/* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $ */ /* * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. * * Written by Bill Paul * Senior Engineer, Wind River Systems */ /* * The Broadcom BCM5700 is based on technology originally developed by * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has * two on-board MIPS R4000 CPUs and can have as much as 16MB of external * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo * frames, highly configurable RX filtering, and 16 RX and TX queues * (which, along with RX filter rules, can be used for QOS applications). * Other features, such as TCP segmentation, may be available as part * of value-added firmware updates. Unlike the Tigon I and Tigon II, * firmware images can be stored in hardware and need not be compiled * into the driver. * * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. * * The BCM5701 is a single-chip solution incorporating both the BCM5700 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 * does not support external SSRAM. * * Broadcom also produces a variation of the BCM5700 under the "Altima" * brand name, which is functionally similar but lacks PCI-X support. * * Without external SSRAM, you can only have at most 4 TX rings, * and the use of the mini RX ring is disabled. This seems to imply * that these features are simply not available on the BCM5701. As a * result, this driver does not implement any support for the mini RX * ring. */ #include "opt_polling.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) #define BGE_MIN_FRAME 60 static const struct bge_type bge_devs[] = { { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996, "3COM 3C996 Gigabit Ethernet" }, { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700, "Alteon BCM5700 Gigabit Ethernet" }, { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701, "Alteon BCM5701 Gigabit Ethernet" }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000, "Altima AC1000 Gigabit Ethernet" }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001, "Altima AC1002 Gigabit Ethernet" }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100, "Altima AC9100 Gigabit Ethernet" }, { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701, "Apple BCM5701 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700, "Broadcom BCM5700 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701, "Broadcom BCM5701 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702, "Broadcom BCM5702 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X, "Broadcom BCM5702X Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT, "Broadcom BCM5702 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703, "Broadcom BCM5703 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X, "Broadcom BCM5703X Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3, "Broadcom BCM5703 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C, "Broadcom BCM5704C Dual Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S, "Broadcom BCM5704S Dual Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT, "Broadcom BCM5704S Dual Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705, "Broadcom BCM5705 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F, "Broadcom BCM5705F Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K, "Broadcom BCM5705K Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M, "Broadcom BCM5705M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT, "Broadcom BCM5705M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714, "Broadcom BCM5714C Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S, "Broadcom BCM5714S Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715, "Broadcom BCM5715 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S, "Broadcom BCM5715S Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720, "Broadcom BCM5720 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721, "Broadcom BCM5721 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722, "Broadcom BCM5722 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723, "Broadcom BCM5723 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750, "Broadcom BCM5750 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M, "Broadcom BCM5750M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751, "Broadcom BCM5751 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F, "Broadcom BCM5751F Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M, "Broadcom BCM5751M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752, "Broadcom BCM5752 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M, "Broadcom BCM5752M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753, "Broadcom BCM5753 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F, "Broadcom BCM5753F Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M, "Broadcom BCM5753M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754, "Broadcom BCM5754 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M, "Broadcom BCM5754M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755, "Broadcom BCM5755 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M, "Broadcom BCM5755M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756, "Broadcom BCM5756 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761, "Broadcom BCM5761 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E, "Broadcom BCM5761E Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S, "Broadcom BCM5761S Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE, "Broadcom BCM5761SE Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764, "Broadcom BCM5764 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780, "Broadcom BCM5780 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S, "Broadcom BCM5780S Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781, "Broadcom BCM5781 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782, "Broadcom BCM5782 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784, "Broadcom BCM5784 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F, "Broadcom BCM5785F Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G, "Broadcom BCM5785G Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786, "Broadcom BCM5786 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787, "Broadcom BCM5787 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F, "Broadcom BCM5787F Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M, "Broadcom BCM5787M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788, "Broadcom BCM5788 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789, "Broadcom BCM5789 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901, "Broadcom BCM5901 Fast Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2, "Broadcom BCM5901A2 Fast Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M, "Broadcom BCM5903M Fast Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906, "Broadcom BCM5906 Fast Ethernet"}, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M, "Broadcom BCM5906M Fast Ethernet"}, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760, "Broadcom BCM57760 Gigabit Ethernet"}, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780, "Broadcom BCM57780 Gigabit Ethernet"}, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788, "Broadcom BCM57788 Gigabit Ethernet"}, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790, "Broadcom BCM57790 Gigabit Ethernet"}, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1, "SysKonnect Gigabit Ethernet" }, { 0, 0, NULL } }; #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); static int bge_probe(device_t); static int bge_attach(device_t); static int bge_detach(device_t); static void bge_txeof(struct bge_softc *); static void bge_rxeof(struct bge_softc *); static void bge_tick(void *); static void bge_stats_update(struct bge_softc *); static void bge_stats_update_regs(struct bge_softc *); static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); #ifdef DEVICE_POLLING static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); #endif static void bge_intr(void *); static void bge_enable_intr(struct bge_softc *); static void bge_disable_intr(struct bge_softc *); static void bge_start(struct ifnet *); static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void bge_init(void *); static void bge_stop(struct bge_softc *); static void bge_watchdog(struct ifnet *); static void bge_shutdown(device_t); static int bge_suspend(device_t); static int bge_resume(device_t); static int bge_ifmedia_upd(struct ifnet *); static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *); static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t); static void bge_setmulti(struct bge_softc *); static void bge_setpromisc(struct bge_softc *); static int bge_alloc_jumbo_mem(struct bge_softc *); static void bge_free_jumbo_mem(struct bge_softc *); static struct bge_jslot *bge_jalloc(struct bge_softc *); static void bge_jfree(void *); static void bge_jref(void *); static int bge_newbuf_std(struct bge_softc *, int, int); static int bge_newbuf_jumbo(struct bge_softc *, int, int); static void bge_setup_rxdesc_std(struct bge_softc *, int); static void bge_setup_rxdesc_jumbo(struct bge_softc *, int); static int bge_init_rx_ring_std(struct bge_softc *); static void bge_free_rx_ring_std(struct bge_softc *); static int bge_init_rx_ring_jumbo(struct bge_softc *); static void bge_free_rx_ring_jumbo(struct bge_softc *); static void bge_free_tx_ring(struct bge_softc *); static int bge_init_tx_ring(struct bge_softc *); static int bge_chipinit(struct bge_softc *); static int bge_blockinit(struct bge_softc *); static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t); static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t); #ifdef notdef static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t); #endif static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t); static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t); static void bge_writembx(struct bge_softc *, int, int); static int bge_miibus_readreg(device_t, int, int); static int bge_miibus_writereg(device_t, int, int, int); static void bge_miibus_statchg(device_t); static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t); static void bge_tbi_link_upd(struct bge_softc *, uint32_t); static void bge_copper_link_upd(struct bge_softc *, uint32_t); static void bge_reset(struct bge_softc *); static int bge_dma_alloc(struct bge_softc *); static void bge_dma_free(struct bge_softc *); static int bge_dma_block_alloc(struct bge_softc *, bus_size_t, bus_dma_tag_t *, bus_dmamap_t *, void **, bus_addr_t *); static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *); static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); static int bge_get_eaddr(struct bge_softc *, uint8_t[]); static void bge_coal_change(struct bge_softc *); static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS); static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS); static int bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS); static int bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS); static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t); /* * Set following