/* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */ /*- * Copyright (c) 2005, 2006 Damien Bergamini * Copyright (c) 2006 Niall O'Higgins * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2501USB/RT2601USB chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "if_rumreg.h" #include "if_rumvar.h" #include "rum_ucode.h" #ifdef USB_DEBUG #define RUM_DEBUG #endif #ifdef RUM_DEBUG #define DPRINTF(x) do { if (rum_debug) kprintf x; } while (0) #define DPRINTFN(n, x) do { if (rum_debug >= (n)) kprintf x; } while (0) int rum_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* various supported device vendors/products */ static const struct usb_devno rum_devs[] = { { USB_DEVICE(0x0411, 0x00d8) }, /* Melco WLI-U2-SG54HP */ { USB_DEVICE(0x0411, 0x00d9) }, /* Melco WLI-U2-G54HP */ { USB_DEVICE(0x050d, 0x705a) }, /* Belkin F5D7050A */ { USB_DEVICE(0x050d, 0x905b) }, /* Belkin F5D9050 ver3 */ { USB_DEVICE(0x0586, 0x3415) }, /* ZyXEL RT2573 */ { USB_DEVICE(0x06f8, 0xe010) }, /* Guillemot HWGUSB2-54-LB */ { USB_DEVICE(0x06f8, 0xe020) }, /* Guillemot HWGUSB2-54V2-AP */ { USB_DEVICE(0x0769, 0x31f3) }, /* Surecom RT2573 */ { USB_DEVICE(0x07b8, 0xb21b) }, /* AboCom HWU54DM */ { USB_DEVICE(0x07b8, 0xb21c) }, /* AboCom RT2573 */ { USB_DEVICE(0x07b8, 0xb21d) }, /* AboCom RT2573 */ { USB_DEVICE(0x07b8, 0xb21e) }, /* AboCom RT2573 */ { USB_DEVICE(0x07b8, 0xb21f) }, /* AboCom WUG2700 */ { USB_DEVICE(0x07d1, 0x3c03) }, /* D-Link DWL-G122 rev c1 */ { USB_DEVICE(0x07d1, 0x3c04) }, /* D-Link WUA-1340 */ { USB_DEVICE(0x0b05, 0x1723) }, /* Asus WL-167g */ { USB_DEVICE(0x0b05, 0x1724) }, /* Asus WL-167g */ { USB_DEVICE(0x0db0, 0x6874) }, /* MSI RT2573 */ { USB_DEVICE(0x0db0, 0x6877) }, /* MSI RT2573 */ { USB_DEVICE(0x0db0, 0xa861) }, /* MSI RT2573 */ { USB_DEVICE(0x0db0, 0xa874) }, /* MSI RT2573 */ { USB_DEVICE(0x0df6, 0x90ac) }, /* Sitecom WL-172 */ { USB_DEVICE(0x0df6, 0x9712) }, /* Sitecom WL-113 rev 2 */ { USB_DEVICE(0x0eb0, 0x9021) }, /* Nova Technology RT2573 */ { USB_DEVICE(0x1044, 0x8008) }, /* GIGABYTE GN-WB01GS */ { USB_DEVICE(0x1044, 0x800a) }, /* GIGABYTE GN-WI05GS */ { USB_DEVICE(0x1371, 0x9022) }, /* (really) C-Net RT2573 */ { USB_DEVICE(0x1371, 0x9032) }, /* (really) C-Net CWD854F */ { USB_DEVICE(0x13b1, 0x0020) }, /* Cisco-Linksys WUSB54GC */ { USB_DEVICE(0x13b1, 0x0023) }, /* Cisco-Linksys WUSB54GR */ { USB_DEVICE(0x1472, 0x0009) }, /* Huawei RT2573 */ { USB_DEVICE(0x148f, 0x2573) }, /* Ralink RT2573 */ { USB_DEVICE(0x148f, 0x2671) }, /* Ralink RT2671 */ { USB_DEVICE(0x148f, 0x9021) }, /* Ralink RT2573 */ { USB_DEVICE(0x14b2, 0x3c22) }, /* Conceptronic C54RU */ { USB_DEVICE(0x15a9, 0x0004) }, /* SparkLan RT2573 */ { USB_DEVICE(0x1631, 0xc019) }, /* Good Way Technology RT2573 */ { USB_DEVICE(0x1690, 0x0722) }, /* Gigaset RT2573 */ { USB_DEVICE(0x1737, 0x0020) }, /* Linksys WUSB54GC */ { USB_DEVICE(0x1737, 0x0023) }, /* Linksys WUSB54GR */ { USB_DEVICE(0x18c5, 0x0002) }, /* AMIT CG-WLUSB2GO */ { USB_DEVICE(0x18e8, 0x6196) }, /* Qcom RT2573 */ { USB_DEVICE(0x18e8, 0x6229) }, /* Qcom RT2573 */ { USB_DEVICE(0x18e8, 0x6238) }, /* Qcom RT2573 */ { USB_DEVICE(0x2019, 0xab01) }, /* Planex GW-US54HP */ { USB_DEVICE(0x2019, 0xab50) }, /* Planex GW-US54Mini2 */ { USB_DEVICE(0x2019, 0xed02) }, /* Planex GW-USMM */ }; static int rum_alloc_tx_list(struct rum_softc *); static void rum_free_tx_list(struct rum_softc *); static int rum_alloc_rx_list(struct rum_softc *); static void rum_free_rx_list(struct rum_softc *); static int rum_media_change(struct ifnet *); static void rum_next_scan(void *); static void rum_task(void *); static int rum_newstate(struct ieee80211com *, enum ieee80211_state, int); static void rum_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void rum_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static uint8_t rum_rxrate(struct rum_rx_desc *); static uint8_t rum_plcp_signal(int); static void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, uint32_t, uint16_t, int, int); static int rum_tx_data(struct rum_softc *, struct mbuf *, struct ieee80211_node *); static void rum_start(struct ifnet *); static void rum_watchdog(struct ifnet *); static int rum_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); static uint32_t rum_read(struct rum_softc *, uint16_t); static void rum_read_multi(struct rum_softc *, uint16_t, void *, int); static void rum_write(struct rum_softc *, uint16_t, uint32_t); static void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); static void rum_select_antenna(struct rum_softc *); static void rum_enable_mrr(struct rum_softc *); static void rum_set_txpreamble(struct rum_softc *); static void rum_set_basicrates(struct rum_softc *); static void rum_select_band(struct rum_softc *, struct ieee80211_channel *); static void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); static void rum_enable_tsf_sync(struct rum_softc *); static void rum_update_slot(struct rum_softc *); static void rum_set_bssid(struct rum_softc *, const uint8_t *); static void rum_set_macaddr(struct rum_softc *, const uint8_t *); static void rum_update_promisc(struct rum_softc *); static const char *rum_get_rf(int); static void rum_read_eeprom(struct rum_softc *); static int rum_bbp_init(struct rum_softc *); static void rum_init(void *); static void rum_stop(struct rum_softc *); static int rum_load_microcode(struct rum_softc *, const uint8_t *, size_t); static int rum_prepare_beacon(struct rum_softc *); static void rum_stats_timeout(void *); static void rum_stats_update(usbd_xfer_handle, usbd_private_handle, usbd_status); static void rum_stats(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_ratectl_stats *); static void *rum_ratectl_attach(struct ieee80211com *, u_int); static int rum_get_rssi(struct rum_softc *, uint8_t); /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset rum_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset rum_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset rum_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct { uint32_t reg; uint32_t val; } rum_def_mac[] = { RT2573_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rum_def_bbp[] = { RT2573_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rum_rf5226[] = { RT2573_RF5226 }, rum_rf5225[] = { RT2573_RF5225 }; static device_probe_t rum_match; static device_attach_t rum_attach; static device_detach_t rum_detach; static devclass_t rum_devclass; static kobj_method_t rum_methods[] = { DEVMETHOD(device_probe, rum_match), DEVMETHOD(device_attach, rum_attach), DEVMETHOD(device_detach, rum_detach), {0,0} }; static driver_t rum_driver = { "rum", rum_methods, sizeof(struct rum_softc) }; DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, NULL); MODULE_DEPEND(rum, usb, 1, 1, 1); MODULE_DEPEND(rum, wlan, 1, 1, 1); MODULE_DEPEND(rum, wlan_ratectl_onoe, 1, 1, 1); static int rum_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->iface != NULL) return UMATCH_NONE; return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } static int rum_attach(device_t self) { struct rum_softc *sc = device_get_softc(self); struct usb_attach_arg *uaa = device_get_ivars(self); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; usbd_status error; int i, ntries; uint32_t tmp; sc->sc_udev = uaa->device; sc->sc_dev = self; if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) { kprintf("%s: could not set configuration no\n", device_get_nameunit(sc->sc_dev)); return ENXIO; } /* get the first interface handle */ error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX, &sc->sc_iface); if (error != 0) { kprintf("%s: could not get interface handle\n", device_get_nameunit(sc->sc_dev)); return ENXIO; } /* * Find endpoints. */ id = usbd_get_interface_descriptor(sc->sc_iface); sc->sc_rx_no = sc->sc_tx_no = -1; for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (ed == NULL) { kprintf("%s: no endpoint descriptor for iface %d\n", device_get_nameunit(sc->sc_dev), i); return ENXIO; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_rx_no = ed->bEndpointAddress; else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) sc->sc_tx_no = ed->bEndpointAddress; } if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) { kprintf("%s: missing endpoint\n", device_get_nameunit(sc->sc_dev)); return ENXIO; } usb_init_task(&sc->sc_task, rum_task, sc); callout_init(&sc->scan_ch); callout_init(&sc->stats_ch); /* retrieve RT2573 rev. no */ for (ntries = 0; ntries < 1000; ntries++) { if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) break; DELAY(1000); } if (ntries == 1000) { kprintf("%s: timeout waiting for chip to settle\n", device_get_nameunit(sc->sc_dev)); return ENXIO; } /* retrieve MAC address and various other things from EEPROM */ rum_read_eeprom(sc); kprintf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %6D\n", device_get_nameunit(sc->sc_dev), sc->macbbp_rev, tmp, rum_get_rf(sc->rf_rev), ic->ic_myaddr, ":"); error = rum_load_microcode(sc, rt2573, sizeof(rt2573)); if (error != 0) { device_printf(self, "can't load microcode\n"); return ENXIO; } ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_HOSTAP | /* HostAp mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WPA; /* WPA 1+2 */ if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; /* set supported .11a channels */ for (i = 34; i <= 46; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 100; i <= 140; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } sc->sc_sifs = IEEE80211_DUR_SIFS; /* Default SIFS */ if_initname(ifp, device_get_name(self), device_get_unit(self)); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = rum_init; ifp->if_ioctl = rum_ioctl; ifp->if_start = rum_start; ifp->if_watchdog = rum_watchdog; ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); ifq_set_ready(&ifp->if_snd); IEEE80211_ONOE_PARAM_SETUP(&sc->sc_onoe_param); sc->sc_onoe_param.onoe_raise = 15; ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE; ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE; ic->ic_ratectl.rc_st_stats = rum_stats; ic->ic_ratectl.rc_st_attach = rum_ratectl_attach; ieee80211_ifattach(ic); /* Enable software beacon missing handling. */ ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rum_newstate; ieee80211_media_init(ic, rum_media_change, ieee80211_media_status); bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return 