/* mpfr_lngamma -- lngamma function Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* assuming b[0]...b[2(n-1)] are computed, computes and stores B[2n]*(2n+1)! t/(exp(t)-1) = sum(B[j]*t^j/j!, j=0..infinity) thus t = (exp(t)-1) * sum(B[j]*t^j/j!, n=0..infinity). Taking the coefficient of degree n+1 > 1, we get: 0 = sum(1/(n+1-k)!*B[k]/k!, k=0..n) which gives: B[n] = -sum(binomial(n+1,k)*B[k], k=0..n-1)/(n+1). Let C[n] = B[n]*(n+1)!. Then C[n] = -sum(binomial(n+1,k)*C[k]*n!/(k+1)!, k=0..n-1), which proves that the C[n] are integers. */ static mpz_t* bernoulli (mpz_t *b, unsigned long n) { if (n == 0) { b = (mpz_t *) (*__gmp_allocate_func) (sizeof (mpz_t)); mpz_init_set_ui (b[0], 1); } else { mpz_t t; unsigned long k; b = (mpz_t *) (*__gmp_reallocate_func) (b, n * sizeof (mpz_t), (n + 1) * sizeof (mpz_t)); mpz_init (b[n]); /* b[n] = -sum(binomial(2n+1,2k)*C[k]*(2n)!/(2k+1)!, k=0..n-1) */ mpz_init_set_ui (t, 2 * n + 1); mpz_mul_ui (t, t, 2 * n - 1); mpz_mul_ui (t, t, 2 * n); mpz_mul_ui (t, t, n); mpz_div_ui (t, t, 3); /* exact: t=binomial(2*n+1,2*k)*(2*n)!/(2*k+1)! for k=n-1 */ mpz_mul (b[n], t, b[n-1]); for (k = n - 1; k-- > 0;) { mpz_mul_ui (t, t, 2 * k + 1); mpz_mul_ui (t, t, 2 * k + 2); mpz_mul_ui (t, t, 2 * k + 2); mpz_mul_ui (t, t, 2 * k + 3); mpz_div_ui (t, t, 2 * (n - k) + 1); mpz_div_ui (t, t, 2 * (n - k)); mpz_addmul (b[n], t, b[k]); } /* take into account C[1] */ mpz_mul_ui (t, t, 2 * n + 1); mpz_div_2exp (t, t, 1); mpz_sub (b[n], b[n], t); mpz_neg (b[n], b[n]); mpz_clear (t); } return b; } /* given a precision p, return alpha, such that the argument reduction will use k = alpha*p*log(2). Warning: we should always have alpha >= log(2)/(2Pi) ~ 0.11, and the smallest value of alpha multiplied by the smallest working precision should be >= 4. */ static double mpfr_gamma_alpha (mp_prec_t p) { if (p <= 100) return 0.6; else if (p <= 200) return 0.8; else if (p <= 500) return 0.8; else if (p <= 1000) return 1.3; else if (p <= 2000) return 1.7; else if (p <= 5000) return 2.2; else if (p <= 10000) return 3.4; else /* heuristic fit from above */ return 0.26 * (double) MPFR_INT_CEIL_LOG2 ((unsigned long) p); } #ifndef IS_GAMMA static int unit_bit (mpfr_srcptr (x)) { mp_exp_t expo; mp_prec_t prec; mp_limb_t x0; expo = MPFR_GET_EXP (x); if (expo <= 0) return 0; /* |x| < 1 */ prec = MPFR_PREC (x); if (expo > prec) return 0; /* y is a multiple of 2^(expo-prec), thus an even integer */ /* Now, the unit bit is represented. */ prec = ((prec - 1) / BITS_PER_MP_LIMB + 1) * BITS_PER_MP_LIMB - expo; /* number of represented fractional bits (including the trailing 0's) */ x0 = *(MPFR_MANT (x) + prec / BITS_PER_MP_LIMB); /* limb containing the unit bit */ return (x0 >> (prec % BITS_PER_MP_LIMB)) & 1; } #endif /* lngamma(x) = log(gamma(x)). We use formula [6.1.40] from Abramowitz&Stegun: