/* * Copyright (c) 1991 Regents of the University of California. * Copyright (c) 2003 Peter Wemm. * Copyright (c) 2008 The DragonFly Project. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * $FreeBSD: src/sys/i386/include/pmap.h,v 1.65.2.3 2001/10/03 07:15:37 peter Exp $ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ #include /* * Size of Kernel address space. This is the number of page table pages * (2GB each) to use for the kernel. 256 pages == 512 Gigabytes. * This **MUST** be a multiple of 4 (eg: 252, 256, 260, etc). */ #ifndef KVA_PAGES #define KVA_PAGES 256 #endif /* * Pte related macros. This is complicated by having to deal with * the sign extension of the 48th bit. */ #define KVADDR(l4, l3, l2, l1) ( \ ((unsigned long)-1 << 47) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #define UVADDR(l4, l3, l2, l1) ( \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) /* * NKPML4E is the number of PML4E slots used for KVM. Each slot represents * 512GB of KVM. A number between 1 and 128 may be specified. To support * the maximum machine configuration of 64TB we recommend around * 16 slots (8TB of KVM). * * NOTE: We no longer hardwire NKPT, it is calculated in create_pagetables() */ #define NKPML4E 16 /* NKPDPE defined in vmparam.h */ /* * NUPDPs 512 (256 user) number of PDPs in user page table * NUPDs 512 * 512 number of PDs in user page table * NUPTs 512 * 512 * 512 number of PTs in user page table * NUPTEs 512 * 512 * 512 * 512 number of PTEs in user page table * * NUPDP_USER number of PDPs reserved for userland * NUPTE_USER number of PTEs reserved for userland (big number) */ #define NUPDP_USER (NPML4EPG/2) #define NUPDP_TOTAL (NPML4EPG) #define NUPD_TOTAL (NPDPEPG * NUPDP_TOTAL) #define NUPT_TOTAL (NPDEPG * NUPD_TOTAL) #define NUPTE_TOTAL ((vm_pindex_t)NPTEPG * NUPT_TOTAL) #define NUPTE_USER ((vm_pindex_t)NPTEPG * NPDEPG * NPDPEPG * NUPDP_USER) /* * Number of 512G dmap PML4 slots. There are 512 slots of which 256 are * used by the kernel. Of those 256 we allow up to 128 to be used by the * DMAP (for 64TB of ram), leaving 128 for the kernel and other incidentals. */ #define NDMPML4E 128 /* * The *PML4I values control the layout of virtual memory. Each PML4 * entry represents 512G. */ #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ #define KPML4I (NPML4EPG-NKPML4E) /* Start of KVM */ #define DMPML4I (KPML4I-NDMPML4E) /* Next 512GBxN down for dmap */ /* * Make sure the kernel map and DMAP don't overflow the 256 PDP entries * we have available. Minus one for the PML4PML4I. */ #if NKPML4E + NDMPML4E >= 255 #error "NKPML4E or NDMPML4E is too large" #endif /* * The location of KERNBASE in the last PD of the kernel's KVM (KPML4I) * space. Each PD represents 1GB. The kernel must be placed here * for the compile/link options to work properly so absolute 32-bit * addressing can be used to access stuff. */ #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ /* * per-CPU data assume ~64K x SMP_MAXCPU, say up to 256 cpus * in the future or 16MB of space. Each PD represents 2MB so * use NPDEPG-8 to place the per-CPU data. */ #define MPPML4I (KPML4I + NKPML4E - 1) #define MPPDPI KPDPI #define MPPTDI (NPDEPG-8) /* * XXX doesn't really belong here I guess... */ #define ISA_HOLE_START 0xa0000 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) #ifndef LOCORE #ifndef _SYS_TYPES_H_ #include #endif #ifndef _SYS_QUEUE_H_ #include #endif #ifndef _SYS_TREE_H_ #include #endif #ifndef _SYS_SPINLOCK_H_ #include #endif #ifndef _SYS_THREAD_H_ #include #endif #ifndef _MACHINE_TYPES_H_ #include #endif #ifndef _MACHINE_PARAM_H_ #include #endif /* * Address of current and alternate address space page table maps * and directories. */ #ifdef _KERNEL #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) #define PTmap ((pt_entry_t *)(addr_PTmap)) #define PDmap ((pd_entry_t *)(addr_PDmap)) #define PDPmap ((pd_entry_t *)(addr_PDPmap)) #define PML4map ((pd_entry_t *)(addr_PML4map)) #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ extern int pmap_fast_kernel_cpusync; #endif #ifdef _KERNEL /* * XXX */ #define vtophys(va) pmap_kextract(((vm_offset_t)(va))) #define vtophys_pte(va) ((pt_entry_t)pmap_kextract(((vm_offset_t)(va)))) #endif #define pte_load_clear(pte) atomic_readandclear_long(pte) static __inline void pte_store(pt_entry_t *ptep, pt_entry_t pte) { *ptep = pte; } #define pde_store(pdep, pde) pte_store((pdep), (pde)) /* * Pmap stuff */ struct pmap; struct pv_entry; struct vm_page; struct vm_object; struct vmspace; TAILQ_HEAD(md_page_pv_list, pv_entry); /* * vm_page structures embed a list of related pv_entry's */ struct md_page { struct md_page_pv_list pv_list; }; /* * vm_object's representing large mappings can contain embedded pmaps * to organize sharing at higher page table levels for PROT_READ and * PROT_READ|PROT_WRITE maps. */ struct md_object { struct pmap *pmap_rw; struct pmap *pmap_ro; }; /* * Each machine dependent implementation is expected to * keep certain statistics. They may do this anyway they * so choose, but are expected to return the statistics * in the following structure. * * NOTE: We try to match the size of the pc32 pmap with the vkernel pmap * so the same utilities (like 'ps') can be used on both. */ struct pmap_statistics { long resident_count; /* # of pages mapped (total) */ long wired_count; /* # of pages wired */ }; typedef struct pmap_statistics *pmap_statistics_t; struct pv_entry_rb_tree; RB_PROTOTYPE2(pv_entry_rb_tree, pv_entry, pv_entry, pv_entry_compare, vm_pindex_t); /* Types of PMAP (regular, EPT Intel, NPT Amd) */ #define REGULAR_PMAP 0 #define EPT_PMAP 1 /* Bits indexes in pmap_bits */ #define TYPE_IDX 0 #define PG_V_IDX 1 #define PG_RW_IDX 2 #define PG_U_IDX 3 #define PG_A_IDX 4 #define PG_M_IDX 5 #define PG_PS_IDX 6 #define PG_G_IDX 7 #define PG_W_IDX 8 #define PG_MANAGED_IDX 9 #define PG_DEVICE_IDX 10 #define PG_N_IDX 11 #define PG_NX_IDX 12 #define PG_BITS_SIZE 13 #define PROTECTION_CODES_SIZE 8 #define PAT_INDEX_SIZE 8 #define PM_PLACEMARKS 64 /* 16 @ 4 zones */ #define PM_NOPLACEMARK ((vm_pindex_t)-1) #define PM_PLACEMARK_WAKEUP ((vm_pindex_t)0x8000000000000000LLU) struct pmap { pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ pml4_entry_t *pm_pml4_iso; /* (isolated version) */ struct pv_entry *pm_pmlpv; /* PV entry for pml4 */ struct pv_entry *pm_pmlpv_iso; /* (isolated version) */ TAILQ_ENTRY(pmap) pm_pmnode; /* list of pmaps */ RB_HEAD(pv_entry_rb_tree, pv_entry) pm_pvroot; int pm_count; /* reference count */ cpulock_t pm_active_lock; /* interlock */ cpumask_t pm_active; /* active on cpus */ int pm_flags; uint32_t pm_softhold; struct pmap_statistics pm_stats; /* pmap statistics */ struct spinlock pm_spin; struct pv_entry *pm_pvhint_pt; /* pv_entry lookup hint */ struct pv_entry *pm_pvhint_pte; /* pv_entry lookup hint */ vm_pindex_t pm_placemarks[PM_PLACEMARKS]; long pm_invgen; uint64_t pmap_bits[PG_BITS_SIZE]; uint64_t protection_codes[PROTECTION_CODES_SIZE]; pt_entry_t pmap_cache_bits[PAT_INDEX_SIZE]; pt_entry_t pmap_cache_mask; int (*copyinstr)(const void *, void *, size_t, size_t *); int (*copyin)(const void *, void *, size_t); int (*copyout)(const void *, void *, size_t); int (*fubyte)(const uint8_t *); /* returns int for -1 err */ int (*subyte)(uint8_t *, uint8_t); int32_t (*fuword32)(const uint32_t *); int64_t (*fuword64)(const uint64_t *); int (*suword64)(uint64_t *, uint64_t); int (*suword32)(uint32_t *, int); uint32_t (*swapu32)(volatile uint32_t *, uint32_t v); uint64_t (*swapu64)(volatile uint64_t *, uint64_t v); uint32_t (*fuwordadd32)(volatile uint32_t *, uint32_t v); uint64_t (*fuwordadd64)(volatile uint64_t *, uint64_t v); }; #define PMAP_FLAG_SIMPLE 0x00000001 #define PMAP_EMULATE_AD_BITS 0x00000002 #define PMAP_HVM 0x00000004 #define PMAP_SEGSHARED 0x00000008 /* segment shared opt */ #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) #define pmap_resident_tlnw_count(pmap) ((pmap)->pm_stats.resident_count - \ (pmap)->pm_stats.wired_count) typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap; #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_table. */ typedef struct pv_entry { pmap_t pv_pmap; /* pmap where mapping lies */ vm_pindex_t pv_pindex; /* PTE, PT, PD, PDP, or PML4 */ TAILQ_ENTRY(pv_entry) pv_list; RB_ENTRY(pv_entry) pv_entry; struct vm_page *pv_m; /* page being mapped */ u_int pv_hold; /* interlock action */ u_int pv_flags; #ifdef PMAP_DEBUG const char *pv_func; int pv_line; const char *pv_func_lastfree; int pv_line_lastfree; #endif } *pv_entry_t; #define PV_HOLD_LOCKED 0x80000000U #define PV_HOLD_WAITING 0x40000000U #define PV_HOLD_UNUSED2000 0x20000000U #define PV_HOLD_MASK 0x1FFFFFFFU #define PV_FLAG_VMOBJECT 0x00000001U /* shared pt in VM obj */ #ifdef _KERNEL extern caddr_t CADDR1; extern pt_entry_t *CMAP1; extern vm_paddr_t avail_end; extern vm_paddr_t avail_start; extern vm_offset_t clean_eva; extern vm_offset_t clean_sva; extern char *ptvmmap; /* poor name! */ #ifndef __VM_PAGE_T_DEFINED__ #define __VM_PAGE_T_DEFINED__ typedef struct vm_page *vm_page_t; #endif #ifndef __VM_MEMATTR_T_DEFINED__ #define __VM_MEMATTR_T_DEFINED__ typedef char vm_memattr_t; #endif void pmap_release(struct pmap *pmap); void pmap_interlock_wait (struct vmspace *); void pmap_bootstrap (vm_paddr_t *); void *pmap_mapbios(vm_paddr_t, vm_size_t); void *pmap_mapdev (vm_paddr_t, vm_size_t); void *pmap_mapdev_attr(vm_paddr_t, vm_size_t, int); void *pmap_mapdev_uncacheable(vm_paddr_t, vm_size_t); void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma); void pmap_unmapdev (vm_offset_t, vm_size_t); struct vm_page *pmap_use_pt (pmap_t, vm_offset_t); void pmap_set_opt (void); void pmap_init_pat(void); void pmap_invalidate_cache_pages(vm_page_t *pages, int count); void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva); static __inline int pmap_emulate_ad_bits(pmap_t pmap) { return pmap->pm_flags & PMAP_EMULATE_AD_BITS; } /* Return various clipped indexes for a given VA */ /* * Returns the index of a PTE in a PT, representing a terminal * page. */ static __inline vm_pindex_t pmap_pte_index(vm_offset_t va) { return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1)); } /* * Returns the index of a PT in a PD */ static __inline vm_pindex_t pmap_pde_index(vm_offset_t va) { return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1)); } /* * Returns the index of a PD in a PDP */ static __inline vm_pindex_t pmap_pdpe_index(vm_offset_t va) { return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1)); } /* * Returns the index of a PDP in the PML4 */ static __inline vm_pindex_t pmap_pml4e_index(vm_offset_t va) { return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1)); } #endif /* _KERNEL */ #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */