/*- * Copyright (c) 1995, David Greenman * Copyright (c) 2001 Jonathan Lemon * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $ */ /* * Intel EtherExpress Pro/100B PCI Fast Ethernet driver */ #include "opt_polling.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include /* for PCIM_CMD_xxx */ #include "../mii_layer/mii.h" #include "../mii_layer/miivar.h" #include "if_fxpreg.h" #include "if_fxpvar.h" #include "rcvbundl.h" #include "miibus_if.h" /* * NOTE! On the Alpha, we have an alignment constraint. The * card DMAs the packet immediately following the RFA. However, * the first thing in the packet is a 14-byte Ethernet header. * This means that the packet is misaligned. To compensate, * we actually offset the RFA 2 bytes into the cluster. This * alignes the packet after the Ethernet header at a 32-bit * boundary. HOWEVER! This means that the RFA is misaligned! */ #define RFA_ALIGNMENT_FUDGE 2 /* * Set initial transmit threshold at 64 (512 bytes). This is * increased by 64 (512 bytes) at a time, to maximum of 192 * (1536 bytes), if an underrun occurs. */ static int tx_threshold = 64; /* * The configuration byte map has several undefined fields which * must be one or must be zero. Set up a template for these bits * only, (assuming a 82557 chip) leaving the actual configuration * to fxp_init. * * See struct fxp_cb_config for the bit definitions. */ static u_char fxp_cb_config_template[] = { 0x0, 0x0, /* cb_status */ 0x0, 0x0, /* cb_command */ 0x0, 0x0, 0x0, 0x0, /* link_addr */ 0x0, /* 0 */ 0x0, /* 1 */ 0x0, /* 2 */ 0x0, /* 3 */ 0x0, /* 4 */ 0x0, /* 5 */ 0x32, /* 6 */ 0x0, /* 7 */ 0x0, /* 8 */ 0x0, /* 9 */ 0x6, /* 10 */ 0x0, /* 11 */ 0x0, /* 12 */ 0x0, /* 13 */ 0xf2, /* 14 */ 0x48, /* 15 */ 0x0, /* 16 */ 0x40, /* 17 */ 0xf0, /* 18 */ 0x0, /* 19 */ 0x3f, /* 20 */ 0x5 /* 21 */ }; struct fxp_ident { u_int16_t devid; int16_t revid; /* -1 matches anything */ char *name; }; /* * Claim various Intel PCI device identifiers for this driver. The * sub-vendor and sub-device field are extensively used to identify * particular variants, but we don't currently differentiate between * them. */ static struct fxp_ident fxp_ident_table[] = { { 0x1029, -1, "Intel 82559 PCI/CardBus Pro/100" }, { 0x1030, -1, "Intel 82559 Pro/100 Ethernet" }, { 0x1031, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, { 0x1032, -1, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, { 0x1033, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, { 0x1034, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, { 0x1035, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, { 0x1036, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, { 0x1037, -1, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, { 0x1038, -1, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, { 0x1039, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, { 0x103A, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, { 0x103B, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, { 0x103C, -1, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, { 0x103D, -1, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, { 0x103E, -1, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, { 0x1050, -1, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, { 0x1051, -1, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, { 0x1059, -1, "Intel 82551QM Pro/100 M Mobile Connection" }, { 0x1064, -1, "Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" }, { 0x1065, -1, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, { 0x1068, -1, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, { 0x1069, -1, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, { 0x1091, -1, "Intel 82562GX Pro/100 Ethernet" }, { 0x1092, -1, "Intel Pro/100 VE Network Connection" }, { 0x1093, -1, "Intel Pro/100 VM Network Connection" }, { 0x1094, -1, "Intel Pro/100 946GZ (ICH7) Network Connection" }, { 0x1209, -1, "Intel 82559ER Embedded 10/100 Ethernet" }, { 0x1229, 0x01, "Intel 82557 Pro/100 Ethernet" }, { 0x1229, 0x02, "Intel 82557 Pro/100 Ethernet" }, { 0x1229, 0x03, "Intel 82557 Pro/100 Ethernet" }, { 0x1229, 0x04, "Intel 82558 Pro/100 Ethernet" }, { 0x1229, 0x05, "Intel 82558 Pro/100 Ethernet" }, { 0x1229, 0x06, "Intel 82559 Pro/100 Ethernet" }, { 0x1229, 0x07, "Intel 82559 Pro/100 Ethernet" }, { 0x1229, 0x08, "Intel 82559 Pro/100 Ethernet" }, { 0x1229, 0x09, "Intel 82559ER Pro/100 Ethernet" }, { 0x1229, 0x0c, "Intel 82550 Pro/100 Ethernet" }, { 0x1229, 0x0d, "Intel 82550 Pro/100 Ethernet" }, { 0x1229, 0x0e, "Intel 82550 Pro/100 Ethernet" }, { 0x1229, 0x0f, "Intel 82551 Pro/100 Ethernet" }, { 0x1229, 0x10, "Intel 82551 Pro/100 Ethernet" }, { 0x1229, -1, "Intel 82557/8/9 Pro/100 Ethernet" }, { 0x2449, -1, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, { 0x27dc, -1, "Intel 82801GB (ICH7) 10/100 Ethernet" }, { 0, -1, NULL }, }; static int fxp_probe(device_t dev); static int fxp_attach(device_t dev); static int fxp_detach(device_t dev); static int fxp_shutdown(device_t dev); static int fxp_suspend(device_t dev); static int fxp_resume(device_t dev); static void fxp_intr(void *xsc); static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count); static void fxp_init(void *xsc); static void fxp_tick(void *xsc); static void fxp_powerstate_d0(device_t dev); static void fxp_start(struct ifnet *ifp); static void fxp_stop(struct fxp_softc *sc); static void fxp_release(device_t dev); static int fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *); static void fxp_watchdog(struct ifnet *ifp); static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm); static int fxp_mc_addrs(struct fxp_softc *sc); static void fxp_mc_setup(struct fxp_softc *sc); static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize); static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data); static void fxp_autosize_eeprom(struct fxp_softc *sc); static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words); static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words); static int fxp_ifmedia_upd(struct ifnet *ifp); static void fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); static int fxp_serial_ifmedia_upd(struct ifnet *ifp); static void fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); static int fxp_miibus_readreg(device_t dev, int phy, int reg); static void fxp_miibus_writereg(device_t dev, int phy, int reg, int value); static void fxp_load_ucode(struct fxp_softc *sc); static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); #ifdef DEVICE_POLLING static poll_handler_t fxp_poll; #endif