/* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95 * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $ * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $ */ /* * vnode op calls for Sun NFS version 2 and 3 */ #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DIRBLKSIZ #include "rpcv2.h" #include "nfsproto.h" #include "nfs.h" #include "nfsmount.h" #include "nfsnode.h" #include "xdr_subs.h" #include "nfsm_subs.h" #include #include #include #include /* Defs */ #define TRUE 1 #define FALSE 0 static int nfsspec_read (struct vop_read_args *); static int nfsspec_write (struct vop_write_args *); static int nfsfifo_read (struct vop_read_args *); static int nfsfifo_write (struct vop_write_args *); static int nfsspec_close (struct vop_close_args *); static int nfsfifo_close (struct vop_close_args *); #define nfs_poll vop_nopoll static int nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *); static int nfs_lookup (struct vop_old_lookup_args *); static int nfs_create (struct vop_old_create_args *); static int nfs_mknod (struct vop_old_mknod_args *); static int nfs_open (struct vop_open_args *); static int nfs_close (struct vop_close_args *); static int nfs_access (struct vop_access_args *); static int nfs_getattr (struct vop_getattr_args *); static int nfs_setattr (struct vop_setattr_args *); static int nfs_read (struct vop_read_args *); static int nfs_mmap (struct vop_mmap_args *); static int nfs_fsync (struct vop_fsync_args *); static int nfs_remove (struct vop_old_remove_args *); static int nfs_link (struct vop_old_link_args *); static int nfs_rename (struct vop_old_rename_args *); static int nfs_mkdir (struct vop_old_mkdir_args *); static int nfs_rmdir (struct vop_old_rmdir_args *); static int nfs_symlink (struct vop_old_symlink_args *); static int nfs_readdir (struct vop_readdir_args *); static int nfs_bmap (struct vop_bmap_args *); static int nfs_strategy (struct vop_strategy_args *); static int nfs_lookitup (struct vnode *, const char *, int, struct ucred *, struct thread *, struct nfsnode **); static int nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *); static int nfsspec_access (struct vop_access_args *); static int nfs_readlink (struct vop_readlink_args *); static int nfs_print (struct vop_print_args *); static int nfs_advlock (struct vop_advlock_args *); static int nfs_nresolve (struct vop_nresolve_args *); /* * Global vfs data structures for nfs */ struct vop_ops nfsv2_vnode_vops = { .vop_default = vop_defaultop, .vop_access = nfs_access, .vop_advlock = nfs_advlock, .vop_bmap = nfs_bmap, .vop_close = nfs_close, .vop_old_create = nfs_create, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_getpages = nfs_getpages, .vop_putpages = nfs_putpages, .vop_inactive = nfs_inactive, .vop_old_link = nfs_link, .vop_old_lookup = nfs_lookup, .vop_old_mkdir = nfs_mkdir, .vop_old_mknod = nfs_mknod, .vop_mmap = nfs_mmap, .vop_open = nfs_open, .vop_poll = nfs_poll, .vop_print = nfs_print, .vop_read = nfs_read, .vop_readdir = nfs_readdir, .vop_readlink = nfs_readlink, .vop_reclaim = nfs_reclaim, .vop_old_remove = nfs_remove, .vop_old_rename = nfs_rename, .vop_old_rmdir = nfs_rmdir, .vop_setattr = nfs_setattr, .vop_strategy = nfs_strategy, .vop_old_symlink = nfs_symlink, .vop_write = nfs_write, .vop_nresolve = nfs_nresolve }; /* * Special device vnode ops */ struct vop_ops nfsv2_spec_vops = { .vop_default = spec_vnoperate, .vop_access = nfsspec_access, .vop_close = nfsspec_close, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_inactive = nfs_inactive, .vop_print = nfs_print, .vop_read = nfsspec_read, .vop_reclaim = nfs_reclaim, .vop_setattr = nfs_setattr, .vop_write = nfsspec_write }; struct vop_ops nfsv2_fifo_vops = { .vop_default = fifo_vnoperate, .vop_access = nfsspec_access, .vop_close = nfsfifo_close, .vop_fsync = nfs_fsync, .vop_getattr = nfs_getattr, .vop_inactive = nfs_inactive, .vop_print = nfs_print, .vop_read = nfsfifo_read, .vop_reclaim = nfs_reclaim, .vop_setattr = nfs_setattr, .vop_write = nfsfifo_write }; static int nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap); static int nfs_removerpc (struct vnode *dvp, const char *name, int namelen, struct ucred *cred, struct thread *td); static int nfs_renamerpc (struct vnode *fdvp, const char *fnameptr, int fnamelen, struct vnode *tdvp, const char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td); static int nfs_renameit (struct vnode *sdvp, struct componentname *scnp, struct sillyrename *sp); SYSCTL_DECL(_vfs_nfs); static int nfs_flush_on_rename = 1; SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW, &nfs_flush_on_rename, 0, "flush fvp prior to rename"); static int nfs_flush_on_hlink = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW, &nfs_flush_on_hlink, 0, "flush fvp prior to hard link"); static int nfsaccess_cache_timeout = NFS_DEFATTRTIMO; SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); static int nfsneg_cache_timeout = NFS_MINATTRTIMO; SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW, &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout"); static int nfspos_cache_timeout = NFS_MINATTRTIMO; SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW, &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout"); static int nfsv3_commit_on_close = 0; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW, &nfsv3_commit_on_close, 0, "write+commit on close, else only write"); #if 0 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); #endif #define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \ | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \ | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP) static int nfs3_access_otw(struct vnode *vp, int wmode, struct thread *td, struct ucred *cred) { struct nfsnode *np = VTONFS(vp); int attrflag; int error = 0; u_int32_t *tl; u_int32_t rmode; struct nfsm_info info; info.mrep = NULL; info.v3 = 1; nfsstats.rpccnt[NFSPROC_ACCESS]++; nfsm_reqhead(&info, vp, NFSPROC_ACCESS, NFSX_FH(info.v3) + NFSX_UNSIGNED); ERROROUT(nfsm_fhtom(&info, vp)); tl = nfsm_build(&info, NFSX_UNSIGNED); *tl = txdr_unsigned(wmode); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error)); ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK)); if (error == 0) { NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); rmode = fxdr_unsigned(u_int32_t, *tl); np->n_mode = rmode; np->n_modeuid = cred->cr_uid; np->n_modestamp = mycpu->gd_time_seconds; } m_freem(info.mrep); info.mrep = NULL; nfsmout: return error; } /* * nfs access vnode op. * For nfs version 2, just return ok. File accesses may fail later. * For nfs version 3, use the access rpc to check accessibility. If file modes * are changed on the server, accesses might still fail later. * * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred) */ static int nfs_access(struct vop_access_args *ap) { struct vnode *vp = ap->a_vp; thread_t td = curthread; int error = 0; u_int32_t mode, wmode; struct nfsnode *np = VTONFS(vp); int v3 = NFS_ISV3(vp); /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } /* * For nfs v3, check to see if we have done this recently, and if * so return our cached result instead of making an ACCESS call. * If not, do an access rpc, otherwise you are stuck emulating * ufs_access() locally using the vattr. This may not be correct, * since the server may apply other access criteria such as * client uid-->server uid mapping that we do not know about. */ if (v3) { if (ap->a_mode & VREAD) mode = NFSV3ACCESS_READ; else mode = 0; if (vp->v_type != VDIR) { if (ap->a_mode & VWRITE) mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND); if (ap->a_mode & VEXEC) mode |= NFSV3ACCESS_EXECUTE; } else { if (ap->a_mode & VWRITE) mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND | NFSV3ACCESS_DELETE); if (ap->a_mode & VEXEC) mode |= NFSV3ACCESS_LOOKUP; } /* XXX safety belt, only make blanket request if caching */ if (nfsaccess_cache_timeout > 0) { wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP; } else { wmode = mode; } /* * Does our cached result allow us to give a definite yes to * this request? */ if (np->n_modestamp && (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) && (ap->a_cred->cr_uid == np->n_modeuid) && ((np->n_mode & mode) == mode)) { nfsstats.accesscache_hits++; } else { /* * Either a no, or a don't know. Go to the wire. */ nfsstats.accesscache_misses++; error = nfs3_access_otw(vp, wmode, td, ap->a_cred); if (!error) { if ((np->n_mode & mode) != mode) { error = EACCES; } } } } else { if ((error = nfsspec_access(ap)) != 0) return (error); /* * Attempt to prevent a mapped root from accessing a file * which it shouldn't. We try to read a byte from the file * if the user is root and the file is not zero length. * After calling nfsspec_access, we should have the correct * file size cached. */ if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD) && VTONFS(vp)->n_size > 0) { struct iovec aiov; struct uio auio; char buf[1]; aiov.iov_base = buf; aiov.iov_len = 1; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = 0; auio.uio_resid = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; if (vp->v_type == VREG) { error = nfs_readrpc(vp, &auio); } else if (vp->v_type == VDIR) { char* bp; bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); aiov.iov_base = bp; aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; error = nfs_readdirrpc(vp, &auio); kfree(bp, M_TEMP); } else if (vp->v_type == VLNK) { error = nfs_readlinkrpc(vp, &auio); } else { error = EACCES; } } } /* * [re]record creds for reading and/or writing if access * was granted. Assume the NFS server will grant read access * for execute requests. */ if (error == 0) { if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) { crhold(ap->a_cred); if (np->n_rucred) crfree(np->n_rucred); np->n_rucred = ap->a_cred; } if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) { crhold(ap->a_cred); if (np->n_wucred) crfree(np->n_wucred); np->n_wucred = ap->a_cred; } } return(error); } /* * nfs open vnode op * Check to see if the type is ok * and that deletion is not in progress. * For paged in text files, you