/* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $ * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.10 2004/03/14 15:36:48 joerg Exp $ * * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $ */ /* * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form. * This driver supports all three device types (PCI devices are supported * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be * supported either using hard-coded IO port/IRQ settings or via Plug * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates. * The 4800 devices support 1, 2, 5.5 and 11Mbps rates. * * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are * a couple of important differences though: * * - Lucent ISA card looks to the host like a PCMCIA controller with * a PCMCIA WaveLAN card inserted. This means that even desktop * machines need to be configured with PCMCIA support in order to * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand * actually look like normal ISA and PCI devices to the host, so * no PCMCIA controller support is needed * * The latter point results in a small gotcha. The Aironet PCMCIA * cards can be configured for one of two operating modes depending * on how the Vpp1 and Vpp2 programming voltages are set when the * card is activated. In order to put the card in proper PCMCIA * operation (where the CIS table is visible and the interface is * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages, * which leaves the card in ISA/PCI mode, which prevents it from * being activated as an PCMCIA device. * * Note that some PCMCIA controller software packages for Windows NT * fail to set the voltages as well. * * The Aironet devices can operate in both station mode and access point * mode. Typically, when programmed for station mode, the card can be set * to automatically perform encapsulation/decapsulation of Ethernet II * and 802.3 frames within 802.11 frames so that the host doesn't have * to do it itself. This driver doesn't program the card that way: the * driver handles all of the encapsulation/decapsulation itself. */ #include "opt_inet.h" #ifdef INET #define ANCACHE /* enable signal strength cache */ #endif #include #include #include #include #include #include #include #include #include #ifdef ANCACHE #include #endif #include #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #include #include #include "if_aironet_ieee.h" #include "if_anreg.h" /* These are global because we need them in sys/pci/if_an_p.c. */ static void an_reset (struct an_softc *); static int an_init_mpi350_desc (struct an_softc *); static int an_ioctl (struct ifnet *, u_long, caddr_t); static void an_init (void *); static int an_init_tx_ring (struct an_softc *); static void an_start (struct ifnet *); static void an_watchdog (struct ifnet *); static void an_rxeof (struct an_softc *); static void an_txeof (struct an_softc *, int); static void an_promisc (struct an_softc *, int); static int an_cmd (struct an_softc *, int, int); static int an_cmd_struct (struct an_softc *, struct an_command *, struct an_reply *); static int an_read_record (struct an_softc *, struct an_ltv_gen *); static int an_write_record (struct an_softc *, struct an_ltv_gen *); static int an_read_data (struct an_softc *, int, int, caddr_t, int); static int an_write_data (struct an_softc *, int, int, caddr_t, int); static int an_seek (struct an_softc *, int, int, int); static int an_alloc_nicmem (struct an_softc *, int, int *); static int an_dma_malloc (struct an_softc *, bus_size_t, struct an_dma_alloc *, int); static void an_dma_free (struct an_softc *, struct an_dma_alloc *); static void an_dma_malloc_cb (void *, bus_dma_segment_t *, int, int); static void an_stats_update (void *); static void an_setdef (struct an_softc *, struct an_req *); #ifdef ANCACHE static void an_cache_store (struct an_softc *, struct ether_header *, struct mbuf *, u_int8_t, u_int8_t); #endif /* function definitions for use with the Cisco's Linux configuration utilities */ static int readrids (struct ifnet*, struct aironet_ioctl*); static int writerids (struct ifnet*, struct aironet_ioctl*); static int flashcard (struct ifnet*, struct aironet_ioctl*); static int cmdreset (struct ifnet *); static int setflashmode (struct ifnet *); static int flashgchar (struct ifnet *,int,int); static int flashpchar (struct ifnet *,int,int); static int flashputbuf (struct ifnet *); static int flashrestart (struct ifnet *); static int WaitBusy (struct ifnet *, int); static int unstickbusy (struct ifnet *); static void an_dump_record (struct an_softc *,struct an_ltv_gen *, char *); static int an_media_change (struct ifnet *); static void an_media_status (struct ifnet *, struct ifmediareq *); static int an_dump = 0; static int an_cache_mode = 0; #define DBM 0 #define PERCENT 1 #define RAW 2 static char an_conf[256]; static char an_conf_cache[256]; DECLARE_DUMMY_MODULE(if_an); /* sysctl vars */ SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters"); static int sysctl_an_dump(SYSCTL_HANDLER_ARGS) { int error, r, last; char *s = an_conf; last = an_dump; switch (an_dump) { case 0: strcpy(an_conf, "off"); break; case 1: strcpy(an_conf, "type"); break; case 2: strcpy(an_conf, "dump"); break; default: snprintf(an_conf, 5, "%x", an_dump); break; } error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req); if (strncmp(an_conf,"off", 3) == 0) { an_dump = 0; } if (strncmp(an_conf,"dump", 4) == 0) { an_dump = 1; } if (strncmp(an_conf,"type", 4) == 0) { an_dump = 2; } if (*s == 'f') { r = 0; for (;;s++) { if ((*s >= '0') && (*s <= '9')) { r = r * 16 + (*s - '0'); } else if ((*s >= 'a') && (*s <= 'f')) { r = r * 16 + (*s - 'a' + 10); } else { break; } } an_dump = r; } if (an_dump != last) printf("Sysctl changed for Aironet driver\n"); return error; } SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW, 0, sizeof(an_conf), sysctl_an_dump, "A", ""); static int sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS) { int error, last; last = an_cache_mode; switch (an_cache_mode) { case 1: strcpy(an_conf_cache, "per"); break; case 2: strcpy(an_conf_cache, "raw"); break; default: strcpy(an_conf_cache, "dbm"); break; } error = sysctl_handle_string(oidp, an_conf_cache, sizeof(an_conf_cache), req); if (strncmp(an_conf_cache,"dbm", 3) == 0) { an_cache_mode = 0; } if (strncmp(an_conf_cache,"per", 3) == 0) { an_cache_mode = 1; } if (strncmp(an_conf_cache,"raw", 3) == 0) { an_cache_mode = 2; } return error; } SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW, 0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", ""); /* * We probe for an Aironet 4500/4800 card by attempting to * read the default SSID list. On reset, the first entry in * the SSID list will contain the name "tsunami." If we don't * find this, then there's no card present. */ int an_probe(dev) device_t dev; { struct an_softc *sc = device_get_softc(dev); struct an_ltv_ssidlist ssid; int error; bzero((char *)&ssid, sizeof(ssid)); error = an_alloc_port(dev, 0, AN_IOSIZ); if (error != 0) return (0); /* can't do autoprobing */ if (rman_get_start(sc->port_res) == -1) return(0); /* * We need to fake up a softc structure long enough * to be able to issue commands and call some of the * other routines. */ sc->an_bhandle = rman_get_bushandle(sc->port_res); sc->an_btag = rman_get_bustag(sc->port_res); sc->an_unit = device_get_unit(dev); ssid.an_len = sizeof(ssid); ssid.an_type = AN_RID_SSIDLIST; /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0); CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF); an_reset(sc); /* No need for an_init_mpi350_desc since it will be done in attach */ if (an_cmd(sc, AN_CMD_READCFG, 0)) return(0); if (an_read_record(sc, (struct an_ltv_gen *)&ssid)) return(0); /* See if the ssid matches what we expect ... but doesn't have to */ if (strcmp(ssid.an_ssid1, AN_DEF_SSID)) return(0); return(AN_IOSIZ); } /* * Allocate a port resource with the given resource id. */ int an_alloc_port(dev, rid, size) device_t dev; int rid; int size; { struct an_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->port_rid = rid; sc->port_res = res; return (0); } else { return (ENOENT); } } /* * Allocate a memory resource with the given resource id. */ int an_alloc_memory(device_t dev, int rid, int size) { struct an_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->mem_rid = rid; sc->mem_res = res; sc->mem_used = size; return (0); } else { return (ENOENT); } } /* * Allocate a auxilary memory resource with the given resource id. */ int an_alloc_aux_memory(device_t dev, int rid, int size) { struct an_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, 0ul, ~0ul, size, RF_ACTIVE); if (res) { sc->mem_aux_rid = rid; sc->mem_aux_res = res; sc->mem_aux_used = size; return (0); } else { return (ENOENT); } } /* * Allocate an irq resource with the given resource id. */ int an_alloc_irq(dev, rid, flags) device_t dev; int rid; int flags; { struct an_softc *sc = device_get_softc(dev); struct resource *res; res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0ul, ~0ul, 1, (RF_ACTIVE | flags)); if (res) { sc->irq_rid = rid; sc->irq_res = res; return (0); } else { return (ENOENT); } } static void an_dma_malloc_cb(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int nseg; int error; { bus_addr_t *paddr = (bus_addr_t*) arg; *paddr = segs->ds_addr; } /* * Alloc DMA memory and