lngamma(z) = (z-1/2)*log(z) - z + 1/2*log(2*Pi) + sum (Bernoulli[2n]/(2m)/(2m-1)/z^(2m-1),m=1..infinity) According to [6.1.42], if the sum is truncated after m=n, the error R_n(z) is bounded by |B[2n+2]|*K(z)/(2n+1)/(2n+2)/|z|^(2n+1) where K(z) = max (z^2/(u^2+z^2)) for u >= 0. For z real, |K(z)| <= 1 thus R_n(z) is bounded by the first neglected term. */ #ifdef IS_GAMMA #define GAMMA_FUNC mpfr_gamma_aux #else #define GAMMA_FUNC mpfr_lngamma_aux #endif static int GAMMA_FUNC (mpfr_ptr y, mpfr_srcptr z0, mp_rnd_t rnd) { mp_prec_t precy, w; /* working precision */ mpfr_t s, t, u, v, z; unsigned long m, k, maxm; mpz_t *INITIALIZED(B); /* variable B declared as initialized */ int inexact, compared; mp_exp_t err_s, err_t; unsigned long Bm = 0; /* number of allocated B[] */ unsigned long oldBm; double d; MPFR_SAVE_EXPO_DECL (expo); compared = mpfr_cmp_ui (z0, 1); MPFR_SAVE_EXPO_MARK (expo); #ifndef IS_GAMMA /* lngamma or lgamma */ if (compared == 0 || (compared > 0 && mpfr_cmp_ui (z0, 2) == 0)) { MPFR_SAVE_EXPO_FREE (expo); return mpfr_set_ui (y, 0, GMP_RNDN); /* lngamma(1 or 2) = +0 */ } /* Deal here with tiny inputs. We have for -0.3 <= x <= 0.3: - log|x| - gamma*x <= log|gamma(x)| <= - log|x| - gamma*x + x^2 */ if (MPFR_EXP(z0) <= - (mp_exp_t) MPFR_PREC(y)) { mpfr_t l, h, g; int ok, inex2; mp_prec_t prec = MPFR_PREC(y) + 14; MPFR_ZIV_DECL (loop); MPFR_ZIV_INIT (loop, prec); do { mpfr_init2 (l, prec); if (MPFR_IS_POS(z0)) { mpfr_log (l, z0, GMP_RNDU); /* upper bound for log(z0) */ mpfr_init2 (h, MPFR_PREC(l)); } else { mpfr_init2 (h, MPFR_PREC(z0)); mpfr_neg (h, z0, GMP_RNDN); /* exact */ mpfr_log (l, h, GMP_RNDU); /* upper bound for log(-z0) */ mpfr_set_prec (h, MPFR_PREC(l)); } mpfr_neg (l, l, GMP_RNDD); /* lower bound for -log(|z0|) */ mpfr_set (h, l, GMP_RNDD); /* exact */ mpfr_nextabove (h); /* upper bound for -log(|z0|), avoids two calls to mpfr_log */ mpfr_init2 (g, MPFR_PREC(l)); /* if z0>0, we need an upper approximation of Euler's constant for the left bound */ mpfr_const_euler (g, MPFR_IS_POS(z0) ? GMP_RNDU : GMP_RNDD); mpfr_mul (g, g, z0, GMP_RNDD); mpfr_sub (l, l, g, GMP_RNDD); mpfr_const_euler (g, MPFR_IS_POS(z0) ? GMP_RNDD : GMP_RNDU); /* cached */ mpfr_mul (g, g, z0, GMP_RNDU); mpfr_sub (h, h, g, GMP_RNDD); mpfr_mul (g, z0, z0, GMP_RNDU); mpfr_add (h, h, g, GMP_RNDU); inexact = mpfr_prec_round (l, MPFR_PREC(y), rnd); inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd); /* Caution: we not only need l = h, but both inexact flags should agree. Indeed, one of the inexact flags might be zero. In that case if we assume lngamma(z0) cannot be exact, the other flag should be correct. We are conservative here and request that both inexact flags agree. */ ok = SAME_SIGN (inexact, inex2) && mpfr_cmp (l, h) == 0; if (ok) mpfr_set (y, h, rnd); /* exact */ mpfr_clear (l); mpfr_clear (h); mpfr_clear (g); if (ok) { MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd); } /* since we have log|gamma(x)| = - log|x| - gamma*x + O(x^2), if x ~ 2^(-n), then we have a n-bit approximation, thus we can try again with a working precision of n bits, especially when n >> PREC(y). Otherwise we would use the reflection formula evaluating x-1, which would need precision n. */ MPFR_ZIV_NEXT (loop, prec); } while (prec <= -MPFR_EXP(z0)); MPFR_ZIV_FREE (loop); } #endif precy = MPFR_PREC(y); mpfr_init2 (s, MPFR_PREC_MIN); mpfr_init2 (t, MPFR_PREC_MIN); mpfr_init2 (u, MPFR_PREC_MIN); mpfr_init2 (v, MPFR_PREC_MIN); mpfr_init2 (z, MPFR_PREC_MIN); if (compared < 0) { mp_exp_t err_u; /* use reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) thus lngamma(x) = log(Pi*(x-1)/sin(Pi*(2-x))) - lngamma(2-x) */ w = precy + MPFR_INT_CEIL_LOG2 (precy); while (1) { w += MPFR_INT_CEIL_LOG2 (w) + 14; MPFR_ASSERTD(w >= 3); mpfr_set_prec (s, w); mpfr_set_prec (t, w); mpfr_set_prec (u, w); mpfr_set_prec (v, w); /* In the following, we write r for a real of absolute value at most 2^(-w). Different instances of r may represent different values. */ mpfr_ui_sub (s, 2, z0, GMP_RNDD); /* s = (2-z0) * (1+2r) >= 1 */ mpfr_const_pi (t, GMP_RNDN); /* t = Pi * (1+r) */ mpfr_lngamma (u, s, GMP_RNDN); /* lngamma(2-x) */ /* Let s = (2-z0) + h. By construction, -(2-z0)*2^(1-w) <= h <= 0. We have lngamma(s) = lngamma(2-z0) + h*Psi(z), z in [2-z0+h,2-z0]. Since 2-z0+h = s >= 1 and |Psi(x)| <= max(1,log(x)) for x >= 1, the error on u is bounded by ulp(u)/2 + (2-z0)*max(1,log(2-z0))*2^(1-w) = (1/2 + (2-z0)*max(1,log(2-z0))*2^(1-E(u))) ulp(u) */ d = (double) MPFR_GET_EXP(s) * 0.694; /* upper bound for log(2-z0) */ err_u = MPFR_GET_EXP(s) + __gmpfr_ceil_log2 (d) + 1 - MPFR_GET_EXP(u); err_u = (err_u >= 0) ? err_u + 1 : 0; /* now the error on u is bounded by 2^err_u ulps */ mpfr_mul (s, s, t, GMP_RNDN); /* Pi*(2-x) * (1+r)^4 */ err_s = MPFR_GET_EXP(s); /* 2-x <= 2^err_s */ mpfr_sin (s, s, GMP_RNDN); /* sin(Pi*(2-x)) */ /* the error on s is bounded by 1/2*ulp(s) + [(1+2^(-w))^4-1]*(2-x) <= 1/2*ulp(s) + 5*2^(-w)*(2-x) for w >= 3 <= (1/2 + 5 * 2^(-E(s)) * (2-x)) ulp(s) */ err_s += 3 - MPFR_GET_EXP(s); err_s = (err_s >= 0) ? err_s + 1 : 0; /* the error on s is bounded by 2^err_s ulp(s), thus by 2^(err_s+1)*2^(-w)*|s| since ulp(s) <= 2^(1-w)*|s|. Now n*2^(-w) can always be written |(1+r)^n-1| for some |r|<=2^(-w), thus taking n=2^(err_s+1) we see that |S - s| <= |(1+r)^(2^(err_s+1))-1| * |s|, where S is the true value. In fact if ulp(s) <= ulp(S) the same inequality holds for |S| instead of |s| in the right hand side, i.e., we can write s = (1+r)^(2^(err_s+1)) * S. But if ulp(S) < ulp(s), we need to add one ``bit'' to the error, to get s = (1+r)^(2^(err_s+2)) * S. This is true since with E = n*2^(-w) we have |s - S| <= E * |s|, thus |s - S| <= E/(1-E) * |S|. Now E/(1-E) is bounded by 2E as long as E<=1/2, and 2E can be written (1+r)^(2n)-1 as above. */ err_s += 2; /* exponent of relative error */ mpfr_sub_ui (v, z0, 1, GMP_RNDN); /* v = (x-1) * (1+r) */ mpfr_mul (v, v, t, GMP_RNDN); /* v = Pi*(x-1) * (1+r)^3 */ mpfr_div (v, v, s, GMP_RNDN); /* Pi*(x-1)/sin(Pi*(2-x)) */ mpfr_abs (v, v, GMP_RNDN); /* (1+r)^(3+2^err_s+1) */ err_s = (err_s <= 1) ? 3 : err_s + 1; /* now (1+r)^M with M <= 2^err_s */ mpfr_log (v, v, GMP_RNDN); /* log(v*(1+e)) = log(v)+log(1+e) where |e| <= 2^(err_s-w). Since |log(1+e)| <= 2*e for |e| <= 1/4, the error on v is bounded by ulp(v)/2 + 2^(err_s+1-w). */ if (err_s + 2 > w) { w += err_s + 2; } else { err_s += 1 - MPFR_GET_EXP(v); err_s = (err_s >= 0) ? err_s + 1 : 0; /* the error on v is bounded by 2^err_s ulps */ err_u += MPFR_GET_EXP(u); /* absolute error on u */ err_s += MPFR_GET_EXP(v); /* absolute error on v */ mpfr_sub (s, v, u, GMP_RNDN); /* the total error on s is bounded by ulp(s)/2 + 2^(err_u-w) + 2^(err_s-w) <= ulp(s)/2 + 2^(max(err_u,err_s)+1-w) */ err_s = (err_s >= err_u) ? err_s : err_u; err_s += 1 - MPFR_GET_EXP(s); /* error is 2^err_s ulp(s) */ err_s = (err_s >= 0) ? err_s + 1 : 0; if (mpfr_can_round (s, w - err_s, GMP_RNDN, GMP_RNDZ, precy + (rnd == GMP_RNDN))) goto end; } } } /* now z0 > 1 */ MPFR_ASSERTD (compared > 0); /* since k is O(w), the value of log(z0*...*(z0+k-1)) is about w*log(w), so there is a cancellation of ~log(w) in the argument reconstruction */ w = precy + MPFR_INT_CEIL_LOG2 (precy); do { w += MPFR_INT_CEIL_LOG2 (w) + 13; MPFR_ASSERTD (w >= 3); mpfr_set_prec (s, 53); /* we need z >= w*log(2)/(2*Pi) to get an absolute error less than 2^(-w) but the optimal value is about 0.155665*w */ /* FIXME: replace double by mpfr_t types. */ mpfr_set_d (s, mpfr_gamma_alpha (precy) * (double) w, GMP_RNDU); if (mpfr_cmp (z0, s) < 0) { mpfr_sub (s, s, z0, GMP_RNDU); k = mpfr_get_ui (s, GMP_RNDU); if (k < 3) k = 3; } else k = 3; mpfr_set_prec (s, w); mpfr_set_prec (t, w); mpfr_set_prec (u, w); mpfr_set_prec (v, w); mpfr_set_prec (z, w); mpfr_add_ui (z, z0, k, GMP_RNDN); /* z = (z0+k)*(1+t1) with |t1| <= 2^(-w) */ /* z >= 4 ensures the relative error on log(z) is small, and also (z-1/2)*log(z)-z >= 0 */ MPFR_ASSERTD (mpfr_cmp_ui (z, 4) >= 0); mpfr_log (s, z, GMP_RNDN); /* log(z) */ /* we have s = log((z0+k)*(1+t1))*(1+t2) with |t1|, |t2| <= 2^(-w). Since w >= 2 and z0+k >= 4, we can write log((z0+k)*(1+t1)) = log(z0+k) * (1+t3) with |t3| <= 2^(-w), thus we have s = log(z0+k) * (1+t4)^2 with |t4| <= 2^(-w) */ mpfr_mul_2ui (t, z, 1, GMP_RNDN); /* t = 2z * (1+t5) */ mpfr_sub_ui (t, t, 1, GMP_RNDN); /* t = 2z-1 * (1+t6)^3 */ /* since we can write 2z*(1+t5) = (2z-1)*(1+t5') with t5' = 2z/(2z-1) * t5, thus |t5'| <= 8/7 * t5 */ mpfr_mul (s, s, t, GMP_RNDN); /* (2z-1)*log(z) * (1+t7)^6 */ mpfr_div_2ui (s, s, 1, GMP_RNDN); /* (z-1/2)*log(z) * (1+t7)^6 */ mpfr_sub (s, s, z, GMP_RNDN); /* (z-1/2)*log(z)-z */ /* s = [(z-1/2)*log(z)-z]*(1+u)^14, s >= 1/2 */ mpfr_ui_div (u, 1, z, GMP_RNDN); /* 1/z * (1+u), u <= 1/4 since z >= 4 */ /* the first term is B[2]/2/z = 1/12/z: t=1/12/z, C[2]=1 */ mpfr_div_ui (t, u, 12, GMP_RNDN); /* 1/(12z) * (1+u)^2, t <= 3/128 */ mpfr_set (v, t, GMP_RNDN); /* (1+u)^2, v < 2^(-5) */ mpfr_add (s, s, v, GMP_RNDN); /* (1+u)^15 */ mpfr_mul (u, u, u, GMP_RNDN); /* 1/z^2 * (1+u)^3 */ if (Bm == 0) { B = bernoulli ((mpz_t *) 0, 0); B = bernoulli (B, 1); Bm = 2; } /* m <= maxm ensures that 2*m*(2*m+1) <= ULONG_MAX */ maxm = 1UL << (BITS_PER_MP_LIMB / 2 - 1); /* s:(1+u)^15, t:(1+u)^2, t <= 3/128 */ for (m = 2; MPFR_GET_EXP(v) + (mp_exp_t) w >= MPFR_GET_EXP(s); m++) { mpfr_mul (t, t, u, GMP_RNDN); /* (1+u)^(10m-14) */ if (m <= maxm) { mpfr_mul_ui (t, t, 2*(m-1)*(2*m-3), GMP_RNDN); mpfr_div_ui (t, t, 2*m*(2*m-1), GMP_RNDN); mpfr_div_ui (t, t, 2*m*(2*m+1), GMP_RNDN); } else { mpfr_mul_ui (t, t, 2*(m-1), GMP_RNDN); mpfr_mul_ui (t, t, 2*m-3, GMP_RNDN); mpfr_div_ui (t, t, 2*m, GMP_RNDN); mpfr_div_ui (t, t, 2*m-1, GMP_RNDN); mpfr_div_ui (t, t, 2*m, GMP_RNDN); mpfr_div_ui (t, t, 2*m+1, GMP_RNDN); } /* (1+u)^(10m-8) */ /* invariant: t=1/(2m)/(2m-1)/z^(2m-1)/(2m+1)! */ if (Bm <= m) { B = bernoulli (B, m); /* B[2m]*(2m+1)!, exact */ Bm ++; } mpfr_mul_z (v, t, B[m], GMP_RNDN); /* (1+u)^(10m-7) */ MPFR_ASSERTD(MPFR_GET_EXP(v) <= - (2 * m + 3)); mpfr_add (s, s, v, GMP_RNDN); } /* m <= 1/2*Pi*e*z ensures that |v[m]| < 1/2^(2m+3) */ MPFR_ASSERTD ((double) m <= 4.26 * mpfr_get_d (z, GMP_RNDZ)); /* We have sum([(1+u)^(10m-7)-1]*1/2^(2m+3), m=2..infinity) <= 1.46*u for u <= 2^(-3). We have 0 < lngamma(z) - [(z - 1/2) ln(z) - z + 1/2 ln(2 Pi)] < 0.021 for z >= 4, thus since the initial s >= 0.85, the different values of s differ by at most one binade, and the total rounding error on s in the for-loop is bounded by 2*(m-1)*ulp(final_s). The error coming from the v's is bounded by 1.46*2^(-w) <= 2*ulp(final_s). Thus the total error so far is bounded by [(1+u)^15-1]*s+2m*ulp(s) <= (2m+47)*ulp(s). Taking into account the truncation error (which is bounded by the last term v[] according to 6.1.42 in A&S), the bound is (2m+48)*ulp(s). */ /* add 1/2*log(2*Pi) and subtract log(z0*(z0+1)*...*(z0+k-1)) */ mpfr_const_pi (v, GMP_RNDN); /* v = Pi*(1+u) */ mpfr_mul_2ui (v, v, 1, GMP_RNDN); /* v = 2*Pi * (1+u) */ if (k) { unsigned long l; mpfr_set (t, z0, GMP_RNDN); /* t = z0*(1+u) */ for (l = 1; l < k; l++) { mpfr_add_ui (u, z0, l, GMP_RNDN); /* u = (z0+l)*(1+u) */ mpfr_mul (t, t, u, GMP_RNDN); /* (1+u)^(2l+1) */ } /* now t: (1+u)^(2k-1) */ /* instead of computing log(sqrt(2*Pi)/t), we compute 1/2*log(2*Pi/t^2), which trades a square root for a square */ mpfr_mul (t, t, t, GMP_RNDN); /* (z0*...