will need to flush the page cache * if consistency is lost. * * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred, * struct file *a_fp) */ /* ARGSUSED */ static int nfs_open(struct vop_open_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; int error; if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) { #ifdef DIAGNOSTIC kprintf("open eacces vtyp=%d\n",vp->v_type); #endif return (EOPNOTSUPP); } /* * Save valid creds for reading and writing for later RPCs. */ if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) { crhold(ap->a_cred); if (np->n_rucred) crfree(np->n_rucred); np->n_rucred = ap->a_cred; } if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) { crhold(ap->a_cred); if (np->n_wucred) crfree(np->n_wucred); np->n_wucred = ap->a_cred; } /* * Clear the attribute cache only if opening with write access. It * is unclear if we should do this at all here, but we certainly * should not clear the cache unconditionally simply because a file * is being opened. */ if (ap->a_mode & FWRITE) np->n_attrstamp = 0; /* * For normal NFS, reconcile changes made locally verses * changes made remotely. Note that VOP_GETATTR only goes * to the wire if the cached attribute has timed out or been * cleared. * * If local modifications have been made clear the attribute * cache to force an attribute and modified time check. If * GETATTR detects that the file has been changed by someone * other then us it will set NRMODIFIED. * * If we are opening a directory and local changes have been * made we have to invalidate the cache in order to ensure * that we get the most up-to-date information from the * server. XXX */ if (np->n_flag & NLMODIFIED) { np->n_attrstamp = 0; if (vp->v_type == VDIR) { error = nfs_vinvalbuf(vp, V_SAVE, 1); if (error == EINTR) return (error); nfs_invaldir(vp); } } error = VOP_GETATTR(vp, &vattr); if (error) return (error); if (np->n_flag & NRMODIFIED) { if (vp->v_type == VDIR) nfs_invaldir(vp); error = nfs_vinvalbuf(vp, V_SAVE, 1); if (error == EINTR) return (error); np->n_flag &= ~NRMODIFIED; } return (vop_stdopen(ap)); } /* * nfs close vnode op * What an NFS client should do upon close after writing is a debatable issue. * Most NFS clients push delayed writes to the server upon close, basically for * two reasons: * 1 - So that any write errors may be reported back to the client process * doing the close system call. By far the two most likely errors are * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. * 2 - To put a worst case upper bound on cache inconsistency between * multiple clients for the file. * There is also a consistency problem for Version 2 of the protocol w.r.t. * not being able to tell if other clients are writing a file concurrently, * since there is no way of knowing if the changed modify time in the reply * is only due to the write for this client. * (NFS Version 3 provides weak cache consistency data in the reply that * should be sufficient to detect and handle this case.) * * The current code does the following: * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers * for NFS Version 3 - flush dirty buffers to the server but don't invalidate * or commit them (this satisfies 1 and 2 except for the * case where the server crashes after this close but * before the commit RPC, which is felt to be "good * enough". Changing the last argument to nfs_flush() to * a 1 would force a commit operation, if it is felt a * commit is necessary now. * for NQNFS - do nothing now, since 2 is dealt with via leases and * 1 should be dealt with via an fsync() system call for * cases where write errors are important. * * nfs_close(struct vnode *a_vp, int a_fflag) */ /* ARGSUSED */ static int nfs_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); int error = 0; thread_t td = curthread; if (vp->v_type == VREG) { if (np->n_flag & NLMODIFIED) { if (NFS_ISV3(vp)) { /* * Under NFSv3 we have dirty buffers to dispose of. We * must flush them to the NFS server. We have the option * of waiting all the way through the commit rpc or just * waiting for the initial write. The default is to only * wait through the initial write so the data is in the * server's cache, which is roughly similar to the state * a standard disk subsystem leaves the file in on close(). * * We cannot clear the NLMODIFIED bit in np->n_flag due to * potential races with other processes, and certainly * cannot clear it if we don't commit. */ int cm = nfsv3_commit_on_close ? 1 : 0; error = nfs_flush(vp, MNT_WAIT, td, cm); /* np->n_flag &= ~NLMODIFIED; */ } else { error = nfs_vinvalbuf(vp, V_SAVE, 1); } np->n_attrstamp = 0; } if (np->n_flag & NWRITEERR) { np->n_flag &= ~NWRITEERR; error = np->n_error; } } vop_stdclose(ap); return (error); } /* * nfs getattr call from vfs. * * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap) */ static int nfs_getattr(struct vop_getattr_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); int error = 0; thread_t td = curthread; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(vp); /* * Update local times for special files. */ if (np->n_flag & (NACC | NUPD)) np->n_flag |= NCHG; /* * First look in the cache. */ if (nfs_getattrcache(vp, ap->a_vap) == 0) return (0); if (info.v3 && nfsaccess_cache_timeout > 0) { nfsstats.accesscache_misses++; nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK)); if (nfs_getattrcache(vp, ap->a_vap) == 0) return (0); } nfsstats.rpccnt[NFSPROC_GETATTR]++; nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3)); ERROROUT(nfsm_fhtom(&info, vp)); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK), &error)); if (error == 0) { ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: return (error); } /* * nfs setattr call. * * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred) */ static int nfs_setattr(struct vop_setattr_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr *vap = ap->a_vap; int error = 0; u_quad_t tsize; thread_t td = curthread; #ifndef nolint tsize = (u_quad_t)0; #endif /* * Setting of flags is not supported. */ if (vap->va_flags != VNOVAL) return (EOPNOTSUPP); /* * Disallow write attempts if the filesystem is mounted read-only. */ if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && (vp->v_mount->mnt_flag & MNT_RDONLY)) return (EROFS); if (vap->va_size != VNOVAL) { /* * truncation requested */ switch (vp->v_type) { case VDIR: return (EISDIR); case VCHR: case VBLK: case VSOCK: case VFIFO: if (vap->va_mtime.tv_sec == VNOVAL && vap->va_atime.tv_sec == VNOVAL && vap->va_mode == (mode_t)VNOVAL && vap->va_uid == (uid_t)VNOVAL && vap->va_gid == (gid_t)VNOVAL) return (0); vap->va_size = VNOVAL; break; default: /* * Disallow write attempts if the filesystem is * mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * This is nasty. The RPCs we send to flush pending * data often return attribute information which is * cached via a callback to nfs_loadattrcache(), which * has the effect of changing our notion of the file * size. Due to flushed appends and other operations * the file size can be set to virtually anything, * including values that do not match either the old * or intended file size. * * When this condition is detected we must loop to * try the operation again. Hopefully no more * flushing is required on the loop so it works the * second time around. THIS CASE ALMOST ALWAYS * HAPPENS! */ tsize = np->n_size; again: error = nfs_meta_setsize(vp, td, vap->va_size); if (np->n_flag & NLMODIFIED) { if (vap->va_size == 0) error = nfs_vinvalbuf(vp, 0, 1); else error = nfs_vinvalbuf(vp, V_SAVE, 1); } /* * note: this loop case almost always happens at * least once per truncation. */ if (error == 0 && np->n_size != vap->va_size) goto again; np->n_vattr.va_size = vap->va_size; break; } } else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) { /* * What to do. If we are modifying the mtime we lose * mtime detection of changes made by the server or other * clients. But programs like rsync/rdist/cpdup are going * to call utimes a lot. We don't want to piecemeal sync. * * For now sync if any prior remote changes were detected, * but allow us to lose track of remote changes made during * the utimes operation. */ if (np->n_flag & NRMODIFIED) error = nfs_vinvalbuf(vp, V_SAVE, 1); if (error == EINTR) return (error); if (error == 0) { if (vap->va_mtime.tv_sec != VNOVAL) { np->n_mtime = vap->va_mtime.tv_sec; } } } error = nfs_setattrrpc(vp, vap, ap->a_cred, td); /* * Sanity check if a truncation was issued. This should only occur * if multiple processes are racing on the same file. */ if (error == 0 && vap->va_size != VNOVAL && np->n_size != vap->va_size) { kprintf("NFS ftruncate: server disagrees on the file size: " "%lld/%lld/%lld\n", (long long)tsize, (long long)vap->va_size, (long long)np->n_size); goto again; } if (error && vap->va_size != VNOVAL) { np->n_size = np->n_vattr.va_size = tsize; vnode_pager_setsize(vp, np->n_size); } return (error); } /* * Do an nfs setattr rpc. */ static int nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *td) { struct nfsv2_sattr *sp; struct nfsnode *np = VTONFS(vp); u_int32_t *tl; int error = 0, wccflag = NFSV3_WCCRATTR; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_SETATTR]++; nfsm_reqhead(&info, vp, NFSPROC_SETATTR, NFSX_FH(info.v3) + NFSX_SATTR(info.v3)); ERROROUT(nfsm_fhtom(&info, vp)); if (info.v3) { nfsm_v3attrbuild(&info, vap, TRUE); tl = nfsm_build(&info, NFSX_UNSIGNED); *tl = nfs_false; } else { sp = nfsm_build(&info, NFSX_V2SATTR); if (vap->va_mode == (mode_t)VNOVAL) sp->sa_mode = nfs_xdrneg1; else sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode); if (vap->va_uid == (uid_t)VNOVAL) sp->sa_uid = nfs_xdrneg1; else sp->sa_uid = txdr_unsigned(vap->va_uid); if (vap->va_gid == (gid_t)VNOVAL) sp->sa_gid = nfs_xdrneg1; else sp->sa_gid = txdr_unsigned(vap->va_gid); sp->sa_size = txdr_unsigned(vap->va_size); txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error)); if (info.v3) { np->n_modestamp = 0; ERROROUT(nfsm_wcc_data(&info, vp, &wccflag)); } else { ERROROUT(nfsm_loadattr(&info, vp, NULL)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: return (error); } static void nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout) { if (nctimeout == 0) nctimeout = 1; else nctimeout *= hz; cache_setvp(nch, vp); cache_settimeout(nch, nctimeout); } /* * NEW API CALL - replaces nfs_lookup(). However, we cannot remove * nfs_lookup() until all remaining new api calls are implemented. * * Resolve a namecache entry. This function is passed a locked ncp and * must call nfs_cache_setvp() on it as appropriate to resolve the entry. */ static int nfs_nresolve(struct vop_nresolve_args *ap) { struct thread *td = curthread; struct namecache *ncp; struct ucred *cred; struct nfsnode *np; struct vnode *dvp; struct vnode *nvp; nfsfh_t *fhp; int attrflag; int fhsize; int error; int tmp_error; int len; struct nfsm_info info; cred = ap->a_cred; dvp = ap->a_dvp; if ((error = vget(dvp, LK_SHARED)) != 0) return (error); info.mrep = NULL; info.v3 = NFS_ISV3(dvp); nvp = NULL; nfsstats.lookupcache_misses++; nfsstats.rpccnt[NFSPROC_LOOKUP]++; ncp = ap->a_nch->ncp; len = ncp->nc_nlen; nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP, NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN)); NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, ap->a_cred, &error)); if (error) { /* * Cache negatve lookups to reduce NFS traffic, but use * a fast timeout. Otherwise use a timeout of 1 tick. * XXX we should add a namecache flag for no-caching * to uncache the negative hit as soon as possible, but * we cannot simply destroy the entry because it is used * as a placeholder by the caller. * * The refactored nfs code will overwrite a non-zero error * with 0 when we use ERROROUT(), so don't here. */ if (error == ENOENT) nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout); tmp_error = nfsm_postop_attr(&info, dvp, &attrflag, NFS_LATTR_NOSHRINK); if (tmp_error) { error = tmp_error; goto nfsmout; } m_freem(info.mrep); info.mrep = NULL; goto nfsmout; } /* * Success, get the file handle, do various checks, and load * post-operation data from the reply packet. Theoretically * we should never be looking up "." so, theoretically, we * should never get the same file handle as our directory. But * we check anyway. XXX * * Note that no timeout is set for the positive cache hit. We * assume, theoretically, that ESTALE returns will be dealt with * properly to handle NFS races and in anycase we cannot depend * on a timeout to deal with NFS open/create/excl issues so instead * of a bad hack here the rest of the NFS client code needs to do * the right thing. */ NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp)); np = VTONFS(dvp); if (NFS_CMPFH(np, fhp, fhsize)) { vref(dvp); nvp = dvp; } else { error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); if (error) { m_freem(info.mrep); info.mrep = NULL; vput(dvp); return (error); } nvp = NFSTOV(np); } if (info.v3) { ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag, NFS_LATTR_NOSHRINK)); ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag, NFS_LATTR_NOSHRINK)); } else { ERROROUT(nfsm_loadattr(&info, nvp, NULL)); } nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout); m_freem(info.mrep); info.mrep = NULL; nfsmout: vput(dvp); if (nvp) { if (nvp == dvp) vrele(nvp); else vput(nvp); } return (error); } /* * 'cached' nfs directory lookup * * NOTE: cannot be removed until NFS implements all the new n*() API calls. * * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp, * struct componentname *a_cnp) */ static int nfs_lookup(struct vop_old_lookup_args *ap) { struct componentname *cnp = ap->a_cnp; struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; int flags = cnp->cn_flags; struct vnode *newvp; struct nfsmount *nmp; long len; nfsfh_t *fhp; struct nfsnode *np; int lockparent, wantparent, attrflag, fhsize; int error; int tmp_error; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); error = 0; /* * Read-only mount check and directory check. */ *vpp = NULLVP; if ((dvp->v_mount->mnt_flag & MNT_RDONLY) && (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME)) return (EROFS); if (dvp->v_type != VDIR) return (ENOTDIR); /* * Look it up in the cache. Note that ENOENT is only returned if we * previously entered a negative hit (see later on). The additional * nfsneg_cache_timeout check causes previously cached results to * be instantly ignored if the negative caching is turned off. */ lockparent = flags & CNP_LOCKPARENT; wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT); nmp = VFSTONFS(dvp->v_mount); np = VTONFS(dvp); /* * Go to the wire. */ error = 0; newvp = NULLVP; nfsstats.lookupcache_misses++; nfsstats.rpccnt[NFSPROC_LOOKUP]++; len = cnp->cn_namelen; nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP, NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN)); NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred, &error)); if (error) { tmp_error = nfsm_postop_attr(&info, dvp, &attrflag, NFS_LATTR_NOSHRINK); if (tmp_error) { error = tmp_error; goto nfsmout; } m_freem(info.mrep); info.mrep = NULL; goto nfsmout; } NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp)); /* * Handle RENAME case... */ if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) { if (NFS_CMPFH(np, fhp, fhsize)) { m_freem(info.mrep); info.mrep = NULL; return (EISDIR); } error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); if (error) { m_freem(info.mrep); info.mrep = NULL; return (error); } newvp = NFSTOV(np); if (info.v3) { ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag, NFS_LATTR_NOSHRINK)); ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag, NFS_LATTR_NOSHRINK)); } else { ERROROUT(nfsm_loadattr(&info, newvp, NULL)); } *vpp = newvp; m_freem(info.mrep); info.mrep = NULL; if (!lockparent) { vn_unlock(dvp); cnp->cn_flags |= CNP_PDIRUNLOCK; } return (0); } if (flags & CNP_ISDOTDOT) { vn_unlock(dvp); cnp->cn_flags |= CNP_PDIRUNLOCK; error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); if (error) { vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); cnp->cn_flags &= ~CNP_PDIRUNLOCK; return (error); /* NOTE: return error from nget */ } newvp = NFSTOV(np); if (lockparent) { error = vn_lock(dvp, LK_EXCLUSIVE); if (error) { vput(newvp); return (error); } cnp->cn_flags |= CNP_PDIRUNLOCK; } } else if (NFS_CMPFH(np, fhp, fhsize)) { vref(dvp); newvp = dvp; } else { error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); if (error) { m_freem(info.mrep); info.mrep = NULL; return (error); } if (!lockparent) { vn_unlock(dvp); cnp->cn_flags |= CNP_PDIRUNLOCK; } newvp = NFSTOV(np); } if (info.v3) { ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag, NFS_LATTR_NOSHRINK)); ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag, NFS_LATTR_NOSHRINK)); } else { ERROROUT(nfsm_loadattr(&info, newvp, NULL)); } #if 0 /* XXX MOVE TO nfs_nremove() */ if ((cnp->cn_flags & CNP_MAKEENTRY) && cnp->cn_nameiop != NAMEI_DELETE) { np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */ } #endif *vpp = newvp; m_freem(info.mrep); info.mrep = NULL; nfsmout: if (error) { if (newvp != NULLVP) { vrele(newvp); *vpp = NULLVP; } if ((cnp->cn_nameiop == NAMEI_CREATE || cnp->cn_nameiop == NAMEI_RENAME) && error == ENOENT) { if (!lockparent) { vn_unlock(dvp); cnp->cn_flags |= CNP_PDIRUNLOCK; } if (dvp->v_mount->mnt_flag & MNT_RDONLY) error = EROFS; else error = EJUSTRETURN; } } return (error); } /* * nfs read call. * Just call nfs_bioread() to do the work. * * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, * struct ucred *a_cred) */ static int nfs_read(struct vop_read_args *ap) { struct vnode *vp = ap->a_vp; return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag)); } /* * nfs readlink call * * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred) */ static int nfs_readlink(struct vop_readlink_args *ap) { struct vnode *vp = ap->a_vp; if (vp->v_type != VLNK) return (EINVAL); return (nfs_bioread(vp, ap->a_uio, 0)); } /* * Do a readlink rpc. * Called by nfs_doio() from below the buffer cache. */ int nfs_readlinkrpc(struct vnode *vp, struct uio *uiop) { int error = 0, len, attrflag; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_READLINK]++; nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3)); ERROROUT(nfsm_fhtom(&info, vp)); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK), &error)); if (info.v3) { ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK)); } if (!error) { NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN)); if (len == NFS_MAXPATHLEN) { struct nfsnode *np = VTONFS(vp); if (np->n_size && np->n_size < NFS_MAXPATHLEN) len = np->n_size; } ERROROUT(nfsm_mtouio(&info, uiop, len)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: return (error); } /* * nfs read rpc call * Ditto above */ int nfs_readrpc(struct vnode *vp, struct uio *uiop) { u_int32_t *tl; struct nfsmount *nmp; int error = 0, len, retlen, tsiz, eof, attrflag; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(vp); #ifndef nolint eof = 0; #endif nmp = VFSTONFS(vp->v_mount); tsiz = uiop->uio_resid; if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize) return (EFBIG); while (tsiz > 0) { nfsstats.rpccnt[NFSPROC_READ]++; len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz; nfsm_reqhead(&info, vp, NFSPROC_READ, NFSX_FH(info.v3) + NFSX_UNSIGNED * 3); ERROROUT(nfsm_fhtom(&info, vp)); tl = nfsm_build(&info, NFSX_UNSIGNED * 3); if (info.v3) { txdr_hyper(uiop->uio_offset, tl); *(tl + 2) = txdr_unsigned(len); } else { *tl++ = txdr_unsigned(uiop->uio_offset); *tl++ = txdr_unsigned(len); *tl = 0; } NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ), &error)); if (info.v3) { ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK)); NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); eof = fxdr_unsigned(int, *(tl + 1)); } else { ERROROUT(nfsm_loadattr(&info, vp, NULL)); } NEGATIVEOUT(retlen = nfsm_strsiz(&info, nmp->nm_rsize)); ERROROUT(nfsm_mtouio(&info, uiop, retlen)); m_freem(info.mrep); info.mrep = NULL; tsiz -= retlen; if (info.v3) { if (eof || retlen == 0) { tsiz = 0; } } else if (retlen < len) { tsiz = 0; } } nfsmout: return (error); } /* * nfs write call */ int nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit) { u_int32_t *tl; int32_t backup; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit; int committed = NFSV3WRITE_FILESYNC; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(vp); #ifndef DIAGNOSTIC if (uiop->uio_iovcnt != 1) panic("nfs: writerpc iovcnt > 1"); #endif *must_commit = 0; tsiz = uiop->uio_resid; if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize) return (EFBIG); while (tsiz > 0) { nfsstats.rpccnt[NFSPROC_WRITE]++; len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz; nfsm_reqhead(&info, vp, NFSPROC_WRITE, NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len)); ERROROUT(nfsm_fhtom(&info, vp)); if (info.v3) { tl = nfsm_build(&info, 5 * NFSX_UNSIGNED); txdr_hyper(uiop->uio_offset, tl); tl += 2; *tl++ = txdr_unsigned(len); *tl++ = txdr_unsigned(*iomode); *tl = txdr_unsigned(len); } else { u_int32_t x; tl = nfsm_build(&info, 4 * NFSX_UNSIGNED); /* Set both "begin" and "current" to non-garbage. */ x = txdr_unsigned((u_int32_t)uiop->uio_offset); *tl++ = x; /* "begin offset" */ *tl++ = x; /* "current offset" */ x = txdr_unsigned(len); *tl++ = x; /* total to this offset */ *tl = x; /* size of this write */ } ERROROUT(nfsm_uiotom(&info, uiop, len)); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE), &error)); if (info.v3) { /* * The write RPC returns a before and after mtime. The * nfsm_wcc_data() macro checks the before n_mtime * against the before time and stores the after time * in the nfsnode's cached vattr and n_mtime field. * The NRMODIFIED bit will be set if the before * time did not match the original mtime. */ wccflag = NFSV3_WCCCHK; ERROROUT(nfsm_wcc_data(&info, vp, &wccflag)); if (error == 0) { NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF)); rlen = fxdr_unsigned(int, *tl++); if (rlen == 0) { error = NFSERR_IO; m_freem(info.mrep); info.mrep = NULL; break; } else if (rlen < len) { backup = len - rlen; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup; uiop->uio_iov->iov_len += backup; uiop->uio_offset -= backup; uiop->uio_resid += backup; len = rlen; } commit = fxdr_unsigned(int, *tl++); /* * Return the lowest committment level * obtained by any of the RPCs. */ if (committed == NFSV3WRITE_FILESYNC) committed = commit; else if (committed == NFSV3WRITE_DATASYNC && commit == NFSV3WRITE_UNSTABLE) committed = commit; if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){ bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); nmp->nm_state |= NFSSTA_HASWRITEVERF; } else if (bcmp((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) { *must_commit = 1; bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); } } } else { ERROROUT(nfsm_loadattr(&info, vp, NULL)); } m_freem(info.mrep); info.mrep = NULL; if (error) break; tsiz -= len; } nfsmout: if (vp->v_mount->mnt_flag & MNT_ASYNC) committed = NFSV3WRITE_FILESYNC; *iomode = committed; if (error) uiop->uio_resid = tsiz; return (error); } /* * nfs mknod rpc * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the * mode set to specify the file type and the size field for rdev. */ static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct vattr *vap) { struct nfsv2_sattr *sp; u_int32_t *tl; struct vnode *newvp = NULL; struct nfsnode *np = NULL; struct vattr vattr; int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0; int rmajor, rminor; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); if (vap->va_type == VCHR || vap->va_type == VBLK) { rmajor = txdr_unsigned(vap->va_rmajor); rminor = txdr_unsigned(vap->va_rminor); } else if (vap->va_type == VFIFO || vap->va_type == VSOCK) { rmajor = nfs_xdrneg1; rminor = nfs_xdrneg1; } else { return (EOPNOTSUPP); } if ((error = VOP_GETATTR(dvp, &vattr)) != 0) { return (error); } nfsstats.rpccnt[NFSPROC_MKNOD]++; nfsm_reqhead(&info, dvp, NFSPROC_MKNOD, NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN)); if (info.v3) { tl = nfsm_build(&info, NFSX_UNSIGNED); *tl++ = vtonfsv3_type(vap->va_type); nfsm_v3attrbuild(&info, vap, FALSE); if (vap->va_type == VCHR || vap->va_type == VBLK) { tl = nfsm_build(&info, 2 * NFSX_UNSIGNED); *tl++ = txdr_unsigned(vap->va_rmajor); *tl = txdr_unsigned(vap->va_rminor); } } else { sp = nfsm_build(&info, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = makeudev(rmajor, rminor); txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred, &error)); if (!error) { ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); if (!gotvp) { if (newvp) { vput(newvp); newvp = NULL; } error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np); if (!error) newvp = NFSTOV(np); } } if (info.v3) { ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: if (error) { if (newvp) vput(newvp); } else { *vpp = newvp; } VTONFS(dvp)->n_flag |= NLMODIFIED; if (!wccflag) VTONFS(dvp)->n_attrstamp = 0; return (error); } /* * nfs mknod vop * just call nfs_mknodrpc() to do the work. * * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp, * struct componentname *a_cnp, struct vattr *a_vap) */ /* ARGSUSED */ static int nfs_mknod(struct vop_old_mknod_args *ap) { return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap); } static u_long create_verf; /* * nfs file create call * * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp, * struct componentname *a_cnp, struct vattr *a_vap) */ static int nfs_create(struct vop_old_create_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; u_int32_t *tl; struct nfsnode *np = NULL; struct vnode *newvp = NULL; int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0; struct vattr vattr; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); /* * Oops, not for me.. */ if (vap->va_type == VSOCK) return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); if ((error = VOP_GETATTR(dvp, &vattr)) != 0) { return (error); } if (vap->va_vaflags & VA_EXCLUSIVE) fmode |= O_EXCL; again: nfsstats.rpccnt[NFSPROC_CREATE]++; nfsm_reqhead(&info, dvp, NFSPROC_CREATE, NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN)); if (info.v3) { tl = nfsm_build(&info, NFSX_UNSIGNED); if (fmode & O_EXCL) { *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE); tl = nfsm_build(&info, NFSX_V3CREATEVERF); #ifdef INET if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid])) *tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr; else #endif *tl++ = create_verf; *tl = ++create_verf; } else { *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED); nfsm_v3attrbuild(&info, vap, FALSE); } } else { sp = nfsm_build(&info, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = 0; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred, &error)); if (error == 0) { ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); if (!gotvp) { if (newvp) { vput(newvp); newvp = NULL; } error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np); if (!error) newvp = NFSTOV(np); } } if (info.v3) { ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: if (error) { if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) { KKASSERT(newvp == NULL); fmode &= ~O_EXCL; goto again; } } else if (info.v3 && (fmode & O_EXCL)) { /* * We are normally called with only a partially initialized * VAP. Since the NFSv3 spec says that server may use the * file attributes to store the verifier, the spec requires * us to do a SETATTR RPC. FreeBSD servers store the verifier * in atime, but we can't really assume that all servers will * so we ensure that our SETATTR sets both atime and mtime. */ if (vap->va_mtime.tv_sec == VNOVAL) vfs_timestamp(&vap->va_mtime); if (vap->va_atime.tv_sec == VNOVAL) vap->va_atime = vap->va_mtime; error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td); } if (error == 0) { /* * The new np may have enough info for access * checks, make sure rucred and wucred are * initialized for read and write rpc's. */ np = VTONFS(newvp); if (np->n_rucred == NULL) np->n_rucred = crhold(cnp->cn_cred); if (np->n_wucred == NULL) np->n_wucred = crhold(cnp->cn_cred); *ap->a_vpp = newvp; } else if (newvp) { vput(newvp); } VTONFS(dvp)->n_flag |= NLMODIFIED; if (!wccflag) VTONFS(dvp)->n_attrstamp = 0; return (error); } /* * nfs file remove call * To try and make nfs semantics closer to ufs semantics, a file that has * other processes using the vnode is renamed instead of removed and then * removed later on the last close. * - If v_sysref.refcnt > 1 * If a rename is not already in the works * call nfs_sillyrename() to set it up * else * do the remove rpc * * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp, * struct componentname *a_cnp) */ static int nfs_remove(struct vop_old_remove_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = VTONFS(vp); int error = 0; struct vattr vattr; #ifndef DIAGNOSTIC if (vp->v_sysref.refcnt < 1) panic("nfs_remove: bad v_sysref.refcnt"); #endif if (vp->v_type == VDIR) error = EPERM; else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename && VOP_GETATTR(vp, &vattr) == 0 && vattr.va_nlink > 1)) { /* * throw away biocache buffers, mainly to avoid * unnecessary delayed writes later. */ error = nfs_vinvalbuf(vp, 0, 1); /* Do the rpc */ if (error != EINTR) error = nfs_removerpc(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_td); /* * Kludge City: If the first reply to the remove rpc is lost.. * the reply to the retransmitted request will be ENOENT * since the file was in fact removed * Therefore, we cheat and return success. */ if (error == ENOENT) error = 0; } else if (!np->n_sillyrename) { error = nfs_sillyrename(dvp, vp, cnp); } np->n_attrstamp = 0; return (error); } /* * nfs file remove rpc called from nfs_inactive */ int nfs_removeit(struct sillyrename *sp) { return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen, sp->s_cred, NULL)); } /* * Nfs remove rpc, called from nfs_remove() and nfs_removeit(). */ static int nfs_removerpc(struct vnode *dvp, const char *name, int namelen, struct ucred *cred, struct thread *td) { int error = 0, wccflag = NFSV3_WCCRATTR; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_REMOVE]++; nfsm_reqhead(&info, dvp, NFSPROC_REMOVE, NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN)); NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error)); if (info.v3) { ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: VTONFS(dvp)->n_flag |= NLMODIFIED; if (!wccflag) VTONFS(dvp)->n_attrstamp = 0; return (error); } /* * nfs file rename call * * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp, * struct componentname *a_fcnp, struct vnode *a_tdvp, * struct vnode *a_tvp, struct componentname *a_tcnp) */ static int nfs_rename(struct vop_old_rename_args *ap) { struct vnode *fvp = ap->a_fvp; struct vnode *tvp = ap->a_tvp; struct vnode *fdvp = ap->a_fdvp; struct vnode *tdvp = ap->a_tdvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; int error; /* Check for cross-device rename */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; goto out; } /* * We shouldn't have to flush fvp on rename for most server-side * filesystems as the file handle should not change. Unfortunately * the inode for some filesystems (msdosfs) might be tied to the * file name or directory position so to be completely safe * vfs.nfs.flush_on_rename is set by default. Clear to improve * performance. * * We must flush tvp on rename because it might become stale on the * server after the rename. */ if (nfs_flush_on_rename) VOP_FSYNC(fvp, MNT_WAIT); if (tvp) VOP_FSYNC(tvp, MNT_WAIT); /* * If the tvp exists and is in use, sillyrename it before doing the * rename of the new file over it. * * XXX Can't sillyrename a directory. * * We do not attempt to do any namecache purges in this old API * routine. The new API compat functions have access to the actual * namecache structures and will do it for us. */ if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename && tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { vput(tvp); tvp = NULL; } else if (tvp) { ; } error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen, tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, tcnp->cn_td); out: if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); vrele(fdvp); vrele(fvp); /* * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs file rename rpc called from nfs_remove() above */ static int nfs_renameit(struct vnode *sdvp, struct componentname *scnp, struct sillyrename *sp) { return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen, sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td)); } /* * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). */ static int nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen, struct vnode *tdvp, const char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td) { int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(fdvp); nfsstats.rpccnt[NFSPROC_RENAME]++; nfsm_reqhead(&info, fdvp, NFSPROC_RENAME, (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen)); ERROROUT(nfsm_fhtom(&info, fdvp)); ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN)); ERROROUT(nfsm_fhtom(&info, tdvp)); ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN)); NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error)); if (info.v3) { ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag)); ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: VTONFS(fdvp)->n_flag |= NLMODIFIED; VTONFS(tdvp)->n_flag |= NLMODIFIED; if (!fwccflag) VTONFS(fdvp)->n_attrstamp = 0; if (!twccflag) VTONFS(tdvp)->n_attrstamp = 0; return (error); } /* * nfs hard link create call * * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp, * struct componentname *a_cnp) */ static int nfs_link(struct vop_old_link_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *tdvp = ap->a_tdvp; struct componentname *cnp = ap->a_cnp; int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0; struct nfsm_info info; if (vp->v_mount != tdvp->v_mount) { return (EXDEV); } /* * The attribute cache may get out of sync with the server on link. * Pushing writes to the server before handle was inherited from * long long ago and it is unclear if we still need to do this. * Defaults to off. */ if (nfs_flush_on_hlink) VOP_FSYNC(vp, MNT_WAIT); info.mrep = NULL; info.v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_LINK]++; nfsm_reqhead(&info, vp, NFSPROC_LINK, NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); ERROROUT(nfsm_fhtom(&info, vp)); ERROROUT(nfsm_fhtom(&info, tdvp)); ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN)); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred, &error)); if (info.v3) { ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK)); ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: VTONFS(tdvp)->n_flag |= NLMODIFIED; if (!attrflag) VTONFS(vp)->n_attrstamp = 0; if (!wccflag) VTONFS(tdvp)->n_attrstamp = 0; /* * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry. */ if (error == EEXIST) error = 0; return (error); } /* * nfs symbolic link create call * * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp, * struct componentname *a_cnp, struct vattr *a_vap, * char *a_target) */ static int nfs_symlink(struct vop_old_symlink_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp; struct vnode *newvp = NULL; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_SYMLINK]++; slen = strlen(ap->a_target); nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK, NFSX_FH(info.v3) + 2*NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(info.v3)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN)); if (info.v3) { nfsm_v3attrbuild(&info, vap, FALSE); } ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN)); if (info.v3 == 0) { sp = nfsm_build(&info, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = nfs_xdrneg1; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } /* * Issue the NFS request and get the rpc response. * * Only NFSv3 responses returning an error of 0 actually return * a file handle that can be converted into newvp without having * to do an extra lookup rpc. */ NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred, &error)); if (info.v3) { if (error == 0) { ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); } ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); } /* * out code jumps -> here, mrep is also freed. */ m_freem(info.mrep); info.mrep = NULL; nfsmout: /* * If we get an EEXIST error, silently convert it to no-error * in case of an NFS retry. */ if (error == EEXIST) error = 0; /* * If we do not have (or no longer have) an error, and we could * not extract the newvp from the response due to the request being * NFSv2 or the error being EEXIST. We have to do a lookup in order * to obtain a newvp to return. */ if (error == 0 && newvp == NULL) { struct nfsnode *np = NULL; error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np); if (!error) newvp = NFSTOV(np); } if (error) { if (newvp) vput(newvp); } else { *ap->a_vpp = newvp; } VTONFS(dvp)->n_flag |= NLMODIFIED; if (!wccflag) VTONFS(dvp)->n_attrstamp = 0; return (error); } /* * nfs make dir call * * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp, * struct componentname *a_cnp, struct vattr *a_vap) */ static int nfs_mkdir(struct vop_old_mkdir_args *ap) { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; struct nfsnode *np = NULL; struct vnode *newvp = NULL; struct vattr vattr; int error = 0, wccflag = NFSV3_WCCRATTR; int gotvp = 0; int len; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); if ((error = VOP_GETATTR(dvp, &vattr)) != 0) { return (error); } len = cnp->cn_namelen; nfsstats.rpccnt[NFSPROC_MKDIR]++; nfsm_reqhead(&info, dvp, NFSPROC_MKDIR, NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(info.v3)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN)); if (info.v3) { nfsm_v3attrbuild(&info, vap, FALSE); } else { sp = nfsm_build(&info, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = nfs_xdrneg1; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred, &error)); if (error == 0) { ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); } if (info.v3) { ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: VTONFS(dvp)->n_flag |= NLMODIFIED; if (!wccflag) VTONFS(dvp)->n_attrstamp = 0; /* * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry * if we can succeed in looking up the directory. */ if (error == EEXIST || (!error && !gotvp)) { if (newvp) { vrele(newvp); newvp = NULL; } error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred, cnp->cn_td, &np); if (!error) { newvp = NFSTOV(np); if (newvp->v_type != VDIR) error = EEXIST; } } if (error) { if (newvp) vrele(newvp); } else *ap->a_vpp = newvp; return (error); } /* * nfs remove directory call * * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp, * struct componentname *a_cnp) */ static int nfs_rmdir(struct vop_old_rmdir_args *ap) { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; int error = 0, wccflag = NFSV3_WCCRATTR; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); if (dvp == vp) return (EINVAL); nfsstats.rpccnt[NFSPROC_RMDIR]++; nfsm_reqhead(&info, dvp, NFSPROC_RMDIR, NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN)); NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred, &error)); if (info.v3) { ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); } m_freem(info.mrep); info.mrep = NULL; nfsmout: VTONFS(dvp)->n_flag |= NLMODIFIED; if (!wccflag) VTONFS(dvp)->n_attrstamp = 0; /* * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs readdir call * * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred) */ static int nfs_readdir(struct vop_readdir_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct uio *uio = ap->a_uio; int tresid, error; struct vattr vattr; if (vp->v_type != VDIR) return (EPERM); if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0) return (error); /* * If we have a valid EOF offset cache we must call VOP_GETATTR() * and then check that is still valid, or if this is an NQNFS mount * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR(). Note that * VOP_GETATTR() does not necessarily go to the wire. */ if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) { if (VOP_GETATTR(vp, &vattr) == 0 && (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0 ) { nfsstats.direofcache_hits++; goto done; } } /* * Call nfs_bioread() to do the real work. nfs_bioread() does its * own cache coherency checks so we do not have to. */ tresid = uio->uio_resid; error = nfs_bioread(vp, uio, 0); if (!error && uio->uio_resid == tresid) nfsstats.direofcache_misses++; done: vn_unlock(vp); return (error); } /* * Readdir rpc call. nfs_bioread->nfs_doio->nfs_readdirrpc. * * Note that for directories, nfs_bioread maintains the underlying nfs-centric * offset/block and converts the nfs formatted directory entries for userland * consumption as well as deals with offsets into the middle of blocks. * nfs_doio only deals with logical blocks. In particular, uio_offset will * be block-bounded. It must convert to cookies for the actual RPC. */ int nfs_readdirrpc(struct vnode *vp, struct uio *uiop) { int len, left; struct nfs_dirent *dp = NULL; u_int32_t *tl; nfsuint64 *cookiep; caddr_t cp; nfsuint64 cookie; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsnode *dnp = VTONFS(vp); u_quad_t fileno; int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1; int attrflag; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(vp); #ifndef DIAGNOSTIC if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) || (uiop->uio_resid & (DIRBLKSIZ - 1))) panic("nfs readdirrpc bad uio"); #endif /* * If there is no cookie, assume directory was stale. */ cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) cookie = *cookiep; else return (NFSERR_BAD_COOKIE); /* * Loop around doing readdir rpc's of size nm_readdirsize * truncated to a multiple of DIRBLKSIZ. * The stopping criteria is EOF or buffer full. */ while (more_dirs && bigenough) { nfsstats.rpccnt[NFSPROC_READDIR]++; nfsm_reqhead(&info, vp, NFSPROC_READDIR, NFSX_FH(info.v3) + NFSX_READDIR(info.v3)); ERROROUT(nfsm_fhtom(&info, vp)); if (info.v3) { tl = nfsm_build(&info, 5 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; *tl++ = cookie.nfsuquad[1]; *tl++ = dnp->n_cookieverf.nfsuquad[0]; *tl++ = dnp->n_cookieverf.nfsuquad[1]; } else { tl = nfsm_build(&info, 2 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; } *tl = txdr_unsigned(nmp->nm_readdirsize); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ), &error)); if (info.v3) { ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK)); NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); dnp->n_cookieverf.nfsuquad[0] = *tl++; dnp->n_cookieverf.nfsuquad[1] = *tl; } NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); more_dirs = fxdr_unsigned(int, *tl); /* loop thru the dir entries, converting them to std form */ while (more_dirs && bigenough) { if (info.v3) { NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); fileno = fxdr_hyper(tl); len = fxdr_unsigned(int, *(tl + 2)); } else { NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); fileno = fxdr_unsigned(u_quad_t, *tl++); len = fxdr_unsigned(int, *tl); } if (len <= 0 || len > NFS_MAXNAMLEN) { error = EBADRPC; m_freem(info.mrep); info.mrep = NULL; goto nfsmout; } /* * len is the number of bytes in the path element * name, not including the \0 termination. * * tlen is the number of bytes w have to reserve for * the path element name. */ tlen = nfsm_rndup(len); if (tlen == len) tlen += 4; /* To ensure null termination */ /* * If the entry would cross a DIRBLKSIZ boundary, * extend the previous nfs_dirent to cover the * remaining space. */ left = DIRBLKSIZ - blksiz; if ((tlen + sizeof(struct nfs_dirent)) > left) { dp->nfs_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; blksiz = 0; } if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid) bigenough = 0; if (bigenough) { dp = (struct nfs_dirent *)uiop->uio_iov->iov_base; dp->nfs_ino = fileno; dp->nfs_namlen = len; dp->nfs_reclen = tlen + sizeof(struct nfs_dirent); dp->nfs_type = DT_UNKNOWN; blksiz += dp->nfs_reclen; if (blksiz == DIRBLKSIZ) blksiz = 0; uiop->uio_offset += sizeof(struct nfs_dirent); uiop->uio_resid -= sizeof(struct nfs_dirent); uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent); uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent); ERROROUT(nfsm_mtouio(&info, uiop, len)); /* * The uiop has advanced by nfs_dirent + len * but really needs to advance by * nfs_dirent + tlen */ cp = uiop->uio_iov->iov_base; tlen -= len; *cp = '\0'; /* null terminate */ uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen; uiop->uio_iov->iov_len -= tlen; uiop->uio_offset += tlen; uiop->uio_resid -= tlen; } else { /* * NFS strings must be rounded up (nfsm_myouio * handled that in the bigenough case). */ ERROROUT(nfsm_adv(&info, nfsm_rndup(len))); } if (info.v3) { NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); } else { NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); } /* * If we were able to accomodate the last entry, * get the cookie for the next one. Otherwise * hold-over the cookie for the one we were not * able to accomodate. */ if (bigenough) { cookie.nfsuquad[0] = *tl++; if (info.v3) cookie.nfsuquad[1] = *tl++; } else if (info.v3) { tl += 2; } else { tl++; } more_dirs = fxdr_unsigned(int, *tl); } /* * If at end of rpc data, get the eof boolean */ if (!more_dirs) { NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); more_dirs = (fxdr_unsigned(int, *tl) == 0); } m_freem(info.mrep); info.mrep = NULL; } /* * Fill last record, iff any, out to a multiple of DIRBLKSIZ * by increasing d_reclen for the last record. */ if (blksiz > 0) { left = DIRBLKSIZ - blksiz; dp->nfs_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; } if (bigenough) { /* * We hit the end of the directory, update direofoffset. */ dnp->n_direofoffset = uiop->uio_offset; } else { /* * There is more to go, insert the link cookie so the * next block can be read. */ if (uiop->uio_resid > 0) kprintf("EEK! readdirrpc resid > 0\n"); cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; } nfsmout: return (error); } /* * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc(). */ int nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop) { int len, left; struct nfs_dirent *dp; u_int32_t *tl; struct vnode *newvp; nfsuint64 *cookiep; caddr_t dpossav1, dpossav2; caddr_t cp; struct mbuf *mdsav1, *mdsav2; nfsuint64 cookie; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsnode *dnp = VTONFS(vp), *np; nfsfh_t *fhp; u_quad_t fileno; int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i; int attrflag, fhsize; struct nchandle nch; struct nchandle dnch; struct nlcomponent nlc; struct nfsm_info info; info.mrep = NULL; info.v3 = 1; #ifndef nolint dp = NULL; #endif #ifndef DIAGNOSTIC if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) || (uiop->uio_resid & (DIRBLKSIZ - 1))) panic("nfs readdirplusrpc bad uio"); #endif /* * Obtain the namecache record for the directory so we have something * to use as a basis for creating the entries. This function will * return a held (but not locked) ncp. The ncp may be disconnected * from the tree and cannot be used for upward traversals, and the * ncp may be unnamed. Note that other unrelated operations may * cause the ncp to be named at any time. */ cache_fromdvp(vp, NULL, 0, &dnch); bzero(&nlc, sizeof(nlc)); newvp = NULLVP; /* * If there is no cookie, assume directory was stale. */ cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); if (cookiep) cookie = *cookiep; else return (NFSERR_BAD_COOKIE); /* * Loop around doing readdir rpc's of size nm_readdirsize * truncated to a multiple of DIRBLKSIZ. * The stopping criteria is EOF or buffer full. */ while (more_dirs && bigenough) { nfsstats.rpccnt[NFSPROC_READDIRPLUS]++; nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS, NFSX_FH(1) + 6 * NFSX_UNSIGNED); ERROROUT(nfsm_fhtom(&info, vp)); tl = nfsm_build(&info, 6 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; *tl++ = cookie.nfsuquad[1]; *tl++ = dnp->n_cookieverf.nfsuquad[0]; *tl++ = dnp->n_cookieverf.nfsuquad[1]; *tl++ = txdr_unsigned(nmp->nm_readdirsize); *tl = txdr_unsigned(nmp->nm_rsize); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ), &error)); ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK)); NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); dnp->n_cookieverf.nfsuquad[0] = *tl++; dnp->n_cookieverf.nfsuquad[1] = *tl++; more_dirs = fxdr_unsigned(int, *tl); /* loop thru the dir entries, doctoring them to 4bsd form */ while (more_dirs && bigenough) { NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); fileno = fxdr_hyper(tl); len = fxdr_unsigned(int, *(tl + 2)); if (len <= 0 || len > NFS_MAXNAMLEN) { error = EBADRPC; m_freem(info.mrep); info.mrep = NULL; goto nfsmout; } tlen = nfsm_rndup(len); if (tlen == len) tlen += 4; /* To ensure null termination*/ left = DIRBLKSIZ - blksiz; if ((tlen + sizeof(struct nfs_dirent)) > left) { dp->nfs_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; blksiz = 0; } if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid) bigenough = 0; if (bigenough) { dp = (struct nfs_dirent *)uiop->uio_iov->iov_base; dp->nfs_ino = fileno; dp->nfs_namlen = len; dp->nfs_reclen = tlen + sizeof(struct nfs_dirent); dp->nfs_type = DT_UNKNOWN; blksiz += dp->nfs_reclen; if (blksiz == DIRBLKSIZ) blksiz = 0; uiop->uio_offset += sizeof(struct nfs_dirent); uiop->uio_resid -= sizeof(struct nfs_dirent); uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent); uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent); nlc.nlc_nameptr = uiop->uio_iov->iov_base; nlc.nlc_namelen = len; ERROROUT(nfsm_mtouio(&info, uiop, len)); cp = uiop->uio_iov->iov_base; tlen -= len; *cp = '\0'; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen; uiop->uio_iov->iov_len -= tlen; uiop->uio_offset += tlen; uiop->uio_resid -= tlen; } else { ERROROUT(nfsm_adv(&info, nfsm_rndup(len))); } NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); if (bigenough) { cookie.nfsuquad[0] = *tl++; cookie.nfsuquad[1] = *tl++; } else tl += 2; /* * Since the attributes are before the file handle * (sigh), we must skip over the attributes and then * come back and get them. */ attrflag = fxdr_unsigned(int, *tl); if (attrflag) { dpossav1 = info.dpos; mdsav1 = info.md; ERROROUT(nfsm_adv(&info, NFSX_V3FATTR)); NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); doit = fxdr_unsigned(int, *tl); if (doit) { NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp)); if (NFS_CMPFH(dnp, fhp, fhsize)) { vref(vp); newvp = vp; np = dnp; } else { error = nfs_nget(vp->v_mount, fhp, fhsize, &np); if (error) doit = 0; else newvp = NFSTOV(np); } } if (doit && bigenough) { dpossav2 = info.dpos; info.dpos = dpossav1; mdsav2 = info.md; info.md = mdsav1; ERROROUT(nfsm_loadattr(&info, newvp, NULL)); info.dpos = dpossav2; info.md = mdsav2; dp->nfs_type = IFTODT(VTTOIF(np->n_vattr.va_type)); if (dnch.ncp) { kprintf("NFS/READDIRPLUS, ENTER %*.