static void fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst); static void fxp_scb_wait(struct fxp_softc *sc); static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); static void fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc); static device_method_t fxp_methods[] = { /* Device interface */ DEVMETHOD(device_probe, fxp_probe), DEVMETHOD(device_attach, fxp_attach), DEVMETHOD(device_detach, fxp_detach), DEVMETHOD(device_shutdown, fxp_shutdown), DEVMETHOD(device_suspend, fxp_suspend), DEVMETHOD(device_resume, fxp_resume), /* MII interface */ DEVMETHOD(miibus_readreg, fxp_miibus_readreg), DEVMETHOD(miibus_writereg, fxp_miibus_writereg), { 0, 0 } }; static driver_t fxp_driver = { "fxp", fxp_methods, sizeof(struct fxp_softc), }; static devclass_t fxp_devclass; DECLARE_DUMMY_MODULE(if_fxp); MODULE_DEPEND(if_fxp, miibus, 1, 1, 1); DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, NULL, NULL); DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, NULL, NULL); DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL); static int fxp_rnr; SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events"); /* * Copy a 16-bit aligned 32-bit quantity. */ static void fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) { #ifdef __i386__ *dst = *src; #else volatile u_int16_t *a = (volatile u_int16_t *)src; volatile u_int16_t *b = (volatile u_int16_t *)dst; b[0] = a[0]; b[1] = a[1]; #endif } /* * Wait for the previous command to be accepted (but not necessarily * completed). */ static void fxp_scb_wait(struct fxp_softc *sc) { int i = 10000; while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) DELAY(2); if (i == 0) { if_printf(&sc->arpcom.ac_if, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), CSR_READ_1(sc, FXP_CSR_SCB_STATACK), CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), CSR_READ_2(sc, FXP_CSR_FLOWCONTROL)); } } static void fxp_scb_cmd(struct fxp_softc *sc, int cmd) { if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); fxp_scb_wait(sc); } CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); } static void fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc) { int i = 10000; while (!(*status & FXP_CB_STATUS_C) && --i) DELAY(2); if (i == 0) if_printf(&sc->arpcom.ac_if, "DMA timeout\n"); } /* * Return identification string if this is device is ours. */ static int fxp_probe(device_t dev) { u_int16_t devid; u_int8_t revid; struct fxp_ident *ident; if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) { devid = pci_get_device(dev); revid = pci_get_revid(dev); for (ident = fxp_ident_table; ident->name != NULL; ident++) { if (ident->devid == devid && (ident->revid == revid || ident->revid == -1)) { device_set_desc(dev, ident->name); return (0); } } } return (ENXIO); } static void fxp_powerstate_d0(device_t dev) { u_int32_t iobase, membase, irq; if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { /* Save important PCI config data. */ iobase = pci_read_config(dev, FXP_PCI_IOBA, 4); membase = pci_read_config(dev, FXP_PCI_MMBA, 4); irq = pci_read_config(dev, PCIR_INTLINE, 4); /* Reset the power state. */ device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); /* Restore PCI config data. */ pci_write_config(dev, FXP_PCI_IOBA, iobase, 4); pci_write_config(dev, FXP_PCI_MMBA, membase, 4); pci_write_config(dev, PCIR_INTLINE, irq, 4); } } static int fxp_attach(device_t dev) { int error = 0; struct fxp_softc *sc = device_get_softc(dev); struct ifnet *ifp; u_int32_t val; u_int16_t data; int i, rid, m1, m2, prefer_iomap; callout_init(&sc->fxp_stat_timer); sysctl_ctx_init(&sc->sysctl_ctx); /* * Enable bus mastering. Enable memory space too, in case * BIOS/Prom forgot about it. */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_MEMORY); val = pci_read_config(dev, PCIR_COMMAND, 2); fxp_powerstate_d0(dev); /* * Figure out which we should try first - memory mapping or i/o mapping? * We default to memory mapping. Then we accept an override from the * command line. Then we check to see which one is enabled. */ m1 = PCIM_CMD_MEMEN; m2 = PCIM_CMD_PORTEN; prefer_iomap = 0; if (resource_int_value(device_get_name(dev), device_get_unit(dev), "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) { m1 = PCIM_CMD_PORTEN; m2 = PCIM_CMD_MEMEN; } if (val & m1) { sc->rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE); } if (sc->mem == NULL && (val & m2)) { sc->rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA; sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd, RF_ACTIVE); } if (!sc->mem) { device_printf(dev, "could not map device registers\n"); error = ENXIO; goto fail; } if (bootverbose) { device_printf(dev, "using %s space register mapping\n", sc->rtp == SYS_RES_MEMORY? "memory" : "I/O"); } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); /* * Allocate our interrupt. */ rid = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->irq == NULL) { device_printf(dev, "could not map interrupt\n"); error = ENXIO; goto fail; } /* * Reset to a stable state. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, M_DEVBUF, M_WAITOK | M_ZERO); sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF, M_WAITOK | M_ZERO); sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK); /* * Pre-allocate our receive buffers. */ for (i = 0; i < FXP_NRFABUFS; i++) { if (fxp_add_rfabuf(sc, NULL) != 0) { goto failmem; } } /* * Find out how large of an SEEPROM we have. */ fxp_autosize_eeprom(sc); /* * Determine whether we must use the 503 serial interface. */ fxp_read_eeprom(sc, &data, 6, 1); if ((data & FXP_PHY_DEVICE_MASK) != 0 && (data & FXP_PHY_SERIAL_ONLY)) sc->flags |= FXP_FLAG_SERIAL_MEDIA; /* * Create the sysctl tree */ sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_nameunit(dev), CTLFLAG_RD, 0, ""); if (sc->sysctl_tree == NULL) goto fail; SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I", "FXP driver receive interrupt microcode bundling delay"); SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON, &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I", "FXP driver receive interrupt microcode bundle size limit"); /* * Pull in device tunables. */ sc->tunable_int_delay = TUNABLE_INT_DELAY; sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; resource_int_value(device_get_name(dev), device_get_unit(dev), "int_delay", &sc->tunable_int_delay); resource_int_value(device_get_name(dev), device_get_unit(dev), "bundle_max", &sc->tunable_bundle_max); /* * Find out the chip revision; lump all 82557 revs together. */ fxp_read_eeprom(sc, &data, 5, 1); if ((data >> 