0; } static int rum_detach(device_t self) { struct rum_softc *sc = device_get_softc(self); struct ifnet *ifp = &sc->sc_ic.ic_if; #ifdef INVARIANTS int i; #endif crit_enter(); callout_stop(&sc->scan_ch); callout_stop(&sc->stats_ch); lwkt_serialize_enter(ifp->if_serializer); rum_stop(sc); lwkt_serialize_exit(ifp->if_serializer); usb_rem_task(sc->sc_udev, &sc->sc_task); bpfdetach(ifp); ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */ crit_exit(); KKASSERT(sc->stats_xfer == NULL); KKASSERT(sc->sc_rx_pipeh == NULL); KKASSERT(sc->sc_tx_pipeh == NULL); #ifdef INVARIANTS /* * Make sure TX/RX list is empty */ for (i = 0; i < RT2573_TX_LIST_COUNT; i++) { struct rum_tx_data *data = &sc->tx_data[i]; KKASSERT(data->xfer == NULL); KKASSERT(data->ni == NULL); KKASSERT(data->m == NULL); } for (i = 0; i < RT2573_RX_LIST_COUNT; i++) { struct rum_rx_data *data = &sc->rx_data[i]; KKASSERT(data->xfer == NULL); KKASSERT(data->m == NULL); } #endif return 0; } static int rum_alloc_tx_list(struct rum_softc *sc) { int i; sc->tx_queued = 0; for (i = 0; i < RT2573_TX_LIST_COUNT; i++) { struct rum_tx_data *data = &sc->tx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { kprintf("%s: could not allocate tx xfer\n", device_get_nameunit(sc->sc_dev)); return ENOMEM; } data->buf = usbd_alloc_buffer(data->xfer, RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN); if (data->buf == NULL) { kprintf("%s: could not allocate tx buffer\n", device_get_nameunit(sc->sc_dev)); return ENOMEM; } /* clean Tx descriptor */ bzero(data->buf, RT2573_TX_DESC_SIZE); } return 0; } static void rum_free_tx_list(struct rum_softc *sc) { int i; for (i = 0; i < RT2573_TX_LIST_COUNT; i++) { struct rum_tx_data *data = &sc->tx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } if (data->m != NULL) { m_freem(data->m); data->m = NULL; } } sc->tx_queued = 0; } static int rum_alloc_rx_list(struct rum_softc *sc) { int i; for (i = 0; i < RT2573_RX_LIST_COUNT; i++) { struct rum_rx_data *data = &sc->rx_data[i]; data->sc = sc; data->xfer = usbd_alloc_xfer(sc->sc_udev); if (data->xfer == NULL) { kprintf("%s: could not allocate rx xfer\n", device_get_nameunit(sc->sc_dev)); return ENOMEM; } if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) { kprintf("%s: could not allocate rx buffer\n", device_get_nameunit(sc->sc_dev)); return ENOMEM; } data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR); data->buf = mtod(data->m, uint8_t *); bzero(data->buf, sizeof(struct rum_rx_desc)); } return 0; } static void rum_free_rx_list(struct rum_softc *sc) { int i; for (i = 0; i < RT2573_RX_LIST_COUNT; i++) { struct rum_rx_data *data = &sc->rx_data[i]; if (data->xfer != NULL) { usbd_free_xfer(data->xfer); data->xfer = NULL; } if (data->m != NULL) { m_freem(data->m); data->m = NULL; } } } static int rum_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rum_init(ifp->if_softc); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ static void rum_next_scan(void *arg) { struct rum_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if (sc->sc_stopped) return; crit_enter(); if (ic->ic_state == IEEE80211_S_SCAN) { lwkt_serialize_enter(ifp->if_serializer); ieee80211_next_scan(ic); lwkt_serialize_exit(ifp->if_serializer); } crit_exit(); } static void rum_task(void *xarg) { struct rum_softc *sc = xarg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; enum ieee80211_state nstate; struct ieee80211_node *ni; int arg; if (sc->sc_stopped) return; crit_enter(); nstate = sc->sc_state; arg = sc->sc_arg; KASSERT(nstate != IEEE80211_S_INIT, ("->INIT state transition should not be defered\n")); rum_set_chan(sc, ic->ic_curchan); switch (nstate) { case IEEE80211_S_RUN: ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rum_update_slot(sc); rum_enable_mrr(sc); rum_set_txpreamble(sc); rum_set_basicrates(sc); rum_set_bssid(sc, ni->ni_bssid); } if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) rum_prepare_beacon(sc); if (ic->ic_opmode != IEEE80211_M_MONITOR) rum_enable_tsf_sync(sc); /* clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc); break; case IEEE80211_S_SCAN: callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc); break; default: break; } lwkt_serialize_enter(ifp->if_serializer); ieee80211_ratectl_newstate(ic, nstate); sc->sc_newstate(ic, nstate, arg); lwkt_serialize_exit(ifp->if_serializer); crit_exit(); } static int rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rum_softc *sc = ic->ic_if.if_softc; struct ifnet *ifp = &ic->ic_if; crit_enter(); ASSERT_SERIALIZED(ifp->if_serializer); callout_stop(&sc->scan_ch); callout_stop(&sc->stats_ch); /* do it in a process context */ sc->sc_state = nstate; sc->sc_arg = arg; lwkt_serialize_exit(ifp->if_serializer); usb_rem_task(sc->sc_udev, &sc->sc_task); if (nstate == IEEE80211_S_INIT) { lwkt_serialize_enter(ifp->if_serializer); ieee80211_ratectl_newstate(ic, nstate); sc->sc_newstate(ic, nstate, arg); } else { usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER); lwkt_serialize_enter(ifp->if_serializer); } crit_exit(); return 0; } /* quickly determine