*s\n", nlc.nlc_namelen, nlc.nlc_namelen, nlc.nlc_nameptr); nch = cache_nlookup(&dnch, &nlc); cache_setunresolved(&nch); nfs_cache_setvp(&nch, newvp, nfspos_cache_timeout); cache_put(&nch); } else { kprintf("NFS/READDIRPLUS, UNABLE TO ENTER" " %*.*s\n", nlc.nlc_namelen, nlc.nlc_namelen, nlc.nlc_nameptr); } } } else { /* Just skip over the file handle */ NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); i = fxdr_unsigned(int, *tl); ERROROUT(nfsm_adv(&info, nfsm_rndup(i))); } if (newvp != NULLVP) { if (newvp == vp) vrele(newvp); else vput(newvp); newvp = NULLVP; } NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); more_dirs = fxdr_unsigned(int, *tl); } /* * If at end of rpc data, get the eof boolean */ if (!more_dirs) { NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); more_dirs = (fxdr_unsigned(int, *tl) == 0); } m_freem(info.mrep); info.mrep = NULL; } /* * Fill last record, iff any, out to a multiple of DIRBLKSIZ * by increasing d_reclen for the last record. */ if (blksiz > 0) { left = DIRBLKSIZ - blksiz; dp->nfs_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_offset += left; uiop->uio_resid -= left; } /* * We are now either at the end of the directory or have filled the * block. */ if (bigenough) dnp->n_direofoffset = uiop->uio_offset; else { if (uiop->uio_resid > 0) kprintf("EEK! readdirplusrpc resid > 0\n"); cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); *cookiep = cookie; } nfsmout: if (newvp != NULLVP) { if (newvp == vp) vrele(newvp); else vput(newvp); newvp = NULLVP; } if (dnch.ncp) cache_drop(&dnch); return (error); } /* * Silly rename. To make the NFS filesystem that is stateless look a little * more like the "ufs" a remove of an active vnode is translated to a rename * to a funny looking filename that is removed by nfs_inactive on the * nfsnode. There is the potential for another process on a different client * to create the same funny name between the nfs_lookitup() fails and the * nfs_rename() completes, but... */ static int nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) { struct sillyrename *sp; struct nfsnode *np; int error; /* * We previously purged dvp instead of vp. I don't know why, it * completely destroys performance. We can't do it anyway with the * new VFS API since we would be breaking the namecache topology. */ cache_purge(vp); /* XXX */ np = VTONFS(vp); #ifndef DIAGNOSTIC if (vp->v_type == VDIR) panic("nfs: sillyrename dir"); #endif MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), M_NFSREQ, M_WAITOK); sp->s_cred = crdup(cnp->cn_cred); sp->s_dvp = dvp; vref(dvp); /* Fudge together a funny name */ sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)(intptr_t)cnp->cn_td); /* Try lookitups until we get one that isn't there */ while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_td, NULL) == 0) { sp->s_name[4]++; if (sp->s_name[4] > 'z') { error = EINVAL; goto bad; } } error = nfs_renameit(dvp, cnp, sp); if (error) goto bad; error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_td, &np); np->n_sillyrename = sp; return (0); bad: vrele(sp->s_dvp); crfree(sp->s_cred); kfree((caddr_t)sp, M_NFSREQ); return (error); } /* * Look up a file name and optionally either update the file handle or * allocate an nfsnode, depending on the value of npp. * npp == NULL --> just do the lookup * *npp == NULL --> allocate a new nfsnode and make sure attributes are * handled too * *npp != NULL --> update the file handle in the vnode */ static int nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred, struct thread *td, struct nfsnode **npp) { struct vnode *newvp = NULL; struct nfsnode *np, *dnp = VTONFS(dvp); int error = 0, fhlen, attrflag; nfsfh_t *nfhp; struct nfsm_info info; info.mrep = NULL; info.v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_LOOKUP]++; nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP, NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len)); ERROROUT(nfsm_fhtom(&info, dvp)); ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN)); NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error)); if (npp && !error) { NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp)); if (*npp) { np = *npp; if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) { kfree((caddr_t)np->n_fhp, M_NFSBIGFH); np->n_fhp = &np->n_fh; } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH) np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK); bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen); np->n_fhsize = fhlen; newvp = NFSTOV(np); } else if (NFS_CMPFH(dnp, nfhp, fhlen)) { vref(dvp); newvp = dvp; } else { error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np); if (error) { m_freem(info.mrep); info.mrep = NULL; return (error); } newvp = NFSTOV(np); } if (info.v3) { ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag, NFS_LATTR_NOSHRINK)); if (!attrflag && *npp == NULL) { m_freem(info.mrep); info.mrep = NULL; if (newvp == dvp) vrele(newvp); else vput(newvp); return (ENOENT); } } else { ERROROUT(error = nfsm_loadattr(&info, newvp, NULL)); } } m_freem(info.mrep); info.mrep = NULL; nfsmout: if (npp && *npp == NULL) { if (error) { if (newvp) { if (newvp == dvp) vrele(newvp); else vput(newvp); } } else *npp = np; } return (error); } /* * Nfs Version 3 commit rpc */ int nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td) { struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, wccflag = NFSV3_WCCRATTR; struct nfsm_info info; u_int32_t *tl; info.mrep = NULL; info.v3 = 1; if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) return (0); nfsstats.rpccnt[NFSPROC_COMMIT]++; nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1)); ERROROUT(nfsm_fhtom(&info, vp)); tl = nfsm_build(&info, 3 * NFSX_UNSIGNED); txdr_hyper(offset, tl); tl += 2; *tl = txdr_unsigned(cnt); NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE), &error)); ERROROUT(nfsm_wcc_data(&info, vp, &wccflag)); if (!error) { NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF)); if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl, NFSX_V3WRITEVERF)) { bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); error = NFSERR_STALEWRITEVERF; } } m_freem(info.mrep); info.mrep = NULL; nfsmout: return (error); } /* * Kludge City.. * - make nfs_bmap() essentially a no-op that does no translation * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc * (Maybe I could use the process's page mapping, but I was concerned that * Kernel Write might not be enabled and also figured copyout() would do * a lot more work than bcopy() and also it currently happens in the * context of the swapper process (2). * * nfs_bmap(struct vnode *a_vp, off_t a_loffset, * off_t *a_doffsetp, int *a_runp, int *a_runb) */ static int nfs_bmap(struct vop_bmap_args *ap) { if (ap->a_doffsetp != NULL) *ap->a_doffsetp = ap->a_loffset; if (ap->a_runp != NULL) *ap->a_runp = 0; if (ap->a_runb != NULL) *ap->a_runb = 0; return (0); } /* * Strategy routine. * * For async requests when nfsiod(s) are running, queue the request by * calling nfs_asyncio(), otherwise just all nfs_doio() to do the * request. */ static int nfs_strategy(struct vop_strategy_args *ap) { struct bio *bio = ap->a_bio; struct bio *nbio; struct buf *bp = bio->bio_buf; struct thread *td; int error = 0; KASSERT(bp->b_cmd != BUF_CMD_DONE, ("nfs_strategy: buffer %p unexpectedly marked done", bp)); KASSERT(BUF_REFCNT(bp) > 0, ("nfs_strategy: buffer %p not locked", bp)); if (bio->bio_flags & BIO_SYNC) td = curthread; /* XXX */ else td = NULL; /* * We probably don't need to push an nbio any more since no * block conversion is required due to the use of 64 bit byte * offsets, but do it anyway. */ nbio = push_bio(bio); nbio->bio_offset = bio->bio_offset; /* * If the op is asynchronous and an i/o daemon is waiting * queue the request, wake it up and wait for completion * otherwise just do it ourselves. */ if ((bio->bio_flags & BIO_SYNC) || nfs_asyncio(ap->a_vp, nbio, td)) error = nfs_doio(ap->a_vp, nbio, td); return (error); } /* * Mmap a file * * NB Currently unsupported. * * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred) */ /* ARGSUSED */ static int nfs_mmap(struct vop_mmap_args *ap) { return (EINVAL); } /* * fsync vnode op. Just call nfs_flush() with commit == 1. * * nfs_fsync(struct vnode *a_vp, int a_waitfor) */ /* ARGSUSED */ static int nfs_fsync(struct vop_fsync_args *ap) { return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1)); } /* * Flush all the blocks associated with a vnode. Dirty NFS buffers may be * in one of two states: If B_NEEDCOMMIT is clear then the buffer contains * new NFS data which needs to be written to the server. If B_NEEDCOMMIT is * set the buffer contains data that has already been written to the server * and which now needs a commit RPC. * * If commit is 0 we only take one pass and only flush buffers containing new * dirty data. * * If commit is 1 we take two passes, issuing a commit RPC in the second * pass. * * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required * to completely flush all pending data. * * Note that the RB_SCAN code properly handles the case where the * callback might block and directly or indirectly (another thread) cause * the RB tree to change. */ #ifndef NFS_COMMITBVECSIZ #define NFS_COMMITBVECSIZ 16 #endif struct nfs_flush_info { enum { NFI_FLUSHNEW, NFI_COMMIT } mode; struct thread *td; struct vnode *vp; int waitfor; int slpflag; int slptimeo; int loops; struct buf *bvary[NFS_COMMITBVECSIZ]; int bvsize; off_t beg_off; off_t end_off; }; static int nfs_flush_bp(struct buf *bp, void *data); static int nfs_flush_docommit(struct nfs_flush_info *info, int error); int nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit) { struct