/*- * Copyright (c) 1982, 1986 The Regents of the University of California. * Copyright (c) 1989, 1990 William Jolitz * Copyright (c) 1994 John Dyson * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_machdep.c 7.3 (Berkeley) 5/13/91 * Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$ * $FreeBSD: src/sys/i386/i386/vm_machdep.c,v 1.132.2.9 2003/01/25 19:02:23 dillon Exp $ * $DragonFly: src/sys/platform/pc32/i386/vm_machdep.c,v 1.58 2007/03/01 01:46:52 corecode Exp $ */ #include "use_npx.h" #include "use_isa.h" #include "opt_reset.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* npxthread */ #include #include #include #include #include #include #include #include #include #include static void cpu_reset_real (void); #ifdef SMP static void cpu_reset_proxy (void); static u_int cpu_reset_proxyid; static volatile u_int cpu_reset_proxy_active; #endif extern int _ucodesel, _udatasel; /* * Finish a fork operation, with lwp lp2 nearly set up. * Copy and update the pcb, set up the stack so that the child * ready to run and return to user mode. */ void cpu_fork(struct lwp *lp1, struct lwp *lp2, int flags) { struct pcb *pcb2; if ((flags & RFPROC) == 0) { if ((flags & RFMEM) == 0) { /* unshare user LDT */ struct pcb *pcb1 = lp1->lwp_thread->td_pcb; struct pcb_ldt *pcb_ldt = pcb1->pcb_ldt; if (pcb_ldt && pcb_ldt->ldt_refcnt > 1) { pcb_ldt = user_ldt_alloc(pcb1,pcb_ldt->ldt_len); user_ldt_free(pcb1); pcb1->pcb_ldt = pcb_ldt; set_user_ldt(pcb1); } } return; } #if NNPX > 0 /* Ensure that lp1's pcb is up to date. */ if (mdcpu->gd_npxthread == lp1->lwp_thread) npxsave(lp1->lwp_thread->td_savefpu); #endif /* * Copy lp1's PCB. This really only applies to the * debug registers and FP state, but its faster to just copy the * whole thing. Because we only save the PCB at switchout time, * the register state may not be current. */ pcb2 = lp2->lwp_thread->td_pcb; *pcb2 = *lp1->lwp_thread->td_pcb; /* * Create a new fresh stack for the new process. * Copy the trap frame for the return to user mode as if from a * syscall. This copies the user mode register values. The * 16 byte offset saves space for vm86, and must match * common_tss.esp0 (kernel stack pointer on entry from user mode) * * pcb_esp must allocate an additional call-return pointer below * the trap frame which will be restored by cpu_restore from * PCB_EIP, and the thread's td_sp pointer must allocate an * additonal two worsd below the pcb_esp call-return pointer to * hold the LWKT restore function pointer and eflags. * * The LWKT restore function pointer must be set to cpu_restore, * which is our standard heavy weight process switch-in function. * YYY eventually we should shortcut fork_return and fork_trampoline * to use the LWKT restore function directly so we can get rid of * all the extra crap we are setting up. */ lp2->lwp_md.md_regs = (struct trapframe *)((char *)pcb2 - 16) - 1; bcopy(lp1->lwp_md.md_regs, lp2->lwp_md.md_regs, sizeof(*lp2->lwp_md.md_regs)); /* * Set registers for trampoline to user mode. Leave space for the * return address on stack. These are the kernel mode register values. */ pcb2->pcb_cr3 = vtophys(vmspace_pmap(lp2->lwp_proc->p_vmspace)->pm_pdir); pcb2->pcb_edi = 0; pcb2->pcb_esi = (int)fork_return; /* fork_trampoline argument */ pcb2->pcb_ebp = 0; pcb2->pcb_esp = (int)lp2->lwp_md.md_regs - sizeof(void *); pcb2->pcb_ebx = (int)lp2; /* fork_trampoline argument */ pcb2->pcb_eip = (int)fork_trampoline; lp2->lwp_thread->td_sp = (char *)(pcb2->pcb_esp - sizeof(void *)); *(u_int32_t *)lp2->lwp_thread->td_sp = PSL_USER; lp2->lwp_thread->td_sp -= sizeof(void *); *(void **)lp2->lwp_thread->td_sp = (void *)cpu_heavy_restore; /* * pcb2->pcb_ldt: duplicated below, if necessary. * pcb2->pcb_savefpu: cloned above. * pcb2->pcb_flags: cloned above (always 0 here?). * pcb2->pcb_onfault: cloned above (always NULL here?). */ /* * XXX don't copy the i/o pages. this should probably be fixed. */ pcb2->pcb_ext = 0; /* Copy the LDT, if necessary. */ if (pcb2->pcb_ldt != 0) { if (flags & RFMEM) { pcb2->pcb_ldt->ldt_refcnt++; } else { pcb2->pcb_ldt = user_ldt_alloc(pcb2, pcb2->pcb_ldt->ldt_len); } } bcopy(&lp1->lwp_thread->td_tls, &lp2->lwp_thread->td_tls, sizeof(lp2->lwp_thread->td_tls)); /* * Now, cpu_switch() can schedule the new lwp. * pcb_esp is loaded pointing to the cpu_switch() stack frame * containing the return address when exiting cpu_switch. * This will normally be to fork_trampoline(), which will have * %ebx loaded with the new lwp's pointer. fork_trampoline() * will set up a stack to call fork_return(lp, frame); to complete * the return to user-mode. */ } /* * Prepare new lwp to return to the address specified in params. */ int cpu_prepare_lwp(struct lwp *lp, struct lwp_params *params) { struct trapframe *regs = lp->lwp_md.md_regs; void *bad_return = NULL; int error; regs->tf_eip = params->func; regs->tf_esp = params->stack; /* Set up argument for function call */ regs->tf_esp -= sizeof(params->arg); error = copyout(¶ms->arg, regs->tf_esp, sizeof(params->arg)); if (error) return (error); /* * Set up fake return address. As the lwp function may never return, * we simply copy out a NULL pointer and force the lwp to receive * a SIGSEGV if it returns anyways. */ regs->tf_esp -= sizeof(void *); error = copyout(&bad_return, regs->tf_esp, sizeof(bad_return)); if (error) return (error); cpu_set_fork_handler(lp, (void (*)(void *, struct trapframe *))generic_lwp_return, lp); return (0); } /* * Intercept the return address from a freshly forked process that has NOT * been scheduled yet. * * This is needed to make kernel threads stay in kernel mode. */ void cpu_set_fork_handler(struct lwp *lp, void (*func)(void *, struct trapframe *), void *arg) { /* * Note that the trap frame follows the args, so the function * is really called like this: func(arg, frame); */ lp->lwp_thread->td_pcb->pcb_esi = (int) func; /* function */ lp->lwp_thread->td_pcb->pcb_ebx = (int) arg; /* first arg */ } void cpu_set_thread_handler(thread_t td, void (*rfunc)(void), void *func, void *arg) { td->td_pcb->pcb_esi = (int)func; td->td_pcb->pcb_ebx = (int) arg; td->td_switch = cpu_lwkt_switch; td->td_sp -= sizeof(void *); *(void **)td->td_sp = rfunc; /* exit function on return */ td->td_sp -= sizeof(void *); *(void **)td->td_sp = cpu_kthread_restore; } void cpu_lwp_exit(void) { struct thread *td = curthread; struct pcb *pcb; struct pcb_ext *ext; #if NNPX > 0 npxexit(); #endif /* NNPX */ /* * If we were using a private TSS do a forced-switch to ourselves * to switch back to the common TSS before freeing it. */ pcb = td->td_pcb; if ((ext = pcb->pcb_ext) != NULL) { crit_enter(); pcb->pcb_ext = NULL; td->td_switch(td); crit_exit(); kmem_free(&kernel_map, (vm_offset_t)ext, ctob(IOPAGES + 1)); } user_ldt_free(pcb); if (pcb->pcb_flags & PCB_DBREGS) { /* * disable all hardware breakpoints */ reset_dbregs(); pcb->pcb_flags &= ~PCB_DBREGS; } td->td_gd->gd_cnt.v_swtch++; crit_enter_quick(td); lwkt_deschedule_self(td); lwkt_remove_tdallq(td); cpu_thread_exit(); } /* * Terminate the current thread. The caller must have already acquired * the thread's rwlock and placed it on a reap list or otherwise notified * a reaper of its existance. We set a special assembly switch function which * releases td_rwlock after it has cleaned up the MMU state and switched * out the stack. * * Must be caller from a critical section and with the thread descheduled. */ void cpu_thread_exit(void) { curthread->td_switch = cpu_exit_switch; curthread->td_flags |= TDF_EXITING; lwkt_switch(); panic("cpu_exit"); } /* * Process Reaper. Called after the caller has acquired the thread's * rwlock and removed it from the reap list. */ void cpu_proc_wait(struct proc *p) { /* drop per-process resources */ pmap_dispose_proc(p); } #ifdef notyet static void setredzone(u_short *pte, caddr_t vaddr) { /* eventually do this by setting up an expand-down stack segment for ss0: selector, allowing stack access down to top of u. this means though that protection violations need to be handled thru a double fault exception that must do an integral task switch to a known good context, within which a dump can be taken. a sensible scheme might be to save the initial context