/*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Karels at Berkeley Software Design, Inc. * * Quite extensively rewritten by Poul-Henning Kamp of the FreeBSD * project, to make these variables more userfriendly. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94 * $FreeBSD: src/sys/kern/kern_sysctl.c,v 1.92.2.9 2003/05/01 22:48:09 trhodes Exp $ * $DragonFly: src/sys/kern/kern_sysctl.c,v 1.30 2008/08/03 11:00:32 sephe Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_SYSCTL, "sysctl", "sysctl internal magic"); static MALLOC_DEFINE(M_SYSCTLOID, "sysctloid", "sysctl dynamic oids"); static struct lock sysctl_lkp; static struct lock sysctl_ctx_lkp; static void sysctl_lock(int type); static void sysctl_unlock(void); static void sysctl_ctx_lock(int type); static void sysctl_ctx_unlock(void); static int sysctl_root(SYSCTL_HANDLER_ARGS); static void sysctl_register_oid_int(struct sysctl_oid *oipd); static void sysctl_unregister_oid_int(struct sysctl_oid *oipd); static struct sysctl_ctx_entry* sysctl_ctx_entry_find_int (struct sysctl_ctx_list *, struct sysctl_oid *oidp); struct sysctl_oid_list sysctl__children; /* root list */ static struct sysctl_oid * sysctl_find_oidname(const char *name, struct sysctl_oid_list *list, int lock) { struct sysctl_oid *oidp; SLIST_FOREACH(oidp, list, oid_link) { if (strcmp(oidp->oid_name, name) == 0) { break; } } return (oidp); } /* * Initialization of the MIB tree. * * Order by number in each list. */ void sysctl_register_oid(struct sysctl_oid *oidp) { sysctl_lock(LK_EXCLUSIVE); sysctl_register_oid_int(oidp); sysctl_unlock(); } static void sysctl_register_oid_int(struct sysctl_oid *oidp) { struct sysctl_oid_list *parent = oidp->oid_parent; struct sysctl_oid *p; struct sysctl_oid *q; /* * First check if another oid with the same name already * exists in the parent's list. */ p = sysctl_find_oidname(oidp->oid_name, parent, 0); if (p != NULL) { if ((p->oid_kind & CTLTYPE) == CTLTYPE_NODE) p->oid_refcnt++; else kprintf("can't re-use a leaf (%s)!\n", p->oid_name); return; } /* * If this oid has a number OID_AUTO, give it a number which * is greater than any current oid. Make sure it is at least * 256 to leave space for pre-assigned oid numbers. */ if (oidp->oid_number == OID_AUTO) { int newoid = 0x100; /* minimum AUTO oid */ /* * Adjust based on highest oid in parent list */ SLIST_FOREACH(p, parent, oid_link) { if (newoid <= p->oid_number) newoid = p->oid_number + 1; } oidp->oid_number = newoid; } /* * Insert the oid into the parent's list in order. */ q = NULL; SLIST_FOREACH(p, parent, oid_link) { if (oidp->oid_number < p->oid_number) break; q = p; } if (q) SLIST_INSERT_AFTER(q, oidp, oid_link); else SLIST_INSERT_HEAD(parent, oidp, oid_link); } void sysctl_unregister_oid(struct sysctl_oid *oidp) { sysctl_lock(LK_EXCLUSIVE); sysctl_unregister_oid_int(oidp); sysctl_unlock(); } static void sysctl_unregister_oid_int(struct sysctl_oid *oidp) { struct sysctl_oid *p; if (oidp->oid_number == OID_AUTO) panic("Trying to unregister OID_AUTO entry: %p", oidp); SLIST_FOREACH(p, oidp->oid_parent, oid_link) { if (p != oidp) continue; SLIST_REMOVE(oidp->oid_parent, oidp, sysctl_oid, oid_link); return; } /* * This can