8) == 1) sc->revision = FXP_REV_82557; else sc->revision = pci_get_revid(dev); /* * Enable workarounds for certain chip revision deficiencies. * * Systems based on the ICH2/ICH2-M chip from Intel, and possibly * some systems based a normal 82559 design, have a defect where * the chip can cause a PCI protocol violation if it receives * a CU_RESUME command when it is entering the IDLE state. The * workaround is to disable Dynamic Standby Mode, so the chip never * deasserts CLKRUN#, and always remains in an active state. * * See Intel 82801BA/82801BAM Specification Update, Errata #30. */ i = pci_get_device(dev); if (i == 0x2449 || (i > 0x1030 && i < 0x1039) || sc->revision >= FXP_REV_82559_A0) { fxp_read_eeprom(sc, &data, 10, 1); if (data & 0x02) { /* STB enable */ u_int16_t cksum; int i; device_printf(dev, "Disabling dynamic standby mode in EEPROM\n"); data &= ~0x02; fxp_write_eeprom(sc, &data, 10, 1); device_printf(dev, "New EEPROM ID: 0x%x\n", data); cksum = 0; for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { fxp_read_eeprom(sc, &data, i, 1); cksum += data; } i = (1 << sc->eeprom_size) - 1; cksum = 0xBABA - cksum; fxp_read_eeprom(sc, &data, i, 1); fxp_write_eeprom(sc, &cksum, i, 1); device_printf(dev, "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", i, data, cksum); #if 1 /* * If the user elects to continue, try the software * workaround, as it is better than nothing. */ sc->flags |= FXP_FLAG_CU_RESUME_BUG; #endif } } /* * If we are not a 82557 chip, we can enable extended features. */ if (sc->revision != FXP_REV_82557) { /* * If MWI is enabled in the PCI configuration, and there * is a valid cacheline size (8 or 16 dwords), then tell * the board to turn on MWI. */ if (val & PCIM_CMD_MWRICEN && pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) sc->flags |= FXP_FLAG_MWI_ENABLE; /* turn on the extended TxCB feature */ sc->flags |= FXP_FLAG_EXT_TXCB; /* enable reception of long frames for VLAN */ sc->flags |= FXP_FLAG_LONG_PKT_EN; } /* * Read MAC address. */ fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3); if (sc->flags & FXP_FLAG_SERIAL_MEDIA) device_printf(dev, "10Mbps\n"); if (bootverbose) { device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", pci_get_vendor(dev), pci_get_device(dev), pci_get_subvendor(dev), pci_get_subdevice(dev), pci_get_revid(dev)); fxp_read_eeprom(sc, &data, 10, 1); device_printf(dev, "Dynamic Standby mode is %s\n", data & 0x02 ? "enabled" : "disabled"); } /* * If this is only a 10Mbps device, then there is no MII, and * the PHY will use a serial interface instead. * * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter * doesn't have a programming interface of any sort. The * media is sensed automatically based on how the link partner * is configured. This is, in essence, manual configuration. */ if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, fxp_serial_ifmedia_sts); ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); } else { if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd, fxp_ifmedia_sts)) { device_printf(dev, "MII without any PHY!\n"); error = ENXIO; goto fail; } } ifp = &sc->arpcom.ac_if; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_baudrate = 100000000; ifp->if_init = fxp_init; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = fxp_ioctl; ifp->if_start = fxp_start; #ifdef DEVICE_POLLING ifp->if_poll = fxp_poll; #endif ifp->if_watchdog = fxp_watchdog; /* * Attach the interface. */ ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL); /* * Tell the upper layer(s) we support long frames. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); /* * Let the system queue as many packets as we have available * TX descriptors. */ ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB); ifq_set_ready(&ifp->if_snd); error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, fxp_intr, sc, &sc->ih, ifp->if_serializer); if (error) { ether_ifdetach(ifp); if (sc->flags & FXP_FLAG_SERIAL_MEDIA) ifmedia_removeall(&sc->sc_media); device_printf(dev, "could not setup irq\n"); goto fail; } ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq)); KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus); return (0); failmem: device_printf(dev, "Failed to malloc memory\n"); error = ENOMEM; fail: fxp_release(dev); return (error); } /* * release all resources */ static void fxp_release(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); if (sc->miibus) device_delete_child(dev, sc->miibus); bus_generic_detach(dev); if (sc->cbl_base) kfree(sc->cbl_base, M_DEVBUF); if (sc->fxp_stats) kfree(sc->fxp_stats, M_DEVBUF); if (sc->mcsp) kfree(sc->mcsp, M_DEVBUF); if (sc->rfa_headm) m_freem(sc->rfa_headm); if (sc->irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq); if (sc->mem) bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem); sysctl_ctx_free(&sc->sysctl_ctx); } /* * Detach interface. */ static int fxp_detach(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer); /* * Stop DMA and drop transmit queue. */ fxp_stop(sc); /* * Disable interrupts. * * NOTE: This should be done after fxp_stop(), because software * resetting in fxp_stop() may leave interrupts turned on. */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); /* * Free all media structures. */ if (sc->flags & FXP_FLAG_SERIAL_MEDIA) ifmedia_removeall(&sc->sc_media); if (sc->ih) bus_teardown_intr(dev, sc->irq, sc->ih); lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer); /* * Close down routes etc. */ ether_ifdetach(&sc->arpcom.ac_if); /* Release our allocated resources. */ fxp_release(dev); return (0); } /* * Device shutdown routine. Called at system shutdown after sync. The * main purpose of this routine is to shut off receiver DMA so that * kernel memory doesn't get clobbered during warmboot. */ static int fxp_shutdown(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); /* * Make sure that DMA is disabled prior to reboot. Not doing * do could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ fxp_stop(sc); lwkt_serialize_exit(ifp->if_serializer); return (0); } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int fxp_suspend(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); int i; lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer); fxp_stop(sc); for (i = 0; i < 5; i++) sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4); sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); sc->suspended = 1; lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer); return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int