nfsnode *np = VTONFS(vp); struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfs_flush_info info; lwkt_tokref vlock; int error; bzero(&info, sizeof(info)); info.td = td; info.vp = vp; info.waitfor = waitfor; info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0; info.loops = 0; lwkt_gettoken(&vlock, &vp->v_token); do { /* * Flush mode */ info.mode = NFI_FLUSHNEW; error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, nfs_flush_bp, &info); /* * Take a second pass if committing and no error occured. * Clean up any left over collection (whether an error * occurs or not). */ if (commit && error == 0) { info.mode = NFI_COMMIT; error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, nfs_flush_bp, &info); if (info.bvsize) error = nfs_flush_docommit(&info, error); } /* * Wait for pending I/O to complete before checking whether * any further dirty buffers exist. */ while (waitfor == MNT_WAIT && bio_track_active(&vp->v_track_write)) { error = bio_track_wait(&vp->v_track_write, info.slpflag, info.slptimeo); if (error) { /* * We have to be able to break out if this * is an 'intr' mount. */ if (nfs_sigintr(nmp, NULL, td)) { error = -EINTR; break; } /* * Since we do not process pending signals, * once we get a PCATCH our tsleep() will no * longer sleep, switch to a fixed timeout * instead. */ if (info.slpflag == PCATCH) { info.slpflag = 0; info.slptimeo = 2 * hz; } error = 0; } } ++info.loops; /* * Loop if we are flushing synchronous as well as committing, * and dirty buffers are still present. Otherwise we might livelock. */ } while (waitfor == MNT_WAIT && commit && error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree)); /* * The callbacks have to return a negative error to terminate the * RB scan. */ if (error < 0) error = -error; /* * Deal with any error collection */ if (np->n_flag & NWRITEERR) { error = np->n_error; np->n_flag &= ~NWRITEERR; } lwkt_reltoken(&vlock); return (error); } static int nfs_flush_bp(struct buf *bp, void *data) { struct nfs_flush_info *info = data; int lkflags; int error; off_t toff; error = 0; switch(info->mode) { case NFI_FLUSHNEW: error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT); if (error && info->loops && info->waitfor == MNT_WAIT) { error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT); if (error) { lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; if (info->slpflag & PCATCH) lkflags |= LK_PCATCH; error = BUF_TIMELOCK(bp, lkflags, "nfsfsync", info->slptimeo); } } /* * Ignore locking errors */ if (error) { error = 0; break; } /* * The buffer may have changed out from under us, even if * we did not block (MPSAFE). Check again now that it is * locked. */ if (bp->b_vp == info->vp && (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) { bremfree(bp); bawrite(bp); } else { BUF_UNLOCK(bp); } break; case NFI_COMMIT: /* * Only process buffers in need of a commit which we can * immediately lock. This may prevent a buffer from being * committed, but the normal flush loop will block on the * same buffer so we shouldn't get into an endless loop. */ if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != (B_DELWRI | B_NEEDCOMMIT)) { break; } if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) break; /* * We must recheck after successfully locking the buffer. */ if (bp->b_vp != info->vp || (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != (B_DELWRI | B_NEEDCOMMIT)) { BUF_UNLOCK(bp); break; } /* * NOTE: storing the bp in the bvary[] basically sets * it up for a commit operation. * * We must call vfs_busy_pages() now so the commit operation * is interlocked with user modifications to memory mapped * pages. * * Note: to avoid loopback deadlocks, we do not * assign b_runningbufspace. */ bremfree(bp); bp->b_cmd = BUF_CMD_WRITE; vfs_busy_pages(bp->b_vp, bp); info->bvary[info->bvsize] = bp; toff = bp->b_bio2.bio_offset + bp->b_dirtyoff; if (info->bvsize == 0 || toff < info->beg_off) info->beg_off = toff; toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff); if (info->bvsize == 0 || toff > info->end_off) info->end_off = toff; ++info->bvsize; if (info->bvsize == NFS_COMMITBVECSIZ) { error = nfs_flush_docommit(info, 0); KKASSERT(info->bvsize == 0); } } return (error); } static int nfs_flush_docommit(struct nfs_flush_info *info, int error) { struct vnode *vp; struct buf *bp; off_t bytes; int retv; int i; vp = info->vp; if (info->bvsize > 0) { /* * Commit data on the server, as required. Note that * nfs_commit will use the vnode's cred for the commit. * The NFSv3 commit RPC is limited to a 32 bit byte count. */ bytes = info->end_off - info->beg_off; if (bytes > 0x40000000) bytes = 0x40000000; if (error) { retv = -error; } else { retv = nfs_commit(vp, info->beg_off, (int)bytes, info->td); if (retv == NFSERR_STALEWRITEVERF) nfs_clearcommit(vp->v_mount); } /* * Now, either mark the blocks I/O done or mark the * blocks dirty, depending on whether the commit * succeeded. */ for (i = 0; i < info->bvsize; ++i) { bp = info->bvary[i]; bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); if (retv) { /* * Error, leave B_DELWRI intact */ vfs_unbusy_pages(bp); bp->b_cmd = BUF_CMD_DONE; brelse(bp); } else { /* * Success, remove B_DELWRI ( bundirty() ). * * b_dirtyoff/b_dirtyend seem to be NFS * specific. We should probably move that * into bundirty(). XXX * * We are faking an I/O write, we have to * start the transaction in order to * immediately biodone() it. */ bundirty(bp); bp->b_flags &= ~B_ERROR; bp->b_dirtyoff = bp->b_dirtyend = 0; biodone(&bp->b_bio1); } } info->bvsize = 0; } return (error); } /* * NFS advisory byte-level locks. * Currently unsupported. * * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl, * int a_flags) */ static int nfs_advlock(struct vop_advlock_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * The following kludge is to allow diskless support to work * until a real NFS lockd is implemented. Basically, just pretend * that this is a local lock. */ return (lf_advlock(ap, &(np->n_lockf), np->n_size)); } /* * Print out the contents of an nfsnode. * * nfs_print(struct vnode *a_vp) */ static int nfs_print(struct vop_print_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); kprintf("tag VT_NFS, fileid %lld fsid 0x%x", (long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid); if (vp->v_type == VFIFO) fifo_printinfo(vp); kprintf("\n"); return (0); } /* * nfs special file access vnode op. * Essentially just get vattr and then imitate iaccess() since the device is * local to the client. * * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred) */ static int nfsspec_access(struct vop_access_args *ap) { struct vattr *vap; gid_t *gp; struct ucred *cred = ap->a_cred; struct vnode *vp = ap->a_vp; mode_t mode = ap->a_mode; struct vattr vattr; int i; int error; /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } /* * If you're the super-user, * you always get access. */ if (cred->cr_uid == 0) return (0); vap = &vattr; error = VOP_GETATTR(vp, vap); if (error) return (error); /* * Access check is based on only one of owner, group, public. * If not owner, then check group. If not a member of the * group, then check public access. */ if (cred->cr_uid != vap->va_uid) { mode >>= 3; gp = cred->cr_groups; for (i = 0; i < cred->cr_ngroups; i++, gp++) if (vap->va_gid == *gp) goto found; mode >>= 3; found: ; } error = (vap->va_mode & mode) == mode ? 0 : EACCES; return (error); } /* * Read wrapper for special devices. * * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, * struct ucred *a_cred) */ static int nfsspec_read(struct vop_read_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * Set access flag. */ np->n_flag |= NACC; getnanotime(&np->n_atim); return (VOCALL(&spec_vnode_vops, &ap->a_head)); } /* * Write wrapper for special devices. * * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, * struct ucred *a_cred) */ static int nfsspec_write(struct vop_write_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * Set update flag. */ np->n_flag |= NUPD; getnanotime(&np->n_mtim); return (VOCALL(&spec_vnode_vops, &ap->a_head)); } /* * Close wrapper for special devices. * * Update the times on the nfsnode then do device close. * * nfsspec_close(struct vnode *a_vp, int a_fflag) */ static int nfsspec_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; if (np->n_flag & (NACC | NUPD)) { np->n_flag |= NCHG; if (vp->v_sysref.refcnt == 1 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { VATTR_NULL(&vattr); if (np->n_flag & NACC) vattr.va_atime = np->n_atim; if (np->n_flag & NUPD) vattr.va_mtime = np->n_mtim; (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE)); } } return (VOCALL(&spec_vnode_vops, &ap->a_head)); } /* * Read wrapper for fifos. * * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, * struct ucred *a_cred) */ static int nfsfifo_read(struct vop_read_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * Set access flag. */ np->n_flag |= NACC; getnanotime(&np->n_atim); return (VOCALL(&fifo_vnode_vops, &ap->a_head)); } /* * Write wrapper for fifos. * * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, * struct ucred *a_cred) */ static int nfsfifo_write(struct vop_write_args *ap) { struct nfsnode *np = VTONFS(ap->a_vp); /* * Set update flag. */ np->n_flag |= NUPD; getnanotime(&np->n_mtim); return (VOCALL(&fifo_vnode_vops, &ap->a_head)); } /* * Close wrapper for fifos. * * Update the times on the nfsnode then do fifo close. * * nfsfifo_close(struct vnode *a_vp, int a_fflag) */ static int nfsfifo_close(struct vop_close_args *ap) { struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; struct timespec ts; if (np->n_flag & (NACC | NUPD)) { getnanotime(&ts); if (np->n_flag & NACC) np->n_atim = ts; if (np->n_flag & NUPD) np->n_mtim = ts; np->n_flag |= NCHG; if (vp->v_sysref.refcnt == 1 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { VATTR_NULL(&vattr); if (np->n_flag & NACC) vattr.va_atime = np->n_atim; if (np->n_flag & NUPD) vattr.va_mtime = np->n_mtim; (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE)); } } return (VOCALL(&fifo_vnode_vops, &ap->a_head)); }