if a given rate is CCK or OFDM */ #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RUM_ACK_SIZE (sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN) static void rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct rum_tx_data *data = priv; struct rum_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_node *ni; if (sc->sc_stopped) return; crit_enter(); if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { crit_exit(); return; } kprintf("%s: could not transmit buffer: %s\n", device_get_nameunit(sc->sc_dev), usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh); ifp->if_oerrors++; crit_exit(); return; } m_freem(data->m); data->m = NULL; ni = data->ni; data->ni = NULL; bzero(data->buf, sizeof(struct rum_tx_data)); sc->tx_queued--; ifp->if_opackets++; /* XXX may fail too */ DPRINTFN(10, ("tx done\n")); sc->sc_tx_timer = 0; ifq_clr_oactive(&ifp->if_snd); lwkt_serialize_enter(ifp->if_serializer); ieee80211_free_node(ni); ifp->if_start(ifp); lwkt_serialize_exit(ifp->if_serializer); crit_exit(); } static void rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct rum_rx_data *data = priv; struct rum_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct rum_rx_desc *desc; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int len, rssi; if (sc->sc_stopped) return; crit_enter(); if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { crit_exit(); return; } if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh); goto skip; } usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); if (len < RT2573_RX_DESC_SIZE + sizeof(struct ieee80211_frame_min)) { DPRINTF(("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev), len)); ifp->if_ierrors++; goto skip; } desc = (struct rum_rx_desc *)data->buf; if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) { /* * This should not happen since we did not request to receive * those frames when we filled RT2573_TXRX_CSR0. */ DPRINTFN(5, ("CRC error\n")); ifp->if_ierrors++; goto skip; } mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { kprintf("%s: could not allocate rx mbuf\n", device_get_nameunit(sc->sc_dev)); ifp->if_ierrors++; goto skip; } m = data->m; data->m = NULL; data->buf = NULL; lwkt_serialize_enter(ifp->if_serializer); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_data = (caddr_t)(desc + 1); m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; rssi = rum_get_rssi(sc, desc->rssi); wh = mtod(m, struct ieee80211_frame_min *); ni = ieee80211_find_rxnode(ic, wh); /* Error happened during RSSI conversion. */ if (rssi < 0) rssi = ni->ni_rssi; if (sc->sc_drvbpf != NULL) { struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = rum_rxrate(desc); tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = rssi; bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len); } /* send the frame to the 802.11 layer */ ieee80211_input(ic, m, ni, rssi, 0); /* node is no longer needed */ ieee80211_free_node(ni); if (!ifq_is_oactive(&ifp->if_snd)) ifp->if_start(ifp); lwkt_serialize_exit(ifp->if_serializer); data->m = mnew; data->buf = mtod(data->m, uint8_t *); DPRINTFN(15, ("rx done\n")); skip: /* setup a new transfer */ bzero(data->buf, sizeof(struct rum_rx_desc)); usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); usbd_transfer(xfer); crit_exit(); } /* * This function is only used by the Rx radiotap code. It returns the rate at * which a given frame was received. */ static uint8_t rum_rxrate(struct rum_rx_desc *desc) { if (le32toh(desc->flags) & RT2573_RX_OFDM) { /* reverse function of rum_plcp_signal */ switch (desc->rate) { case 0xb: return 12; case 0xf: return 18; case 0xa: return 24; case 0xe: return 36; case 0x9: return 48; case 0xd: return 72; case 0x8: return 96; case 0xc: return 108; } } else { if (desc->rate == 10) return 2; if (desc->rate == 20) return 4; if (desc->rate == 55) return 11; if (desc->rate == 110) return 22; } return 2; /* should not get there */ } static uint8_t rum_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } static void rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, uint32_t flags, uint16_t xflags, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->xflags = htole16(xflags); desc->wme = htole16( RT2573_QID(0) | RT2573_AIFSN(2) | RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); /* setup PLCP fields */ desc->plcp_signal = rum_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RUM_RATE_IS_OFDM(rate)) { desc->flags |= htole32(RT2573_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2573_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } desc->flags |= htole32(RT2573_TX_VALID); } #define RUM_TX_TIMEOUT 5000 static int rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct rum_tx_desc *desc; struct rum_tx_data *data; struct ieee80211_frame *wh; uint32_t flags = 0; uint16_t dur; usbd_status error; int xferlen, rate, rateidx; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } /* pickup a rate */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { /* mgmt frames are sent at the lowest available bit-rate */ rateidx = 0; } else { ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1); } rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx); data = &sc->tx_data[0]; desc = (struct rum_tx_desc *)data->buf; data->m = m0; data->ni = ni; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_ACK; dur = ieee80211_txtime(ni, RUM_ACK_SIZE, ieee80211_ack_rate(ni, rate), ic->ic_flags) + sc->sc_sifs; *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to set timestamp in probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2573_TX_TIMESTAMP; } if (sc->sc_drvbpf != NULL) { struct rum_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wt_antenna = sc->tx_ant; bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len); } m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE); rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate); /* Align end on a 4-bytes boundary */ xferlen = roundup(RT2573_TX_DESC_SIZE + m0->m_pkthdr.len, 4); /* * No space left in the last URB to store the extra 4 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 4; DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n", m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen)); lwkt_serialize_exit(ifp->if_serializer); usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof); error = usbd_transfer(data->xfer); if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) { m_freem(m0); data->m = NULL; data->ni = NULL; } else { sc->tx_queued++; error = 0; } lwkt_serialize_enter(ifp->if_serializer); return error; } static void rum_start(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ASSERT_SERIALIZED(ifp->if_serializer); if (sc->sc_stopped) { ifq_purge(&ifp->if_snd); return; } crit_enter(); if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd)) { crit_exit(); return; } for (;;) { struct ieee80211_node *ni; struct mbuf *m0; if (!IF_QEMPTY(&ic->ic_mgtq)) { if (sc->tx_queued >= RT2573_TX_LIST_COUNT) { ifq_set_oactive(&ifp->if_snd); break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; BPF_MTAP(ifp, m0); if (rum_tx_data(sc, m0, ni) != 0) { ieee80211_free_node(ni); break; } } else { struct ether_header *eh; if (ic->ic_state != IEEE80211_S_RUN) { ifq_purge(&ifp->if_snd); break; } if (sc->tx_queued >= RT2573_TX_LIST_COUNT) { ifq_set_oactive(&ifp->if_snd); break; } m0 = ifq_dequeue(&ifp->if_snd, NULL); if (m0 == NULL) break; if (m0->m_len < sizeof(struct ether_header)) { m0 = m_pullup(m0, sizeof(struct ether_header)); if (m0 == NULL) { ifp->if_oerrors++; continue; } } eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); continue; } BPF_MTAP(ifp, m0); m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ieee80211_free_node(ni); continue; } if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); if (rum_tx_data(sc, m0, ni) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } crit_exit(); } static void rum_watchdog(struct ifnet *ifp) { struct rum_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); crit_enter(); ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { kprintf("%s: device timeout\n", device_get_nameunit(sc->sc_dev)); /*rum_init(sc); XXX needs a process context! */ ifp->if_oerrors++; crit_exit(); return; } ifp->if_timer = 1; } ieee80211_watchdog(&sc->sc_ic); crit_exit(); } static int rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr) { struct rum_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error = 0; ASSERT_SERIALIZED(ifp->if_serializer); crit_enter(); switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) { lwkt_serialize_exit(ifp->if_serializer); rum_update_promisc(sc); lwkt_serialize_enter(ifp->if_serializer); } else { rum_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) rum_stop(sc); } break; default: error = ieee80211_ioctl(ic, cmd, data, cr); break; } if (error == ENETRESET) { struct ieee80211req *ireq = (struct ieee80211req *)data; if (cmd == SIOCS80211 && ireq->i_type == IEEE80211_IOC_CHANNEL && ic->ic_opmode == IEEE80211_M_MONITOR) { /* * This allows for fast channel switching in monitor * mode (used by kismet). In IBSS mode, we must * explicitly reset the interface to generate a new * beacon frame. */ lwkt_serialize_exit(ifp->if_serializer); rum_set_chan(sc, ic->ic_ibss_chan); lwkt_serialize_enter(ifp->if_serializer); } else if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { rum_init(sc); } error = 0; } crit_exit(); return error; } static void rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { kprintf("%s: could not read EEPROM: %s\n", device_get_nameunit(sc->sc_dev), usbd_errstr(error)); } } static uint32_t rum_read(struct rum_softc *sc, uint16_t reg) { uint32_t val; rum_read_multi(sc, reg, &val, sizeof val); return le32toh(val); } static void rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { kprintf("%s: could not multi read MAC register: %s\n", device_get_nameunit(sc->sc_dev), usbd_errstr(error)); } } static void rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) { uint32_t tmp = htole32(val); rum_write_multi(sc, reg, &tmp, sizeof tmp); } static void rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) { usb_device_request_t req; usbd_status error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = usbd_do_request(sc->sc_udev, &req, buf); if (error != 0) { kprintf("%s: could not multi write MAC register: %s\n", device_get_nameunit(sc->sc_dev), usbd_errstr(error)); } } static void rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { kprintf("%s: could not write to BBP\n", device_get_nameunit(sc->sc_dev)); return; } tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; rum_write(sc, RT2573_PHY_CSR3, tmp); } static uint8_t rum_bbp_read(struct rum_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev)); return 0; } val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; rum_write(sc, RT2573_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = rum_read(sc, RT2573_PHY_CSR3); if (!