tunable to 1 for some IBM blade servers with the DNLK * switch module. Auto negotiation is broken for those configurations. */ static int bge_fake_autoneg = 0; TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg); /* Interrupt moderation control variables. */ static int bge_rx_coal_ticks = 100; /* usec */ static int bge_tx_coal_ticks = 1023; /* usec */ static int bge_rx_max_coal_bds = 80; static int bge_tx_max_coal_bds = 128; TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks); TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks); TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds); TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds); #if !defined(KTR_IF_BGE) #define KTR_IF_BGE KTR_ALL #endif KTR_INFO_MASTER(if_bge); KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0); KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0); KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0); #define logif(name) KTR_LOG(if_bge_ ## name) static device_method_t bge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bge_probe), DEVMETHOD(device_attach, bge_attach), DEVMETHOD(device_detach, bge_detach), DEVMETHOD(device_shutdown, bge_shutdown), DEVMETHOD(device_suspend, bge_suspend), DEVMETHOD(device_resume, bge_resume), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, bge_miibus_readreg), DEVMETHOD(miibus_writereg, bge_miibus_writereg), DEVMETHOD(miibus_statchg, bge_miibus_statchg), { 0, 0 } }; static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc)); static devclass_t bge_devclass; DECLARE_DUMMY_MODULE(if_bge); DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL); DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL); static uint32_t bge_readmem_ind(struct bge_softc *sc, uint32_t off) { device_t dev = sc->bge_dev; uint32_t val; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); return (val); } static void bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val) { device_t dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); } #ifdef notdef static uint32_t bge_readreg_ind(struct bge_softc *sc, uin32_t off) { device_t dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); } #endif static void bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val) { device_t dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); } static void bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val) { CSR_WRITE_4(sc, off, val); } static void bge_writembx(struct bge_softc *sc, int off, int val) { if (sc->bge_asicrev == BGE_ASICREV_BCM5906) off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; CSR_WRITE_4(sc, off, val); } static uint8_t bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) { uint32_t access, byte = 0; int i; /* Lock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); for (i = 0; i < 8000; i++) { if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) break; DELAY(20); } if (i == 8000) return (1); /* Enable access. */ access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { DELAY(10); break; } } if (i == BGE_TIMEOUT * 10) { if_printf(&sc->arpcom.ac_if, "nvram read timed out\n"); return (1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; /* Disable access. */ CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); /* Unlock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); CSR_READ_4(sc, BGE_NVRAM_SWARB); return (0); } /* * Read a sequence of bytes from NVRAM. */ static int bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) { int err = 0, i; uint8_t byte = 0; if (sc->bge_asicrev != BGE_ASICREV_BCM5906) return (1); for (i = 0; i < cnt; i++) { err = bge_nvram_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return (err ? 1 : 0); } /* * Read a byte of data stored in the EEPROM at address 'addr.' The * BCM570x supports both the traditional bitbang interface and an * auto access interface for reading the EEPROM. We use the auto * access method. */ static uint8_t bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest) { int i; uint32_t byte = 0; /* * Enable use of auto EEPROM access so we can avoid * having to use the bitbang method. */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); /* Reset the EEPROM, load the clock period. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); DELAY(20); /* Issue the read EEPROM command. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); /* Wait for completion */ for(i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) break; } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n"); return(1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_EE_DATA); *dest = (byte >> ((addr % 4) * 8)) & 0xFF; return(0); } /* * Read a sequence of bytes from the EEPROM. */ static int bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len) { size_t i; int err; uint8_t byte; for (byte = 0, err = 0, i = 0; i < len; i++) { err = bge_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return(err ? 1 : 0); } static int bge_miibus_readreg(device_t dev, int phy, int reg) { struct bge_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t val, autopoll; int i; /* * Broadcom's own driver always assumes the internal * PHY is at GMII address 1. On some chips, the PHY responds * to accesses at all addresses, which could cause us to * bogusly attach the PHY 32 times at probe type. Always * restricting the lookup to address 1 is simpler than * trying to figure out which chips revisions should be * special-cased. */ if (phy != 1) return(0); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)); for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); val = CSR_READ_4(sc, BGE_MI_COMM); if (!(val & BGE_MICOMM_BUSY)) break; } if (i == BGE_TIMEOUT) { if_printf(ifp, "PHY read timed out " "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val); val = 0; goto done; } DELAY(5); val = CSR_READ_4(sc, BGE_MI_COMM); done: if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } if (val & BGE_MICOMM_READFAIL) return(0); return(val & 0xFFFF); } static int bge_miibus_writereg(device_t dev, int phy, int reg, int val) { struct bge_softc *sc = device_get_softc(dev); uint32_t autopoll; int i; /* * See the related comment in bge_miibus_readreg() */ if (phy != 1) return(0); if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) return(0); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)|val); for (i = 0; i < BGE_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { DELAY(5); CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ break; } } if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "PHY write timed out " "(phy %d, reg %d, val %d)\n", phy, reg, val); return(0); } return(0); } static void bge_miibus_statchg(device_t dev) { struct bge_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->bge_miibus); BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } } /* * Memory management for jumbo frames. */ static int bge_alloc_jumbo_mem(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct bge_jslot *entry; uint8_t *ptr; bus_addr_t paddr; int i, error; /* * Create tag for jumbo mbufs. * This is really a bit of a kludge. We allocate a special * jumbo buffer pool which (thanks to the way our DMA * memory allocation works) will consist of contiguous * pages. This means that even though a jumbo buffer might * be larger than a page size, we don't really need to * map it into more than one DMA segment. However, the * default mbuf tag will result in multi-segment mappings, * so we have to create a special jumbo mbuf tag that * lets us get away with mapping the jumbo buffers as * a single segment. I think eventually the driver should * be changed so that it uses ordinary mbufs and cluster * buffers, i.e. jumbo frames can span multiple DMA * descriptors. But that's a project for another day. */ /* * Create DMA stuffs for jumbo RX ring. */ error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ, &sc->bge_cdata.bge_rx_jumbo_ring_tag, &sc->bge_cdata.bge_rx_jumbo_ring_map, (void *)&sc->bge_ldata.bge_rx_jumbo_ring, &sc->bge_ldata.bge_rx_jumbo_ring_paddr); if (error) { if_printf(ifp, "could not create jumbo RX ring\n"); return error; } /* * Create DMA stuffs for jumbo buffer block. */ error = bge_dma_block_alloc(sc, BGE_JMEM, &sc->bge_cdata.bge_jumbo_tag, &sc->bge_cdata.bge_jumbo_map, (void **)&sc->bge_ldata.bge_jumbo_buf, &paddr); if (error) { if_printf(ifp, "could not create jumbo buffer\n"); return error; } SLIST_INIT(&sc->bge_jfree_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. Note that we play an evil trick here by using * the first few bytes in the buffer to hold the the address * of the softc structure for this interface. This is because * bge_jfree() needs it, but it is called by the mbuf management * code which will not pass it to us explicitly. */ for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) { entry = &sc->bge_cdata.bge_jslots[i]; entry->bge_sc = sc; entry->bge_buf = ptr; entry->bge_paddr = paddr; entry->bge_inuse = 0; entry->bge_slot = i; SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link); ptr += BGE_JLEN; paddr += BGE_JLEN; } return 0; } static void bge_free_jumbo_mem(struct bge_softc *sc) { /* Destroy jumbo RX ring. */ bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, sc->bge_cdata.bge_rx_jumbo_ring_map, sc->bge_ldata.bge_rx_jumbo_ring); /* Destroy jumbo buffer block. */ bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag, sc->bge_cdata.bge_jumbo_map, sc->bge_ldata.bge_jumbo_buf); } /* * Allocate a jumbo buffer. */ static struct bge_jslot * bge_jalloc(struct bge_softc *sc) { struct bge_jslot *entry; lwkt_serialize_enter(&sc->bge_jslot_serializer); entry = SLIST_FIRST(&sc->bge_jfree_listhead); if (entry) { SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link); entry->bge_inuse = 1; } else { if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n"); } lwkt_serialize_exit(&sc->bge_jslot_serializer); return(entry); } /* * Adjust usage count on a jumbo buffer. */ static void bge_jref(void *arg) { struct bge_jslot *entry = (struct bge_jslot *)arg; struct bge_softc *sc = entry->bge_sc; if (sc == NULL) panic("bge_jref: can't find softc pointer!"); if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) { panic("bge_jref: asked to reference buffer " "that we don't manage!"); } else if (entry->bge_inuse == 0) { panic("bge_jref: buffer already free!"); } else { atomic_add_int(&entry->bge_inuse, 1); } } /* * Release a jumbo buffer. */ static void bge_jfree(void *arg) { struct bge_jslot *entry = (struct bge_jslot *)arg; struct bge_softc *sc = entry->bge_sc; if (sc == NULL) panic("bge_jfree: can't find softc pointer!"); if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) { panic("bge_jfree: asked to free buffer that we don't manage!"); } else if (entry->bge_inuse == 0) { panic("bge_jfree: buffer already free!"); } else { /* * Possible MP race to 0, use the serializer. The atomic insn * is still needed for races against bge_jref(). */ lwkt_serialize_enter(&sc->bge_jslot_serializer); atomic_subtract_int(&entry->bge_inuse, 1); if (entry->bge_inuse == 0) { SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link); } lwkt_serialize_exit(&sc->bge_jslot_serializer); } } /* * Intialize