happen when a module fails to register and is * being unloaded afterwards. It should not be a panic() * for normal use. */ kprintf("%s: failed to unregister sysctl\n", __func__); } /* Initialize a new context to keep track of dynamically added sysctls. */ int sysctl_ctx_init(struct sysctl_ctx_list *c) { if (c == NULL) return(EINVAL); TAILQ_INIT(c); return(0); } /* Free the context, and destroy all dynamic oids registered in this context */ int sysctl_ctx_free(struct sysctl_ctx_list *clist) { struct sysctl_ctx_entry *e, *e1; int error; error = 0; sysctl_ctx_lock(LK_EXCLUSIVE); /* * First perform a "dry run" to check if it's ok to remove oids. * XXX FIXME * XXX This algorithm is a hack. But I don't know any * XXX better solution for now... */ TAILQ_FOREACH(e, clist, link) { error = sysctl_remove_oid(e->entry, 0, 0); if (error) break; } /* * Restore deregistered entries, either from the end, * or from the place where error occured. * e contains the entry that was not unregistered */ if (error) e1 = TAILQ_PREV(e, sysctl_ctx_list, link); else e1 = TAILQ_LAST(clist, sysctl_ctx_list); while (e1 != NULL) { sysctl_register_oid(e1->entry); e1 = TAILQ_PREV(e1, sysctl_ctx_list, link); } if (error) { sysctl_ctx_unlock(); return(EBUSY); } /* Now really delete the entries */ e = TAILQ_FIRST(clist); while (e != NULL) { e1 = TAILQ_NEXT(e, link); error = sysctl_remove_oid(e->entry, 1, 0); if (error) panic("sysctl_remove_oid: corrupt tree, entry: %s", e->entry->oid_name); kfree(e, M_SYSCTLOID); e = e1; } sysctl_ctx_unlock(); return (error); } /* Add an entry to the context */ struct sysctl_ctx_entry * sysctl_ctx_entry_add(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; if (clist == NULL || oidp == NULL) return(NULL); e = kmalloc(sizeof(struct sysctl_ctx_entry), M_SYSCTLOID, M_WAITOK); e->entry = oidp; sysctl_ctx_lock(LK_EXCLUSIVE); TAILQ_INSERT_HEAD(clist, e, link); sysctl_ctx_unlock(); return (e); } /* Find an entry in the context */ struct sysctl_ctx_entry * sysctl_ctx_entry_find(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; if (clist == NULL || oidp == NULL) return(NULL); sysctl_ctx_lock(LK_SHARED); e = sysctl_ctx_entry_find_int(clist, oidp); sysctl_ctx_unlock(); return(e); } struct sysctl_ctx_entry * sysctl_ctx_entry_find_int(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; KKASSERT(clist != NULL && oidp != NULL); for (e = TAILQ_FIRST(clist); e != NULL; e = TAILQ_NEXT(e, link)) { if(e->entry == oidp) break; } return (e); } /* * Delete an entry from the context. * NOTE: this function doesn't free oidp! You have to remove it * with sysctl_remove_oid(). */ int sysctl_ctx_entry_del(struct sysctl_ctx_list *clist, struct sysctl_oid *oidp) { struct sysctl_ctx_entry *e; if (clist == NULL || oidp == NULL) return (EINVAL); sysctl_ctx_lock(LK_EXCLUSIVE); e = sysctl_ctx_entry_find_int(clist, oidp); if (e == NULL) { sysctl_ctx_unlock(); return (ENOENT); } TAILQ_REMOVE(clist, e, link); kfree(e, M_SYSCTLOID); sysctl_ctx_unlock(); return(0); } /* * Remove dynamically created sysctl trees. * oidp - top of the tree to be removed * del - if 0 - just deregister, otherwise free up entries as well * recurse - if != 0 traverse the subtree to be deleted */ int sysctl_remove_oid(struct sysctl_oid *oidp, int del, int recurse) { struct sysctl_oid *p; int error; if (oidp == NULL) return(EINVAL); if ((oidp->oid_kind & CTLFLAG_DYN) == 0) { kprintf("can't remove non-dynamic nodes!