(val & RT2573_BBP_BUSY)) return val & 0xff; DELAY(1); } kprintf("%s: could not read BBP\n", device_get_nameunit(sc->sc_dev)); return 0; } static void rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) break; } if (ntries == 5) { kprintf("%s: could not write to RF\n", device_get_nameunit(sc->sc_dev)); return; } tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | (reg & 3); rum_write(sc, RT2573_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff)); } static void rum_select_antenna(struct rum_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rum_bbp_read(sc, 4); bbp77 = rum_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); rum_bbp_write(sc, 4, bbp4); rum_bbp_write(sc, 77, bbp77); rum_write(sc, RT2573_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rum_enable_mrr(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_MRR_CCK_FALLBACK; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) tmp |= RT2573_MRR_CCK_FALLBACK; tmp |= RT2573_MRR_ENABLED; rum_write(sc, RT2573_TXRX_CSR4, tmp); } static void rum_set_txpreamble(struct rum_softc *sc) { uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_SHORT_PREAMBLE; if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2573_SHORT_PREAMBLE; rum_write(sc, RT2573_TXRX_CSR4, tmp); } static void rum_set_basicrates(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) { /* 11a basic rates: 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x150); } else { /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x15f); } } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; uint32_t tmp; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } sc->bbp17 = bbp17; rum_bbp_write(sc, 17, bbp17); rum_bbp_write(sc, 96, bbp96); rum_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rum_bbp_write(sc, 75, 0x80); rum_bbp_write(sc, 86, 0x80); rum_bbp_write(sc, 88, 0x80); } rum_bbp_write(sc, 35, bbp35); rum_bbp_write(sc, 97, bbp97); rum_bbp_write(sc, 98, bbp98); tmp = rum_read(sc, RT2573_PHY_CSR0); tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); if (IEEE80211_IS_CHAN_2GHZ(c)) tmp |= RT2573_PA_PE_2GHZ; else tmp |= RT2573_PA_PE_5GHZ; rum_write(sc, RT2573_PHY_CSR0, tmp); } static void rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; int8_t power; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++) ; /* EMPTY */ power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ic_flags != sc->sc_curchan->ic_flags) { rum_select_band(sc, c); rum_select_antenna(sc); } sc->sc_curchan = c; rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(10); /* enable smart mode for MIMO-capable RFs */ bbp3 = rum_bbp_read(sc, 3); if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) bbp3 &= ~RT2573_SMART_MODE; else bbp3 |= RT2573_SMART_MODE; rum_bbp_write(sc, 3, bbp3); if (bbp94 != RT2573_BBPR94_DEFAULT) rum_bbp_write(sc, 94, bbp94); sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS : IEEE80211_DUR_SIFS; } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static void rum_enable_tsf_sync(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; if (ic->ic_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); } tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= ic->ic_bss->ni_intval * 16; tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2573_TSF_MODE(1); else tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; rum_write(sc, RT2573_TXRX_CSR9, tmp); } static void rum_update_slot(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; tmp = rum_read(sc, RT2573_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; rum_write(sc, RT2573_MAC_CSR9, tmp); DPRINTF(("setting slot time to %uus\n", slottime)); } static void rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; rum_write(sc, RT2573_MAC_CSR4, tmp); tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; rum_write(sc, RT2573_MAC_CSR5, tmp); } static void rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; rum_write(sc, RT2573_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8 | 0xff << 16; rum_write(sc, RT2573_MAC_CSR3, tmp); } static void rum_update_promisc(struct rum_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR0); tmp &= ~RT2573_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; rum_write(sc, RT2573_TXRX_CSR0, tmp); DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } static const char * rum_get_rf(int rev) { switch (rev) { case RT2573_RF_2527: return "RT2527 (MIMO XR)"; case RT2573_RF_2528: return "RT2528"; case