a standard receive ring descriptor. */ static int bge_newbuf_std(struct bge_softc *sc, int i, int init) { struct mbuf *m_new = NULL; bus_dma_segment_t seg; bus_dmamap_t map; int error, nsegs; m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR); if (m_new == NULL) return ENOBUFS; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) m_adj(m_new, ETHER_ALIGN); error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_tmpmap, m_new, &seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error) { m_freem(m_new); return error; } if (!init) { bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i]); } map = sc->bge_cdata.bge_rx_tmpmap; sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i]; sc->bge_cdata.bge_rx_std_dmamap[i] = map; sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new; sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr; bge_setup_rxdesc_std(sc, i); return 0; } static void bge_setup_rxdesc_std(struct bge_softc *sc, int i) { struct bge_rxchain *rc; struct bge_rx_bd *r; rc = &sc->bge_cdata.bge_rx_std_chain[i]; r = &sc->bge_ldata.bge_rx_std_ring[i]; r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr); r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr); r->bge_len = rc->bge_mbuf->m_len; r->bge_idx = i; r->bge_flags = BGE_RXBDFLAG_END; } /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int bge_newbuf_jumbo(struct bge_softc *sc, int i, int init) { struct mbuf *m_new = NULL; struct bge_jslot *buf; bus_addr_t paddr; /* Allocate the mbuf. */ MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA); if (m_new == NULL) return ENOBUFS; /* Allocate the jumbo buffer */ buf = bge_jalloc(sc); if (buf == NULL) { m_freem(m_new); return ENOBUFS; } /* Attach the buffer to the mbuf. */ m_new->m_ext.ext_arg = buf; m_new->m_ext.ext_buf = buf->bge_buf; m_new->m_ext.ext_free = bge_jfree; m_new->m_ext.ext_ref = bge_jref; m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; m_new->m_flags |= M_EXT; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size; paddr = buf->bge_paddr; if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) { m_adj(m_new, ETHER_ALIGN); paddr += ETHER_ALIGN; } /* Save necessary information */ sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new; sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr; /* Set up the descriptor. */ bge_setup_rxdesc_jumbo(sc, i); return 0; } static void bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i) { struct bge_rx_bd *r; struct bge_rxchain *rc; r = &sc->bge_ldata.bge_rx_jumbo_ring[i]; rc = &sc->bge_cdata.bge_rx_jumbo_chain[i]; r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr); r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr); r->bge_len = rc->bge_mbuf->m_len; r->bge_idx = i; r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; } static int bge_init_rx_ring_std(struct bge_softc *sc) { int i, error; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { error = bge_newbuf_std(sc, i, 1); if (error) return error; }; sc->bge_std = BGE_STD_RX_RING_CNT - 1; bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); return(0); } static void bge_free_rx_ring_std(struct bge_softc *sc) { int i; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i]; if (rc->bge_mbuf != NULL) { bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i]); m_freem(rc->bge_mbuf); rc->bge_mbuf = NULL; } bzero(&sc->bge_ldata.bge_rx_std_ring[i], sizeof(struct bge_rx_bd)); } } static int bge_init_rx_ring_jumbo(struct bge_softc *sc) { struct bge_rcb *rcb; int i, error; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { error = bge_newbuf_jumbo(sc, i, 1); if (error) return error; }; sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1; rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); return(0); } static void bge_free_rx_ring_jumbo(struct bge_softc *sc) { int i; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i]; if (rc->bge_mbuf != NULL) { m_freem(rc->bge_mbuf); rc->bge_mbuf = NULL; } bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i], sizeof(struct bge_rx_bd)); } } static void bge_free_tx_ring(struct bge_softc *sc) { int i; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_chain[i] != NULL) { bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[i]); m_freem(sc->bge_cdata.bge_tx_chain[i]); sc->bge_cdata.bge_tx_chain[i] = NULL; } bzero(&sc->bge_ldata.bge_tx_ring[i], sizeof(struct bge_tx_bd)); } } static int bge_init_tx_ring(struct bge_softc *sc) { sc->bge_txcnt = 0; sc->bge_tx_saved_considx = 0; sc->bge_tx_prodidx = 0; /* Initialize transmit producer index for host-memory send ring. */ bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); return(0); } static void bge_setmulti(struct bge_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t hashes[4] = { 0, 0, 0, 0 }; int h, i; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); return; } /* First, zot all the existing filters. */ for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); /* Now program new ones. */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_le( LLADDR((struct sockaddr_dl *)ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7f; hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); } for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); } /* * Do endian, PCI and DMA initialization. Also check the on-board ROM * self-test results. */ static int bge_chipinit(struct bge_softc *sc) { int i; uint32_t dma_rw_ctl; /* Set endian type before we access any non-PCI registers. */ pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4); /* Clear the MAC control register */ CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * Clear the MAC statistics block in the NIC's * internal memory. */ for (i = BGE_STATS_BLOCK; i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc, i, 0); for (i = BGE_STATUS_BLOCK; i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc, i, 0); /* Set up the PCI DMA control register. */ if (sc->bge_flags & BGE_FLAG_PCIE) { /* PCI Express */ dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); } else if (sc->bge_flags & BGE_FLAG_PCIX) { /* PCI-X bus */ if (BGE_IS_5714_FAMILY(sc)) { dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD; dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */ /* XXX magic values, Broadcom-supplied Linux driver */ if (sc->bge_asicrev == BGE_ASICREV_BCM5780) { dma_rw_ctl |= (1 << 20) | (1 << 18) | BGE_PCIDMARWCTL_ONEDMA_ATONCE; } else { dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15); } } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { /* * The 5704 uses a different encoding of read/write * watermarks. */ dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); } else { dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | (0x0F); } /* * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround * for hardware bugs. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || sc->bge_asicrev == BGE_ASICREV_BCM5704) { uint32_t tmp; tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; if (tmp == 0x6 || tmp == 0x7) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE; } } else { /* Conventional PCI bus */ dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | (0x0F); } if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || sc->bge_asicrev == BGE_ASICREV_BCM5704 || sc->bge_asicrev == BGE_ASICREV_BCM5705) dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); /* * Set up general mode register. */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS| BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| BGE_MODECTL_TX_NO_PHDR_CSUM); /* * Disable memory write invalidate. Apparently it is not supported * properly by these devices. */ PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); /* Set the timer prescaler (always 66Mhz) */ CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { DELAY(40); /* XXX */ /* Put PHY into ready state */ BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ DELAY(40); } return(0); } static int bge_blockinit(struct bge_softc *sc) { struct bge_rcb *rcb; bus_size_t vrcb; bge_hostaddr taddr; uint32_t val; int i; /* * Initialize the memory window pointer register so that * we can access the first 32K of internal NIC RAM. This will * allow us to set up the TX send ring RCBs and the RX return * ring RCBs, plus other things which live in NIC memory. */ CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); /* Note: the BCM5704 has a smaller mbuf space than other chips. */ if (!BGE_IS_5705_PLUS(sc)) { /* Configure mbuf memory pool */ CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); if (sc->bge_asicrev == BGE_ASICREV_BCM5704) CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); else CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); /* Configure DMA resource pool */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); } /* Configure mbuf pool watermarks */ if (!BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } /* Configure DMA resource watermarks */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); /* Enable buffer manager */ if (!BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); /* Poll for buffer manager start indication */ for (i = 0; i < BGE_TIMEOUT; i++) { if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) break; DELAY(10); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "buffer manager failed to start\n"); return(ENXIO); } } /* Enable flow-through queues */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); /* Wait until queue initialization is complete */ for (i = 0; i < BGE_TIMEOUT; i++) { if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) break; DELAY(10); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "flow-through queue init failed\n"); return(ENXIO); } /* Initialize the standard RX ring control block */ rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; rcb->bge_hostaddr.bge_addr_lo = BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); rcb->bge_hostaddr.bge_addr_hi = BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); if (BGE_IS_5705_PLUS(sc)) rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); else rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); rcb->bge_nicaddr = BGE_STD_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); /* * Initialize the jumbo RX ring control block * We set the 'ring disabled' bit in the flags * field until we're actually ready to start * using this ring (i.e. once we set the MTU * high enough to require it). */ if (BGE_IS_JUMBO_CAPABLE(sc)) { rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; rcb->bge_hostaddr.bge_addr_lo = BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); rcb->bge_hostaddr.bge_addr_hi = BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED); rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); /* Set up dummy disabled mini ring RCB */ rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); } /* * Set the BD ring replentish thresholds. The recommended * values are 1/8th the number of descriptors allocated to * each ring. */ if (BGE_IS_5705_PLUS(sc)) val = 8; else val = BGE_STD_RX_RING_CNT / 8; CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); /* * Disable all unused send rings by setting the 'ring disabled' * bit in the flags field of all the TX send ring control blocks. * These are located in NIC memory. */ vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); vrcb += sizeof(struct bge_rcb); } /* Configure TX RCB 0 (we use only the first ring) */ vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); if (!BGE_IS_5705_PLUS(sc)) { RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); } /* Disable all unused RX return rings */ vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; for (i = 0; i < BGE_RX_RINGS_MAX; i++) { RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); bge_writembx(sc, BGE_MBX_RX_CONS0_LO + (i * (sizeof(uint64_t))), 0); vrcb += sizeof(struct bge_rcb); } /* Initialize RX ring indexes */ bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); /* * Set up RX return ring 0 * Note that the NIC address for RX return rings is 0x00000000. * The return rings live entirely within the host, so the * nicaddr field in the RCB isn't used. */ vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000); RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); /* Set random backoff seed for TX */ CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + BGE_TX_BACKOFF_SEED_MASK); /* Set inter-packet gap */ CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); /* * Specify which ring to use for packets that don't match * any RX rules. */ CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); /* * Configure number of RX lists. One interrupt distribution * list, sixteen active lists, one bad frames class. */ CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); /* Inialize RX list placement stats mask. */ CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); /* Disable host coalescing until we get it set up */ CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); /* Poll to make sure it's shut down. */ for (i = 0; i < BGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) break; DELAY(10); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "host coalescing engine failed to idle\n"); return(ENXIO); } /* Set up host coalescing defaults */ CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); if (!BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); } CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); /* Set up address of statistics block */ if (!BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); } /* Set up address of status block */ CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0; sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0; /* Turn on host coalescing state machine */ CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); /* Turn on RX BD completion state machine and enable attentions */ CSR_WRITE_4(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); /* Turn on RX list placement state machine */ CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); /* Turn on RX list selector state machine. */ if (!BGE_IS_5705_PLUS(sc)) CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); /* Turn on DMA, clear stats */ CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| ((sc->bge_flags & BGE_FLAG_TBI) ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); /* Set misc. local control, enable interrupts on attentions */ CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); #ifdef notdef /* Assert GPIO pins for PHY reset */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); #endif /* Turn on DMA completion state machine */ if (!BGE_IS_5705_PLUS(sc)) CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); /* Turn on write DMA state machine */ val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS; if (BGE_IS_5755_PLUS(sc)) val |= (1 << 29); /* Enable host coalescing bug fix. */ CSR_WRITE_4(sc, BGE_WDMA_MODE, val); DELAY(40); /* Turn on read DMA state machine */ val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || sc->bge_asicrev == BGE_ASICREV_BCM5785 || sc->bge_asicrev == BGE_ASICREV_BCM57780) val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; if (sc->bge_flags & BGE_FLAG_PCIE) val |= BGE_RDMAMODE_FIFO_LONG_BURST; CSR_WRITE_4(sc, BGE_RDMA_MODE, val); DELAY(40); /* Turn on RX data completion state machine */ CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); /* Turn on RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); /* Turn on RX data and RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); /* Turn on Mbuf cluster free state machine */ if (!BGE_IS_5705_PLUS(sc)) CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* Turn on send BD completion state machine */ CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* Turn on send data completion state machine */ val = BGE_SDCMODE_ENABLE; if (sc->bge_asicrev == BGE_ASICREV_BCM5761) val |= BGE_SDCMODE_CDELAY; CSR_WRITE_4(sc, BGE_SDC_MODE, val); /* Turn on send data initiator state machine */ CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); /* Turn on send BD initiator state machine */ CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); /* Turn on send BD selector state machine */ CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); /* ack/clear link change events */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); CSR_WRITE_4(sc, BGE_MI_STS, 0); /* Enable PHY auto polling (for MII/GMII only) */ if (sc->bge_flags & BGE_FLAG_TBI) { CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); } else { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); } } /* * Clear any pending link state attention. * Otherwise some link state change events may be lost until attention * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence. * It's not necessary on newer BCM chips - perhaps enabling link * state change attentions implies clearing pending attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); /* Enable link state change attentions. */ BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); return(0); } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. Note * that since the Broadcom controller contains VPD support, we * can get the device name string from the controller itself instead * of the compiled-in string. This is a little slow, but it guarantees * we'll always announce the right product name. */ static int bge_probe(device_t dev) { const struct bge_type *t; uint16_t product, vendor; product = pci_get_device(dev); vendor = pci_get_vendor(dev); for (t = bge_devs; t->bge_name != NULL; t++) { if (vendor == t->bge_vid && product == t->bge_did) break; } if (t->bge_name == NULL) return(ENXIO); device_set_desc(dev, t->bge_name); if (pci_get_subvendor(dev) == PCI_VENDOR_DELL) { struct bge_softc *sc = device_get_softc(dev); sc->bge_flags |= BGE_FLAG_NO_3LED; } return(0); } static int bge_attach(device_t dev) { struct ifnet *ifp; struct bge_softc *sc; uint32_t hwcfg = 0; int error = 0, rid; uint8_t ether_addr[ETHER_ADDR_LEN]; sc = device_get_softc(dev); sc->bge_dev = dev; callout_init(&sc->bge_stat_timer); lwkt_serialize_init(&sc->bge_jslot_serializer); #ifndef BURN_BRIDGES if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { uint32_t irq, mem; irq = pci_read_config(dev, PCIR_INTLINE, 4); mem = pci_read_config(dev, BGE_PCI_BAR0, 4); device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); pci_write_config(dev, PCIR_INTLINE, irq, 4); pci_write_config(dev, BGE_PCI_BAR0, mem, 4); } #endif /* !BURN_BRIDGE */ /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = BGE_PCI_BAR0; sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->bge_res == NULL) { device_printf(dev, "couldn't map memory\n"); return ENXIO; } sc->bge_btag = rman_get_bustag(sc->bge_res); sc->bge_bhandle = rman_get_bushandle(sc->bge_res); /* Save various chip information */ sc->bge_chipid = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> BGE_PCIMISCCTL_ASICREV_SHIFT; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); /* Save chipset family. */ switch (sc->bge_asicrev) { case BGE_ASICREV_BCM5755: case BGE_ASICREV_BCM5761: case BGE_ASICREV_BCM5784: case BGE_ASICREV_BCM5785: case BGE_ASICREV_BCM5787: case BGE_ASICREV_BCM57780: sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS; break; case BGE_ASICREV_BCM5700: case BGE_ASICREV_BCM5701: case BGE_ASICREV_BCM5703: case BGE_ASICREV_BCM5704: sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; break; case BGE_ASICREV_BCM5714_A0: case BGE_ASICREV_BCM5780: case BGE_ASICREV_BCM5714: sc->bge_flags |= BGE_FLAG_5714_FAMILY; /* Fall through */ case BGE_ASICREV_BCM5750: case BGE_ASICREV_BCM5752: case BGE_ASICREV_BCM5906: sc->bge_flags |= BGE_FLAG_575X_PLUS; /* Fall through */ case BGE_ASICREV_BCM5705: sc->bge_flags |= BGE_FLAG_5705_PLUS; break; } if (sc->bge_asicrev == BGE_ASICREV_BCM5906) sc->bge_flags |= BGE_FLAG_NO_EEPROM; /* * Set various quirk flags. */ sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED; if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || (sc->bge_asicrev == BGE_ASICREV_BCM5705 && (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) || sc->bge_asicrev == BGE_ASICREV_BCM5906) sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED; if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || sc->bge_chipid == BGE_CHIPID_BCM5701_B0) sc->bge_flags |= BGE_FLAG_CRC_BUG; if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || sc->bge_chiprev == BGE_CHIPREV_5704_AX) sc->bge_flags |= BGE_FLAG_ADC_BUG; if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) sc->bge_flags |= BGE_FLAG_5704_A0_BUG; if (BGE_IS_5705_PLUS(sc) && !