/*- * Copyright (c) 2008 Joerg Sonnenberger * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1985, 1986, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Diomidis Spinellis and James A. Woods, derived from original * work by Spencer Thomas and Joseph Orost. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "archive_platform.h" __FBSDID("$FreeBSD: head/lib/libarchive/archive_write_set_compression_compress.c 201111 2009-12-28 03:33:05Z kientzle $"); #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STRING_H #include #endif #include "archive.h" #include "archive_private.h" #include "archive_write_private.h" #define HSIZE 69001 /* 95% occupancy */ #define HSHIFT 8 /* 8 - trunc(log2(HSIZE / 65536)) */ #define CHECK_GAP 10000 /* Ratio check interval. */ #define MAXCODE(bits) ((1 << (bits)) - 1) /* * the next two codes should not be changed lightly, as they must not * lie within the contiguous general code space. */ #define FIRST 257 /* First free entry. */ #define CLEAR 256 /* Table clear output code. */ struct private_data { int64_t in_count, out_count, checkpoint; int code_len; /* Number of bits/code. */ int cur_maxcode; /* Maximum code, given n_bits. */ int max_maxcode; /* Should NEVER generate this code. */ int hashtab [HSIZE]; unsigned short codetab [HSIZE]; int first_free; /* First unused entry. */ int compress_ratio; int cur_code, cur_fcode; int bit_offset; unsigned char bit_buf; unsigned char *compressed; size_t compressed_buffer_size; size_t compressed_offset; }; static int archive_compressor_compress_open(struct archive_write_filter *); static int archive_compressor_compress_write(struct archive_write_filter *, const void *, size_t); static int archive_compressor_compress_close(struct archive_write_filter *); static int archive_compressor_compress_free(struct archive_write_filter *); #if ARCHIVE_VERSION_NUMBER < 4000000 int archive_write_set_compression_compress(struct archive *a) { __archive_write_filters_free(a); return (archive_write_add_filter_compress(a)); } #endif /* * Add a compress filter to this write handle. */ int archive_write_add_filter_compress(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; struct archive_write_filter *f = __archive_write_allocate_filter(_a); archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_NEW, "archive_write_add_filter_compress"); f->open = &archive_compressor_compress_open; f->code = ARCHIVE_FILTER_COMPRESS; f->name = "compress"; return (ARCHIVE_OK); } /* * Setup callback. */ static int archive_compressor_compress_open(struct archive_write_filter *f) { struct private_data *state; size_t bs = 65536, bpb; f->code = ARCHIVE_FILTER_COMPRESS; f->name = "compress"; state = (struct private_data *)calloc(1, sizeof(*state)); if (state == NULL) { archive_set_error(f->archive, ENOMEM, "Can't allocate data for compression"); return (ARCHIVE_FATAL); } if (f->archive->magic == ARCHIVE_WRITE_MAGIC) { /* Buffer size should be a multiple number of the of bytes * per block for performance. */ bpb = archive_write_get_bytes_per_block(f->archive); if (bpb > bs) bs = bpb; else if (bpb != 0) bs -= bs % bpb; } state->compressed_buffer_size = bs; state->compressed = malloc(state->compressed_buffer_size); if (state->compressed == NULL) { archive_set_error(f->archive, ENOMEM, "Can't allocate data for compression buffer"); free(state); return (ARCHIVE_FATAL); } f->write = archive_compressor_compress_write; f->close = archive_compressor_compress_close; f->free = archive_compressor_compress_free; state->max_maxcode = 0x10000; /* Should NEVER generate this code. */ state->in_count = 0; /* Length of input. */ state->bit_buf = 0; state->bit_offset = 0; state->out_count = 3; /* Includes 3-byte header mojo. */ state->compress_ratio = 0; state->checkpoint = CHECK_GAP; state->code_len = 9; state->cur_maxcode = MAXCODE(state->code_len); state->first_free = FIRST; memset(state->hashtab, 0xff, sizeof(state->hashtab)); /* Prime output buffer with a gzip header. */ state->compressed[0] = 0x1f; /* Compress */ state->compressed[1] = 0x9d; state->compressed[2] = 0x90; /* Block mode, 16bit max */ state->compressed_offset = 3; f->data = state; return (0); } /*- * Output the given code. * Inputs: * code: A n_bits-bit integer. If == -1, then EOF. This assumes * that n_bits <= (long)wordsize - 1. * Outputs: * Outputs code to the file. * Assumptions: * Chars are 8 bits long. * Algorithm: * Maintain a BITS character long buffer (so that 8 codes will * fit in it exactly). Use the VAX insv instruction to insert each * code in turn. When the buffer fills up empty it and start over. */ static const unsigned char rmask[9] = {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}; static int output_byte(struct archive_write_filter *f, unsigned char c) { struct private_data *state = f->data; state->compressed[state->compressed_offset++] = c; ++state->out_count; if (state->compressed_buffer_size == state->compressed_offset) { int ret = __archive_write_filter(f->next_filter, state->compressed, state->compressed_buffer_size); if (ret != ARCHIVE_OK) return ARCHIVE_FATAL; state->compressed_offset = 0; } return ARCHIVE_OK; } static int output_code(struct archive_write_filter *f, int ocode) { struct private_data *state = f->data; int bits, ret, clear_flg, bit_offset; clear_flg = ocode == CLEAR; /* * Since ocode is always >= 8 bits, only need to mask the first * hunk on the left. */ bit_offset = state->bit_offset % 8; state->bit_buf |= (ocode << bit_offset) & 0xff; output_byte(f, state->bit_buf); bits = state->code_len - (8 - bit_offset); ocode >>= 8 - bit_offset; /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if (bits >= 8) { output_byte(f, ocode & 0xff); ocode >>= 8; bits -= 8; } /* Last bits. */ state->bit_offset += state->code_len; state->bit_buf = ocode & rmask[bits]; if (state->bit_offset == state->code_len * 8) state->bit_offset = 0; /* * If the next entry is going to be too big for the ocode size, * then increase it, if possible. */ if (clear_flg || state->first_free > state->cur_maxcode) { /* * Write the whole buffer, because the input side won't * discover the size increase until after it has read it. */ if (state->bit_offset > 0) { while (state->bit_offset < state->code_len * 8) { ret = output_byte(f, state->bit_buf); if (ret != ARCHIVE_OK) return ret; state->bit_offset += 8; state->bit_buf = 0; } } state->bit_buf = 0; state->bit_offset = 0; if (clear_flg) { state->code_len = 9; state->cur_maxcode = MAXCODE(state->code_len); } else { state->code_len++; if (state->code_len == 16) state->cur_maxcode = state->max_maxcode; else state->cur_maxcode = MAXCODE(state->code_len); } } return (ARCHIVE_OK); } static int output_flush(struct archive_write_filter *f) { struct private_data *state = f->data; int ret; /* At EOF, write the rest of the buffer. */ if (state->bit_offset % 8) { state->code_len = (state->bit_offset % 8 + 7) / 8; ret = output_byte(f, state->bit_buf); if (ret != ARCHIVE_OK) return ret; } return (ARCHIVE_OK); } /* * Write data to the compressed stream. */ static int archive_compressor_compress_write(struct archive_write_filter *f, const void *buff, size_t length) { struct private_data *state = (struct private_data *)f->data; int i; int ratio; int c, disp, ret; const unsigned char *bp; if (length == 0) return ARCHIVE_OK; bp = buff; if (state->in_count == 0) { state->cur_code = *bp++; ++state->in_count; --length; } while (length--) { c = *bp++; state->in_count++; state->cur_fcode = (c << 16) + state->cur_code; i = ((c << HSHIFT) ^ state->cur_code); /* Xor hashing. */ if (state->hashtab[i] == state->cur_fcode) { state->cur_code = state->codetab[i]; continue; } if (state->hashtab[i] < 0) /* Empty slot. */ goto nomatch; /* Secondary hash (after G. Knott). */ if (i == 0) disp = 1; else disp = HSIZE - i; probe: if ((i -= disp) < 0) i += HSIZE; if (state->hashtab[i] == state->cur_fcode) { state->cur_code = state->codetab[i]; continue; } if (state->hashtab[i] >= 0) goto probe; nomatch: ret = output_code(f, state->cur_code); if (ret != ARCHIVE_OK) return ret; state->cur_code = c; if (state->first_free < state->max_maxcode) { state->codetab[i] = state->first_free++; /* code -> hashtable */ state->hashtab[i] = state->cur_fcode; continue; } if (state->in_count < state->checkpoint) continue; state->checkpoint = state->in_count + CHECK_GAP; if (state->in_count <= 0x007fffff && state->out_count != 0) ratio = (int)(state->in_count * 256 / state->out_count); else if ((ratio = (int)(state->out_count / 256)) == 0) ratio = 0x7fffffff; else ratio = (int)(state->in_count / ratio); if (ratio > state->compress_ratio) state->compress_ratio = ratio; else { state->compress_ratio = 0; memset(state->hashtab, 0xff, sizeof(state->hashtab)); state->first_free = FIRST; ret = output_code(f, CLEAR); if (ret != ARCHIVE_OK) return ret; } } return (ARCHIVE_OK); } /* * Finish the compression... */ static int archive_compressor_compress_close(struct archive_write_filter *f) { struct private_data *state = (struct private_data *)f->data; int ret; ret = output_code(f, state->cur_code); if (ret != ARCHIVE_OK) return ret; ret = output_flush(f); if (ret != ARCHIVE_OK) return ret; /* Write the last block */ ret = __archive_write_filter(f->next_filter, state->compressed, state->compressed_offset); return (ret); } static int archive_compressor_compress_free(struct archive_write_filter *f) { struct private_data *state = (struct private_data *)f->data; free(state->compressed); free(state); return (ARCHIVE_OK); }