fxp_resume(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; int i; lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer); fxp_powerstate_d0(dev); /* better way to do this? */ for (i = 0; i < 5; i++) pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4); pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); /* reenable busmastering and memory space */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_MEMORY); CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) fxp_init(sc); sc->suspended = 0; lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer); return (0); } static void fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) { u_int16_t reg; int x; /* * Shift in data. */ for (x = 1 << (length - 1); x; x >>= 1) { if (data & x) reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; else reg = FXP_EEPROM_EECS; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } } /* * Read from the serial EEPROM. Basically, you manually shift in * the read opcode (one bit at a time) and then shift in the address, * and then you shift out the data (all of this one bit at a time). * The word size is 16 bits, so you have to provide the address for * every 16 bits of data. */ static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) { u_int16_t reg, data; int x; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* * Shift in read opcode. */ fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); /* * Shift in address. */ data = 0; for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { if (offset & x) reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; else reg = FXP_EEPROM_EECS; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; data++; if (autosize && reg == 0) { sc->eeprom_size = data; break; } } /* * Shift out data. */ data = 0; reg = FXP_EEPROM_EECS; for (x = 1 << 15; x; x >>= 1) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) data |= x; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); return (data); } static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) { int i; /* * Erase/write enable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, 0x4, 3); fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Shift in write opcode, address, data. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); fxp_eeprom_shiftin(sc, data, 16); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Wait for EEPROM to finish up. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(1); for (i = 0; i < 1000; i++) { if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) break; DELAY(50); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Erase/write disable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, 0x4, 3); fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); } /* * From NetBSD: * * Figure out EEPROM size. * * 559's can have either 64-word or 256-word EEPROMs, the 558 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet * talks about the existance of 16 to 256 word EEPROMs. * * The only known sizes are 64 and 256, where the 256 version is used * by CardBus cards to store CIS information. * * The address is shifted in msb-to-lsb, and after the last * address-bit the EEPROM is supposed to output a `dummy zero' bit, * after which follows the actual data. We try to detect this zero, by * probing the data-out bit in the EEPROM control register just after * having shifted in a bit. If the bit is zero, we assume we've * shifted enough address bits. The data-out should be tri-state, * before this, which should translate to a logical one. */ static void fxp_autosize_eeprom(struct fxp_softc *sc) { /* guess maximum size of 256 words */ sc->eeprom_size = 8; /* autosize */ fxp_eeprom_getword(sc, 0, 1); } static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) { int i; for (i = 0; i < words; i++) data[i] = fxp_eeprom_getword(sc, offset + i, 0); } static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) { int i; for (i = 0; i < words; i++) fxp_eeprom_putword(sc, offset + i, data[i]); } /* * Start packet transmission on the interface. */ static void fxp_start(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; struct fxp_cb_tx *txp; ASSERT_SERIALIZED(ifp->if_serializer); /* * See if we need to suspend xmit until the multicast filter * has been reprogrammed (which can only be done at the head * of the command chain). */ if (sc->need_mcsetup) { ifq_purge(&ifp->if_snd); return; } if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; txp = NULL; /* * We're finished if there is nothing more to add to the list or if * we're all filled up with buffers to transmit. * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add * a NOP command when needed. */ while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) { struct mbuf *m, *mb_head; int segment, ntries = 0; /* * Grab a packet to transmit. */ mb_head = ifq_dequeue(&ifp->if_snd, NULL); if (mb_head == NULL) break; tbdinit: /* * Make sure that the packet fits into one TX desc */ segment = 0; for (m = mb_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { ++segment; if (segment >= FXP_NTXSEG) break; } } if (segment >= FXP_NTXSEG) { struct mbuf *mn; if (ntries) { /* * Packet is excessively fragmented, * and will never fit into one TX * desc. Give it up. */ m_freem(mb_head); ifp->if_oerrors++; continue; } mn = m_dup(mb_head, MB_DONTWAIT); if (mn == NULL) { m_freem(mb_head); ifp->if_oerrors++; continue; } m_freem(mb_head); mb_head = mn; ntries = 1; goto tbdinit; } /* * Get pointer to next available tx desc. */ txp = sc->cbl_last->next; /* * Go through each of the mbufs in the chain and initialize * the transmit buffer descriptors with the physical address * and size of the mbuf. */ for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { KKASSERT(segment < FXP_NTXSEG); txp->tbd[segment].tb_addr = vtophys(mtod(m, vm_offset_t)); txp->tbd[segment].tb_size = m->m_len; segment++; } } KKASSERT(m == NULL); txp->tbd_number = segment; txp->mb_head = mb_head; txp->cb_status = 0; if (sc->tx_queued != FXP_CXINT_THRESH - 1) { txp->cb_command = FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S; } else { txp->cb_command = FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; } txp->tx_threshold = tx_threshold; /* * Advance the end of list forward. */ sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; sc->cbl_last = txp; /* * Advance the beginning of the list forward if there are * no other packets queued (when nothing is queued, cbl_first * sits on the last TxCB that was sent out). */ if (sc->tx_queued == 0) sc->cbl_first = txp; sc->tx_queued++; /* * Set