt <= 1) return; i = 0; while ((1 << (i + 1)) <= msix_cnt) ++i; msix_cnt2 = 1 << i; /* * One extra RX ring will be needed (see below), so make sure * that there are enough MSI-X vectors. */ if (msix_cnt == msix_cnt2) { /* * XXX * This probably will not happen; 5709/5716 * come with 9 MSI-X vectors. */ msix_cnt2 >>= 1; if (msix_cnt2 <= 1) { device_printf(sc->bce_dev, "MSI-X count %d could not be used\n", msix_cnt); return; } device_printf(sc->bce_dev, "MSI-X count %d is power of 2\n", msix_cnt); } /* * Setup RX ring count */ ring_max = BCE_RX_RING_MAX; if (ring_max > msix_cnt2) ring_max = msix_cnt2; sc->rx_ring_cnt2 = device_getenv_int(sc->bce_dev, "rx_rings", bce_rx_rings); sc->rx_ring_cnt2 = if_ring_count2(sc->rx_ring_cnt2, ring_max); /* * One extra RX ring is allocated, since the first RX ring * could not be used for RSS hashed packets whose masked * hash is 0. The first RX ring is only used for packets * whose RSS hash could not be calculated, e.g. ARP packets. * This extra RX ring will be used for packets whose masked * hash is 0. The effective RX ring count involved in RSS * is still sc->rx_ring_cnt2. */ KKASSERT(sc->rx_ring_cnt2 + 1 <= msix_cnt); sc->rx_ring_cnt = sc->rx_ring_cnt2 + 1; /* * Setup TX ring count * * NOTE: * TX ring count must be less than the effective RSS RX ring * count, since we use RX ring software data struct to save * status index and various other MSI-X related stuffs. */ ring_max = BCE_TX_RING_MAX; if (ring_max > msix_cnt2) ring_max = msix_cnt2; if (ring_max > sc->rx_ring_cnt2) ring_max = sc->rx_ring_cnt2; sc->tx_ring_cnt = device_getenv_int(sc->bce_dev, "tx_rings", bce_tx_rings); sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max); } static void bce_free_msix(struct bce_softc *sc, boolean_t setup) { int i; KKASSERT(sc->rx_ring_cnt > 1); for (i = 0; i < sc->rx_ring_cnt; ++i) { struct bce_msix_data *msix = &sc->bce_msix[i]; if (msix->msix_res != NULL) { bus_release_resource(sc->bce_dev, SYS_RES_IRQ, msix->msix_rid, msix->msix_res); } if (msix->msix_rid >= 0) pci_release_msix_vector(sc->bce_dev, msix->msix_rid); } if (setup) pci_teardown_msix(sc->bce_dev); } static void bce_free_intr(struct bce_softc *sc) { if (sc->bce_irq_type != PCI_INTR_TYPE_MSIX) { if (sc->bce_res_irq != NULL) { bus_release_resource(sc->bce_dev, SYS_RES_IRQ, sc->bce_irq_rid, sc->bce_res_irq); } if (sc->bce_irq_type == PCI_INTR_TYPE_MSI) pci_release_msi(sc->bce_dev); } else { bce_free_msix(sc, TRUE); } } static void bce_setup_msix_table(struct bce_softc *sc) { REG_WR(sc, BCE_PCI_GRC_WINDOW_ADDR, BCE_PCI_GRC_WINDOW_ADDR_SEP_WIN); REG_WR(sc, BCE_PCI_GRC_WINDOW2_ADDR, BCE_MSIX_TABLE_ADDR); REG_WR(sc, BCE_PCI_GRC_WINDOW3_ADDR, BCE_MSIX_PBA_ADDR); } static int bce_setup_intr(struct bce_softc *sc) { void (*irq_handle)(void *); int error; if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) return bce_setup_msix(sc); if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) { irq_handle = bce_intr_legacy; } else if (sc->bce_irq_type == PCI_INTR_TYPE_MSI) { if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) { irq_handle = bce_intr_msi_oneshot; sc->bce_flags |= BCE_ONESHOT_MSI_FLAG; } else { irq_handle = bce_intr_msi; sc->bce_flags |= BCE_CHECK_MSI_FLAG; } } else { panic("%s: unsupported intr type %d", device_get_nameunit(sc->bce_dev), sc->bce_irq_type); } error = bus_setup_intr(sc->bce_dev, sc->bce_res_irq, INTR_MPSAFE, irq_handle, sc, &sc->bce_intrhand, &sc->main_serialize); if (error != 0) { device_printf(sc->bce_dev, "Failed to setup IRQ!