/* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $ * $DragonFly: src/sys/kern/kern_proc.c,v 1.45 2008/06/12 23:25:02 dillon Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); MALLOC_DEFINE(M_SESSION, "session", "session header"); MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_LWP, "lwp", "lwp structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); int ps_showallprocs = 1; static int ps_showallthreads = 1; SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW, &ps_showallprocs, 0, "Unprivileged processes can see proccesses with different UID/GID"); SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW, &ps_showallthreads, 0, "Unprivileged processes can see kernel threads"); static void pgdelete(struct pgrp *); static void orphanpg(struct pgrp *pg); static pid_t proc_getnewpid_locked(int random_offset); /* * Other process lists */ struct pidhashhead *pidhashtbl; u_long pidhash; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc; struct proclist zombproc; struct spinlock allproc_spin; /* * Random component to nextpid generation. We mix in a random factor to make * it a little harder to predict. We sanity check the modulus value to avoid * doing it in critical paths. Don't let it be too small or we pointlessly * waste randomness entropy, and don't let it be impossibly large. Using a * modulus that is too big causes a LOT more process table scans and slows * down fork processing as the pidchecked caching is defeated. */ static int randompid = 0; static int sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) { int error, pid; pid = randompid; error = sysctl_handle_int(oidp, &pid, 0, req); if (error || !req->newptr) return (error); if (pid < 0 || pid > PID_MAX - 100) /* out of range */ pid = PID_MAX - 100; else if (pid < 2) /* NOP */ pid = 0; else if (pid < 100) /* Make it reasonable */ pid = 100; randompid = pid; return (error); } SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); /* * Initialize global process hashing structures. */ void procinit(void) { LIST_INIT(&allproc); LIST_INIT(&zombproc); spin_init(&allproc_spin); lwkt_init(); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); uihashinit(); } /* * Is p an inferior of the current process? */ int inferior(struct proc *p) { for (; p != curproc; p = p->p_pptr) if (p->p_pid == 0) return (0); return (1); } /* * Locate a process by number */ struct proc * pfind(pid_t pid) { struct proc *p; LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) return (p); } return (NULL); } /* * Locate a process group by number */ struct pgrp * pgfind(pid_t pgid) { struct pgrp *pgrp; LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) return (pgrp); } return (NULL); } /* * Move p to a new or existing process group (and session) */ int enterpgrp(struct proc *p, pid_t pgid, int mksess) { struct pgrp *pgrp = pgfind(pgid); KASSERT(pgrp == NULL || !mksess, ("enterpgrp: setsid into non-empty pgrp")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); if (pgrp == NULL) { pid_t savepid = p->p_pid; struct proc *np; /* * new process group */ KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); if ((np = pfind(savepid)) == NULL || np != p) return (ESRCH); MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, M_WAITOK); if (mksess) { struct session *sess; /* * new session */ MALLOC(sess, struct session *, sizeof(struct session), M_SESSION, M_WAITOK); sess->s_leader = p; sess->s_sid = p->p_pid; sess->s_count = 1; sess->s_ttyvp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); p->p_flag &= ~P_CONTROLT; pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; sess_hold(pgrp->pg_session); } pgrp->pg_id = pgid; LIST_INIT(&pgrp->pg_members); LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); pgrp->pg_jobc = 0; SLIST_INIT(&pgrp->pg_sigiolst); lockinit(&pgrp->pg_lock, "pgwt", 0, 0); } else if (pgrp == p->p_pgrp) return (0); /* * Adjust eligibility of affected pgrps to participate in job control. * Increment eligibility counts before decrementing, otherwise we * could reach 0 spuriously during the first call. */ fixjobc(p, pgrp, 1); fixjobc(p, p->p_pgrp, 0); LIST_REMOVE(p, p_pglist); if (LIST_EMPTY(&p->p_pgrp->pg_members)) pgdelete(p->p_pgrp); p->p_pgrp = pgrp; LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); return (0); } /* * remove process from process group */ int leavepgrp(struct proc *p) { LIST_REMOVE(p, p_pglist); if (LIST_EMPTY(&p->p_pgrp->pg_members)) pgdelete(p->p_pgrp); p->p_pgrp = 0; return (0); } /* * delete a process group */ static void pgdelete(struct pgrp *pgrp) { /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. */ funsetownlst(&pgrp->pg_sigiolst); if (pgrp->pg_session->s_ttyp != NULL && pgrp->pg_session->s_ttyp->t_pgrp == pgrp) pgrp->pg_session->s_ttyp->t_pgrp = NULL; LIST_REMOVE(pgrp, pg_hash); sess_rele(pgrp->pg_session); kfree(pgrp, M_PGRP); } /* * Adjust the ref count on a session structure. When the ref count falls to * zero the tty is disassociated from the session and the session structure * is freed. Note that tty assocation is not itself ref-counted. */ void sess_hold(struct session *sp) { ++sp->s_count; } void sess_rele(struct session *sp) { KKASSERT(sp->s_count > 0); if (--sp->s_count == 0) { if (sp->s_ttyp && sp->s_ttyp->t_session) { #ifdef TTY_DO_FULL_CLOSE /* FULL CLOSE, see ttyclearsession() */ KKASSERT(sp->s_ttyp->t_session == sp); sp->s_ttyp->t_session = NULL; #else /* HALF CLOSE, see ttyclearsession() */ if (sp->s_ttyp->t_session == sp) sp->s_ttyp->t_session = NULL; #endif } kfree(sp, M_SESSION); } } /* * Adjust pgrp jobc counters when specified process changes process group. * We count the number of processes in each process group that "qualify" * the group for terminal job control (those with a parent in a different * process group of the same session). If that count reaches zero, the * process group becomes orphaned. Check both the specified process' * process group and that of its children. * entering == 0 => p is leaving specified group. * entering == 1 => p is entering specified group. */ void fixjobc(struct proc *p, struct pgrp *pgrp, int entering) { struct pgrp *hispgrp; struct session *mysession = pgrp->pg_session; /* * Check p's parent to see whether p qualifies its own process * group; if so, adjust count for p's process group. */ if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && hispgrp->pg_session == mysession) { if (entering) pgrp->pg_jobc++; else if (--pgrp->pg_jobc == 0) orphanpg(pgrp); } /* * Check this process' children to see whether they qualify * their process groups; if so, adjust counts for children's * process groups. */ LIST_FOREACH(p, &p->p_children, p_sibling) if ((hispgrp = p->p_pgrp) != pgrp && hispgrp->pg_session == mysession && p->p_stat != SZOMB) { if (entering) hispgrp->pg_jobc++; else if (--hispgrp->pg_jobc == 0) orphanpg(hispgrp); } } /* * A process group has become orphaned; * if there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(struct pgrp *pg) { struct proc *p; LIST_FOREACH(p, &pg->pg_members, p_pglist) { if (p->p_stat == SSTOP) { LIST_FOREACH(p, &pg->pg_members, p_pglist) { ksignal(p, SIGHUP); ksignal(p, SIGCONT); } return; } } } /* * Add a new process to the allproc list and the PID hash. This * also assigns a pid to the new process. * * MPALMOSTSAFE - acquires mplock for karc4random() call */ void proc_add_allproc(struct proc *p) { int random_offset; if ((random_offset = randompid) != 0) { get_mplock(); random_offset = karc4random() % random_offset; rel_mplock(); } spin_lock_wr(&allproc_spin); p->p_pid = proc_getnewpid_locked(random_offset); LIST_INSERT_HEAD(&allproc, p, p_list); LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash); spin_unlock_wr(&allproc_spin); } /* * Calculate a new process pid. This function is integrated into * proc_add_allproc() to guarentee that the new pid is not reused before * the new process can be added to the allproc list. * * MPSAFE - must be called with allproc_spin held. */ static pid_t proc_getnewpid_locked(int random_offset) { static pid_t nextpid; static pid_t pidchecked; struct proc *p; /* * Find an unused process ID. We remember a range of unused IDs * ready to use (from nextpid+1 through pidchecked-1). */ nextpid = nextpid + 1 + random_offset; retry: /* * If the process ID prototype has wrapped around, * restart somewhat above 0, as the low-numbered procs * tend to include daemons that don't exit. */ if (nextpid >= PID_MAX) { nextpid = nextpid % PID_MAX; if (nextpid < 100) nextpid += 100; pidchecked = 0; } if (nextpid >= pidchecked) { int doingzomb = 0; pidchecked = PID_MAX; /* * Scan