a 5 second timer just in case we don't hear * from the card again. */ ifp->if_timer = 5; BPF_MTAP(ifp, mb_head); } if (sc->tx_queued >= FXP_USABLE_TXCB) ifp->if_flags |= IFF_OACTIVE; /* * We're finished. If we added to the list, issue a RESUME to get DMA * going again if suspended. */ if (txp != NULL) { fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); } } #ifdef DEVICE_POLLING static void fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct fxp_softc *sc = ifp->if_softc; u_int8_t statack; ASSERT_SERIALIZED(ifp->if_serializer); switch(cmd) { case POLL_REGISTER: /* disable interrupts */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); break; case POLL_DEREGISTER: /* enable interrupts */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); break; default: statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | FXP_SCB_STATACK_FR; if (cmd == POLL_AND_CHECK_STATUS) { u_int8_t tmp; tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); if (tmp == 0xff || tmp == 0) return; /* nothing to do */ tmp &= ~statack; /* ack what we can */ if (tmp != 0) CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); statack |= tmp; } fxp_intr_body(sc, statack, count); break; } } #endif /* DEVICE_POLLING */ /* * Process interface interrupts. */ static void fxp_intr(void *xsc) { struct fxp_softc *sc = xsc; u_int8_t statack; ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer); if (sc->suspended) { return; } while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { /* * It should not be possible to have all bits set; the * FXP_SCB_INTR_SWI bit always returns 0 on a read. If * all bits are set, this may indicate that the card has * been physically ejected, so ignore it. */ if (statack == 0xff) return; /* * First ACK all the interrupts in this pass. */ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); fxp_intr_body(sc, statack, -1); } } static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count) { struct ifnet *ifp = &sc->arpcom.ac_if; struct mbuf *m; struct fxp_rfa *rfa; int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; struct mbuf_chain chain[MAXCPU]; if (rnr) fxp_rnr++; #ifdef DEVICE_POLLING /* Pick up a deferred RNR condition if `count' ran out last time. */ if (sc->flags & FXP_FLAG_DEFERRED_RNR) { sc->flags &= ~FXP_FLAG_DEFERRED_RNR; rnr = 1; } #endif /* * Free any finished transmit mbuf chains. * * Handle the CNA event likt a CXTNO event. It used to * be that this event (control unit not ready) was not * encountered, but it is now with the SMPng modifications. * The exact sequence of events that occur when the interface * is brought up are different now, and if this event * goes unhandled, the configuration/rxfilter setup sequence * can stall for several seconds. The result is that no * packets go out onto the wire for about 5 to 10 seconds * after the interface is ifconfig'ed for the first time. */ if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) { struct fxp_cb_tx *txp; for (txp = sc->cbl_first; sc->tx_queued && (txp->cb_status & FXP_CB_STATUS_C) != 0; txp = txp->next) { if ((m = txp->mb_head) != NULL) { txp->mb_head = NULL; sc->tx_queued--; m_freem(m); } else { sc->tx_queued--; } } sc->cbl_first = txp; if (sc->tx_queued < FXP_USABLE_TXCB) ifp->if_flags &= ~IFF_OACTIVE; if (sc->tx_queued == 0) { ifp->if_timer = 0; if (sc->need_mcsetup) fxp_mc_setup(sc); } /* * Try to start more packets transmitting. */ if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Just return if nothing happened on the receive side. */ if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) return; ether_input_chain_init(chain); /* * Process receiver interrupts. If a no-resource (RNR) * condition exists, get whatever packets we can and * re-start the receiver. * * When using polling, we do not process the list to completion, * so when we get an RNR interrupt we must defer the restart * until we hit the last buffer with the C bit set. * If we run out of cycles and rfa_headm has the C bit set, * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so * that the info will be used in the subsequent polling cycle. */ for (;;) { m = sc->rfa_headm; rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ if (count >= 0 && count-- == 0) { if (rnr) { /* Defer RNR processing until the next time. */ sc->flags |= FXP_FLAG_DEFERRED_RNR; rnr = 0; } break; } #endif /* DEVICE_POLLING */ if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0) break; /* * Remove first packet from the chain. */ sc->rfa_headm = m->m_next; if (sc->rfa_headm == NULL) sc->rfa_tailm = NULL; m->m_next = NULL; /* * Add a new buffer to the receive chain. * If this fails, the old buffer is recycled * instead. */ if (fxp_add_rfabuf(sc, m) == 0) { int total_len; /* * Fetch packet length (the top 2 bits of * actual_size are flags set by the controller * upon completion), and drop the packet in case * of bogus length or CRC errors. */ total_len = rfa->actual_size & 0x3fff; if (total_len < sizeof(struct ether_header) || total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE - sizeof(struct fxp_rfa) || (rfa->rfa_status & FXP_RFA_STATUS_CRC)) { m_freem(m); continue; } m->m_pkthdr.len = m->m_len = total_len; ether_input_chain(ifp, m, NULL, chain); } } ether_input_dispatch(chain); if (rnr) { fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); } } /* * Update packet in/out/collision statistics. The i82557 doesn't * allow you to access these counters without doing a fairly * expensive DMA to get _all_ of the statistics it maintains, so * we do this operation here only once per second. The statistics * counters in the kernel are updated from the previous dump-stats * DMA and then a new dump-stats DMA is started. The on-chip * counters are zeroed when the DMA completes. If we can't start * the DMA immediately, we don't wait - we just prepare to read * them again next time. */ static void fxp_tick(void *xsc) { struct fxp_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct fxp_stats *sp = sc->fxp_stats; struct fxp_cb_tx *txp; struct mbuf *m; lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer); ifp->if_opackets += sp->tx_good; ifp->if_collisions += sp->tx_total_collisions; if (sp->rx_good) { ifp->if_ipackets += sp->rx_good; sc->rx_idle_secs = 0; } else { /* * Receiver's been idle for another second. */ sc->rx_idle_secs++; } ifp->if_ierrors += sp->rx_crc_errors + sp->rx_alignment_errors + sp->rx_rnr_errors + sp->rx_overrun_errors; /* * If any transmit underruns occured, bump up the transmit * threshold by another 512 bytes (64 * 8). */ if (sp->tx_underruns) { ifp->if_oerrors += sp->tx_underruns; if (tx_threshold < 192) tx_threshold += 64; } /* * Release any xmit buffers that have completed DMA. This isn't * strictly necessary to do here, but it's advantagous for mbufs * with external storage to be released in a timely manner rather * than being defered for a potentially long time. This limits * the delay to a maximum of one second. */ for (txp = sc->cbl_first; sc->tx_queued && (txp->cb_status & FXP_CB_STATUS_C) != 0; txp = txp->next) { if ((m = txp->mb_head) != NULL) { txp->mb_head = NULL; sc->tx_queued--; m_freem(m); } else { sc->tx_queued--; } } sc->cbl_first = txp; if (sc->tx_queued < FXP_USABLE_TXCB) ifp->if_flags &= ~IFF_OACTIVE; if (sc->tx_queued == 0) ifp->if_timer = 0; /* * Try to start more packets transmitting. */ if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); /* * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, * then assume the receiver has locked up and attempt to clear * the condition by reprogramming the multicast filter. This is * a work-around for a bug in the 82557 where the receiver locks * up if it gets certain types of garbage in the syncronization * bits prior to the packet header. This bug is supposed to only * occur in 10Mbps mode, but has been seen to occur in 100Mbps * mode as well (perhaps due to a 10/100 speed transition). */ if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { sc->rx_idle_secs = 0; fxp_mc_setup(sc); } /* * If there is no pending command, start another stats * dump. Otherwise punt for now. */ if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { /* * Start another stats dump. */ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); } else { /* * A previous command is still waiting to be accepted. * Just zero our copy of the stats and wait for the * next timer event to update them. */ sp->tx_good = 0; sp->tx_underruns = 0; sp->tx_total_collisions = 0; sp->rx_good = 0; sp->rx_crc_errors = 0; sp->rx_alignment_errors = 0; sp->rx_rnr_errors = 0; sp->rx_overrun_errors = 0; } if (sc->miibus != NULL) mii_tick(device_get_softc(sc->miibus)); /* * Schedule another timeout one second from now. */ callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc); lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer); } /* * Stop the interface. Cancels the statistics updater and resets * the interface. */ static void fxp_stop(struct fxp_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct fxp_cb_tx *txp; int i; ASSERT_SERIALIZED(ifp->if_serializer); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; /* * Cancel stats updater. */ callout_stop(&sc->fxp_stat_timer); /* * Issue software reset, which also unloads the microcode. */ sc->flags &= ~FXP_FLAG_UCODE; CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); DELAY(50); /* * Release any xmit buffers. */ txp = sc->cbl_base; if (txp != NULL) { for (i = 0; i < FXP_NTXCB; i++) { if (txp[i].mb_head != NULL) { m_freem(txp[i].mb_head); txp[i].mb_head = NULL; } } } sc->tx_queued = 0; /* * Free all the receive buffers then reallocate/reinitialize */ if (sc->rfa_headm != NULL) m_freem(sc->rfa_headm); sc->rfa_headm = NULL; sc->rfa_tailm = NULL; for (i = 0; i < FXP_NRFABUFS; i++) { if (fxp_add_rfabuf(sc, NULL) != 0) { /* * This "can't happen" - we're at splimp() * and we just freed all the buffers we need * above. */ panic("fxp_stop: no buffers!"); } } } /* * Watchdog/transmission transmit timeout handler. Called when a * transmission is started on the interface, but no interrupt is * received before the timeout. This usually indicates that the * card has wedged for some reason. */ static void fxp_watchdog(struct ifnet *ifp) { ASSERT_SERIALIZED(ifp->if_serializer); if_printf(ifp, "device timeout\n"); ifp->if_oerrors++; fxp_init(ifp->if_softc); } static void fxp_init(void *xsc) { struct fxp_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct fxp_cb_config *cbp; struct fxp_cb_ias *cb_ias; struct fxp_cb_tx *txp; struct fxp_cb_mcs *mcsp; int i, prm; ASSERT_SERIALIZED(ifp->if_serializer); /* * Cancel any pending I/O */ fxp_stop(sc); prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; /* * Initialize base of CBL and RFA memory. Loading with zero * sets it up for regular linear addressing. */ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); /* * Initialize base of dump-stats buffer. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); /* * Attempt to load microcode if requested. */ if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) fxp_load_ucode(sc); /* * Initialize the multicast address list. */ if (fxp_mc_addrs(sc)) { mcsp = sc->mcsp; mcsp->cb_status = 0; mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL; mcsp->link_addr = -1; /* * Start the multicast setup command. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(&mcsp->cb_status, sc); } /* * We temporarily use memory that contains the TxCB list to * construct the config CB. The TxCB list memory is rebuilt * later. */ cbp = (struct fxp_cb_config *) sc->cbl_base; /* * This bcopy is kind of disgusting, but there are a bunch of must be * zero and must be one bits in this structure and this is the easiest * way to initialize them all to proper values. */ bcopy(fxp_cb_config_template, (void *)(uintptr_t)(volatile void *)&cbp->cb_status, sizeof(fxp_cb_config_template)); cbp->cb_status = 0; cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; cbp->link_addr = -1; /* (no) next command */ cbp->byte_count = 22; /* (22) bytes to config */ cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; cbp->type_enable = 0; /* actually reserved */ cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ cbp->dma_mbce = 0; /* (disable) dma max counters */ cbp->late_scb = 0; /* (don't) defer SCB update */ cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ cbp->ci_int = 1; /* interrupt on CU idle */ cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; cbp->ext_stats_dis = 1; /* disable extended counters */ cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm; cbp->disc_short_rx = !prm; /* discard short packets */ cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */ cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; cbp->csma_dis = 0; /* (don't) disable link */ cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */ cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ cbp->nsai = 1; /* (don't) disable source addr insert */ cbp->preamble_length = 2; /* (7 byte) preamble */ cbp->loopback = 0; /* (don't) loopback */ cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ cbp->linear_pri_mode = 0; /* (wait after xmit only) */ cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ cbp->promiscuous = prm; /* promiscuous mode */ cbp->bcast_disable = 0; /* (don't) disable broadcasts */ cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; cbp->stripping = !prm; /* truncate rx packet to byte count */ cbp->padding = 1; /* (do) pad short tx packets */ cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; cbp->ia_wake_en = 0; /* (don't) wake up on address match */ cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */ /* must set wake_en in PMCSR also */ cbp->force_fdx = 0; /* (don't) force full duplex */ cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ cbp->multi_ia = 0; /* (don't) accept multiple IAs */ cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0; if (sc->revision == FXP_REV_82557) { /* * The 82557 has no hardware flow control, the values * below are the defaults for the chip. */ cbp->fc_delay_lsb = 0; cbp->fc_delay_msb = 0x40; cbp->pri_fc_thresh = 3; cbp->tx_fc_dis = 0; cbp->rx_fc_restop = 0; cbp->rx_fc_restart = 0; cbp->fc_filter = 0; cbp->pri_fc_loc = 1; } else { cbp->fc_delay_lsb = 0x1f; cbp->fc_delay_msb = 0x01; cbp->pri_fc_thresh = 3; cbp->tx_fc_dis = 0; /* enable transmit FC */ cbp->rx_fc_restop = 1; /* enable FC restop frames */ cbp->rx_fc_restart = 1; /* enable FC restart frames */ cbp->fc_filter = !prm; /* drop FC frames to host */ cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ } /* * Start the config command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(&cbp->cb_status, sc); /* * Now initialize the station address. Temporarily use the TxCB * memory area like we did above for the config CB. */ cb_ias = (struct fxp_cb_ias *) sc->cbl_base; cb_ias->cb_status = 0; cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; cb_ias->link_addr = -1; bcopy(sc->arpcom.ac_enaddr, (void *)(uintptr_t)(volatile void *)cb_ias->macaddr, sizeof(sc->arpcom.ac_enaddr)); /* * Start the IAS (Individual Address Setup) command/DMA. */ fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(&cb_ias->cb_status, sc); /* * Initialize transmit control block (TxCB) list. */ txp = sc->cbl_base; bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); for (i = 0; i < FXP_NTXCB; i++) { txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; txp[i].cb_command = FXP_CB_COMMAND_NOP; txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); if (sc->flags & FXP_FLAG_EXT_TXCB) txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]); else txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; } /* * Set the suspend flag on the first TxCB and start the control * unit. It will execute the NOP and then suspend. */ txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; sc->cbl_first = sc->cbl_last = txp; sc->tx_queued = 1; fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* * Initialize receiver buffer area - RFA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); /* * Set current media. */ if (sc->miibus != NULL) mii_mediachg(device_get_softc(sc->miibus)); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * Enable interrupts. */ #ifdef DEVICE_POLLING /* * ... but only do that if we are not polling. And because (presumably) * the default is interrupts on, we need to disable them explicitly! */ if ( ifp->if_flags & IFF_POLLING ) CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); else #endif /* DEVICE_POLLING */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); /* * Start stats updater. */ callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc); } static int fxp_serial_ifmedia_upd(struct ifnet *ifp) { ASSERT_SERIALIZED(ifp->if_serializer); return (0); } static void fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { ASSERT_SERIALIZED(ifp->if_serializer); ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; } /* * Change media according to request. */ static int fxp_ifmedia_upd(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; struct mii_data *mii; ASSERT_SERIALIZED(ifp->if_serializer); mii = device_get_softc(sc->miibus); mii_mediachg(mii); return (0); } /* * Notify the world which media we're using. */ static void fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct fxp_softc *sc = ifp->if_softc; struct mii_data *mii; ASSERT_SERIALIZED(ifp->if_serializer); mii = device_get_softc(sc->miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) sc->cu_resume_bug = 1; else sc->cu_resume_bug = 0; } /* * Add a buffer to the end of the RFA buffer list. * Return 0 if successful, 1 for failure. A failure results in * adding the 'oldm' (if non-NULL) on to the end of the list - * tossing out its old contents and recycling it. * The RFA struct is stuck at the beginning of mbuf cluster and the * data pointer is fixed up to point just past it. */ static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) { u_int32_t v; struct mbuf *m; struct fxp_rfa *rfa, *p_rfa; m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { /* try to recycle the old mbuf instead */ if (oldm == NULL) return 1; m = oldm; m->m_data = m->m_ext.ext_buf; } /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += RFA_ALIGNMENT_FUDGE; /* * Get a pointer to the base of the mbuf cluster and move * data start past it. */ rfa = mtod(m, struct fxp_rfa *); m->m_data += sizeof(struct fxp_rfa); rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); /* * Initialize the rest of the RFA. Note that since the RFA * is misaligned, we cannot store values directly. Instead, * we use an optimized, inline copy. */ rfa->rfa_status = 0; rfa->rfa_control = FXP_RFA_CONTROL_EL; rfa->actual_size = 0; v = -1; fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr); fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr); /* * If there are other buffers already on the list, attach this * one to the end by fixing up the tail to point to this one. */ if (sc->rfa_headm != NULL) { p_rfa = (struct fxp_rfa *)(sc->rfa_tailm->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); sc->rfa_tailm->m_next = m; v = vtophys(rfa); fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr); p_rfa->rfa_control = 0; } else { sc->rfa_headm = m; } sc->rfa_tailm = m; return (m == oldm); } static int fxp_miibus_readreg(device_t dev, int phy, int reg) { struct fxp_softc *sc = device_get_softc(dev); int count = 10000; int value; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) device_printf(dev, "fxp_miibus_readreg: timed out\n"); return (value & 0xffff); } static void fxp_miibus_writereg(device_t dev, int phy, int reg, int value) { struct