*(z0+k-1))^2, (1+u)^(4k-1) */ mpfr_div (v, v, t, GMP_RNDN); /* 2*Pi/(z0*...*(z0+k-1))^2 (1+u)^(4k+1) */ } #ifdef IS_GAMMA err_s = MPFR_GET_EXP(s); mpfr_exp (s, s, GMP_RNDN); /* before the exponential, we have s = s0 + h where |h| <= (2m+48)*ulp(s), thus exp(s0) = exp(s) * exp(-h). For |h| <= 1/4, we have |exp(h)-1| <= 1.2*|h| thus |exp(s) - exp(s0)| <= 1.2 * exp(s) * (2m+48)* 2^(EXP(s)-w). */ d = 1.2 * (2.0 * (double) m + 48.0); /* the error on s is bounded by d*2^err_s * 2^(-w) */ mpfr_sqrt (t, v, GMP_RNDN); /* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1), thus t = sqrt(v0)*(1+u)^(2k+3/2). */ mpfr_mul (s, s, t, GMP_RNDN); /* the error on input s is bounded by (1+u)^(d*2^err_s), and that on t is (1+u)^(2k+3/2), thus the total error is (1+u)^(d*2^err_s+2k+5/2) */ err_s += __gmpfr_ceil_log2 (d); err_t = __gmpfr_ceil_log2 (2.0 * (double) k + 2.5); err_s = (err_s >= err_t) ? err_s + 1 : err_t + 1; #else mpfr_log (t, v, GMP_RNDN); /* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1), thus log(v) = log(v0) + (4k+1)*log(1+u). Since |log(1+u)/u| <= 1.07 for |u| <= 2^(-3), the absolute error on log(v) is bounded by 1.07*(4k+1)*u, and the rounding error by ulp(t). */ mpfr_div_2ui (t, t, 1, GMP_RNDN); /* the error on t is now bounded by ulp(t) + 0.54*(4k+1)*2^(-w). We have sqrt(2*Pi)/(z0*(z0+1)*...*(z0+k-1)) <= sqrt(2*Pi)/k! <= 0.5 since k>=3, thus t <= -0.5 and ulp(t) >= 2^(-w). Thus the error on t is bounded by (2.16*k+1.54)*ulp(t). */ err_t = MPFR_GET_EXP(t) + (mp_exp_t) __gmpfr_ceil_log2 (2.2 * (double) k + 1.6); err_s = MPFR_GET_EXP(s) + (mp_exp_t) __gmpfr_ceil_log2 (2.0 * (double) m + 48.0); mpfr_add (s, s, t, GMP_RNDN); /* this is a subtraction in fact */ /* the final error in ulp(s) is <= 1 + 2^(err_t-EXP(s)) + 2^(err_s-EXP(s)) <= 2^(1+max(err_t,err_s)-EXP(s)) if err_t <> err_s <= 2^(2+max(err_t,err_s)-EXP(s)) if err_t = err_s */ err_s = (err_t == err_s) ? 1 + err_s : ((err_t > err_s) ? err_t : err_s); err_s += 1 - MPFR_GET_EXP(s); #endif } while (MPFR_UNLIKELY (!MPFR_CAN_ROUND (s, w - err_s, precy, rnd))); oldBm = Bm; while (Bm--) mpz_clear (B[Bm]); (*__gmp_free_func) (B, oldBm * sizeof (mpz_t)); end: inexact = mpfr_set (y, s, rnd); mpfr_clear (s); mpfr_clear (t); mpfr_clear (u); mpfr_clear (v); mpfr_clear (z); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd); } #ifndef IS_GAMMA int mpfr_lngamma (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd) { int inex; MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd), ("lngamma[%#R]=%R inexact=%d", y, y, inex)); /* special cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_NEG (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else /* lngamma(+Inf) = lngamma(+0) = +Inf */ { MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_RET (0); /* exact */ } } /* if x < 0 and -2k-1 <= x <= -2k, then lngamma(x) = NaN */ if (MPFR_IS_NEG (x) && (unit_bit (x) == 0 || mpfr_integer_p (x))) { MPFR_SET_NAN (y); MPFR_RET_NAN; } inex = mpfr_lngamma_aux (y, x, rnd); return inex; } int mpfr_lgamma (mpfr_ptr y, int *signp, mpfr_srcptr x, mp_rnd_t rnd) { int inex; MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd), ("lgamma[%#R]=%R inexact=%d", y, y, inex)); *signp = 1; /* most common case */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else { *signp = MPFR_INT_SIGN (x); MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_RET (0); } } if (MPFR_IS_NEG (x)) { if (mpfr_integer_p (x)) { MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_RET (0); } if (unit_bit (x) == 0) *signp = -1; /* For tiny negative x, we have gamma(x) = 1/x - euler + O(x), thus |gamma(x)| = -1/x + euler + O(x), and log |gamma(x)| = -log(-x) - euler*x + O(x^2). More precisely we have for -0.4 <= x < 0: -log(-x) <= log |gamma(x)| <= -log(-x) - x. Since log(x) is not representable, we may have an instance of the Table Maker Dilemma. The only way to ensure correct rounding is to compute an interval [l,h] such that l <= -log(-x) and -log(-x) - x <= h, and check whether l and h round to the same number for the target precision and rounding modes. */ if (MPFR_EXP(x) + 1 <= - (mp_exp_t) MPFR_PREC(y)) /* since PREC(y) >= 1, this ensures EXP(x) <= -2, thus |x| <= 0.25 < 0.4 */ { mpfr_t l, h; int ok, inex2; mp_prec_t w = MPFR_PREC (y) + 14; while (1) { mpfr_init2 (l, w); mpfr_init2 (h, w); /* we want a lower bound on -log(-x), thus an upper bound on log(-x), thus an upper bound on -x. */ mpfr_neg (l, x, GMP_RNDU); /* upper bound on -x */ mpfr_log (l, l, GMP_RNDU); /* upper bound for log(-x) */ mpfr_neg (l, l, GMP_RNDD); /* lower bound for -log(-x) */ mpfr_neg (h, x, GMP_RNDD); /* lower bound on -x */ mpfr_log (h, h, GMP_RNDD); /* lower bound on log(-x) */ mpfr_neg (h, h, GMP_RNDU); /* upper bound for -log(-x) */ mpfr_sub (h, h, x, GMP_RNDU); /* upper bound for -log(-x) - x */ inex = mpfr_prec_round (l, MPFR_PREC (y), rnd); inex2 = mpfr_prec_round (h, MPFR_PREC (y), rnd); /* Caution: we not only need l = h, but both inexact flags should agree. Indeed, one of the inexact flags might be zero. In that case if we assume ln|gamma(x)| cannot be exact, the other flag should be correct. We are conservative here and request that both inexact flags agree. */ ok = SAME_SIGN (inex, inex2) && mpfr_equal_p (l, h); if (ok) mpfr_set (y, h, rnd); /* exact */ mpfr_clear (l); mpfr_clear (h); if (ok) return inex; /* if ulp(log(-x)) <= |x| there is no reason to loop, since the width of [l, h] will be at least |x| */ if (MPFR_EXP(l) < MPFR_EXP(x) + (mp_exp_t) w) break; w += MPFR_INT_CEIL_LOG2(w) + 3; } } } inex = mpfr_lngamma_aux (y, x, rnd); return inex; } #endif