\n"); return error; } sc->bce_msix[0].msix_cpuid = rman_get_cpuid(sc->bce_res_irq); sc->bce_msix[0].msix_serialize = &sc->main_serialize; return 0; } static void bce_teardown_intr(struct bce_softc *sc) { if (sc->bce_irq_type != PCI_INTR_TYPE_MSIX) bus_teardown_intr(sc->bce_dev, sc->bce_res_irq, sc->bce_intrhand); else bce_teardown_msix(sc, sc->rx_ring_cnt); } static int bce_setup_msix(struct bce_softc *sc) { int i; for (i = 0; i < sc->rx_ring_cnt; ++i) { struct bce_msix_data *msix = &sc->bce_msix[i]; int error; error = bus_setup_intr_descr(sc->bce_dev, msix->msix_res, INTR_MPSAFE, msix->msix_func, msix->msix_arg, &msix->msix_handle, msix->msix_serialize, msix->msix_desc); if (error) { device_printf(sc->bce_dev, "could not set up %s " "interrupt handler.\n", msix->msix_desc); bce_teardown_msix(sc, i); return error; } } return 0; } static void bce_teardown_msix(struct bce_softc *sc, int msix_cnt) { int i; for (i = 0; i < msix_cnt; ++i) { struct bce_msix_data *msix = &sc->bce_msix[i]; bus_teardown_intr(sc->bce_dev, msix->msix_res, msix->msix_handle); } } static void bce_init_rss(struct bce_softc *sc) { uint8_t key[BCE_RLUP_RSS_KEY_CNT * BCE_RLUP_RSS_KEY_SIZE]; uint32_t tbl = 0; int i; KKASSERT(sc->rx_ring_cnt > 2); /* * Configure RSS keys */ toeplitz_get_key(key, sizeof(key)); for (i = 0; i < BCE_RLUP_RSS_KEY_CNT; ++i) { uint32_t rss_key; rss_key = BCE_RLUP_RSS_KEYVAL(key, i); BCE_RSS_DPRINTF(sc, 1, "rss_key%d 0x%08x\n", i, rss_key); REG_WR(sc, BCE_RLUP_RSS_KEY(i), rss_key); } /* * Configure the redirect table * * NOTE: * - The "queue ID" in redirect table is the software RX ring's * index _minus_ one. * - The last RX ring, whose "queue ID" is (sc->rx_ring_cnt - 2) * will be used for packets whose masked hash is 0. * (see also: comment in bce_setup_ring_cnt()) * * The redirect table is configured in following fashion, except * for the masked hash 0, which is noted above: * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] */ for (i = 0; i < BCE_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) { int shift = (i % 8) << 2, qid; qid = i % sc->rx_ring_cnt2; if (qid > 0) --qid; else qid = sc->rx_ring_cnt - 2; KKASSERT(qid < (sc->rx_ring_cnt - 1)); tbl |= qid << shift; if (i % 8 == 7) { BCE_RSS_DPRINTF(sc, 1, "tbl 0x%08x\n", tbl); REG_WR(sc, BCE_RLUP_RSS_DATA, tbl); REG_WR(sc, BCE_RLUP_RSS_COMMAND, (i >> 3) | BCE_RLUP_RSS_COMMAND_RSS_WRITE_MASK | BCE_RLUP_RSS_COMMAND_WRITE | BCE_RLUP_RSS_COMMAND_HASH_MASK); tbl = 0; } } REG_WR(sc, BCE_RLUP_RSS_CONFIG, BCE_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI); } static void bce_npoll_coal_change(struct bce_softc *sc) { uint32_t old_rx_cons, old_tx_cons; old_rx_cons = sc->bce_rx_quick_cons_trip_int; old_tx_cons = sc->bce_tx_quick_cons_trip_int; sc->bce_rx_quick_cons_trip_int = 1; sc->bce_tx_quick_cons_trip_int = 1; sc->bce_coalchg_mask |= BCE_COALMASK_TX_BDS_INT | BCE_COALMASK_RX_BDS_INT; bce_coal_change(sc); sc->bce_rx_quick_cons_trip_int = old_rx_cons; sc->bce_tx_quick_cons_trip_int = old_tx_cons; }