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) { if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || sc->bge_asicrev == BGE_ASICREV_BCM5761 || sc->bge_asicrev == BGE_ASICREV_BCM5784 || sc->bge_asicrev == BGE_ASICREV_BCM5787) { if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0) sc->bge_flags |= BGE_FLAG_JITTER_BUG; } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) { sc->bge_flags |= BGE_FLAG_BER_BUG; } } /* Allocate interrupt */ rid = 0; sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->bge_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* * Check if this is a PCI-X or PCI Express device. */ if (BGE_IS_5705_PLUS(sc)) { if (pci_is_pcie(dev)) { sc->bge_flags |= BGE_FLAG_PCIE; pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096); } } else { /* * Check if the device is in PCI-X Mode. * (This bit is not valid on PCI Express controllers.) */ if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & BGE_PCISTATE_PCI_BUSMODE) == 0) sc->bge_flags |= BGE_FLAG_PCIX; } device_printf(dev, "CHIP ID 0x%08x; " "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n", sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev, (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" : ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI")); ifp = &sc->arpcom.ac_if; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); /* Try to reset the chip. */ bge_reset(sc); if (bge_chipinit(sc)) { device_printf(dev, "chip initialization failed\n"); error = ENXIO; goto fail; } /* * Get station address */ error = bge_get_eaddr(sc, ether_addr); if (error) { device_printf(dev, "failed to read station address\n"); goto fail; } /* 5705/5750 limits RX return ring to 512 entries. */ if (BGE_IS_5705_PLUS(sc)) sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; else sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; error = bge_dma_alloc(sc); if (error) goto fail; /* Set default tuneable values. */ sc->bge_stat_ticks = BGE_TICKS_PER_SEC; sc->bge_rx_coal_ticks = bge_rx_coal_ticks; sc->bge_tx_coal_ticks = bge_tx_coal_ticks; sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds; sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds; /* Set up ifnet structure */ ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bge_ioctl; ifp->if_start = bge_start; #ifdef DEVICE_POLLING ifp->if_poll = bge_poll; #endif ifp->if_watchdog = bge_watchdog; ifp->if_init = bge_init; ifp->if_mtu = ETHERMTU; ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1); ifq_set_ready(&ifp->if_snd); /* * 5700 B0 chips do not support checksumming correctly due * to hardware bugs. */ if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) { ifp->if_capabilities |= IFCAP_HWCSUM; ifp->if_hwassist = BGE_CSUM_FEATURES; } ifp->if_capenable = ifp->if_capabilities; /* * Figure out what sort of media we have by checking the * hardware config word in the first 32k of NIC internal memory, * or fall back to examining the EEPROM if necessary. * Note: on some BCM5700 cards, this value appears to be unset. * If that's the case, we have to rely on identifying the NIC * by its PCI subsystem ID, as we do below for the SysKonnect * SK-9D41. */ if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); else { if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, sizeof(hwcfg))) { device_printf(dev, "failed to read EEPROM\n"); error = ENXIO; goto fail; } hwcfg = ntohl(hwcfg); } if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) sc->bge_flags |= BGE_FLAG_TBI; /* The SysKonnect SK-9D41 is a 1000baseSX card. */ if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41) sc->bge_flags |= BGE_FLAG_TBI; if (sc->bge_flags & BGE_FLAG_TBI) { ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, bge_ifmedia_sts); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; } else { /* * Do transceiver setup. */ if (mii_phy_probe(dev, &sc->bge_miibus, bge_ifmedia_upd, bge_ifmedia_sts)) { device_printf(dev, "MII without any PHY!\n"); error = ENXIO; goto fail; } } /* * When using the BCM5701 in PCI-X mode, data corruption has * been observed in the first few bytes of some received packets. * Aligning the packet buffer in memory eliminates the corruption. * Unfortunately, this misaligns the packet payloads. On platforms * which do not support unaligned accesses, we will realign the * payloads by copying the received packets. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && (sc->bge_flags & BGE_FLAG_PCIX)) sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { sc->bge_link_upd = bge_bcm5700_link_upd; sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT; } else if (sc->bge_flags & BGE_FLAG_TBI) { sc->bge_link_upd = bge_tbi_link_upd; sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED; } else { sc->bge_link_upd = bge_copper_link_upd; sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED; } /* * Create sysctl nodes. */ sysctl_ctx_init(&sc->bge_sysctl_ctx); sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_nameunit(dev), CTLFLAG_RD, 0, ""); if (sc->bge_sysctl_tree == NULL) { device_printf(dev, "can't add sysctl node\n"); error = ENXIO; goto fail; } SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx, SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO, "rx_coal_ticks", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_rx_coal_ticks, "I", "Receive coalescing ticks (usec)."); SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx, SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO, "tx_coal_ticks", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_tx_coal_ticks, "I", "Transmit coalescing ticks (usec)."); SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx, SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO, "rx_max_coal_bds", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_rx_max_coal_bds, "I", "Receive max coalesced BD count."); SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx, SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO, "tx_max_coal_bds", CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_tx_max_coal_bds, "I", "Transmit max coalesced BD count."); /* * Call MI attach routine. */ ether_ifattach(ifp, ether_addr, NULL); error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, bge_intr, sc, &sc->bge_intrhand, ifp->if_serializer); if (error) { ether_ifdetach(ifp); device_printf(dev, "couldn't set up irq\n"); goto fail; } ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->bge_irq)); KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus); return(0); fail: bge_detach(dev); return(error); } static int bge_detach(device_t dev) { struct bge_softc *sc = device_get_softc(dev); if (device_is_attached(dev)) { struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); bge_stop(sc); bge_reset(sc); bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); lwkt_serialize_exit(ifp->if_serializer); ether_ifdetach(ifp); } if (sc->bge_flags & BGE_FLAG_TBI) ifmedia_removeall(&sc->bge_ifmedia); if (sc->bge_miibus) device_delete_child(dev, sc->bge_miibus); bus_generic_detach(dev); if (sc->bge_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); if (sc->bge_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, BGE_PCI_BAR0, sc->bge_res); if (sc->bge_sysctl_tree != NULL) sysctl_ctx_free(&sc->bge_sysctl_ctx); bge_dma_free(sc); return 0; } static void bge_reset(struct bge_softc *sc) { device_t dev; uint32_t cachesize, command, pcistate, reset; void (*write_op)(struct bge_softc *, uint32_t, uint32_t); int i, val = 0; dev = sc->bge_dev; if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && sc->bge_asicrev != BGE_ASICREV_BCM5906) { if (sc->bge_flags & BGE_FLAG_PCIE) write_op = bge_writemem_direct; else write_op = bge_writemem_ind; } else { write_op = bge_writereg_ind; } /* Save some important PCI state. */ cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); command = pci_read_config(dev, BGE_PCI_CMD, 4); pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4); /* Disable fastboot on controllers that support it. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || sc->bge_asicrev == BGE_ASICREV_BCM5755 || sc->bge_asicrev == BGE_ASICREV_BCM5787) { if (bootverbose) if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n"); CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); } /* * Write the magic number to SRAM at offset 0xB50. * When firmware finishes its initialization it will * write ~BGE_MAGIC_NUMBER to the same location. */ bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1); /* XXX: Broadcom Linux driver. */ if (sc->bge_flags & BGE_FLAG_PCIE) { if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */ CSR_WRITE_4(sc, 0x7e2c, 0x20); if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { /* Prevent PCIE link training during global reset */ CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29)); reset |= (1<<29); } } /* * Set GPHY Power Down Override to leave GPHY * powered up in D0 uninitialized. */ if (BGE_IS_5705_PLUS(sc)) reset |= 0x04000000; /* Issue global reset */ write_op(sc, BGE_MISC_CFG, reset); if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { uint32_t status, ctrl; status = CSR_READ_4(sc, BGE_VCPU_STATUS); CSR_WRITE_4(sc, BGE_VCPU_STATUS, status | BGE_VCPU_STATUS_DRV_RESET); ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU); } DELAY(1000); /* XXX: Broadcom Linux driver. */ if (sc->bge_flags & BGE_FLAG_PCIE) { if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { uint32_t v; DELAY(500000); /* wait for link training to complete */ v = pci_read_config(dev, 0xc4, 4); pci_write_config(dev, 0xc4, v | (1<<15), 4); } /* * Set PCIE max payload size to 128 bytes and * clear error status. */ pci_write_config(dev, 0xd8, 0xf5000, 4); } /* Reset some of the PCI state that got zapped by reset */ pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4); pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); pci_write_config(dev, BGE_PCI_CMD, command, 4); write_op(sc, BGE_MISC_CFG, (65 << 1)); /* Enable memory arbiter. */ if (BGE_IS_5714_FAMILY(sc)) { uint32_t val; val = CSR_READ_4(sc, BGE_MARB_MODE); CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); } else { CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); } if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { for (i = 0; i < BGE_TIMEOUT; i++) { val = CSR_READ_4(sc, BGE_VCPU_STATUS); if (val & BGE_VCPU_STATUS_INIT_DONE) break; DELAY(100); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "reset timed out\n"); return; } } else { /* * Poll until we see the 1's complement of the magic number. * This indicates that the firmware initialization * is complete. */ for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) { val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); if (val == ~BGE_MAGIC_NUMBER) break; DELAY(10); } if (i == BGE_FIRMWARE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "firmware handshake " "timed out, found 0x%08x\n", val); return; } } /* * XXX Wait for the value of the PCISTATE register to * return to its original pre-reset state. This is a * fairly good indicator of reset completion. If we don't * wait for the reset to fully complete, trying to read * from the device's non-PCI registers may yield garbage * results. */ for (i = 0; i < BGE_TIMEOUT; i++) { if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) break; DELAY(10); } if (sc->bge_flags & BGE_FLAG_PCIE) { reset = bge_readmem_ind(sc, 0x7c00); bge_writemem_ind(sc, 0x7c00, reset | (1 << 25)); } /* Fix up byte swapping */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS | BGE_MODECTL_BYTESWAP_DATA); CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * The 5704 in TBI mode apparently needs some special * adjustment to insure the SERDES drive level is set * to 1.2V. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && (sc->bge_flags & BGE_FLAG_TBI)) { uint32_t serdescfg; serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); serdescfg = (serdescfg & ~0xFFF) | 0x880; CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); } /* XXX: Broadcom Linux driver. */ if ((sc->bge_flags & BGE_FLAG_PCIE) && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { uint32_t v; v = CSR_READ_4(sc, 0x7c00); CSR_WRITE_4(sc, 0x7c00, v | (1<<25)); } DELAY(10000); } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle two possibilities here: * 1) the frame is from the jumbo recieve ring * 2) the frame is from the standard receive ring */ static void bge_rxeof(struct bge_softc *sc) { struct ifnet *ifp; int stdcnt = 0, jumbocnt = 0; struct mbuf_chain chain[MAXCPU]; if (sc->bge_rx_saved_considx == sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) return; ether_input_chain_init(chain); ifp = &sc->arpcom.ac_if; while (sc->bge_rx_saved_considx != sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) { struct bge_rx_bd *cur_rx; uint32_t rxidx; struct mbuf *m = NULL; uint16_t vlan_tag = 0; int have_tag = 0; cur_rx = &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx]; rxidx = cur_rx->bge_idx; BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt); logif(rx_pkt); if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { have_tag = 1; vlan_tag = cur_rx->bge_vlan_tag; } if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); jumbocnt++; if (rxidx != sc->bge_jumbo) { ifp->if_ierrors++; if_printf(ifp, "sw jumbo index(%d) " "and hw jumbo index(%d) mismatch, drop!