set the pointer to it */ static int an_dma_malloc(sc, size, dma, mapflags) struct an_softc *sc; bus_size_t size; struct an_dma_alloc *dma; int mapflags; { int r; r = bus_dmamap_create(sc->an_dtag, BUS_DMA_NOWAIT, &dma->an_dma_map); if (r != 0) goto fail_0; r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr, BUS_DMA_NOWAIT, &dma->an_dma_map); if (r != 0) goto fail_1; r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr, size, an_dma_malloc_cb, &dma->an_dma_paddr, mapflags | BUS_DMA_NOWAIT); if (r != 0) goto fail_2; dma->an_dma_size = size; return (0); fail_2: bus_dmamap_unload(sc->an_dtag, dma->an_dma_map); fail_1: bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map); fail_0: bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map); dma->an_dma_map = NULL; return (r); } static void an_dma_free(sc, dma) struct an_softc *sc; struct an_dma_alloc *dma; { bus_dmamap_unload(sc->an_dtag, dma->an_dma_map); bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map); bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map); } /* * Release all resources */ void an_release_resources(dev) device_t dev; { struct an_softc *sc = device_get_softc(dev); int i; if (sc->port_res) { bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); sc->port_res = 0; } if (sc->mem_res) { bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res); sc->mem_res = 0; } if (sc->mem_aux_res) { bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_aux_rid, sc->mem_aux_res); sc->mem_aux_res = 0; } if (sc->irq_res) { bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq_res); sc->irq_res = 0; } if (sc->an_rid_buffer.an_dma_paddr) { an_dma_free(sc, &sc->an_rid_buffer); } for (i = 0; i < AN_MAX_RX_DESC; i++) if (sc->an_rx_buffer[i].an_dma_paddr) { an_dma_free(sc, &sc->an_rx_buffer[i]); } for (i = 0; i < AN_MAX_TX_DESC; i++) if (sc->an_tx_buffer[i].an_dma_paddr) { an_dma_free(sc, &sc->an_tx_buffer[i]); } if (sc->an_dtag) { bus_dma_tag_destroy(sc->an_dtag); } } int an_init_mpi350_desc(sc) struct an_softc *sc; { struct an_command cmd_struct; struct an_reply reply; struct an_card_rid_desc an_rid_desc; struct an_card_rx_desc an_rx_desc; struct an_card_tx_desc an_tx_desc; int i, desc; if(!sc->an_rid_buffer.an_dma_paddr) an_dma_malloc(sc, AN_RID_BUFFER_SIZE, &sc->an_rid_buffer, 0); for (i = 0; i < AN_MAX_RX_DESC; i++) if(!sc->an_rx_buffer[i].an_dma_paddr) an_dma_malloc(sc, AN_RX_BUFFER_SIZE, &sc->an_rx_buffer[i], 0); for (i = 0; i < AN_MAX_TX_DESC; i++) if(!sc->an_tx_buffer[i].an_dma_paddr) an_dma_malloc(sc, AN_TX_BUFFER_SIZE, &sc->an_tx_buffer[i], 0); /* * Allocate RX descriptor */ bzero(&reply,sizeof(reply)); cmd_struct.an_cmd = AN_CMD_ALLOC_DESC; cmd_struct.an_parm0 = AN_DESCRIPTOR_RX; cmd_struct.an_parm1 = AN_RX_DESC_OFFSET; cmd_struct.an_parm2 = AN_MAX_RX_DESC; if (an_cmd_struct(sc, &cmd_struct, &reply)) { printf("an%d: failed to allocate RX descriptor\n", sc->an_unit); return(EIO); } for (desc = 0; desc < AN_MAX_RX_DESC; desc++) { bzero(&an_rx_desc, sizeof(an_rx_desc)); an_rx_desc.an_valid = 1; an_rx_desc.an_len = AN_RX_BUFFER_SIZE; an_rx_desc.an_done = 0; an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr; for (i = 0; i < sizeof(an_rx_desc) / 4; i++) CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET + (desc * sizeof(an_rx_desc)) + (i * 4), ((u_int32_t*)&an_rx_desc)[i]); } /* * Allocate TX descriptor */ bzero(&reply,sizeof(reply)); cmd_struct.an_cmd = AN_CMD_ALLOC_DESC; cmd_struct.an_parm0 = AN_DESCRIPTOR_TX; cmd_struct.an_parm1 = AN_TX_DESC_OFFSET; cmd_struct.an_parm2 = AN_MAX_TX_DESC; if (an_cmd_struct(sc, &cmd_struct, &reply)) { printf("an%d: failed to allocate TX descriptor\n", sc->an_unit); return(EIO); } for (desc = 0; desc < AN_MAX_TX_DESC; desc++) { bzero(&an_tx_desc, sizeof(an_tx_desc)); an_tx_desc.an_offset = 0; an_tx_desc.an_eoc = 0; an_tx_desc.an_valid = 0; an_tx_desc.an_len = 0; an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr; for (i = 0; i < sizeof(an_tx_desc) / 4; i++) CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET + (desc * sizeof(an_tx_desc)) + (i * 4), ((u_int32_t*)&an_tx_desc)[i]); } /* * Allocate RID descriptor */ bzero(&reply,sizeof(reply)); cmd_struct.an_cmd = AN_CMD_ALLOC_DESC; cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW; cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET; cmd_struct.an_parm2 = 1; if (an_cmd_struct(sc, &cmd_struct, &reply)) { printf("an%d: failed to allocate host descriptor\n", sc->an_unit); return(EIO); } bzero(&an_rid_desc, sizeof(an_rid_desc)); an_rid_desc.an_valid = 1; an_rid_desc.an_len = AN_RID_BUFFER_SIZE; an_rid_desc.an_rid = 0; an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr; for (i = 0; i < sizeof(an_rid_desc) / 4; i++) CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, ((u_int32_t*)&an_rid_desc)[i]); return(0); } int an_attach(sc, unit, flags) struct an_softc *sc; int unit; int flags; { struct ifnet *ifp = &sc->arpcom.ac_if; int error; sc->an_gone = 0; sc->an_associated = 0; sc->an_monitor = 0; sc->an_was_monitor = 0; sc->an_flash_buffer = NULL; /* Reset the NIC. */ an_reset(sc); if (sc->mpi350) { error = an_init_mpi350_desc(sc); if (error) return(error); } /* Load factory config */ if (an_cmd(sc, AN_CMD_READCFG, 0)) { printf("an%d: failed to load config data\n", sc->an_unit); return(EIO); } /* Read the current configuration */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } /* Read the card capabilities */ sc->an_caps.an_type = AN_RID_CAPABILITIES; sc->an_caps.an_len = sizeof(struct an_ltv_caps); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } /* Read ssid list */ sc->an_ssidlist.an_type = AN_RID_SSIDLIST; sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } /* Read AP list */ sc->an_aplist.an_type = AN_RID_APLIST; sc->an_aplist.an_len = sizeof(struct an_ltv_aplist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) { printf("an%d: read record failed\n", sc->an_unit); return(EIO); } #ifdef ANCACHE /* Read the RSSI <-> dBm map */ sc->an_have_rssimap = 0; if (sc->an_caps.an_softcaps & 8) { sc->an_rssimap.an_type = AN_RID_RSSI_MAP; sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) { printf("an%d: unable to get RSSI <-> dBM map\n", sc->an_unit); } else { printf("an%d: got RSSI <-> dBM map\n", sc->an_unit); sc->an_have_rssimap = 1; } } else { printf("an%d: no RSSI <-> dBM map\n", sc->an_unit); } #endif printf("an%d: Ethernet address: %6D\n", sc->an_unit, sc->arpcom.ac_enaddr, ":"); ifp->if_softc = sc; if_initname(ifp, "an", unit); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = an_ioctl; ifp->if_output = ether_output; ifp->if_start = an_start; ifp->if_watchdog = an_watchdog; ifp->if_init = an_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename)); bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename, sizeof(AN_DEFAULT_NODENAME) - 1); bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1)); bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1, sizeof(AN_DEFAULT_NETNAME) - 1); sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME); sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION; sc->an_tx_rate = 0; bzero((char *)&sc->an_stats, sizeof(sc->an_stats)); ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status); #define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0); if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0); } if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0); } ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0); #undef ADD ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0)); /* * Call MI attach routine. */ ether_ifattach(ifp, sc->an_caps.an_oemaddr); callout_handle_init(&sc->an_stat_ch); return(0); } static void an_rxeof(sc) struct an_softc *sc; { struct ifnet *ifp; struct ether_header *eh; struct ieee80211_frame *ih; struct an_rxframe rx_frame; struct an_rxframe_802_3 rx_frame_802_3; struct mbuf *m; int len, id, error = 0, i, count = 0; int ieee80211_header_len; u_char *bpf_buf; u_short fc1; struct an_card_rx_desc an_rx_desc; u_int8_t *buf; ifp = &sc->arpcom.ac_if; if (!sc->mpi350) { id = CSR_READ_2(sc, AN_RX_FID); if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) { /* read raw 802.11 packet */ bpf_buf = sc->buf_802_11; /* read header */ if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } /* * skip beacon by default since this increases the * system load a lot */ if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) && (rx_frame.an_frame_ctl & IEEE80211_FC0_SUBTYPE_BEACON)) { return; } if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) { len = rx_frame.an_rx_payload_len + sizeof(rx_frame); /* Check for insane frame length */ if (len > sizeof(sc->buf_802_11)) { printf("an%d: oversized packet " "received (%d, %d)\n", sc->an_unit, len, MCLBYTES); ifp->if_ierrors++; return; } bcopy((char *)&rx_frame, bpf_buf, sizeof(rx_frame)); error = an_read_data(sc, id, sizeof(rx_frame), (caddr_t)bpf_buf+sizeof(rx_frame), rx_frame.an_rx_payload_len); } else { fc1=rx_frame.an_frame_ctl >> 8; ieee80211_header_len = sizeof(struct ieee80211_frame); if ((fc1 & IEEE80211_FC1_DIR_TODS) && (fc1 & IEEE80211_FC1_DIR_FROMDS)) { ieee80211_header_len += ETHER_ADDR_LEN; } len = rx_frame.an_rx_payload_len + ieee80211_header_len; /* Check for insane frame length */ if (len > sizeof(sc->buf_802_11)) { printf("an%d: oversized packet " "received (%d, %d)\n", sc->an_unit, len, MCLBYTES); ifp->if_ierrors++; return; } ih = (struct ieee80211_frame *)bpf_buf; bcopy((char *)&rx_frame.an_frame_ctl, (char *)ih, ieee80211_header_len); error = an_read_data(sc, id, sizeof(rx_frame) + rx_frame.an_gaplen, (caddr_t)ih +ieee80211_header_len, rx_frame.an_rx_payload_len); } /* dump raw 802.11 packet to bpf and skip ip stack */ if (ifp->if_bpf != NULL) { bpf_tap(ifp, bpf_buf, len); } } else { MGETHDR(m, M_NOWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_NOWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; /* Read Ethernet encapsulated packet */ #ifdef ANCACHE /* Read NIC frame header */ if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } #endif /* Read in the 802_3 frame header */ if (an_read_data(sc, id, 0x34, (caddr_t)&rx_frame_802_3, sizeof(rx_frame_802_3))) { ifp->if_ierrors++; return; } if (rx_frame_802_3.an_rx_802_3_status != 0) { ifp->if_ierrors++; return; } /* Check for insane frame length */ len = rx_frame_802_3.an_rx_802_3_payload_len; if (len > sizeof(sc->buf_802_11)) { printf("an%d: oversized packet " "received (%d, %d)\n", sc->an_unit, len, MCLBYTES); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = rx_frame_802_3.an_rx_802_3_payload_len + 12; eh = mtod(m, struct ether_header *); bcopy((char *)&rx_frame_802_3.an_rx_dst_addr, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame_802_3.an_rx_src_addr, (char *)&eh->ether_shost, ETHER_ADDR_LEN); /* in mbuf header type is just before payload */ error = an_read_data(sc, id, 0x44, (caddr_t)&(eh->ether_type), rx_frame_802_3.an_rx_802_3_payload_len); if (error) { m_freem(m); ifp->if_ierrors++; return; } ifp->if_ipackets++; /* Receive packet. */ m_adj(m, sizeof(struct ether_header)); #ifdef ANCACHE an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength, rx_frame.an_rsvd0); #endif ether_input(ifp, eh, m); } } else { /* MPI-350 */ for (count = 0; count < AN_MAX_RX_DESC; count++){ for (i = 0; i < sizeof(an_rx_desc) / 4; i++) ((u_int32_t*)&an_rx_desc)[i] = CSR_MEM_AUX_READ_4(sc, AN_RX_DESC_OFFSET + (count * sizeof(an_rx_desc)) + (i * 4)); if (an_rx_desc.an_done && !an_rx_desc.an_valid) { buf = sc->an_rx_buffer[count].an_dma_vaddr; MGETHDR(m, M_NOWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_NOWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; /* Read Ethernet encapsulated packet */ /* * No ANCACHE support since we just get back * an Ethernet packet no 802.11 info */ #if 0 #ifdef ANCACHE /* Read NIC frame header */ bcopy(buf, (caddr_t)&rx_frame, sizeof(rx_frame)); #endif #endif /* Check for insane frame length */ len = an_rx_desc.an_len + 12; if (len > MCLBYTES) { printf("an%d: oversized packet " "received (%d, %d)\n", sc->an_unit, len, MCLBYTES); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = an_rx_desc.an_len + 12; eh = mtod(m, struct ether_header *); bcopy(buf, (char *)eh, m->m_pkthdr.len); ifp->if_ipackets++; /* Receive packet. */ m_adj(m, sizeof(struct ether_header)); #if 0 #ifdef ANCACHE an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength, rx_frame.an_rsvd0); #endif #endif ether_input(ifp, eh, m); an_rx_desc.an_valid = 1; an_rx_desc.an_len = AN_RX_BUFFER_SIZE; an_rx_desc.an_done = 0; an_rx_desc.an_phys = sc->an_rx_buffer[count].an_dma_paddr; for (i = 0; i < sizeof(an_rx_desc) / 4; i++) CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET + (count * sizeof(an_rx_desc)) + (i * 4), ((u_int32_t*)&an_rx_desc)[i]); } else { printf("an%d: Didn't get valid RX packet " "%x %x %d\n", sc->an_unit, an_rx_desc.an_done, an_rx_desc.an_valid, an_rx_desc.an_len); } } } } static void an_txeof(sc, status) struct an_softc *sc; int status; { struct ifnet *ifp; int id, i; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (!sc->mpi350) { id = CSR_READ_2(sc, AN_TX_CMP_FID); if (status & AN_EV_TX_EXC) { ifp->if_oerrors++; } else ifp->if_opackets++; for (i = 0; i < AN_TX_RING_CNT; i++) { if (id == sc->an_rdata.an_tx_ring[i]) { sc->an_rdata.an_tx_ring[i] = 0; break; } } AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT); } else { /* MPI 350 */ AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC); if (sc->an_rdata.an_tx_prod == sc->an_rdata.an_tx_cons) sc->an_rdata.an_tx_empty = 1; } return; } /* * We abuse the stats updater to check the current NIC status. This * is important because we don't want to allow transmissions until * the NIC has synchronized to the current cell (either as the master * in an ad-hoc group, or as a station connected to an access point). */ static void an_stats_update(xsc) void *xsc; { struct an_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = xsc; ifp = &sc->arpcom.ac_if; sc->an_status.an_type = AN_RID_STATUS; sc->an_status.an_len = sizeof(struct an_ltv_status); an_read_record(sc, (struct an_ltv_gen *)&sc->an_status); if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC) sc->an_associated = 1; else sc->an_associated = 0; /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) { sc->an_stat_ch = timeout(an_stats_update, sc, hz); splx(s); return; } sc->an_stats.an_len = sizeof(struct an_ltv_stats); sc->an_stats.an_type = AN_RID_32BITS_CUM; an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len); sc->an_stat_ch = timeout(an_stats_update, sc, hz); splx(s); return; } void an_intr(xsc) void *xsc; { struct an_softc *sc; struct ifnet *ifp; u_int16_t status; sc = (struct an_softc*)xsc; if (sc->an_gone) return; ifp = &sc->arpcom.ac_if; /* Disable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0); status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)); CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS); if (status & AN_EV_AWAKE) { CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_AWAKE); } if (status & AN_EV_LINKSTAT) { if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350)) == AN_LINKSTAT_ASSOCIATED) sc->an_associated = 1; else sc->an_associated = 0; CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT); } if (status & AN_EV_RX) { an_rxeof(sc); CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX); } if (status & AN_EV_TX) { an_txeof(sc, status); CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX); } if (status & AN_EV_TX_EXC) { an_txeof(sc, status); CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC); } if (status & AN_EV_ALLOC) CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC); /* Re-enable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS); if ((ifp->if_flags & IFF_UP) && (ifp->if_snd.ifq_head != NULL)) an_start(ifp); return; } static int an_cmd_struct(sc, cmd, reply) struct an_softc *sc; struct an_command *cmd; struct an_reply *reply; { int i; for (i = 0; i != AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) { DELAY(1000); } else break; } if( i == AN_TIMEOUT) { printf("BUSY\n"); return(ETIMEDOUT); } CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0); CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1); CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2); CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd); for (i = 0; i < AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD) break; DELAY(1000); } reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350)); reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350)); reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350)); reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350)); if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY); /* Ack the command */ CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD); if (i == AN_TIMEOUT) return(ETIMEDOUT); return(0); } static int an_cmd(sc, cmd, val) struct an_softc *sc; int cmd; int val; { int i, s = 0; CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val); CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0); CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0); CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd); for (i = 0; i < AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD) break; else { if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd) CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd); } } for (i = 0; i < AN_TIMEOUT; i++) { CSR_READ_2(sc, AN_RESP0(sc->mpi350)); CSR_READ_2(sc, AN_RESP1(sc->mpi350)); CSR_READ_2(sc, AN_RESP2(sc->mpi350)); s = CSR_READ_2(sc, AN_STATUS(sc->mpi350)); if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE)) break; } /* Ack the command */ CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD); if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY); if (i == AN_TIMEOUT) return(ETIMEDOUT); return(0); } /* * This reset sequence may look a little strange, but this is the * most reliable method I've found to really kick the NIC in the * head and force it to reboot correctly. */ static void an_reset(sc) struct an_softc *sc; { if (sc->an_gone) return; an_cmd(sc, AN_CMD_ENABLE, 0); an_cmd(sc, AN_CMD_FW_RESTART, 0); an_cmd(sc, AN_CMD_NOOP2, 0); if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) printf("an%d: reset failed\n", sc->an_unit); an_cmd(sc, AN_CMD_DISABLE, 0); return; } /* * Read an LTV record from the NIC. */ static int an_read_record(sc, ltv) struct an_softc *sc; struct an_ltv_gen *ltv; { struct an_ltv_gen *an_ltv; struct an_card_rid_desc an_rid_desc; struct an_command cmd; struct an_reply reply; u_int16_t *ptr; u_int8_t *ptr2; int i, len; if (ltv->an_len < 4 || ltv->an_type == 0) return(EINVAL); if (!sc->mpi350){ /* Tell the