fxp_softc *sc = device_get_softc(dev); int count = 10000; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | (value & 0xffff)); while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) device_printf(dev, "fxp_miibus_writereg: timed out\n"); } static int fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct fxp_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int error = 0; ASSERT_SERIALIZED(ifp->if_serializer); switch (command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_ALLMULTI) sc->flags |= FXP_FLAG_ALL_MCAST; else sc->flags &= ~FXP_FLAG_ALL_MCAST; /* * If interface is marked up and not running, then start it. * If it is marked down and running, stop it. * XXX If it's up then re-initialize it. This is so flags * such as IFF_PROMISC are handled. */ if (ifp->if_flags & IFF_UP) { fxp_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) fxp_stop(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_ALLMULTI) sc->flags |= FXP_FLAG_ALL_MCAST; else sc->flags &= ~FXP_FLAG_ALL_MCAST; /* * Multicast list has changed; set the hardware filter * accordingly. */ if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) fxp_mc_setup(sc); /* * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it * again rather than else {}. */ if (sc->flags & FXP_FLAG_ALL_MCAST) fxp_init(sc); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->miibus != NULL) { mii = device_get_softc(sc->miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } else { error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); } break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * Fill in the multicast address list and return number of entries. */ static int fxp_mc_addrs(struct fxp_softc *sc) { struct fxp_cb_mcs *mcsp = sc->mcsp; struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmultiaddr *ifma; int nmcasts; nmcasts = 0; if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) { TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (nmcasts >= MAXMCADDR) { sc->flags |= FXP_FLAG_ALL_MCAST; nmcasts = 0; break; } bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (void *)(uintptr_t)(volatile void *) &sc->mcsp->mc_addr[nmcasts][0], 6); nmcasts++; } } mcsp->mc_cnt = nmcasts * 6; return (nmcasts); } /* * Program the multicast filter. * * We have an artificial restriction that the multicast setup command * must be the first command in the chain, so we take steps to ensure * this. By requiring this, it allows us to keep up the performance of * the pre-initialized command ring (esp. link pointers) by not actually * inserting the mcsetup command in the ring - i.e. its link pointer * points to the TxCB ring, but the mcsetup descriptor itself is not part * of it. We then can do 'CU_START' on the mcsetup descriptor and have it * lead into the regular TxCB ring when it completes. * * This function must be called at splimp. */ static void fxp_mc_setup(struct fxp_softc *sc) { struct fxp_cb_mcs *mcsp = sc->mcsp; struct ifnet *ifp = &sc->arpcom.ac_if; int count; /* * If there are queued commands, we must wait until they are all * completed. If we are already waiting, then add a NOP command * with interrupt option so that we're notified when all commands * have been completed - fxp_start() ensures that no additional * TX commands will be added when need_mcsetup is true. */ if (sc->tx_queued) { struct fxp_cb_tx *txp; /* * need_mcsetup will be true if we are already waiting for the * NOP command to be completed (see below). In this case, bail. */ if (sc->need_mcsetup) return; sc->need_mcsetup = 1; /* * Add a NOP command with interrupt so that we are notified * when all TX commands have been processed. */ txp = sc->cbl_last->next; txp->mb_head = NULL; txp->cb_status = 0; txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; /* * Advance the end of list forward. */ sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; sc->cbl_last = txp; sc->tx_queued++; /* * Issue a resume in case the CU has just suspended. */ fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); /* * Set a 5 second timer just in case we don't hear from the * card again. */ ifp->if_timer = 5; return; } sc->need_mcsetup = 0; /* * Initialize multicast setup descriptor. */ mcsp->next = sc->cbl_base; mcsp->mb_head = NULL; mcsp->cb_status = 0; mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I; mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); fxp_mc_addrs(sc); sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; sc->tx_queued = 1; /* * Wait until command unit is not active. This should never * be the case when nothing is queued, but make sure anyway. */ count = 100; while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == FXP_SCB_CUS_ACTIVE && --count) DELAY(10); if (count == 0) { if_printf(&sc->arpcom.ac_if, "command queue timeout\n"); return; } /* * Start the multicast setup command. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); ifp->if_timer = 2; return; } static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; #define UCODE(x) x, sizeof(x) struct ucode { u_int32_t revision; u_int32_t *ucode; int length; u_short int_delay_offset; u_short bundle_max_offset; } ucode_table[] = { { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82550, UCODE(fxp_ucode_d102), D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, { 0, NULL, 0, 0, 0 } }; static void fxp_load_ucode(struct fxp_softc *sc) { struct ucode *uc; struct fxp_cb_ucode *cbp; for (uc = ucode_table; uc->ucode != NULL; uc++) if (sc->revision == uc->revision) break; if (uc->ucode == NULL) return; cbp = (struct fxp_cb_ucode *)sc->cbl_base; cbp->cb_status = 0; cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL; cbp->link_addr = -1; /* (no) next command */ memcpy(cbp->ucode, uc->ucode, uc->length); if (uc->int_delay_offset) *(u_short *)&cbp->ucode[uc->int_delay_offset] = sc->tunable_int_delay + sc->tunable_int_delay / 2; if (uc->bundle_max_offset) *(u_short *)&cbp->ucode[uc->bundle_max_offset] = sc->tunable_bundle_max; /* * Download the ucode to the chip. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(&cbp->cb_status, sc); if_printf(&sc->arpcom.ac_if, "Microcode loaded, int_delay: %d usec bundle_max: %d\n", sc->tunable_int_delay, uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); sc->flags |= FXP_FLAG_UCODE; } /* * Interrupt delay is expressed in microseconds, a multiplier is used * to convert this to the appropriate clock ticks before using. */ static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); } static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); }