\n"); return (EINVAL); } sysctl_lock(LK_EXCLUSIVE | LK_CANRECURSE); /* * WARNING: normal method to do this should be through * sysctl_ctx_free(). Use recursing as the last resort * method to purge your sysctl tree of leftovers... * However, if some other code still references these nodes, * it will panic. */ if ((oidp->oid_kind & CTLTYPE) == CTLTYPE_NODE) { if (oidp->oid_refcnt == 1) { SLIST_FOREACH(p, SYSCTL_CHILDREN(oidp), oid_link) { if (!recurse) { sysctl_unlock(); return(ENOTEMPTY); } error = sysctl_remove_oid(p, del, recurse); if (error) { sysctl_unlock(); return(error); } } if (del) kfree(SYSCTL_CHILDREN(oidp), M_SYSCTLOID); } } if (oidp->oid_refcnt > 1 ) { oidp->oid_refcnt--; } else { if (oidp->oid_refcnt == 0) { kprintf("Warning: bad oid_refcnt=%u (%s)!\n", oidp->oid_refcnt, oidp->oid_name); sysctl_unlock(); return(EINVAL); } sysctl_unregister_oid_int(oidp); if (del) { if (oidp->oid_descr) kfree(__DECONST(char *,oidp->oid_descr), M_SYSCTLOID); kfree(__DECONST(char *, oidp->oid_name), M_SYSCTLOID); kfree(oidp, M_SYSCTLOID); } } sysctl_unlock(); return(0); } /* * Create new sysctls at run time. * clist may point to a valid context initialized with sysctl_ctx_init(). */ struct sysctl_oid * sysctl_add_oid(struct sysctl_ctx_list *clist, struct sysctl_oid_list *parent, int number, const char *name, int kind, void *arg1, int arg2, int (*handler)(SYSCTL_HANDLER_ARGS), const char *fmt, const char *descr) { struct sysctl_oid *oidp; ssize_t len; char *newname; /* You have to hook up somewhere.. */ if (parent == NULL) return(NULL); sysctl_lock(LK_EXCLUSIVE); /* Check if the node already exists, otherwise create it */ oidp = sysctl_find_oidname(name, parent, 0); if (oidp != NULL) { if ((oidp->oid_kind & CTLTYPE) == CTLTYPE_NODE) { oidp->oid_refcnt++; /* Update the context */ if (clist != NULL) sysctl_ctx_entry_add(clist, oidp); sysctl_unlock(); return (oidp); } else { kprintf("can't re-use a leaf (%s)!\n", name); sysctl_unlock(); return (NULL); } } oidp = kmalloc(sizeof(struct sysctl_oid), M_SYSCTLOID, M_WAITOK | M_ZERO); oidp->oid_parent = parent; SLIST_NEXT(oidp, oid_link) = NULL; oidp->oid_number = number; oidp->oid_refcnt = 1; len = strlen(name); newname = kmalloc(len + 1, M_SYSCTLOID, M_WAITOK); bcopy(name, newname, len + 1); newname[len] = '\0'; oidp->oid_name = newname; oidp->oid_handler = handler; oidp->oid_kind = CTLFLAG_DYN | kind; if ((kind & CTLTYPE) == CTLTYPE_NODE) { struct sysctl_oid_list *children; /* Allocate space for children */ children = kmalloc(sizeof(*children), M_SYSCTLOID, M_WAITOK); SYSCTL_SET_CHILDREN(oidp, children); SLIST_INIT(children); } else { oidp->oid_arg1 = arg1; oidp->oid_arg2 = arg2; } oidp->oid_fmt = fmt; if (descr) { int len = strlen(descr) + 1; oidp->oid_descr = kmalloc(len, M_SYSCTLOID, M_WAITOK); strcpy((char *)(uintptr_t)(const void *)oidp->oid_descr, descr); }; /* Update the context, if used */ if (clist != NULL) sysctl_ctx_entry_add(clist, oidp); /* Register this oid */ sysctl_register_oid_int(oidp); sysctl_unlock(); return (oidp); } /* * Register the kernel's oids on startup. */ SET_DECLARE(sysctl_set, struct sysctl_oid); static void sysctl_register_all(void *arg) { struct sysctl_oid **oidp; lockinit(&sysctl_lkp, "sysctl", 0, 0); lockinit(&sysctl_ctx_lkp, "sysctl ctx", 0, 0); SET_FOREACH(oidp, sysctl_set) sysctl_register_oid_int(*oidp); } SYSINIT(sysctl, SI_BOOT1_POST, SI_ORDER_ANY, sysctl_register_all, 0); /* * "Staff-functions" * * These functions implement a presently undocumented interface * used by the sysctl program to walk the tree, and get the type * so it can print the value. * This interface is under work and consideration, and should probably * be killed with a big axe by the first person who can find the time. * (be aware though, that the proper interface isn't as obvious as it * may seem, there are various conflicting requirements. * * {0,0} kprintf the entire MIB-tree. * {0,1,...} return the name of the "..." OID. * {0,2,...} return the next OID. * {0,3} return the OID of the name in "new" * {0,4,...} return the kind & format info for the "..." OID. */ static void sysctl_sysctl_debug_dump_node(struct sysctl_oid_list *l, int i) { int k; struct sysctl_oid *oidp; sysctl_lock(LK_SHARED); SLIST_FOREACH(oidp, l, oid_link) { for (k=0; koid_number, oidp->oid_name); kprintf("%c%c", oidp->oid_kind & CTLFLAG_RD ? 'R':' ', oidp->oid_kind & CTLFLAG_WR ? 'W':' '); if (oidp->oid_handler) kprintf(" *Handler"); switch (oidp->oid_kind & CTLTYPE) { case CTLTYPE_NODE: kprintf(" Node\n"); if (!oidp->oid_handler) { sysctl_sysctl_debug_dump_node( oidp->oid_arg1, i+2); } break; case CTLTYPE_INT: kprintf(" Int\n"); break; case CTLTYPE_STRING: kprintf(" String\n"); break; case CTLTYPE_QUAD: kprintf(" Quad\n"); break; case CTLTYPE_OPAQUE: kprintf(" Opaque/struct\n"); break; default: kprintf("\n"); } } sysctl_unlock(); } static int sysctl_sysctl_debug(SYSCTL_HANDLER_ARGS) { int error; error = priv_check(req->td, PRIV_SYSCTL_DEBUG); if (error) return error; sysctl_sysctl_debug_dump_node(&sysctl__children, 0); return ENOENT; } SYSCTL_PROC(_sysctl, 0, debug, CTLTYPE_STRING|CTLFLAG_RD, 0, 0, sysctl_sysctl_debug, "-", ""); static int sysctl_sysctl_name(SYSCTL_HANDLER_ARGS) { int *name = (int *) arg1; u_int namelen = arg2; int error = 0; struct sysctl_oid *oid; struct sysctl_oid_list *lsp = &sysctl__children, *lsp2; char buf[10]; sysctl_lock(LK_SHARED); while (namelen) { if (!lsp) { ksnprintf(buf,sizeof(buf),"%d",*name); if (req->oldidx) error = SYSCTL_OUT(req, ".", 1); if (!error) error = SYSCTL_OUT(req, buf, strlen(buf)); if (error) { sysctl_unlock(); return (error); } namelen--; name++; continue; } lsp2 = 0; SLIST_FOREACH(oid, lsp, oid_link) { if (oid->oid_number != *name) continue; if (req->oldidx) error = SYSCTL_OUT(req, ".", 1); if (!error) error = SYSCTL_OUT(req, oid->oid_name, strlen(oid->oid_name)); if (error) { sysctl_unlock(); return (error); } namelen--; name++; if ((oid->oid_kind & CTLTYPE) != CTLTYPE_NODE) break; if (oid->oid_handler) break; lsp2 = (struct sysctl_oid_list *)oid->oid_arg1; break; } lsp = lsp2; } sysctl_unlock(); return (SYSCTL_OUT(req, "", 1)); } SYSCTL_NODE(_sysctl, 