NIC to enter record read mode. */ if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) { printf("an%d: RID access failed\n", sc->an_unit); return(EIO); } /* Seek to the record. */ if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) { printf("an%d: seek to record failed\n", sc->an_unit); return(EIO); } /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). * Length includes type but not length. */ len = CSR_READ_2(sc, AN_DATA1); if (len > (ltv->an_len - 2)) { printf("an%d: record length mismatch -- expected %d, " "got %d for Rid %x\n", sc->an_unit, ltv->an_len - 2, len, ltv->an_type); len = ltv->an_len - 2; } else { ltv->an_len = len + 2; } /* Now read the data. */ len -= 2; /* skip the type */ ptr = <v->an_val; for (i = len; i > 1; i -= 2) *ptr++ = CSR_READ_2(sc, AN_DATA1); if (i) { ptr2 = (u_int8_t *)ptr; *ptr2 = CSR_READ_1(sc, AN_DATA1); } } else { /* MPI-350 */ an_rid_desc.an_valid = 1; an_rid_desc.an_len = AN_RID_BUFFER_SIZE; an_rid_desc.an_rid = 0; an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr; bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE); bzero(&cmd, sizeof(cmd)); bzero(&reply, sizeof(reply)); cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ; cmd.an_parm0 = ltv->an_type; for (i = 0; i < sizeof(an_rid_desc) / 4; i++) CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, ((u_int32_t*)&an_rid_desc)[i]); if (an_cmd_struct(sc, &cmd, &reply) || reply.an_status & AN_CMD_QUAL_MASK) { printf("an%d: failed to read RID %x %x %x %x %x, %d\n", sc->an_unit, ltv->an_type, reply.an_status, reply.an_resp0, reply.an_resp1, reply.an_resp2, i); return(EIO); } an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr; if (an_ltv->an_len + 2 < an_rid_desc.an_len) { an_rid_desc.an_len = an_ltv->an_len; } if (an_rid_desc.an_len > 2) bcopy(&an_ltv->an_type, <v->an_val, an_rid_desc.an_len - 2); ltv->an_len = an_rid_desc.an_len + 2; } if (an_dump) an_dump_record(sc, ltv, "Read"); return(0); } /* * Same as read, except we inject data instead of reading it. */ static int an_write_record(sc, ltv) struct an_softc *sc; struct an_ltv_gen *ltv; { struct an_card_rid_desc an_rid_desc; struct an_command cmd; struct an_reply reply; char *buf; u_int16_t *ptr; u_int8_t *ptr2; int i, len; if (an_dump) an_dump_record(sc, ltv, "Write"); if (!sc->mpi350){ if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) return(EIO); if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) return(EIO); /* * Length includes type but not length. */ len = ltv->an_len - 2; CSR_WRITE_2(sc, AN_DATA1, len); len -= 2; /* skip the type */ ptr = <v->an_val; for (i = len; i > 1; i -= 2) CSR_WRITE_2(sc, AN_DATA1, *ptr++); if (i) { ptr2 = (u_int8_t *)ptr; CSR_WRITE_1(sc, AN_DATA0, *ptr2); } if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type)) return(EIO); } else { /* MPI-350 */ for (i = 0; i != AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) { DELAY(10); } else break; } if (i == AN_TIMEOUT) { printf("BUSY\n"); } an_rid_desc.an_valid = 1; an_rid_desc.an_len = ltv->an_len - 2; an_rid_desc.an_rid = ltv->an_type; an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr; bcopy(<v->an_type, sc->an_rid_buffer.an_dma_vaddr, an_rid_desc.an_len); bzero(&cmd,sizeof(cmd)); bzero(&reply,sizeof(reply)); cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE; cmd.an_parm0 = ltv->an_type; for (i = 0; i < sizeof(an_rid_desc) / 4; i++) CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, ((u_int32_t*)&an_rid_desc)[i]); if ((i = an_cmd_struct(sc, &cmd, &reply))) { printf("an%d: failed to write RID 1 %x %x %x %x %x, %d\n", sc->an_unit, ltv->an_type, reply.an_status, reply.an_resp0, reply.an_resp1, reply.an_resp2, i); return(EIO); } ptr = (u_int16_t *)buf; if (reply.an_status & AN_CMD_QUAL_MASK) { printf("an%d: failed to write RID 2 %x %x %x %x %x, %d\n", sc->an_unit, ltv->an_type, reply.an_status, reply.an_resp0, reply.an_resp1, reply.an_resp2, i); return(EIO); } } return(0); } static void an_dump_record(sc, ltv, string) struct an_softc *sc; struct an_ltv_gen *ltv; char *string; { u_int8_t *ptr2; int len; int i; int count = 0; char buf[17], temp; len = ltv->an_len - 4; printf("an%d: RID %4x, Length %4d, Mode %s\n", sc->an_unit, ltv->an_type, ltv->an_len - 4, string); if (an_dump == 1 || (an_dump == ltv->an_type)) { printf("an%d:\t", sc->an_unit); bzero(buf,sizeof(buf)); ptr2 = (u_int8_t *)<v->an_val; for (i = len; i > 0; i--) { printf("%02x ", *ptr2); temp = *ptr2++; if (temp >= ' ' && temp <= '~') buf[count] = temp; else if (temp >= 'A' && temp <= 'Z') buf[count] = temp; else buf[count] = '.'; if (++count == 16) { count = 0; printf("%s\n",buf); printf("an%d:\t", sc->an_unit); bzero(buf,sizeof(buf)); } } for (; count != 16; count++) { printf(" "); } printf(" %s\n",buf); } } static int an_seek(sc, id, off, chan) struct an_softc *sc; int id, off, chan; { int i; int selreg, offreg; switch (chan) { case AN_BAP0: selreg = AN_SEL0; offreg = AN_OFF0; break; case AN_BAP1: selreg = AN_SEL1; offreg = AN_OFF1; break; default: printf("an%d: invalid data path: %x\n", sc->an_unit, chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < AN_TIMEOUT; i++) { if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR))) break; } if (i == AN_TIMEOUT) return(ETIMEDOUT); return(0); } static int an_read_data(sc, id, off, buf, len) struct an_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; u_int8_t *ptr2; if (off != -1) { if (an_seek(sc, id, off, AN_BAP1)) return(EIO); } ptr = (u_int16_t *)buf; for (i = len; i > 1; i -= 2) *ptr++ = CSR_READ_2(sc, AN_DATA1); if (i) { ptr2 = (u_int8_t *)ptr; *ptr2 = CSR_READ_1(sc, AN_DATA1); } return(0); } static int an_write_data(sc, id, off, buf, len) struct an_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; u_int8_t *ptr2; if (off != -1) { if (an_seek(sc, id, off, AN_BAP0)) return(EIO); } ptr = (u_int16_t *)buf; for (i = len; i > 1; i -= 2) CSR_WRITE_2(sc, AN_DATA0, *ptr++); if (i) { ptr2 = (u_int8_t *)ptr; CSR_WRITE_1(sc, AN_DATA0, *ptr2); } return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ static int an_alloc_nicmem(sc, len, id) struct an_softc *sc; int len; int *id; { int i; if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) { printf("an%d: failed to allocate %d bytes on NIC\n", sc->an_unit, len); return(ENOMEM); } for (i = 0; i < AN_TIMEOUT; i++) { if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC) break; } if (i == AN_TIMEOUT) return(ETIMEDOUT); CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC); *id = CSR_READ_2(sc, AN_ALLOC_FID); if (an_seek(sc, *id, 0, AN_BAP0)) return(EIO); for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, AN_DATA0, 0); return(0); } static void an_setdef(sc, areq) struct an_softc *sc; struct an_req *areq; { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifnet *ifp; struct an_ltv_genconfig *cfg; struct an_ltv_ssidlist *ssid; struct an_ltv_aplist *ap; struct an_ltv_gen *sp; ifp = &sc->arpcom.ac_if; switch (areq->an_type) { case AN_RID_GENCONFIG: cfg = (struct an_ltv_genconfig *)areq; ifa = ifnet_addrs[ifp->if_index - 1]; sdl = (struct sockaddr_dl *)ifa->ifa_addr; bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN); bcopy((char *)cfg, (char *)&sc->an_config, sizeof(struct an_ltv_genconfig)); break; case AN_RID_SSIDLIST: ssid = (struct an_ltv_ssidlist *)areq; bcopy((char *)ssid, (char *)&sc->an_ssidlist, sizeof(struct an_ltv_ssidlist)); break; case AN_RID_APLIST: ap = (struct an_ltv_aplist *)areq; bcopy((char *)ap, (char *)&sc->an_aplist, sizeof(struct an_ltv_aplist)); break; case AN_RID_TX_SPEED: sp = (struct an_ltv_gen *)areq; sc->an_tx_rate = sp->an_val; /* Read the current configuration */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); an_read_record(sc, (struct an_ltv_gen *)&sc->an_config); cfg = &sc->an_config; /* clear other rates and set the only one we want */ bzero(cfg->an_rates, sizeof(cfg->an_rates)); cfg->an_rates[0] = sc->an_tx_rate; /* Save the new rate */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); break; case AN_RID_WEP_TEMP: /* Cache the temp keys */ bcopy(areq, &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex], sizeof(struct an_ltv_key)); case AN_RID_WEP_PERM: case AN_RID_LEAPUSERNAME: case AN_RID_LEAPPASSWORD: /* Disable the MAC. */ an_cmd(sc, AN_CMD_DISABLE, 0); /* Write the key */ an_write_record(sc, (struct an_ltv_gen *)areq); /* Turn the MAC back on. */ an_cmd(sc, AN_CMD_ENABLE, 0); break; case AN_RID_MONITOR_MODE: cfg = (struct an_ltv_genconfig *)areq; bpfdetach(ifp); if (ng_ether_detach_p != NULL) (*ng_ether_detach_p) (ifp); sc->an_monitor = cfg->an_len; if (sc->an_monitor & AN_MONITOR) { if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) { bpfattach(ifp, DLT_AIRONET_HEADER, sizeof(struct ether_header)); } else { bpfattach(ifp, DLT_IEEE802_11, sizeof(struct ether_header)); } } else { bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); if (ng_ether_attach_p != NULL) (*ng_ether_attach_p) (ifp); } break; default: printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type); return; break; } /* Reinitialize the card. */ if (ifp->if_flags) an_init(sc); return; } /* * Derived from Linux driver to enable promiscious mode. */ static void an_promisc(sc, promisc) struct an_softc *sc; int promisc; { if (sc->an_was_monitor) an_reset(sc); if (sc->mpi350) an_init_mpi350_desc(sc); if (sc->an_monitor || sc->an_was_monitor) an_init(sc); sc->an_was_monitor = sc->an_monitor; an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0); return; } static int an_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; int len; int i; struct an_softc *sc; struct ifreq *ifr; struct thread *td = curthread; struct ieee80211req *ireq; u_int8_t tmpstr[IEEE80211_NWID_LEN*2]; u_int8_t *tmpptr; struct an_ltv_genconfig *config; struct an_ltv_key *key; struct an_ltv_status *status; struct an_ltv_ssidlist *ssids; int mode; struct aironet_ioctl l_ioctl; sc = ifp->if_softc; s = splimp(); ifr = (struct ifreq *)data; ireq = (struct ieee80211req *)data; config = (struct an_ltv_genconfig *)&sc->areq; key = (struct an_ltv_key *)&sc->areq; status = (struct an_ltv_status *)&sc->areq; ssids = (struct an_ltv_ssidlist *)&sc->areq; if (sc->an_gone) { error = ENODEV; goto out; } switch (command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->an_if_flags & IFF_PROMISC)) { an_promisc(sc, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->an_if_flags & IFF_PROMISC) { an_promisc(sc, 0); } else an_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) an_stop(sc); } sc->an_if_flags = ifp->if_flags; error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command); break; case SIOCADDMULTI: case SIOCDELMULTI: /* The Aironet has no multicast filter. */ error = 0; break; case SIOCGAIRONET: error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq)); if (error != 0) break; #ifdef ANCACHE if (sc->areq.an_type == AN_RID_ZERO_CACHE) { error = suser(td); if (error) break; sc->an_sigitems = sc->an_nextitem = 0; break; } else if (sc->areq.an_type == AN_RID_READ_CACHE) { char *pt = (char *)&sc->areq.an_val; bcopy((char *)&sc->an_sigitems, (char *)pt, sizeof(int)); pt += sizeof(int); sc->areq.an_len = sizeof(int) / 2; bcopy((char *)&sc->an_sigcache, (char *)pt, sizeof(struct an_sigcache) * sc->an_sigitems); sc->areq.an_len += ((sizeof(struct an_sigcache) * sc->an_sigitems) / 2) + 1; } else #endif if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq)); break; case SIOCSAIRONET: if ((error = suser(td))) goto out; error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq)); if (error != 0) break; an_setdef(sc, &sc->areq); break; case SIOCGPRIVATE_0: /* used by Cisco client utility */ if ((error = suser(td))) goto out; copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl)); mode = l_ioctl.command; if (mode >= AIROGCAP && mode <= AIROGSTATSD32) { error = readrids(ifp, &l_ioctl); } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) { error = writerids(ifp, &l_ioctl); } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) { error = flashcard(ifp, &l_ioctl); } else { error =-1; } /* copy out the updated command info */ copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl)); break; case SIOCGPRIVATE_1: /* used by Cisco client utility */ if ((error = suser(td))) goto out; copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl)); l_ioctl.command = 0; error = AIROMAGIC; copyout(&error, l_ioctl.data, sizeof(error)); error = 0; break; case SIOCG80211: sc->areq.an_len = sizeof(sc->areq); /* was that a good idea DJA we are doing a short-cut */ switch (ireq->i_type) { case IEEE80211_IOC_SSID: if (ireq->i_val == -1) { sc->areq.an_type = AN_RID_STATUS; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } len = status->an_ssidlen; tmpptr = status->an_ssid; } else if (ireq->i_val >= 0) { sc->areq.an_type = AN_RID_SSIDLIST; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if (ireq->i_val == 0) { len = ssids->an_ssid1_len; tmpptr = ssids->an_ssid1; } else if (ireq->i_val == 1) { len = ssids->an_ssid2_len; tmpptr = ssids->an_ssid2; } else if (ireq->i_val == 2) { len = ssids->an_ssid3_len; tmpptr = ssids->an_ssid3; } else { error = EINVAL; break; } } else { error = EINVAL; break; } if (len > IEEE80211_NWID_LEN) { error = EINVAL; break; } ireq->i_len = len; bzero(tmpstr, IEEE80211_NWID_LEN); bcopy(tmpptr, tmpstr, len); error = copyout(tmpstr, ireq->i_data, IEEE80211_NWID_LEN); break; case IEEE80211_IOC_NUMSSIDS: ireq->i_val = 3; break; case IEEE80211_IOC_WEP: sc->areq.an_type = AN_RID_ACTUALCFG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) { if (config->an_authtype & AN_AUTHTYPE_ALLOW_UNENCRYPTED) ireq->i_val = IEEE80211_WEP_MIXED; else ireq->i_val = IEEE80211_WEP_ON; } else { ireq->i_val = IEEE80211_WEP_OFF; } break; case IEEE80211_IOC_WEPKEY: /* * XXX: I'm not entierly convinced this is * correct, but it's what is implemented in * ancontrol so it will have to do until we get * access to actual Cisco code. */ if (ireq->i_val < 0 || ireq->i_val > 8) { error = EINVAL; break; } len = 0; if (ireq->i_val < 5) { sc->areq.an_type = AN_RID_WEP_TEMP; for (i = 0; i < 5; i++) { if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if (key->kindex == 0xffff) break; if (key->kindex == ireq->i_val) len = key->klen; /* Required to get next entry */ sc->areq.an_type = AN_RID_WEP_PERM; } if (error != 0) break; } /* We aren't allowed to read the value of the * key from the card so we just output zeros * like we would if we could read the card, but * denied the user access. */ bzero(tmpstr, len); ireq->i_len = len; error = copyout(tmpstr, ireq->i_data, len); break; case IEEE80211_IOC_NUMWEPKEYS: ireq->i_val = 9; /* include home key */ break; case IEEE80211_IOC_WEPTXKEY: /* * For some strange reason, you have to read all * keys before you can read the txkey. */ sc->areq.an_type = AN_RID_WEP_TEMP; for (i = 0; i < 5; i++) { if (an_read_record(sc, (struct an_ltv_gen *) &sc->areq)) { error = EINVAL; break; } if (key->kindex == 0xffff) break; /* Required to get next entry */ sc->areq.an_type = AN_RID_WEP_PERM; } if (error != 0) break; sc->areq.an_type = AN_RID_WEP_PERM; key->kindex = 0xffff; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } ireq->i_val = key->mac[0]; /* * Check for home mode. Map home mode into * 5th key since that is how it is stored on * the card */ sc->areq.an_len = sizeof(struct an_ltv_genconfig); sc->areq.an_type = AN_RID_GENCONFIG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if (config->an_home_product & AN_HOME_NETWORK) ireq->i_val = 4; break; case IEEE80211_IOC_AUTHMODE: sc->areq.an_type = AN_RID_ACTUALCFG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if ((config->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_NONE) { ireq->i_val = IEEE80211_AUTH_NONE; } else if ((config->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_OPEN) { ireq->i_val = IEEE80211_AUTH_OPEN; } else if ((config->an_authtype & AN_AUTHTYPE_MASK) == AN_AUTHTYPE_SHAREDKEY) { ireq->i_val = IEEE80211_AUTH_SHARED; } else error = EINVAL; break; case IEEE80211_IOC_STATIONNAME: sc->areq.an_type = AN_RID_ACTUALCFG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } ireq->i_len = sizeof(config->an_nodename); tmpptr = config->an_nodename; bzero(tmpstr, IEEE80211_NWID_LEN); bcopy(tmpptr, tmpstr, ireq->i_len); error = copyout(tmpstr, ireq->i_data, IEEE80211_NWID_LEN); break; case IEEE80211_IOC_CHANNEL: sc->areq.an_type = AN_RID_STATUS; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } ireq->i_val = status->an_cur_channel; break; case IEEE80211_IOC_POWERSAVE: sc->areq.an_type = AN_RID_ACTUALCFG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if (config->an_psave_mode == AN_PSAVE_NONE) { ireq->i_val = IEEE80211_POWERSAVE_OFF; } else if (config->an_psave_mode == AN_PSAVE_CAM) { ireq->i_val = IEEE80211_POWERSAVE_CAM; } else if (config->an_psave_mode == AN_PSAVE_PSP) { ireq->i_val = IEEE80211_POWERSAVE_PSP; } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) { ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM; } else error = EINVAL; break; case IEEE80211_IOC_POWERSAVESLEEP: sc->areq.an_type = AN_RID_ACTUALCFG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } ireq->i_val = config->an_listen_interval; break; } break; case SIOCS80211: if ((error = suser(td))) goto out; sc->areq.an_len = sizeof(sc->areq); /* * We need a config structure for everything but the WEP * key management and SSIDs so we get it now so avoid * duplicating this code every time. */ if (ireq->i_type != IEEE80211_IOC_SSID && ireq->i_type != IEEE80211_IOC_WEPKEY && ireq->i_type != IEEE80211_IOC_WEPTXKEY) { sc->areq.an_type = AN_RID_GENCONFIG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } } switch (ireq->i_type) { case IEEE80211_IOC_SSID: sc->areq.an_type = AN_RID_SSIDLIST; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if (ireq->i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } switch (ireq->i_val) { case 0: error = copyin(ireq->i_data, ssids->an_ssid1, ireq->i_len); ssids->an_ssid1_len = ireq->i_len; break; case 1: error = copyin(ireq->i_data, ssids->an_ssid2, ireq->i_len); ssids->an_ssid2_len = ireq->i_len; break; case 2: error = copyin(ireq->i_data, ssids->an_ssid3, ireq->i_len); ssids->an_ssid3_len = ireq->i_len; break; default: error = EINVAL; break; } break; case IEEE80211_IOC_WEP: switch (ireq->i_val) { case IEEE80211_WEP_OFF: config->an_authtype &= ~(AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_ALLOW_UNENCRYPTED); break; case IEEE80211_WEP_ON: config->an_authtype |= AN_AUTHTYPE_PRIVACY_IN_USE; config->an_authtype &= ~AN_AUTHTYPE_ALLOW_UNENCRYPTED; break; case IEEE80211_WEP_MIXED: config->an_authtype |= AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_ALLOW_UNENCRYPTED; break; default: error = EINVAL; break; } break; case IEEE80211_IOC_WEPKEY: if (ireq->i_val < 0 || ireq->i_val > 8 || ireq->i_len > 13) { error = EINVAL; break; } error = copyin(ireq->i_data, tmpstr, 13); if (error != 0) break; /* * Map the 9th key into the home mode * since that is how it is stored on * the card */ bzero(&sc->areq, sizeof(struct an_ltv_key)); sc->areq.an_len = sizeof(struct an_ltv_key); key->mac[0] = 1; /* The others are 0. */ if (ireq->i_val < 4) { sc->areq.an_type = AN_RID_WEP_TEMP; key->kindex = ireq->i_val; } else { sc->areq.an_type = AN_RID_WEP_PERM; key->kindex = ireq->i_val - 4; } key->klen = ireq->i_len; bcopy(tmpstr, key->key, key->klen); break; case IEEE80211_IOC_WEPTXKEY: if (ireq->i_val < 0 || ireq->i_val > 4) { error = EINVAL; break; } /* * Map the 5th key into the home mode * since that is how it is stored on * the card */ sc->areq.an_len = sizeof(struct an_ltv_genconfig); sc->areq.an_type = AN_RID_ACTUALCFG; if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) { error = EINVAL; break; } if (ireq->i_val == 4) { config->an_home_product |= AN_HOME_NETWORK; ireq->i_val = 0; } else { config->an_home_product &= ~AN_HOME_NETWORK; } sc->an_config.an_home_product = config->an_home_product; /* update configuration */ an_init(sc); bzero(&sc->areq, sizeof(struct an_ltv_key)); sc->areq.an_len = sizeof(struct an_ltv_key); sc->areq.an_type = AN_RID_WEP_PERM; key->kindex = 0xffff; key->mac[0] = ireq->i_val; break; case IEEE80211_IOC_AUTHMODE: switch (ireq->i_val) { case IEEE80211_AUTH_NONE: config->an_authtype = AN_AUTHTYPE_NONE | (config->an_authtype & ~AN_AUTHTYPE_MASK); break; case IEEE80211_AUTH_OPEN: config->an_authtype = AN_AUTHTYPE_OPEN | (config->an_authtype & ~AN_AUTHTYPE_MASK); break; case IEEE80211_AUTH_SHARED: config->an_authtype = AN_AUTHTYPE_SHAREDKEY | (config->an_authtype & ~AN_AUTHTYPE_MASK); break; default: error = EINVAL; } break; case IEEE80211_IOC_STATIONNAME: if (ireq->i_len > 16) { error = EINVAL; break; } bzero(config->an_nodename, 16); error = copyin(ireq->i_data, config->an_nodename, ireq->i_len); break; case IEEE80211_IOC_CHANNEL: /* * The actual range is 1-14, but if you set it * to 0 you get the default so we let that work * too. */ if (ireq->i_val < 0 || ireq->i_val >14) { error = EINVAL; break; } config->an_ds_channel = ireq->i_val; break; case IEEE80211_IOC_POWERSAVE: switch (ireq->i_val) { case IEEE80211_POWERSAVE_OFF: config->an_psave_mode = AN_PSAVE_NONE; break; case IEEE80211_POWERSAVE_CAM: config->an_psave_mode = AN_PSAVE_CAM; break; case IEEE80211_POWERSAVE_PSP: config->an_psave_mode = AN_PSAVE_PSP; break; case IEEE80211_POWERSAVE_PSP_CAM: config->an_psave_mode = AN_PSAVE_PSP_CAM; break; default: error = EINVAL; break; } break; case IEEE80211_IOC_POWERSAVESLEEP: config->an_listen_interval = ireq->i_val; break; } if (!error) an_setdef(sc, &sc->areq); break; default: error = EINVAL; break; } out: splx(s); return(error != 0); } static int an_init_tx_ring(sc) struct an_softc *sc; { int i; int id; if (sc->an_gone) return (0); if (!sc->mpi350) { for (i = 0; i < AN_TX_RING_CNT; i++) { if (an_alloc_nicmem(sc, 1518 + 0x44, &id)) return(ENOMEM); sc->an_rdata.an_tx_fids[i] = id; sc->an_rdata.an_tx_ring[i] = 0; } } sc->an_rdata.an_tx_prod = 0; sc->an_rdata.an_tx_cons = 0; sc->an_rdata.an_tx_empty = 1; return(0); } static void an_init(xsc) void *xsc; { struct an_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s; s = splimp(); if (sc->an_gone) { splx(s); return; } if (ifp->if_flags & IFF_RUNNING) an_stop(sc); sc->an_associated = 0; /* Allocate the TX buffers */ if (an_init_tx_ring(sc)) { an_reset(sc); if (sc->mpi350) an_init_mpi350_desc(sc); if (an_init_tx_ring(sc)) { printf("an%d: tx buffer allocation " "failed\n", sc->an_unit); splx(s); return; } } /* Set our MAC address. */ bcopy((char *)&sc->arpcom.ac_enaddr, (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN); if (ifp->if_flags & IFF_BROADCAST) sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR; else sc->an_config.an_rxmode = AN_RXMODE_ADDR; if (ifp->if_flags & IFF_MULTICAST) sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR; if (ifp->if_flags & IFF_PROMISC) { if (sc->an_monitor & AN_MONITOR) { if (sc->an_monitor & AN_MONITOR_ANY_BSS) { sc->an_config.an_rxmode |= AN_RXMODE_80211_MONITOR_ANYBSS | AN_RXMODE_NO_8023_HEADER; } else { sc->an_config.an_rxmode |= AN_RXMODE_80211_MONITOR_CURBSS | AN_RXMODE_NO_8023_HEADER; } } } if (sc->an_have_rssimap) sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI; /* Set the ssid list */ sc->an_ssidlist.an_type = AN_RID_SSIDLIST; sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist); if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) { printf("an%d: failed to set ssid list\n", sc->an_unit); splx(s); return; } /* Set the AP list */ sc->an_aplist.an_type = AN_RID_APLIST; sc->an_aplist.an_len = sizeof(struct an_ltv_aplist); if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) { printf("an%d: failed to set AP list\n", sc->an_unit); splx(s); return; } /* Set the configuration in the NIC */ sc->an_config.an_len = sizeof(struct an_ltv_genconfig); sc->an_config.an_type = AN_RID_GENCONFIG; if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) { printf("an%d: failed to set configuration\n", sc->an_unit); splx(s); return; } /* Enable the MAC */ if (an_cmd(sc, AN_CMD_ENABLE, 0)) { printf("an%d: failed to enable MAC\n", sc->an_unit); splx(s); return; } if (ifp->if_flags & IFF_PROMISC) an_cmd(sc, AN_CMD_SET_MODE, 0xffff); /* enable interrupts */ CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->an_stat_ch = timeout(an_stats_update, sc, hz); splx(s); return; } static void an_start(ifp) struct ifnet *ifp; { struct an_softc *sc; struct mbuf *m0 = NULL; struct an_txframe_802_3 tx_frame_802_3; struct ether_header *eh; int id, idx, i; unsigned char txcontrol; struct an_card_tx_desc an_tx_desc; u_int8_t *ptr; u_int8_t *buf; sc = ifp->if_softc; if (sc->an_gone) return; if (ifp->if_flags & IFF_OACTIVE) return; if (!sc->an_associated) return; /* We can't send in monitor mode so toss any attempts. */ if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) { for (;;) { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; m_freem(m0); } return; } idx = sc->an_rdata.an_tx_prod; if (!sc->mpi350) { bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3)); while (sc->an_rdata.an_tx_ring[idx] == 0) { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; id = sc->an_rdata.an_tx_fids[idx]; eh = mtod(m0, struct ether_header *); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame_802_3.an_tx_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame_802_3.an_tx_src_addr, ETHER_ADDR_LEN); /* minus src/dest mac & type */ tx_frame_802_3.an_tx_802_3_payload_len = m0->m_pkthdr.len - 12; m_copydata(m0, sizeof(struct ether_header) - 2 , tx_frame_802_3.an_tx_802_3_payload_len, (caddr_t)&sc->an_txbuf); txcontrol = AN_TXCTL_8023; /* write the txcontrol only */ an_write_data(sc, id, 0x08, (caddr_t)&txcontrol, sizeof(txcontrol)); /* 802_3 header */ an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3, sizeof(struct an_txframe_802_3)); /* in mbuf header type is just before payload */ an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf, tx_frame_802_3.an_tx_802_3_payload_len); /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m0); m_freem(m0); m0 = NULL; sc->an_rdata.an_tx_ring[idx] = id; if (an_cmd(sc, AN_CMD_TX, id)) printf("an%d: xmit failed\n", sc->an_unit); AN_INC(idx, AN_TX_RING_CNT); } } else { /* MPI-350 */ while (sc->an_rdata.an_tx_empty || idx != sc->an_rdata.an_tx_cons) { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) { break; } buf = sc->an_tx_buffer[idx].an_dma_vaddr; eh = mtod(m0, struct ether_header *); /* DJA optimize this to limit bcopy */ bcopy((char *)&eh->ether_dhost, (char *)&tx_frame_802_3.an_tx_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame_802_3.an_tx_src_addr, ETHER_ADDR_LEN); /* minus src/dest mac & type */ tx_frame_802_3.an_tx_802_3_payload_len = m0->m_pkthdr.len - 12; m_copydata(m0, sizeof(struct ether_header) - 2 , tx_frame_802_3.an_tx_802_3_payload_len, (caddr_t)&sc->an_txbuf); txcontrol = AN_TXCTL_8023; /* write the txcontrol only */ bcopy((caddr_t)&txcontrol, &buf[0x08], sizeof(txcontrol)); /* 802_3 header */ bcopy((caddr_t)&tx_frame_802_3, &buf[0x34], sizeof(struct an_txframe_802_3)); /* in mbuf header type is just before payload */ bcopy((caddr_t)&sc->an_txbuf, &buf[0x44], tx_frame_802_3.an_tx_802_3_payload_len); bzero(&an_tx_desc, sizeof(an_tx_desc)); an_tx_desc.an_offset = 0; an_tx_desc.an_eoc = 1; an_tx_desc.an_valid = 1; an_tx_desc.an_len = 0x44 + tx_frame_802_3.an_tx_802_3_payload_len; an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr; ptr = (u_int8_t*)&an_tx_desc; for (i = 0; i < sizeof(an_tx_desc); i++) { CSR_MEM_AUX_WRITE_1(sc, AN_TX_DESC_OFFSET + i, ptr[i]); } /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m0); m_freem(m0); m0 = NULL; CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC); AN_INC(idx, AN_MAX_TX_DESC); sc->an_rdata.an_tx_empty = 0; } } if (m0 != NULL) ifp->if_flags |= IFF_OACTIVE; sc->an_rdata.an_tx_prod = idx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } void an_stop(sc) struct an_softc *sc; { struct ifnet *ifp; int i; int s; s = splimp(); if (sc->an_gone) { splx(s); return; } ifp = &sc->arpcom.ac_if; an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0); CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0); an_cmd(sc, AN_CMD_DISABLE, 0); for (i = 0; i < AN_TX_RING_CNT; i++) an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]); untimeout(an_stats_update, sc, sc->an_stat_ch); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); if (sc->an_flash_buffer) { free(sc->an_flash_buffer, M_DEVBUF); sc->an_flash_buffer = NULL; } splx(s); return; } static void an_watchdog(ifp) struct ifnet *ifp; { struct an_softc *sc; int s; sc = ifp->if_softc; s = splimp(); if (sc->an_gone) { splx(s); return; } printf("an%d: device timeout\n", sc->an_unit); an_reset(sc); if (sc->mpi350) an_init_mpi350_desc(sc); an_init(sc); ifp->if_oerrors++; splx(s); return; } void an_shutdown(dev) device_t dev; { struct an_softc *sc; sc = device_get_softc(dev); an_stop(sc); return; } void an_resume(dev) device_t dev; { struct an_softc *sc; struct ifnet *ifp; int i; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; an_reset(sc); if (sc->mpi350) an_init_mpi350_desc(sc); an_init(sc); /* Recovery temporary keys */ for (i = 0; i < 4; i++) { sc->areq.an_type = AN_RID_WEP_TEMP; sc->areq.an_len = sizeof(struct an_ltv_key); bcopy(&sc->an_temp_keys[i], &sc->areq, sizeof(struct an_ltv_key)); an_setdef(sc, &sc->areq); } if (ifp->if_flags & IFF_UP) an_start(ifp); return; } #ifdef ANCACHE /* Aironet signal strength cache code. * store signal/noise/quality on per MAC src basis in * a small fixed cache. The cache wraps if > MAX slots * used. The cache may be zeroed out to start over. * Two simple filters exist to reduce computation: * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used * to ignore some packets. It defaults to ip only. * it could be used to focus on broadcast, non-IP 802.11 beacons. * 2. multicast/broadcast only. This may be used to * ignore unicast packets and only cache signal strength * for multicast/broadcast packets (beacons); e.g., Mobile-IP * beacons and not unicast traffic. * * The cache stores (MAC src(index), IP src (major clue), signal, * quality, noise) * * No apologies for storing IP src here. It's easy and saves much * trouble elsewhere. The cache is assumed to be INET dependent, * although it need not be. * * Note: the Aironet only has a single byte of signal strength value * in the rx frame header, and it's not scaled to anything sensible. * This is kind of lame, but it's all we've got. */ #ifdef documentation int an_sigitems; /* number of cached entries */ struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */ int an_nextitem; /* index/# of entries */ #endif /* control variables for cache filtering. Basic idea is * to reduce cost (e.g., to only Mobile-IP agent beacons * which are broadcast or multicast). Still you might * want to measure signal strength anth unicast ping packets * on a pt. to pt. ant. setup. */ /* set true if you want to limit cache items to broadcast/mcast * only packets (not unicast). Useful for mobile-ip beacons which * are broadcast/multicast at network layer. Default is all packets * so ping/unicast anll work say anth pt. to pt. antennae setup. */ static int an_cache_mcastonly = 0; SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW, &an_cache_mcastonly, 0, ""); /* set true if you want to limit cache items to IP packets only */ static int an_cache_iponly = 1; SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW, &an_cache_iponly, 0, ""); /* * an_cache_store, per rx packet store signal * strength in MAC (src) indexed cache. */ static void an_cache_store (sc, eh, m, rx_rssi, rx_quality) struct an_softc *sc; struct ether_header *eh; struct mbuf *m; u_int8_t rx_rssi; u_int8_t rx_quality; { struct ip *ip = 0; int i; static int cache_slot = 0; /* use this cache entry */ static int wrapindex = 0; /* next "free" cache entry */ int type_ipv4 = 0; /* filters: * 1. ip only * 2. configurable filter to throw out unicast packets, * keep multicast only. */ if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) { type_ipv4 = 1; } /* filter for ip packets only */ if ( an_cache_iponly && !type_ipv4) { return; } /* filter for broadcast/multicast only */ if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) { return; } #ifdef SIGDEBUG printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n", rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff); #endif /* find the ip header. we want to store the ip_src * address. */ if (type_ipv4) { ip = mtod(m, struct ip *); } /* do a linear search for a matching MAC address * in the cache table * . MAC address is 6 bytes, * . var w_nextitem holds total number of entries already cached */ for (i = 0; i < sc->an_nextitem; i++) { if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) { /* Match!, * so we already have this entry, * update the data */ break; } } /* did we find a matching mac address? * if yes, then overwrite a previously existing cache entry */ if (i < sc->an_nextitem ) { cache_slot = i; } /* else, have a new address entry,so * add this new entry, * if table full, then we need to replace LRU entry */ else { /* check for space in cache table * note: an_nextitem also holds number of entries * added in the cache table */ if ( sc->an_nextitem < MAXANCACHE ) { cache_slot = sc->an_nextitem; sc->an_nextitem++; sc->an_sigitems = sc->an_nextitem; } /* no space found, so simply wrap anth wrap index * and "zap" the next entry */ else { if (wrapindex == MAXANCACHE) { wrapindex = 0; } cache_slot = wrapindex++; } } /* invariant: cache_slot now points at some slot * in cache. */ if (cache_slot < 0 || cache_slot >= MAXANCACHE) { log(LOG_ERR, "an_cache_store, bad index: %d of " "[0..%d], gross cache error\n", cache_slot, MAXANCACHE); return; } /* store items in cache * .ip source address * .mac src * .signal, etc. */ if (type_ipv4) { sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr; } bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6); switch (an_cache_mode) { case DBM: if (sc->an_have_rssimap) { sc->an_sigcache[cache_slot].signal = - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm; sc->an_sigcache[cache_slot].quality = - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm; } else { sc->an_sigcache[cache_slot].signal = rx_rssi - 100; sc->an_sigcache[cache_slot].quality = rx_quality - 100; } break; case PERCENT: if (sc->an_have_rssimap) { sc->an_sigcache[cache_slot].signal = sc->an_rssimap.an_entries[rx_rssi].an_rss_pct; sc->an_sigcache[cache_slot].quality = sc->an_rssimap.an_entries[rx_quality].an_rss_pct; } else { if (rx_rssi > 100) rx_rssi = 100; if (rx_quality > 100) rx_quality = 100; sc->an_sigcache[cache_slot].signal = rx_rssi; sc->an_sigcache[cache_slot].quality = rx_quality; } break; case RAW: sc->an_sigcache[cache_slot].signal = rx_rssi; sc->an_sigcache[cache_slot].quality = rx_quality; break; } sc->an_sigcache[cache_slot].noise = 0; return; } #endif static int an_media_change(ifp) struct ifnet *ifp; { struct an_softc *sc = ifp->if_softc; struct an_ltv_genconfig *cfg; int otype = sc->an_config.an_opmode; int orate = sc->an_tx_rate; if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0) sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC; else sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION; switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) { case IFM_IEEE80211_DS1: sc->an_tx_rate = AN_RATE_1MBPS; break; case IFM_IEEE80211_DS2: sc->an_tx_rate = AN_RATE_2MBPS; break; case IFM_IEEE80211_DS5: sc->an_tx_rate = AN_RATE_5_5MBPS; break; case IFM_IEEE80211_DS11: sc->an_tx_rate = AN_RATE_11MBPS; break; case IFM_AUTO: sc->an_tx_rate = 0; break; } if (orate != sc->an_tx_rate) { /* Read the current configuration */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); an_read_record(sc, (struct an_ltv_gen *)&sc->an_config); cfg = &sc->an_config; /* clear other rates and set the only one we want */ bzero(cfg->an_rates, sizeof(cfg->an_rates)); cfg->an_rates[0] = sc->an_tx_rate; /* Save the new rate */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); } if (otype != sc->an_config.an_opmode || orate != sc->an_tx_rate) an_init(sc); return(0); } static void an_media_status(ifp, imr) struct ifnet *ifp; struct ifmediareq *imr; { struct an_ltv_status status; struct an_softc *sc = ifp->if_softc; status.an_len = sizeof(status); status.an_type = AN_RID_STATUS; if (an_read_record(sc, (struct an_ltv_gen *)&status)) { /* If the status read fails, just lie. */ imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media; imr->ifm_status = IFM_AVALID|IFM_ACTIVE; } if (sc->an_tx_rate == 0) { imr->ifm_active = IFM_IEEE80211|IFM_AUTO; if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC) imr->ifm_active |= IFM_IEEE80211_ADHOC; switch (status.an_current_tx_rate) { case AN_RATE_1MBPS: imr->ifm_active |= IFM_IEEE80211_DS1; break; case AN_RATE_2MBPS: imr->ifm_active |= IFM_IEEE80211_DS2; break; case AN_RATE_5_5MBPS: imr->ifm_active |= IFM_IEEE80211_DS5; break; case AN_RATE_11MBPS: imr->ifm_active |= IFM_IEEE80211_DS11; break; } } else { imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media; } imr->ifm_status = IFM_AVALID; if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED) imr->ifm_status |= IFM_ACTIVE; } /********************** Cisco utility support routines *************/ /* * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's * Linux driver */ static int