used by sched (that has physical memory mapped 1:1 at bottom) and take the dump while still in mapped mode */ } #endif /* * Convert kernel VA to physical address */ vm_paddr_t kvtop(void *addr) { vm_paddr_t pa; pa = pmap_kextract((vm_offset_t)addr); if (pa == 0) panic("kvtop: zero page frame"); return (pa); } /* * Force reset the processor by invalidating the entire address space! */ #ifdef SMP static void cpu_reset_proxy(void) { u_int saved_mp_lock; cpu_reset_proxy_active = 1; while (cpu_reset_proxy_active == 1) ; /* Wait for other cpu to disable interupts */ saved_mp_lock = mp_lock; mp_lock = 0; /* BSP */ kprintf("cpu_reset_proxy: Grabbed mp lock for BSP\n"); cpu_reset_proxy_active = 3; while (cpu_reset_proxy_active == 3) ; /* Wait for other cpu to enable interrupts */ stop_cpus((1<gd_cpuid); map = mycpu->gd_other_cpus & ~stopped_cpus & smp_active_mask; if (map != 0) { kprintf("cpu_reset: Stopping other CPUs\n"); stop_cpus(map); /* Stop all other CPUs */ } if (mycpu->gd_cpuid == 0) { DELAY(1000000); cpu_reset_real(); /* NOTREACHED */ } else { /* We are not BSP (CPU #0) */ cpu_reset_proxyid = mycpu->gd_cpuid; cpustop_restartfunc = cpu_reset_proxy; kprintf("cpu_reset: Restarting BSP\n"); started_cpus = (1<<0); /* Restart CPU #0 */ cnt = 0; while (cpu_reset_proxy_active == 0 && cnt < 10000000) cnt++; /* Wait for BSP to announce restart */ if (cpu_reset_proxy_active == 0) kprintf("cpu_reset: Failed to restart BSP\n"); __asm __volatile("cli" : : : "memory"); cpu_reset_proxy_active = 2; cnt = 0; while (cpu_reset_proxy_active == 2 && cnt < 10000000) cnt++; /* Do nothing */ if (cpu_reset_proxy_active == 2) { kprintf("cpu_reset: BSP did not grab mp lock\n"); cpu_reset_real(); /* XXX: Bogus ? */ } cpu_reset_proxy_active = 4; __asm __volatile("sti" : : : "memory"); while (1); /* NOTREACHED */ } } #else cpu_reset_real(); #endif } static void cpu_reset_real(void) { /* * Attempt to do a CPU reset via the keyboard controller, * do not turn of the GateA20, as any machine that fails * to do the reset here would then end up in no man's land. */ #if !defined(BROKEN_KEYBOARD_RESET) outb(IO_KBD + 4, 0xFE); DELAY(500000); /* wait 0.5 sec to see if that did it */ kprintf("Keyboard reset did not work, attempting CPU shutdown\n"); DELAY(1000000); /* wait 1 sec for kprintf to complete */ #endif /* force a shutdown by unmapping entire address space ! */ bzero((caddr_t) PTD, PAGE_SIZE); /* "good night, sweet prince .... " */ cpu_invltlb(); /* NOTREACHED */ while(1); } int grow_stack(struct proc *p, u_int sp) { int rv; rv = vm_map_growstack (p, sp); if (rv != KERN_SUCCESS) return (0); return (1); } SYSCTL_DECL(_vm_stats_misc); static int cnt_prezero; SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD, &cnt_prezero, 0, ""); static void swi_vm(void *arg, void *frame) { if (busdma_swi_pending != 0) busdma_swi(); } static void swi_vm_setup(void *arg) { register_swi(SWI_VM, swi_vm, NULL, "swi_vm", NULL); } SYSINIT(vm_setup, SI_SUB_CPU, SI_ORDER_ANY, swi_vm_setup, NULL); /* * Tell whether this address is in some physical memory region. * Currently used by the kernel coredump code in order to avoid * dumping the ``ISA memory hole'' which could cause indefinite hangs, * or other unpredictable behaviour. */ int is_physical_memory(vm_offset_t addr) { #if NISA > 0 /* The ISA ``memory hole''. */ if (addr >= 0xa0000 && addr < 0x100000) return 0; #endif /* * stuff other tests for known memory-mapped devices (PCI?) * here */ return 1; } /* * platform-specific vmspace initialization (nothing for i386) */ void cpu_vmspace_alloc(struct vmspace *vm __unused) { } void cpu_vmspace_free(struct vmspace *vm __unused) { } /* * Used by /dev/kmem to determine if we can safely read or write * the requested KVA range. */ int kvm_access_check(vm_offset_t saddr, vm_offset_t eaddr, int prot) { vm_offset_t addr; if (saddr < KvaStart) return EFAULT; if (eaddr >= KvaEnd) return EFAULT; for (addr = saddr; addr < eaddr; addr += PAGE_SIZE) { if (pmap_extract(&kernel_pmap, addr) == 0) return EFAULT; } if (!kernacc((caddr_t)saddr, eaddr - saddr, prot)) return EFAULT; return 0; }