the active and zombie procs to check whether this pid * is in use. Remember the lowest pid that's greater * than nextpid, so we can avoid checking for a while. */ p = LIST_FIRST(&allproc); again: for (; p != 0; p = LIST_NEXT(p, p_list)) { while (p->p_pid == nextpid || p->p_pgrp->pg_id == nextpid || p->p_session->s_sid == nextpid) { nextpid++; if (nextpid >= pidchecked) goto retry; } if (p->p_pid > nextpid && pidchecked > p->p_pid) pidchecked = p->p_pid; if (p->p_pgrp->pg_id > nextpid && pidchecked > p->p_pgrp->pg_id) pidchecked = p->p_pgrp->pg_id; if (p->p_session->s_sid > nextpid && pidchecked > p->p_session->s_sid) pidchecked = p->p_session->s_sid; } if (!doingzomb) { doingzomb = 1; p = LIST_FIRST(&zombproc); goto again; } } return(nextpid); } /* * Called from exit1 to remove a process from the allproc * list and move it to the zombie list. * * MPSAFE */ void proc_move_allproc_zombie(struct proc *p) { spin_lock_wr(&allproc_spin); while (p->p_lock) { spin_unlock_wr(&allproc_spin); tsleep(p, 0, "reap1", hz / 10); spin_lock_wr(&allproc_spin); } LIST_REMOVE(p, p_list); LIST_INSERT_HEAD(&zombproc, p, p_list); LIST_REMOVE(p, p_hash); p->p_stat = SZOMB; spin_unlock_wr(&allproc_spin); } /* * This routine is called from kern_wait() and will remove the process * from the zombie list and the sibling list. This routine will block * if someone has a lock on the proces (p_lock). * * MPSAFE */ void proc_remove_zombie(struct proc *p) { spin_lock_wr(&allproc_spin); while (p->p_lock) { spin_unlock_wr(&allproc_spin); tsleep(p, 0, "reap1", hz / 10); spin_lock_wr(&allproc_spin); } LIST_REMOVE(p, p_list); /* off zombproc */ LIST_REMOVE(p, p_sibling); spin_unlock_wr(&allproc_spin); } /* * Scan all processes on the allproc list. The process is automatically * held for the callback. A return value of -1 terminates the loop. * * MPSAFE */ void allproc_scan(int (*callback)(struct proc *, void *), void *data) { struct proc *p; int r; spin_lock_rd(&allproc_spin); LIST_FOREACH(p, &allproc, p_list) { PHOLD(p); spin_unlock_rd(&allproc_spin); r = callback(p, data); spin_lock_rd(&allproc_spin); PRELE(p); if (r < 0) break; } spin_unlock_rd(&allproc_spin); } /* * Scan all lwps of processes on the allproc list. The lwp is automatically * held for the callback. A return value of -1 terminates the loop. * * possibly not MPSAFE, needs to access foreingn proc structures */ void alllwp_scan(int (*callback)(struct lwp *, void *), void *data) { struct proc *p; struct lwp *lp; int r = 0; spin_lock_rd(&allproc_spin); LIST_FOREACH(p, &allproc, p_list) { PHOLD(p); spin_unlock_rd(&allproc_spin); FOREACH_LWP_IN_PROC(lp, p) { LWPHOLD(lp); r = callback(lp, data); LWPRELE(lp); } spin_lock_rd(&allproc_spin); PRELE(p); if (r < 0) break; } spin_unlock_rd(&allproc_spin); } /* * Scan all processes on the zombproc list. The process is automatically * held for the callback. A return value of -1 terminates the loop. * * MPSAFE */ void zombproc_scan(int (*callback)(struct proc *, void *), void *data) { struct proc *p; int r; spin_lock_rd(&allproc_spin); LIST_FOREACH(p, &zombproc, p_list) { PHOLD(p); spin_unlock_rd(&allproc_spin); r = callback(p, data); spin_lock_rd(&allproc_spin); PRELE(p); if (r < 0) break; } spin_unlock_rd(&allproc_spin); } #include "opt_ddb.h" #ifdef DDB #include DB_SHOW_COMMAND(pgrpdump, pgrpdump) { struct pgrp *pgrp; struct proc *p; int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { kprintf("\tindx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { kprintf( "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", (void *)pgrp, (long)pgrp->pg_id, (void *)pgrp->pg_session, pgrp->pg_session->s_count, (void *)LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { kprintf("\t\tpid %ld addr %p pgrp %p\n", (long)p->p_pid, (void *)p, (void *)p->p_pgrp); } } } } } #endif /* DDB */ /* * Locate a process on the zombie list. Return a held process or NULL. */ struct proc * zpfind(pid_t pid) { struct proc *p; LIST_FOREACH(p, &zombproc, p_list) if (p->p_pid == pid) return (p); return (NULL); } static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) { struct kinfo_proc ki; struct lwp *lp; int skp = 0, had_output = 0; int error; bzero(&ki, sizeof(ki)); fill_kinfo_proc(p, &ki); if ((flags & KERN_PROC_FLAG_LWP) == 0) skp = 1; error = 