RT2573_RF_5225: return "RT5225 (MIMO XR)"; case RT2573_RF_5226: return "RT5226"; default: return "unknown"; } } static void rum_read_eeprom(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; #ifdef RUM_DEBUG int i; #endif /* read MAC/BBP type */ rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2); sc->macbbp_rev = le16toh(val); /* read MAC address */ rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6); rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); val = le16toh(val); sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF(("RF revision=%d\n", sc->rf_rev)); rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); val = le16toh(val); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna)); rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) sc->rssi_2ghz_corr = 0; rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) sc->rssi_5ghz_corr = 0; if (sc->ext_2ghz_lna) sc->rssi_2ghz_corr -= 14; if (sc->ext_5ghz_lna) sc->rssi_5ghz_corr -= 14; DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF(("RF freq=%d\n", sc->rffreq)); /* read Tx power for all a/b/g channels */ rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); /* XXX default Tx power for 802.11a channels */ memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i])); #endif /* read default values for BBP registers */ rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val)); } #endif } static int rum_bbp_init(struct rum_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; uint8_t val; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { val = rum_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; DELAY(1000); } if (ntries == 100) { kprintf("%s: timeout waiting for BBP\n", device_get_nameunit(sc->sc_dev)); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < N(rum_def_bbp); i++) rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; #undef N } static void rum_init(void *xsc) { #define N(a) (sizeof(a) / sizeof((a)[0])) struct rum_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct rum_rx_data *data; uint32_t tmp; usbd_status usb_err; int i, ntries, error; ASSERT_SERIALIZED(ifp->if_serializer); crit_enter(); rum_stop(sc); sc->sc_stopped = 0; lwkt_serialize_exit(ifp->if_serializer); /* initialize MAC registers to default values */ for (i = 0; i < N(rum_def_mac); i++) rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ for (ntries = 0; ntries < 1000; ntries++) { if (rum_read(sc, RT2573_MAC_CSR12) & 8) break; rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ DELAY(1000); } if (ntries == 1000) { kprintf("%s: timeout waiting for BBP/RF to wakeup\n", device_get_nameunit(sc->sc_dev)); error = ETIMEDOUT; goto fail; } error = rum_bbp_init(sc); if (error) goto fail; /* select default channel */ sc->sc_curchan = ic->ic_curchan = ic->ic_ibss_chan; rum_select_band(sc, sc->sc_curchan); rum_select_antenna(sc); rum_set_chan(sc, sc->sc_curchan); /* clear STA registers */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); rum_set_macaddr(sc, ic->ic_myaddr); /* initialize ASIC */ rum_write(sc, RT2573_MAC_CSR1, 4); /* * Allocate xfer for AMRR statistics requests. */ sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev); if (sc->stats_xfer == NULL) { kprintf("%s: could not allocate AMRR xfer\n", device_get_nameunit(sc->sc_dev)); error = ENOMEM; goto fail; } /* * Open Tx and Rx USB bulk pipes. */ usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE, &sc->sc_tx_pipeh); if (usb_err != USBD_NORMAL_COMPLETION) { kprintf("%s: could not open Tx pipe: %s\n", device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err)); error = EIO; goto fail; } usb_err = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE, &sc->sc_rx_pipeh); if (usb_err != USBD_NORMAL_COMPLETION) { kprintf("%s: could not open Rx pipe: %s\n", device_get_nameunit(sc->sc_dev), usbd_errstr(usb_err)); error = EIO; goto fail; } /* * Allocate Tx and Rx xfer queues. */ error = rum_alloc_tx_list(sc); if (error) { kprintf("%s: could not allocate Tx list\n", device_get_nameunit(sc->sc_dev)); goto fail; } error = rum_alloc_rx_list(sc); if (error) { kprintf("%s: could not allocate Rx list\n", device_get_nameunit(sc->sc_dev)); goto fail; } /* * Start up the receive pipe. */ for (i = 0; i < RT2573_RX_LIST_COUNT; i++) { data = &sc->rx_data[i]; usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof); usbd_transfer(data->xfer); } /* update Rx filter */ tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | RT2573_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2573_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; } rum_write(sc, RT2573_TXRX_CSR0, tmp); fail: lwkt_serialize_enter(ifp->if_serializer); if (error) { rum_stop(sc); } else { ifq_clr_oactive(&ifp->if_snd); ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode != IEEE80211_M_MONITOR) { if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } else { ieee80211_new_state(ic, IEEE80211_S_RUN, -1); } } crit_exit(); #undef N } static void rum_stop(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; uint32_t tmp; ASSERT_SERIALIZED(ifp->if_serializer); crit_enter(); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); sc->sc_stopped = 1; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ sc->sc_tx_timer = 0; ifp->if_timer = 0; lwkt_serialize_exit(ifp->if_serializer); /* disable Rx */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); /* reset ASIC */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); if (sc->stats_xfer != NULL) { usbd_free_xfer(sc->stats_xfer); sc->stats_xfer = NULL; } if (sc->sc_rx_pipeh != NULL) { usbd_abort_pipe(sc->sc_rx_pipeh); usbd_close_pipe(sc->sc_rx_pipeh); sc->sc_rx_pipeh = NULL; } if (sc->sc_tx_pipeh != NULL) { usbd_abort_pipe(sc->sc_tx_pipeh); usbd_close_pipe(sc->sc_tx_pipeh); sc->sc_tx_pipeh = NULL; } lwkt_serialize_enter(ifp->if_serializer); rum_free_rx_list(sc); rum_free_tx_list(sc); crit_exit(); } static int rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) { usb_device_request_t req; uint16_t reg = RT2573_MCU_CODE_BASE; usbd_status error; /* copy firmware image into NIC */ for (; size >= 4; reg += 4, ucode += 4, size -= 4) rum_write(sc, reg, UGETDW(ucode)); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_MCU_CNTL; USETW(req.wValue, RT2573_MCU_RUN); USETW(req.wIndex, 0); USETW(req.wLength, 0); error = usbd_do_request(sc->sc_udev, &req, NULL); if (error != 0) { kprintf("%s: could not run firmware: %s\n", device_get_nameunit(sc->sc_dev), usbd_errstr(error)); } return error; } static int rum_prepare_beacon(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_beacon_offsets bo; struct rum_tx_desc desc; struct mbuf *m0; int rate; lwkt_serialize_enter(ifp->if_serializer); m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); lwkt_serialize_exit(ifp->if_serializer); if (m0 == NULL) { if_printf(&ic->ic_if, "could not allocate beacon frame\n"); return ENOBUFS; } /* send beacons at the lowest available rate */ rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, m0->m_pkthdr.len, rate); /* copy the first 24 bytes of Tx descriptor into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24); /* copy beacon header and payload into NIC memory */ rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), m0->m_pkthdr.len); m_freem(m0); return 0; } static void rum_stats_timeout(void *arg) { struct rum_softc *sc = arg; usb_device_request_t req; if (sc->sc_stopped) return; crit_enter(); /* * Asynchronously read statistic registers (cleared by read). */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, RT2573_STA_CSR0); USETW(req.wLength, sizeof(sc->sta)); usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc, USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0, rum_stats_update); usbd_transfer(sc->stats_xfer); crit_exit(); } static void rum_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct rum_softc *sc = (struct rum_softc *)priv; struct ifnet *ifp = &sc->sc_ic.ic_if; struct ieee80211_ratectl_stats *stats = &sc->sc_stats; if (status != USBD_NORMAL_COMPLETION) { kprintf("%s: could not retrieve Tx statistics - cancelling " "automatic rate control\n", device_get_nameunit(sc->sc_dev)); return; } crit_enter(); /* count TX retry-fail as Tx errors */ ifp->if_oerrors += RUM_TX_PKT_FAIL(sc); stats->stats_pkt_noretry += RUM_TX_PKT_NO_RETRY(sc); stats->stats_pkt_ok += RUM_TX_PKT_NO_RETRY(sc) + RUM_TX_PKT_ONE_RETRY(sc) + RUM_TX_PKT_MULTI_RETRY(sc); stats->stats_pkt_err += RUM_TX_PKT_FAIL(sc); stats->stats_retries += RUM_TX_PKT_ONE_RETRY(sc); #if 1 /* * XXX Estimated average: * Actual number of retries for each packet should belong to * [2, RUM_TX_SHORT_RETRY_MAX] */ stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc) * ((2 + RUM_TX_SHORT_RETRY_MAX) / 2); #else stats->stats_retries += RUM_TX_PKT_MULTI_RETRY(sc); #endif stats->stats_retries += RUM_TX_PKT_FAIL(sc) * RUM_TX_SHORT_RETRY_MAX; callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc); crit_exit(); } static void rum_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused, struct ieee80211_ratectl_stats *stats) { struct ifnet *ifp = &ic->ic_if; struct rum_softc *sc = ifp->if_softc; ASSERT_SERIALIZED(ifp->if_serializer); bcopy(&sc->sc_stats, stats, sizeof(*stats)); bzero(&sc->sc_stats, sizeof(sc->sc_stats)); } static void * rum_ratectl_attach(struct ieee80211com *ic, u_int rc) { struct rum_softc *sc = ic->ic_if.if_softc; switch (rc) { case IEEE80211_RATECTL_ONOE: return &sc->sc_onoe_param; case IEEE80211_RATECTL_NONE: /* This could only happen during detaching */ return NULL; default: panic("unknown rate control algo %u", rc); return NULL; } } static int rum_get_rssi(struct rum_softc *sc, uint8_t raw) { int lna, agc, rssi; lna = (raw >> 5) & 0x3; agc = raw & 0x1f; if (lna == 0) { /* * No RSSI mapping * * NB: Since RSSI is relative to noise floor, -1 is * adequate for caller to know error happened. */ return -1; } rssi = (2 * agc) - RT2573_NOISE_FLOOR; if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { rssi += sc->rssi_2ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 74; else if (lna == 3) rssi -= 90; } else { rssi += sc->rssi_5ghz_corr; if (!sc->ext_5ghz_lna && lna != 1) rssi += 4; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 86; else if (lna == 3) rssi -= 100; } return rssi; }