\n", sc->bge_jumbo, rxidx); bge_setup_rxdesc_jumbo(sc, rxidx); continue; } m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo); continue; } if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) { ifp->if_ierrors++; bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo); continue; } } else { BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); stdcnt++; if (rxidx != sc->bge_std) { ifp->if_ierrors++; if_printf(ifp, "sw std index(%d) " "and hw std index(%d) mismatch, drop!\n", sc->bge_std, rxidx); bge_setup_rxdesc_std(sc, rxidx); continue; } m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_setup_rxdesc_std(sc, sc->bge_std); continue; } if (bge_newbuf_std(sc, sc->bge_std, 0)) { ifp->if_ierrors++; bge_setup_rxdesc_std(sc, sc->bge_std); continue; } } ifp->if_ipackets++; #ifndef __i386__ /* * The i386 allows unaligned accesses, but for other * platforms we must make sure the payload is aligned. */ if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { bcopy(m->m_data, m->m_data + ETHER_ALIGN, cur_rx->bge_len); m->m_data += ETHER_ALIGN; } #endif m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; if (ifp->if_capenable & IFCAP_RXCSUM) { if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; } if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) && m->m_pkthdr.len >= BGE_MIN_FRAME) { m->m_pkthdr.csum_data = cur_rx->bge_tcp_udp_csum; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; } } /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if (have_tag) { m->m_flags |= M_VLANTAG; m->m_pkthdr.ether_vlantag = vlan_tag; have_tag = vlan_tag = 0; } ether_input_chain(ifp, m, NULL, chain); } ether_input_dispatch(chain); bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); if (stdcnt) bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); if (jumbocnt) bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); } static void bge_txeof(struct bge_softc *sc) { struct bge_tx_bd *cur_tx = NULL; struct ifnet *ifp; if (sc->bge_tx_saved_considx == sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) return; ifp = &sc->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->bge_tx_saved_considx != sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) { uint32_t idx = 0; idx = sc->bge_tx_saved_considx; cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; if (cur_tx->bge_flags & BGE_TXBDFLAG_END) ifp->if_opackets++; if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[idx]); m_freem(sc->bge_cdata.bge_tx_chain[idx]); sc->bge_cdata.bge_tx_chain[idx] = NULL; } sc->bge_txcnt--; BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); logif(tx_pkt); } if (cur_tx != NULL && (BGE_TX_RING_CNT - sc->bge_txcnt) >= (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) ifp->if_flags &= ~IFF_OACTIVE; if (sc->bge_txcnt == 0) ifp->if_timer = 0; if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } #ifdef DEVICE_POLLING static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct bge_softc *sc = ifp->if_softc; uint32_t status; switch(cmd) { case POLL_REGISTER: bge_disable_intr(sc); break; case POLL_DEREGISTER: bge_enable_intr(sc); break; case POLL_AND_CHECK_STATUS: /* * Process link state changes. */ status = CSR_READ_4(sc, BGE_MAC_STS); if ((status & sc->bge_link_chg) || sc->bge_link_evt) { sc->bge_link_evt = 0; sc->bge_link_upd(sc, status); } /* fall through */ case POLL_ONLY: if (ifp->if_flags & IFF_RUNNING) { bge_rxeof(sc); bge_txeof(sc); } break; } } #endif static void bge_intr(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t status; logif(intr); /* * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't * disable interrupts by writing nonzero like we used to, since with * our current organization this just gives complications and * pessimizations for re-enabling interrupts. We used to have races * instead of the necessary complications. Disabling interrupts * would just reduce the chance of a status update while we are * running (by switching to the interrupt-mode coalescence * parameters), but this chance is already very low so it is more * efficient to get another interrupt than prevent it. * * We do the ack first to ensure another interrupt if there is a * status update after the ack. We don't check for the status * changing later because it is more efficient to get another * interrupt than prevent it, not quite as above (not checking is * a smaller optimization than not toggling the interrupt enable, * since checking doesn't involve PCI accesses and toggling require * the status check). So toggling would probably be a pessimization * even with MSI. It would only be needed for using a task queue. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); /* * Process link state changes. */ status = CSR_READ_4(sc, BGE_MAC_STS); if ((status & sc->bge_link_chg) || sc->bge_link_evt) { sc->bge_link_evt = 0; sc->bge_link_upd(sc, status); } if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ bge_rxeof(sc); /* Check TX ring producer/consumer */ bge_txeof(sc); } if (sc->bge_coal_chg) bge_coal_change(sc); } static void bge_tick(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); if (BGE_IS_5705_PLUS(sc)) bge_stats_update_regs(sc); else bge_stats_update(sc); if (sc->bge_flags & BGE_FLAG_TBI) { /* * Since in TBI mode auto-polling can't be used we should poll * link status manually. Here we register pending link event * and trigger interrupt. */ sc->bge_link_evt++; BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); } else if (!sc->bge_link) { mii_tick(device_get_softc(sc->bge_miibus)); } callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc); lwkt_serialize_exit(ifp->if_serializer); } static void bge_stats_update_regs(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct bge_mac_stats_regs stats; uint32_t *s; int i; s = (uint32_t *)&stats; for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) { *s = CSR_READ_4(sc, BGE_RX_STATS + i); s++; } ifp->if_collisions += (stats.dot3StatsSingleCollisionFrames + stats.dot3StatsMultipleCollisionFrames + stats.dot3StatsExcessiveCollisions + stats.dot3StatsLateCollisions) - ifp->if_collisions; } static void bge_stats_update(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; bus_size_t stats; stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; #define READ_STAT(sc, stats, stat) \ CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) ifp->if_collisions += (READ_STAT(sc, stats, txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) + READ_STAT(sc, stats, txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) + READ_STAT(sc, stats, txstats.dot3StatsExcessiveCollisions.bge_addr_lo) + READ_STAT(sc, stats, txstats.dot3StatsLateCollisions.bge_addr_lo)) - ifp->if_collisions; #undef READ_STAT #ifdef notdef ifp->if_collisions += (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - ifp->if_collisions; #endif } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx) { struct bge_tx_bd *d = NULL; uint16_t csum_flags = 0; bus_dma_segment_t segs[BGE_NSEG_NEW]; bus_dmamap_t map; int error, maxsegs, nsegs, idx, i; struct mbuf *m_head = *m_head0; if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= BGE_TXBDFLAG_IP_CSUM; if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; if (m_head->m_flags & M_LASTFRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; else if (m_head->m_flags & M_FRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG; } idx = *txidx; map = sc->bge_cdata.bge_tx_dmamap[idx]; maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD; KASSERT(maxsegs >= BGE_NSEG_SPARE, ("not enough segments %d\n", maxsegs)); if (maxsegs > BGE_NSEG_NEW) maxsegs = BGE_NSEG_NEW; /* * Pad outbound frame to BGE_MIN_FRAME for an unusual reason. * The bge hardware will pad out Tx runts to BGE_MIN_FRAME, * but when such padded frames employ the bge IP/TCP checksum * offload, the hardware checksum assist gives incorrect results * (possibly from incorporating its own padding into the UDP/TCP * checksum; who knows). If we pad such runts with zeros, the * onboard checksum comes out correct. */ if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) && m_head->m_pkthdr.len < BGE_MIN_FRAME) { error = m_devpad(m_head, BGE_MIN_FRAME); if (error) goto back; } error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map, m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT); if (error) goto back; m_head = *m_head0; bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); for (i = 0; ; i++) { d = &sc->bge_ldata.bge_tx_ring[idx]; d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); d->bge_len = segs[i].ds_len; d->bge_flags = csum_flags; if (i == nsegs - 1) break; BGE_INC(idx, BGE_TX_RING_CNT); } /* Mark the last segment as end of packet... */ d->bge_flags |= BGE_TXBDFLAG_END; /* Set vlan tag to the first segment of the packet. */ d = &sc->bge_ldata.bge_tx_ring[*txidx]; if (m_head->m_flags & M_VLANTAG) { d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag; } else { d->bge_vlan_tag = 0; } /* * Insure that the map for this transmission is placed at * the array index of the last descriptor in this chain. */ sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; sc->bge_cdata.bge_tx_dmamap[idx] = map; sc->bge_cdata.bge_tx_chain[idx] = m_head; sc->bge_txcnt += nsegs; BGE_INC(idx, BGE_TX_RING_CNT); *txidx = idx; back: if (error) { m_freem(*m_head0); *m_head0 = NULL; } return error; } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void bge_start(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; uint32_t prodidx; int need_trans; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; prodidx = sc->bge_tx_prodidx; need_trans = 0; while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { m_head = ifq_dequeue(&ifp->if_snd, NULL); if (m_head == NULL) break; /* * XXX * The code inside the if() block is never reached since we * must mark CSUM_IP_FRAGS in our if_hwassist to start getting * requests to checksum TCP/UDP in a fragmented packet. * * XXX * safety overkill. If this is a fragmented packet chain * with delayed TCP/UDP checksums, then only encapsulate * it if we have enough descriptors to handle the entire * chain at once. * (paranoia -- may not actually be needed) */ if ((m_head->m_flags & M_FIRSTFRAG) && (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) { if ((BGE_TX_RING_CNT - sc->bge_txcnt) < m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) { ifp->if_flags |= IFF_OACTIVE; ifq_prepend(&ifp->if_snd, m_head); break; } } /* * Sanity