readrids(ifp, l_ioctl) struct ifnet *ifp; struct aironet_ioctl *l_ioctl; { unsigned short rid; struct an_softc *sc; switch (l_ioctl->command) { case AIROGCAP: rid = AN_RID_CAPABILITIES; break; case AIROGCFG: rid = AN_RID_GENCONFIG; break; case AIROGSLIST: rid = AN_RID_SSIDLIST; break; case AIROGVLIST: rid = AN_RID_APLIST; break; case AIROGDRVNAM: rid = AN_RID_DRVNAME; break; case AIROGEHTENC: rid = AN_RID_ENCAPPROTO; break; case AIROGWEPKTMP: rid = AN_RID_WEP_TEMP; break; case AIROGWEPKNV: rid = AN_RID_WEP_PERM; break; case AIROGSTAT: rid = AN_RID_STATUS; break; case AIROGSTATSD32: rid = AN_RID_32BITS_DELTA; break; case AIROGSTATSC32: rid = AN_RID_32BITS_CUM; break; default: rid = 999; break; } if (rid == 999) /* Is bad command */ return -EINVAL; sc = ifp->if_softc; sc->areq.an_len = AN_MAX_DATALEN; sc->areq.an_type = rid; an_read_record(sc, (struct an_ltv_gen *)&sc->areq); l_ioctl->len = sc->areq.an_len - 4; /* just data */ /* the data contains the length at first */ if (copyout(&(sc->areq.an_len), l_ioctl->data, sizeof(sc->areq.an_len))) { return -EFAULT; } /* Just copy the data back */ if (copyout(&(sc->areq.an_val), l_ioctl->data + 2, l_ioctl->len)) { return -EFAULT; } return 0; } static int writerids(ifp, l_ioctl) struct ifnet *ifp; struct aironet_ioctl *l_ioctl; { struct an_softc *sc; int rid, command; sc = ifp->if_softc; rid = 0; command = l_ioctl->command; switch (command) { case AIROPSIDS: rid = AN_RID_SSIDLIST; break; case AIROPCAP: rid = AN_RID_CAPABILITIES; break; case AIROPAPLIST: rid = AN_RID_APLIST; break; case AIROPCFG: rid = AN_RID_GENCONFIG; break; case AIROPMACON: an_cmd(sc, AN_CMD_ENABLE, 0); return 0; break; case AIROPMACOFF: an_cmd(sc, AN_CMD_DISABLE, 0); return 0; break; case AIROPSTCLR: /* * This command merely clears the counts does not actually * store any data only reads rid. But as it changes the cards * state, I put it in the writerid routines. */ rid = AN_RID_32BITS_DELTACLR; sc = ifp->if_softc; sc->areq.an_len = AN_MAX_DATALEN; sc->areq.an_type = rid; an_read_record(sc, (struct an_ltv_gen *)&sc->areq); l_ioctl->len = sc->areq.an_len - 4; /* just data */ /* the data contains the length at first */ if (copyout(&(sc->areq.an_len), l_ioctl->data, sizeof(sc->areq.an_len))) { return -EFAULT; } /* Just copy the data */ if (copyout(&(sc->areq.an_val), l_ioctl->data + 2, l_ioctl->len)) { return -EFAULT; } return 0; break; case AIROPWEPKEY: rid = AN_RID_WEP_TEMP; break; case AIROPWEPKEYNV: rid = AN_RID_WEP_PERM; break; case AIROPLEAPUSR: rid = AN_RID_LEAPUSERNAME; break; case AIROPLEAPPWD: rid = AN_RID_LEAPPASSWORD; break; default: return -EOPNOTSUPP; } if (rid) { if (l_ioctl->len > sizeof(sc->areq.an_val) + 4) return -EINVAL; sc->areq.an_len = l_ioctl->len + 4; /* add type & length */ sc->areq.an_type = rid; /* Just copy the data back */ copyin((l_ioctl->data) + 2, &sc->areq.an_val, l_ioctl->len); an_cmd(sc, AN_CMD_DISABLE, 0); an_write_record(sc, (struct an_ltv_gen *)&sc->areq); an_cmd(sc, AN_CMD_ENABLE, 0); return 0; } return -EOPNOTSUPP; } /* * General Flash utilities derived from Cisco driver additions to Ben Reed's * Linux driver */ #define FLASH_DELAY(x) tsleep(ifp, 0, "flash", ((x) / hz) + 1); #define FLASH_COMMAND 0x7e7e #define FLASH_SIZE 32 * 1024 static int unstickbusy(ifp) struct ifnet *ifp; { struct an_softc *sc = ifp->if_softc; if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) { CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY); return 1; } return 0; } /* * Wait for busy completion from card wait for delay uSec's Return true for * success meaning command reg is clear */ static int WaitBusy(ifp, uSec) struct ifnet *ifp; int uSec; { int statword = 0xffff; int delay = 0; struct an_softc *sc = ifp->if_softc; while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) { FLASH_DELAY(10); delay += 10; statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350)); if ((AN_CMD_BUSY & statword) && (delay % 200)) { unstickbusy(ifp); } } return 0 == (AN_CMD_BUSY & statword); } /* * STEP 1) Disable MAC and do soft reset on card. */ static int cmdreset(ifp) struct ifnet *ifp; { int status; struct an_softc *sc = ifp->if_softc; an_stop(sc); an_cmd(sc, AN_CMD_DISABLE, 0); if (!(status = WaitBusy(ifp, AN_TIMEOUT))) { printf("an%d: Waitbusy hang b4 RESET =%d\n", sc->an_unit, status); return -EBUSY; } CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART); FLASH_DELAY(1000); /* WAS 600 12/7/00 */ if (!(status = WaitBusy(ifp, 100))) { printf("an%d: Waitbusy hang AFTER RESET =%d\n", sc->an_unit, status); return -EBUSY; } return 0; } /* * STEP 2) Put the card in legendary flash mode */ static int setflashmode(ifp) struct ifnet *ifp; { int status; struct an_softc *sc = ifp->if_softc; CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND); CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND); CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND); CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND); /* * mdelay(500); // 500ms delay */ FLASH_DELAY(500); if (!(status = WaitBusy(ifp, AN_TIMEOUT))) { printf("Waitbusy hang after setflash mode\n"); return -EIO; } return 0; } /* * Get a character from the card matching matchbyte Step 3) */ static int flashgchar(ifp, matchbyte, dwelltime) struct ifnet *ifp; int matchbyte; int dwelltime; { int rchar; unsigned char rbyte = 0; int success = -1; struct an_softc *sc = ifp->if_softc; do { rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350)); if (dwelltime && !(0x8000 & rchar)) { dwelltime -= 10; FLASH_DELAY(10); continue; } rbyte = 0xff & rchar; if ((rbyte == matchbyte) && (0x8000 & rchar)) { CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0); success = 1; break; } if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar) break; CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0); } while (dwelltime > 0); return success; } /* * Put character to SWS0 wait for dwelltime x 50us for echo . */ static int flashpchar(ifp, byte, dwelltime) struct ifnet *ifp; int byte; int dwelltime; { int echo; int pollbusy, waittime; struct an_softc *sc = ifp->if_softc; byte |= 0x8000; if (dwelltime == 0) dwelltime = 200; waittime = dwelltime; /* * Wait for busy bit d15 to go false indicating buffer empty */ do { pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350)); if (pollbusy & 0x8000) { FLASH_DELAY(50); waittime -= 50; continue; } else break; } while (waittime >= 0); /* timeout for busy clear wait */ if (waittime <= 0) { printf("an%d: flash putchar busywait timeout! \n", sc->an_unit); return -1; } /* * Port is clear now write byte and wait for it to echo back */ do { CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte); FLASH_DELAY(50); dwelltime -= 50; echo = CSR_READ_2(sc, AN_SW1(sc->mpi350)); } while (dwelltime >= 0 && echo != byte); CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0); return echo == byte; } /* * Transfer 32k of firmware data from user buffer to our buffer and send to * the card */ static int flashputbuf(ifp) struct ifnet *ifp; { unsigned short *bufp; int nwords; struct an_softc *sc = ifp->if_softc; /* Write stuff */ bufp = sc->an_flash_buffer; if (!sc->mpi350) { CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100); CSR_WRITE_2(sc, AN_AUX_OFFSET, 0); for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) { CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff); } } else { for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) { CSR_MEM_AUX_WRITE_4(sc, 0x8000, ((u_int32_t *)bufp)[nwords] & 0xffff); } } CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000); return 0; } /* * After flashing restart the card. */ static int flashrestart(ifp) struct ifnet *ifp; { int status = 0; struct an_softc *sc = ifp->if_softc; FLASH_DELAY(1024); /* Added 12/7/00 */ an_init(sc); FLASH_DELAY(1024); /* Added 12/7/00 */ return status; } /* * Entry point for flash ioclt. */ static int flashcard(ifp, l_ioctl) struct ifnet *ifp; struct aironet_ioctl *l_ioctl; { int z = 0, status; struct an_softc *sc; sc = ifp->if_softc; if (sc->mpi350) { printf("an%d: flashing not supported on MPI 350 yet\n", sc->an_unit); return(-1); } status = l_ioctl->command; switch (l_ioctl->command) { case AIROFLSHRST: return cmdreset(ifp); break; case AIROFLSHSTFL: if (sc->an_flash_buffer) { free(sc->an_flash_buffer, M_DEVBUF); sc->an_flash_buffer = NULL; } sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0); if (sc->an_flash_buffer) return setflashmode(ifp); else return ENOBUFS; break; case AIROFLSHGCHR: /* Get char from aux */ copyin(l_ioctl->data, &sc->areq, l_ioctl->len); z = *(int *)&sc->areq; if ((status = flashgchar(ifp, z, 8000)) == 1) return 0; else return -1; break; case AIROFLSHPCHR: /* Send char to card. */ copyin(l_ioctl->data, &sc->areq, l_ioctl->len); z = *(int *)&sc->areq; if ((status = flashpchar(ifp, z, 8000)) == -1) return -EIO; else return 0; break; case AIROFLPUTBUF: /* Send 32k to card */ if (l_ioctl->len > FLASH_SIZE) { printf("an%d: Buffer to big, %x %x\n", sc->an_unit, l_ioctl->len, FLASH_SIZE); return -EINVAL; } copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len); if ((status = flashputbuf(ifp)) != 0) return -EIO; else return 0; break; case AIRORESTART: if ((status = flashrestart(ifp)) != 0) { printf("an%d: FLASHRESTART returned %d\n", sc->an_unit, status); return -EIO; } else return 0; break; default: return -EINVAL; } return -EINVAL; }