1, name, CTLFLAG_RD, sysctl_sysctl_name, ""); static int sysctl_sysctl_next_ls(struct sysctl_oid_list *lsp, int *name, u_int namelen, int *next, int *len, int level, struct sysctl_oid **oidpp) { struct sysctl_oid *oidp; *len = level; sysctl_lock(LK_SHARED); SLIST_FOREACH(oidp, lsp, oid_link) { *next = oidp->oid_number; *oidpp = oidp; if (!namelen) { if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) { sysctl_unlock(); return 0; } if (oidp->oid_handler) { /* We really should call the handler here...*/ sysctl_unlock(); return 0; } lsp = (struct sysctl_oid_list *)oidp->oid_arg1; if (!sysctl_sysctl_next_ls(lsp, 0, 0, next+1, len, level+1, oidpp)) { sysctl_unlock(); return 0; } goto emptynode; } if (oidp->oid_number < *name) continue; if (oidp->oid_number > *name) { if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) { sysctl_unlock(); return 0; } if (oidp->oid_handler) { sysctl_unlock(); return 0; } lsp = (struct sysctl_oid_list *)oidp->oid_arg1; if (!sysctl_sysctl_next_ls(lsp, name+1, namelen-1, next+1, len, level+1, oidpp)) { sysctl_unlock(); return (0); } goto next; } if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) continue; if (oidp->oid_handler) continue; lsp = (struct sysctl_oid_list *)oidp->oid_arg1; if (!sysctl_sysctl_next_ls(lsp, name+1, namelen-1, next+1, len, level+1, oidpp)) { sysctl_unlock(); return (0); } next: namelen = 1; *len = level; emptynode: *len = level; } sysctl_unlock(); return 1; } static int sysctl_sysctl_next(SYSCTL_HANDLER_ARGS) { int *name = (int *) arg1; u_int namelen = arg2; int i, j, error; struct sysctl_oid *oid; struct sysctl_oid_list *lsp = &sysctl__children; int newoid[CTL_MAXNAME]; i = sysctl_sysctl_next_ls(lsp, name, namelen, newoid, &j, 1, &oid); if (i) return ENOENT; error = SYSCTL_OUT(req, newoid, j * sizeof (int)); return (error); } SYSCTL_NODE(_sysctl, 2, next, CTLFLAG_RD, sysctl_sysctl_next, ""); static int name2oid (char *name, int *oid, int *len, struct sysctl_oid **oidpp) { int i; struct sysctl_oid *oidp; struct sysctl_oid_list *lsp = &sysctl__children; char *p; if (!*name) return ENOENT; p = name + strlen(name) - 1 ; if (*p == '.') *p = '\0'; *len = 0; for (p = name; *p && *p != '.'; p++) ; i = *p; if (i == '.') *p = '\0'; sysctl_lock(LK_SHARED); oidp = SLIST_FIRST(lsp); while (oidp && *len < CTL_MAXNAME) { if (strcmp(name, oidp->oid_name)) { oidp = SLIST_NEXT(oidp, oid_link); continue; } *oid++ = oidp->oid_number; (*len)++; if (!i) { if (oidpp) *oidpp = oidp; sysctl_unlock(); return (0); } if ((oidp->oid_kind & CTLTYPE) != CTLTYPE_NODE) break; if (oidp->oid_handler) break; lsp = (struct sysctl_oid_list *)oidp->oid_arg1; oidp = SLIST_FIRST(lsp); name = p+1; for (p = name; *p && *p != '.'; p++) ; i = *p; if (i == '.') *p = '\0'; } sysctl_unlock(); return ENOENT; } static int sysctl_sysctl_name2oid(SYSCTL_HANDLER_ARGS) { char *p; int error, oid[CTL_MAXNAME], len; struct sysctl_oid *op = 0; if (!req->newlen) return ENOENT; if (req->newlen >= MAXPATHLEN) /* XXX arbitrary, undocumented */ return (ENAMETOOLONG); p = kmalloc(req->newlen+1, M_SYSCTL, M_WAITOK); error = SYSCTL_IN(req, p, req->newlen); if (error) { kfree(p, M_SYSCTL); return (error); } p [req->newlen] = '\0'; error = name2oid(p, oid, &len, &op); kfree(p, M_SYSCTL); if (error) return (error); error = SYSCTL_OUT(req, oid, len * sizeof *oid); return (error); } SYSCTL_PROC(_sysctl, 3, name2oid, CTLFLAG_RW|CTLFLAG_ANYBODY, 0, 0, sysctl_sysctl_name2oid, "I", ""); static int sysctl_sysctl_oidfmt(SYSCTL_HANDLER_ARGS) { struct sysctl_oid *oid; int error; error = sysctl_find_oid(arg1, arg2, &oid, NULL, req); if (error) return (error); if (!oid->oid_fmt) return (ENOENT); error = SYSCTL_OUT(req, &oid->oid_kind, sizeof(oid->oid_kind)); if (error) return (error); error = SYSCTL_OUT(req, oid->oid_fmt, strlen(oid->oid_fmt) + 1); return (error); } SYSCTL_NODE(_sysctl, 4, oidfmt, CTLFLAG_RD, sysctl_sysctl_oidfmt, ""); static int sysctl_sysctl_oiddescr(SYSCTL_HANDLER_ARGS) { struct sysctl_oid *oid; int error; error = sysctl_find_oid(arg1, arg2, &oid, NULL, req); if (error) return (error); if (!oid->oid_descr) return (ENOENT); error = SYSCTL_OUT(req, oid->oid_descr, strlen(oid->oid_descr) + 1); return (error); } SYSCTL_NODE(_sysctl, 5, oiddescr, CTLFLAG_RD, sysctl_sysctl_oiddescr, ""); /* * Default "handler" functions. */ /* * Handle an int, signed or unsigned. * Two cases: * a variable: point arg1 at it. * a constant: pass it in arg2. */ int sysctl_handle_int(SYSCTL_HANDLER_ARGS) { int error = 0; if (arg1) error = SYSCTL_OUT(req, arg1, sizeof(int)); else error = SYSCTL_OUT(req, &arg2, sizeof(int)); if (error || !req->newptr) return (error); if (!arg1) error = EPERM; else error = SYSCTL_IN(req, arg1, sizeof(int)); return (error); } /* * Handle a long, signed or unsigned. arg1 points to it. */ int sysctl_handle_long(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, sizeof(long)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(long)); return (error); } /* * Handle a quad, signed or unsigned. arg1 points to it. */ int sysctl_handle_quad(SYSCTL_HANDLER_ARGS) { int error = 0; if (!arg1) return (EINVAL); error = SYSCTL_OUT(req, arg1, sizeof(quad_t)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(quad_t)); return (error); } /* * Handle our generic '\0' terminated 'C' string. * Two cases: * a variable string: point arg1 at it, arg2 is max length. * a constant string: point arg1 at it, arg2 is zero. */ int sysctl_handle_string(SYSCTL_HANDLER_ARGS) { int error=0; error = SYSCTL_OUT(req, arg1, strlen((char *)arg1)+1); if (error || !req->newptr) return (error); if ((req->newlen - req->newidx) >= arg2) { error = EINVAL; } else { arg2 = (req->newlen - req->newidx); error = SYSCTL_IN(req, arg1, arg2); ((char *)arg1)[arg2] = '\0'; } return (error); } /* * Handle any kind of opaque data. * arg1 points to it, arg2 is the size. */ int sysctl_handle_opaque(SYSCTL_HANDLER_ARGS) { int error; error = SYSCTL_OUT(req, arg1, arg2); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, arg2); return (error); } /* * Transfer functions to/from kernel space. * XXX: rather untested at this point */ static int sysctl_old_kernel(struct sysctl_req *req, const void *p, size_t l) { size_t i = 0; if (req->oldptr) { i = l; if (i > req->oldlen - req->oldidx) i = req->oldlen - req->oldidx; if (i > 0) bcopy(p, (char *)req->oldptr + req->oldidx, i); } req->oldidx += l; if (req->oldptr && i != l) return (ENOMEM); return (0); } static int sysctl_new_kernel(struct sysctl_req *req, void *p, size_t l) { if (!req->newptr) return 0; if (req->newlen - req->newidx < l) return (EINVAL); bcopy((char *)req->newptr + req->newidx, p, l); req->newidx += l; return (0); } int kernel_sysctl(int *name, u_int namelen, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval) { int error = 0; struct sysctl_req req; bzero(&req, sizeof req); req.td = curthread; if (oldlenp) { req.oldlen = *oldlenp; } if (old) { req.oldptr = old; } if (new != NULL) { req.newlen = newlen; req.newptr = new; } req.oldfunc = sysctl_old_kernel; req.newfunc = sysctl_new_kernel; #if 0 req.lock = 1; #endif sysctl_lock(LK_SHARED); error = sysctl_root(0, name, namelen, &req); #if 0 if (req.lock == 2) vsunlock(req.oldptr, req.oldlen); #endif sysctl_unlock(); if (error && error != ENOMEM) return (error); if (retval) { if (req.oldptr && req.oldidx > req.oldlen) *retval = req.oldlen; else *retval = req.oldidx; } return (error); } int kernel_sysctlbyname(char *name, void *old, size_t *oldlenp, void *new, size_t newlen, size_t *retval) { int oid[CTL_MAXNAME]; size_t oidlen, plen; int error; oid[0] = 0; /* sysctl internal magic */ oid[1] = 3; /* name2oid */ oidlen = sizeof(oid); error = kernel_sysctl(oid, 2, oid, &oidlen, (void *)name, strlen(name), &plen); if (error) return (error); error = kernel_sysctl(oid, plen / sizeof(int), old, oldlenp, new, newlen, retval); return (error); } /* * Transfer function to/from user space. */ static int sysctl_old_user(struct sysctl_req *req, const void *p, size_t l) { int error = 0; size_t i = 0; #if 0 if (req->lock == 1 && req->oldptr) { vslock(req->oldptr, req->oldlen); req->lock = 2; } #endif if (req->oldptr) { i = l; if (i > req->oldlen - req->oldidx) i = req->oldlen - req->oldidx; if (i > 0) error = copyout(p, (char *)req->oldptr + req->oldidx, i); } req->oldidx += l; if (error) return (error); if (req->oldptr && i < l) return (ENOMEM); return (0); } static int sysctl_new_user(struct sysctl_req *req, void *p, size_t l) { int error; if (!req->newptr) return 0; if (req->newlen - req->newidx < l) return (EINVAL); error = copyin((char *)req->newptr + req->newidx, p, l); req->newidx += l; return (error); } int sysctl_find_oid(int *name, u_int namelen, struct sysctl_oid **noid, int *nindx, struct sysctl_req *req) { struct sysctl_oid *oid; int indx; sysctl_lock(LK_SHARED); oid = SLIST_FIRST(&sysctl__children); indx = 0; while (oid && indx < CTL_MAXNAME) { if (oid->oid_number == name[indx]) { indx++; if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) { if (oid->oid_handler != NULL || indx == namelen) { *noid = oid; if (nindx != NULL) *nindx = indx; sysctl_unlock(); return (0); } oid = SLIST_FIRST( (struct sysctl_oid_list *)oid->oid_arg1); } else if (indx == namelen) { *noid = oid; if (nindx != NULL) *nindx = indx; sysctl_unlock(); return (0); } else { sysctl_unlock(); return (ENOTDIR); } } else { oid = SLIST_NEXT(oid, oid_link); } } sysctl_unlock(); return (ENOENT); } /* * Traverse our tree, and find the right node, execute whatever it points * to, and return the resulting error code. */ int sysctl_root(SYSCTL_HANDLER_ARGS) { struct thread *td = req->td; struct proc *p = td ? td->td_proc : NULL; struct sysctl_oid *oid; int error, indx; error = sysctl_find_oid(arg1, arg2, &oid, &indx, req); if (error) return (error); if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) { /* * You can't call a sysctl when it's a node, but has * no handler. Inform the user that it's a node. * The indx may or may not be the same as namelen. */ if (oid->oid_handler == NULL) return (EISDIR); } /* If writing isn't allowed */ if (req->newptr && (!(oid->oid_kind & CTLFLAG_WR) || ((oid->oid_kind & CTLFLAG_SECURE) && securelevel > 0))) return (EPERM); /* Most likely only root can write */ if (!(oid->oid_kind & CTLFLAG_ANYBODY) && req->newptr && p && (error = priv_check_cred(td->td_ucred, (oid->oid_kind & CTLFLAG_PRISON) ? PRIV_SYSCTL_WRITEJAIL : PRIV_SYSCTL_WRITE, 0))) return (error); if (!oid->oid_handler) return EINVAL; if ((oid->oid_kind & CTLTYPE) == CTLTYPE_NODE) error = oid->oid_handler(oid, (int *)arg1 + indx, arg2 - indx, req); else error = oid->oid_handler(oid, oid->oid_arg1, oid->oid_arg2, req); return (error); } /* * MPALMOSTSAFE */ int sys___sysctl(struct sysctl_args *uap) { int error, i, name[CTL_MAXNAME]; size_t j; if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) return (EINVAL); error = copyin(uap->name, &name, uap->namelen * sizeof(int)); if (error) return (error); get_mplock(); error = userland_sysctl(name, uap->namelen, uap->old, uap->oldlenp, 0, uap->new, uap->newlen, &j); rel_mplock(); if (error && error != ENOMEM) return (error); if (uap->oldlenp) { i = copyout(&j, uap->oldlenp, sizeof(j)); if (i) return (i); } return (error); } /* * This is used from various compatibility syscalls too. That's why name * must be in kernel space. */ int userland_sysctl(int *name, u_int namelen, void *old, size_t *oldlenp, int inkernel, void *new, size_t newlen, size_t *retval) { int error = 0; struct sysctl_req req, req2; bzero(&req, sizeof req); if (oldlenp) { if (inkernel) { req.oldlen = *oldlenp; } else { error = copyin(oldlenp, &req.oldlen, sizeof(*oldlenp)); if (error) return (error); } } if (old) { if (!useracc(old, req.oldlen, VM_PROT_WRITE)) return (EFAULT); req.oldptr= old; } if (new != NULL) { if (!useracc(new, newlen, VM_PROT_READ)) return (EFAULT); req.newlen = newlen; req.newptr = new; } req.oldfunc = sysctl_old_user; req.newfunc = sysctl_new_user; #if 0 req.lock = 1; #endif req.td = curthread; sysctl_lock(LK_SHARED); do { req2 = req; error = sysctl_root(0, name, namelen, &req2); } while (error == EAGAIN); req = req2; #if 0 if (req.lock == 2) vsunlock(req.oldptr, req.oldlen); #endif sysctl_unlock(); if (error && error != ENOMEM) return (error); if (retval) { if (req.oldptr && req.oldidx > req.oldlen) *retval = req.oldlen; else *retval = req.oldidx; } return (error); } static void sysctl_lock(int flag) { lockmgr(&sysctl_lkp, flag); } static void sysctl_unlock(void) { lockmgr(&sysctl_lkp, LK_RELEASE); } static void sysctl_ctx_lock(int flag) { lockmgr(&sysctl_ctx_lkp, flag); } static void sysctl_ctx_unlock(void) { lockmgr(&sysctl_ctx_lkp, LK_RELEASE); } int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || !req->newptr) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); }