0; FOREACH_LWP_IN_PROC(lp, p) { LWPHOLD(lp); fill_kinfo_lwp(lp, &ki.kp_lwp); had_output = 1; error = SYSCTL_OUT(req, &ki, sizeof(ki)); LWPRELE(lp); if (error) break; if (skp) break; } /* We need to output at least the proc, even if there is no lwp. */ if (had_output == 0) { error = SYSCTL_OUT(req, &ki, sizeof(ki)); } return (error); } static int sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req, int flags) { struct kinfo_proc ki; int error; fill_kinfo_proc_kthread(td, &ki); error = SYSCTL_OUT(req, &ki, sizeof(ki)); if (error) return error; return(0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { int *name = (int*) arg1; int oid = oidp->oid_number; u_int namelen = arg2; struct proc *p; struct proclist *plist; struct thread *td; int doingzomb, flags = 0; int error = 0; int n; int origcpu; struct ucred *cr1 = curproc->p_ucred; flags = oid & KERN_PROC_FLAGMASK; oid &= ~KERN_PROC_FLAGMASK; if ((oid == KERN_PROC_ALL && namelen != 0) || (oid != KERN_PROC_ALL && namelen != 1)) return (EINVAL); if (oid == KERN_PROC_PID) { p = pfind((pid_t)name[0]); if (!p) return (0); if (!PRISON_CHECK(cr1, p->p_ucred)) return (0); PHOLD(p); error = sysctl_out_proc(p, req, flags); PRELE(p); return (error); } if (!req->oldptr) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } for (doingzomb = 0; doingzomb <= 1; doingzomb++) { if (doingzomb) plist = &zombproc; else plist = &allproc; LIST_FOREACH(p, plist, p_list) { /* * Show a user only their processes. */ if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred)) continue; /* * Skip embryonic processes. */ if (p->p_stat == SIDL) continue; /* * TODO - make more efficient (see notes below). * do by session. */ switch (oid) { case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) continue; break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL || p->p_session->s_ttyp == NULL || dev2udev(p->p_session->s_ttyp->t_dev) != (udev_t)name[0]) continue; break; case KERN_PROC_UID: if (p->p_ucred == NULL || p->p_ucred->cr_uid != (uid_t)name[0]) continue; break; case KERN_PROC_RUID: if (p->p_ucred == NULL || p->p_ucred->cr_ruid != (uid_t)name[0]) continue; break; } if (!PRISON_CHECK(cr1, p->p_ucred)) continue; PHOLD(p); error = sysctl_out_proc(p, req, flags); PRELE(p); if (error) return (error); } } /* * Iterate over all active cpus and scan their thread list. Start * with the next logical cpu and end with our original cpu. We * migrate our own thread to each target cpu in order to safely scan * its thread list. In the last loop we migrate back to our original * cpu. */ origcpu = mycpu->gd_cpuid; if (!ps_showallthreads || jailed(cr1)) goto post_threads; for (n = 1; n <= ncpus; ++n) { globaldata_t rgd; int nid; nid = (origcpu + n) % ncpus; if ((smp_active_mask & (1 << nid)) == 0) continue; rgd = globaldata_find(nid); lwkt_setcpu_self(rgd); TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) { if (td->td_proc) continue; switch (oid) { case KERN_PROC_PGRP: case KERN_PROC_TTY: case KERN_PROC_UID: case KERN_PROC_RUID: continue; default: break; } lwkt_hold(td); error = sysctl_out_proc_kthread(td, req, doingzomb); lwkt_rele(td); if (error) return (error); } } post_threads: return (0); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int*) arg1; u_int namelen = arg2; struct proc *p; struct pargs *pa; int error = 0; struct ucred *cr1 = curproc->p_ucred; if (namelen != 1) return (EINVAL); p = pfind((pid_t)name[0]); if (!p) return (0); if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred)) return (0); if (req->newptr && curproc != p) return (EPERM); if (req->oldptr && p->p_args != NULL) error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length); if (req->newptr == NULL) return (error); if (p->p_args && --p->p_args->ar_ref == 0) FREE(p->p_args, M_PARGS); p->p_args = NULL; if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) return (error); MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen, M_PARGS, M_WAITOK); pa->ar_ref = 1; pa->ar_length = req->newlen; error = SYSCTL_IN(req, pa->ar_args, req->newlen); if (!error) p->p_args = pa; else FREE(pa, M_PARGS); return (error); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD, sysctl_kern_proc, "Process table"); SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, sysctl_kern_proc_args, "Process argument list");