check: avoid coming within BGE_NSEG_RSVD * descriptors of the end of the ring. Also make * sure there are BGE_NSEG_SPARE descriptors for * jumbo buffers' defragmentation. */ if ((BGE_TX_RING_CNT - sc->bge_txcnt) < (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) { ifp->if_flags |= IFF_OACTIVE; ifq_prepend(&ifp->if_snd, m_head); break; } /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (bge_encap(sc, &m_head, &prodidx)) { ifp->if_flags |= IFF_OACTIVE; ifp->if_oerrors++; break; } need_trans = 1; ETHER_BPF_MTAP(ifp, m_head); } if (!need_trans) return; /* Transmit */ bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); sc->bge_tx_prodidx = prodidx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void bge_init(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; uint16_t *m; ASSERT_SERIALIZED(ifp->if_serializer); if (ifp->if_flags & IFF_RUNNING) return; /* Cancel pending I/O and flush buffers. */ bge_stop(sc); bge_reset(sc); bge_chipinit(sc); /* * Init the various state machines, ring * control blocks and firmware. */ if (bge_blockinit(sc)) { if_printf(ifp, "initialization failure\n"); bge_stop(sc); return; } /* Specify MTU. */ CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN); /* Load our MAC address. */ m = (uint16_t *)&sc->arpcom.ac_enaddr[0]; CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); /* Enable or disable promiscuous mode as needed. */ bge_setpromisc(sc); /* Program multicast filter. */ bge_setmulti(sc); /* Init RX ring. */ if (bge_init_rx_ring_std(sc)) { if_printf(ifp, "RX ring initialization failed\n"); bge_stop(sc); return; } /* * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's * memory to insure that the chip has in fact read the first * entry of the ring. */ if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { uint32_t v, i; for (i = 0; i < 10; i++) { DELAY(20); v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); if (v == (MCLBYTES - ETHER_ALIGN)) break; } if (i == 10) if_printf(ifp, "5705 A0 chip failed to load RX ring\n"); } /* Init jumbo RX ring. */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) { if (bge_init_rx_ring_jumbo(sc)) { if_printf(ifp, "Jumbo RX ring initialization failed\n"); bge_stop(sc); return; } } /* Init our RX return ring index */ sc->bge_rx_saved_considx = 0; /* Init TX ring. */ bge_init_tx_ring(sc); /* Turn on transmitter */ BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); /* Turn on receiver */ BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); /* Tell firmware we're alive. */ BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Enable host interrupts if polling(4) is not enabled. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) bge_disable_intr(sc); else #endif bge_enable_intr(sc); bge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc); } /* * Set media options. */ static int bge_ifmedia_upd(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; /* If this is a 1000baseX NIC, enable the TBI port. */ if (sc->bge_flags & BGE_FLAG_TBI) { struct ifmedia *ifm = &sc->bge_ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: /* * The BCM5704 ASIC appears to have a special * mechanism for programming the autoneg * advertisement registers in TBI mode. */ if (!bge_fake_autoneg && sc->bge_asicrev == BGE_ASICREV_BCM5704) { uint32_t sgdig; CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); sgdig |= BGE_SGDIGCFG_AUTO | BGE_SGDIGCFG_PAUSE_CAP | BGE_SGDIGCFG_ASYM_PAUSE; CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig | BGE_SGDIGCFG_SEND); DELAY(5); CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); } break; case IFM_1000_SX: if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } break; default: return(EINVAL); } } else { struct mii_data *mii = device_get_softc(sc->bge_miibus); sc->bge_link_evt++; sc->bge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); } return(0); } /* * Report current media status. */ static void bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bge_softc *sc = ifp->if_softc; if (sc->bge_flags & BGE_FLAG_TBI) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) { ifmr->ifm_status |= IFM_ACTIVE; } else { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_active |= IFM_1000_SX; if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; } else { struct mii_data *mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } } static int bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct bge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int mask, error = 0; ASSERT_SERIALIZED(ifp->if_serializer); switch (command) { case SIOCSIFMTU: if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) || (BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > BGE_JUMBO_MTU)) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; ifp->if_flags &= ~IFF_RUNNING; bge_init(sc); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) { mask = ifp->if_flags ^ sc->bge_if_flags; /* * If only the state of the PROMISC flag * changed, then just use the 'set promisc * mode' command instead of reinitializing * the entire NIC. Doing a full re-init * means reloading the firmware and waiting * for it to start up, which may take a * second or two. Similarly for ALLMULTI. */ if (mask & IFF_PROMISC) bge_setpromisc(sc); if (mask & IFF_ALLMULTI) bge_setmulti(sc); } else { bge_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) bge_stop(sc); } sc->bge_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) bge_setmulti(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->bge_flags & BGE_FLAG_TBI) { error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, command); } else { struct mii_data *mii; mii = device_get_softc(sc->bge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= (mask & IFCAP_HWCSUM); if (IFCAP_HWCSUM & ifp->if_capenable) ifp->if_hwassist = BGE_CSUM_FEATURES; else ifp->if_hwassist = 0; } break; default: error = ether_ioctl(ifp, command, data); break; } return error; } static void bge_watchdog(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; if_printf(ifp, "watchdog timeout -- resetting\n"); ifp->if_flags &= ~IFF_RUNNING; bge_init(sc); ifp->if_oerrors++; if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bge_stop(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmedia_entry *ifm; struct mii_data *mii = NULL; int mtmp, itmp; ASSERT_SERIALIZED(ifp->if_serializer); if ((sc->bge_flags & BGE_FLAG_TBI) == 0) mii = device_get_softc(sc->bge_miibus); callout_stop(&sc->bge_stat_timer); /* * Disable all of the receiver blocks */ BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); if (!BGE_IS_5705_PLUS(sc)) BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); /* * Disable all of the transmit blocks */ BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); if (!BGE_IS_5705_PLUS(sc)) BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* * Shut down all of the memory managers and related * state machines. */ BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); if (!BGE_IS_5705_PLUS(sc)) BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); if (!BGE_IS_5705_PLUS(sc)) { BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); } /* Disable host interrupts. */ bge_disable_intr(sc); /* * Tell firmware we're shutting down. */ BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Free the RX lists. */ bge_free_rx_ring_std(sc); /* Free jumbo RX list. */ if (BGE_IS_JUMBO_CAPABLE(sc)) bge_free_rx_ring_jumbo(sc); /* Free TX buffers. */ bge_free_tx_ring(sc); /* * Isolate/power down the PHY, but leave the media selection * unchanged so that things will be put back to normal when * we bring the interface back up. * * 'mii' may be NULL in the following cases: * - The device uses TBI. * - bge_stop() is called by bge_detach(). */ if (mii != NULL) { itmp = ifp->if_flags; ifp->if_flags |= IFF_UP; ifm = mii->mii_media.ifm_cur; mtmp = ifm->ifm_media; ifm->ifm_media = IFM_ETHER|IFM_NONE; mii_mediachg(mii); ifm->ifm_media = mtmp; ifp->if_flags = itmp; } sc->bge_link = 0; sc->bge_coal_chg = 0; sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void bge_shutdown(device_t dev) { struct bge_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); bge_stop(sc); bge_reset(sc); lwkt_serialize_exit(ifp->if_serializer); } static int bge_suspend(device_t dev) { struct bge_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); bge_stop(sc); lwkt_serialize_exit(ifp->if_serializer); return 0; } static int bge_resume(device_t dev) { struct bge_softc *sc = device_get_softc(dev); struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_enter(ifp->if_serializer); if (ifp->if_flags & IFF_UP) { bge_init(sc); if (!ifq_is_empty(&ifp->if_snd)) if_devstart(ifp); } lwkt_serialize_exit(ifp->if_serializer); return 0; } static void bge_setpromisc(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_PROMISC) BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); else BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } static void bge_dma_free(struct bge_softc *sc) { int i; /* Destroy RX mbuf DMA stuffs. */ if (sc->bge_cdata.bge_rx_mtag != NULL) { for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[i]); } bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_tmpmap); bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); } /* Destroy TX mbuf DMA stuffs. */ if (sc->bge_cdata.bge_tx_mtag != NULL) { for (i = 0; i < BGE_TX_RING_CNT; i++) { bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[i]); } bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); } /* Destroy standard RX ring */ bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag, sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring); if (BGE_IS_JUMBO_CAPABLE(sc)) bge_free_jumbo_mem(sc); /* Destroy RX return ring */ bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag, sc->bge_cdata.bge_rx_return_ring_map, sc->bge_ldata.bge_rx_return_ring); /* Destroy TX ring */ bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag, sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring); /* Destroy status block */ bge_dma_block_free(sc->bge_cdata.bge_status_tag, sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block); /* Destroy statistics block */ bge_dma_block_free(sc->bge_cdata.bge_stats_tag, sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats); /* Destroy the parent tag */ if (sc->bge_cdata.bge_parent_tag != NULL) bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); } static int bge_dma_alloc(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; int i, error; /* * Allocate the parent bus DMA tag appropriate for PCI. */ error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, &sc->bge_cdata.bge_parent_tag); if (error) { if_printf(ifp, "could not allocate parent dma tag\n"); return error; } /* * Create DMA tag and maps for RX mbufs. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_mtag); if (error) { if_printf(ifp, "could not allocate RX mbuf dma tag\n"); return error; } error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap); if (error) { bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); sc->bge_cdata.bge_rx_mtag = NULL; return error; } for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_std_dmamap[i]); if (error) { int j; for (j = 0; j < i; ++j) { bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, sc->bge_cdata.bge_rx_std_dmamap[j]); } bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); sc->bge_cdata.bge_rx_mtag = NULL; if_printf(ifp, "could not create DMA map for RX\n"); return error; } } /* * Create DMA tag and maps for TX mbufs. */ error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES, BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &sc->bge_cdata.bge_tx_mtag); if (error) { if_printf(ifp, "could not allocate TX mbuf dma tag\n"); return error; } for (i = 0; i < BGE_TX_RING_CNT; i++) { error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &sc->bge_cdata.bge_tx_dmamap[i]); if (error) { int j; for (j = 0; j < i; ++j) { bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, sc->bge_cdata.bge_tx_dmamap[j]); } bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); sc->bge_cdata.bge_tx_mtag = NULL; if_printf(ifp, "could not create DMA map for TX\n"); return error; } } /* * Create DMA stuffs for standard RX ring. */ error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ, &sc->bge_cdata.bge_rx_std_ring_tag, &sc->bge_cdata.bge_rx_std_ring_map, (void *)&sc->bge_ldata.bge_rx_std_ring, &sc->bge_ldata.bge_rx_std_ring_paddr); if (error) { if_printf(ifp, "could not create std RX ring\n"); return error; } /* * Create jumbo buffer pool. */ if (BGE_IS_JUMBO_CAPABLE(sc)) { error = bge_alloc_jumbo_mem(sc); if (error) { if_printf(ifp, "could not create jumbo buffer pool\n"); return error; } } /* * Create DMA stuffs for RX return ring. */ error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc), &sc->bge_cdata.bge_rx_return_ring_tag, &sc->bge_cdata.bge_rx_return_ring_map, (void *)&sc->bge_ldata.bge_rx_return_ring, &sc->bge_ldata.bge_rx_return_ring_paddr); if (error) { if_printf(ifp, "could not create RX ret ring\n"); return error; } /* * Create DMA stuffs for TX ring. */ error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ, &sc->bge_cdata.bge_tx_ring_tag, &sc->bge_cdata.bge_tx_ring_map, (void *)&sc->bge_ldata.bge_tx_ring, &sc->bge_ldata.bge_tx_ring_paddr); if (error) { if_printf(ifp, "could not create TX ring\n"); return error; } /* * Create DMA stuffs for status block. */ error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ, &sc->bge_cdata.bge_status_tag, &sc->bge_cdata.bge_status_map, (void *)&sc->bge_ldata.bge_status_block, &sc->bge_ldata.bge_status_block_paddr); if (error) { if_printf(ifp, "could not create status block\n"); return error; } /* * Create DMA stuffs for statistics block. */ error = bge_dma_block_alloc(sc, BGE_STATS_SZ, &sc->bge_cdata.bge_stats_tag, &sc->bge_cdata.bge_stats_map, (void *)&sc->bge_ldata.bge_stats, &sc->bge_ldata.bge_stats_paddr); if (error) { if_printf(ifp, "could not create stats block\n"); return error; } return 0; } static int bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag, bus_dmamap_t *map, void **addr, bus_addr_t *paddr) { bus_dmamem_t dmem; int error; error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem); if (error) return error; *tag = dmem.dmem_tag; *map = dmem.dmem_map; *addr = dmem.dmem_addr; *paddr = dmem.dmem_busaddr; return 0; } static void bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr) { if (tag != NULL) { bus_dmamap_unload(tag, map); bus_dmamem_free(tag, addr, map); bus_dma_tag_destroy(tag); } } /* * Grrr. The link status word in the status block does * not work correctly on the BCM5700 rev AX and BX chips, * according to all available information. Hence, we have * to enable MII interrupts in order to properly obtain * async link changes. Unfortunately, this also means that * we have to read the MAC status register to detect link * changes, thereby adding an additional register access to * the interrupt handler. * * XXX: perhaps link state detection procedure used for * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. */ static void bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused) { struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); if (!sc->bge_link && (mii->mii_media_status & IFM_ACTIVE) && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->bge_link++; if (bootverbose) if_printf(ifp, "link UP\n"); } else if (sc->bge_link && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { sc->bge_link = 0; if (bootverbose) if_printf(ifp, "link DOWN\n"); } /* Clear the interrupt. */ CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS); } static void bge_tbi_link_upd(struct bge_softc *sc, uint32_t status) { struct ifnet *ifp = &sc->arpcom.ac_if; #define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE) /* * Sometimes PCS encoding errors are detected in * TBI mode (on fiber NICs), and for some reason * the chip will signal them as link changes. * If we get a link change event, but the 'PCS * encoding error' bit in the MAC status register * is set, don't bother doing a link check. * This avoids spurious "gigabit link up" messages * that sometimes appear on fiber NICs during * periods of heavy traffic. */ if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { if (!sc->bge_link) { sc->bge_link++; if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_TBI_SEND_CFGS); } CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); if (bootverbose) if_printf(ifp, "link UP\n"); ifp->if_link_state = LINK_STATE_UP; if_link_state_change(ifp); } } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) { if (sc->bge_link) { sc->bge_link = 0; if (bootverbose) if_printf(ifp, "link DOWN\n"); ifp->if_link_state = LINK_STATE_DOWN; if_link_state_change(ifp); } } #undef PCS_ENCODE_ERR /* Clear the attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); } static void bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused) { /* * Check that the AUTOPOLL bit is set before * processing the event as a real link change. * Turning AUTOPOLL on and off in the MII read/write * functions will often trigger a link status * interrupt for no reason. */ if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) { struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); if (!sc->bge_link && (mii->mii_media_status & IFM_ACTIVE) && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->bge_link++; if (bootverbose) if_printf(ifp, "link UP\n"); } else if (sc->bge_link && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { sc->bge_link = 0; if (bootverbose) if_printf(ifp, "link DOWN\n"); } } /* Clear the attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); } static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc = arg1; return bge_sysctl_coal_chg(oidp, arg1, arg2, req, &sc->bge_rx_coal_ticks, BGE_RX_COAL_TICKS_CHG); } static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc = arg1; return bge_sysctl_coal_chg(oidp, arg1, arg2, req, &sc->bge_tx_coal_ticks, BGE_TX_COAL_TICKS_CHG); } static int bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc = arg1; return bge_sysctl_coal_chg(oidp, arg1, arg2, req, &sc->bge_rx_max_coal_bds, BGE_RX_MAX_COAL_BDS_CHG); } static int bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS) { struct bge_softc *sc = arg1; return bge_sysctl_coal_chg(oidp, arg1, arg2, req, &sc->bge_tx_max_coal_bds, BGE_TX_MAX_COAL_BDS_CHG); } static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal, uint32_t coal_chg_mask) { struct bge_softc *sc = arg1; struct ifnet *ifp = &sc->arpcom.ac_if; int error = 0, v; lwkt_serialize_enter(ifp->if_serializer); v = *coal; error = sysctl_handle_int(oidp, &v, 0, req); if (!error && req->newptr != NULL) { if (v < 0) { error = EINVAL; } else { *coal = v; sc->bge_coal_chg |= coal_chg_mask; } } lwkt_serialize_exit(ifp->if_serializer); return error; } static void bge_coal_change(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t val; ASSERT_SERIALIZED(ifp->if_serializer); if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) { CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); DELAY(10); val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS); if (bootverbose) { if_printf(ifp, "rx_coal_ticks -> %u\n", sc->bge_rx_coal_ticks); } } if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) { CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); DELAY(10); val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS); if (bootverbose) { if_printf(ifp, "tx_coal_ticks -> %u\n", sc->bge_tx_coal_ticks); } } if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) { CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); DELAY(10); val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS); if (bootverbose) { if_printf(ifp, "rx_max_coal_bds -> %u\n", sc->bge_rx_max_coal_bds); } } if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) { CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); DELAY(10); val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS); if (bootverbose) { if_printf(ifp, "tx_max_coal_bds -> %u\n", sc->bge_tx_max_coal_bds); } } sc->bge_coal_chg = 0; } static void bge_enable_intr(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; lwkt_serialize_handler_enable(ifp->if_serializer); /* * Enable interrupt. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); /* * Unmask the interrupt when we stop polling. */ BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); /* * Trigger another interrupt, since above writing * to interrupt mailbox0 may acknowledge pending * interrupt. */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); } static void bge_disable_intr(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; /* * Mask the interrupt when we start polling. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); /* * Acknowledge possible asserted interrupt. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); lwkt_serialize_handler_disable(ifp->if_serializer); } static int bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) { uint32_t mac_addr; int ret = 1; mac_addr = bge_readmem_ind(sc, 0x0c14); if ((mac_addr >> 16) == 0x484b) { ether_addr[0] = (uint8_t)(mac_addr >> 8); ether_addr[1] = (uint8_t)mac_addr; mac_addr = bge_readmem_ind(sc, 0x0c18); ether_addr[2] = (uint8_t)(mac_addr >> 24); ether_addr[3] = (uint8_t)(mac_addr >> 16); ether_addr[4] = (uint8_t)(mac_addr >> 8); ether_addr[5] = (uint8_t)mac_addr; ret = 0; } return ret; } static int bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) { int mac_offset = BGE_EE_MAC_OFFSET; if (sc->bge_asicrev == BGE_ASICREV_BCM5906) mac_offset = BGE_EE_MAC_OFFSET_5906; return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN); } static int bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) { if (sc->bge_flags & BGE_FLAG_NO_EEPROM) return 1; return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN); } static int bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) { static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { /* NOTE: Order is critical */ bge_get_eaddr_mem, bge_get_eaddr_nvram, bge_get_eaddr_eeprom, NULL }; const bge_eaddr_fcn_t *func; for (func = bge_eaddr_funcs; *func != NULL; ++func) { if ((*func)(sc, eaddr) == 0) break; } return (*func == NULL ? ENXIO : 0); }