/* * Copyright (c) 1991 Regents of the University of California. * Copyright (c) 2003 Peter Wemm. * Copyright (c) 2008 The DragonFly Project. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * $FreeBSD: src/sys/i386/include/pmap.h,v 1.65.2.3 2001/10/03 07:15:37 peter Exp $ * $DragonFly: src/sys/platform/pc64/include/pmap.h,v 1.1 2008/08/29 17:07:17 dillon Exp $ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ #include /* * Size of Kernel address space. This is the number of page table pages * (2MB each) to use for the kernel. 256 pages == 512 Megabyte. * This **MUST** be a multiple of 4 (eg: 252, 256, 260, etc). */ #ifndef KVA_PAGES #define KVA_PAGES 256 #endif /* * Pte related macros. This is complicated by having to deal with * the sign extension of the 48th bit. */ #define KVADDR(l4, l3, l2, l1) ( \ ((unsigned long)-1 << 47) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #define UVADDR(l4, l3, l2, l1) ( \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) /* * NOTE: We no longer hardwire NKPT, it is calculated in create_pagetables() */ #define NKPML4E 1 /* number of kernel PML4 slots */ /* NKPDPE defined in vmparam.h */ #define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */ #define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */ #define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */ #define NDMPML4E 1 /* number of dmap PML4 slots */ /* * The *PML4I values control the layout of virtual memory. Each PML4 * entry represents 512G. */ #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ #define KPML4I (NPML4EPG-1) /* Top 512GB for KVM */ #define DMPML4I (KPML4I-1) /* Next 512GB down for direct map */ /* * The location of KERNBASE in the last PD of the kernel's KVM (KPML4I) * space. Each PD represents 1GB. The kernel must be placed here * for the compile/link options to work properly so absolute 32-bit * addressing can be used to access stuff. */ #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ /* * per-CPU data assume ~64K x SMP_MAXCPU, say up to 256 cpus * in the future or 16MB of space. Each PD represents 2MB so * use NPDEPG-8 to place the per-CPU data. */ #define MPPML4I KPML4I #define MPPDPI KPDPI #define MPPTDI (NPDEPG-8) /* * XXX doesn't really belong here I guess... */ #define ISA_HOLE_START 0xa0000 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) #ifndef LOCORE #ifndef _SYS_TYPES_H_ #include #endif #ifndef _SYS_QUEUE_H_ #include #endif #ifndef _MACHINE_TYPES_H_ #include #endif #ifndef _MACHINE_PARAM_H_ #include #endif /* * Address of current and alternate address space page table maps * and directories. */ #ifdef _KERNEL #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) #define PTmap ((pt_entry_t *)(addr_PTmap)) #define PDmap ((pd_entry_t *)(addr_PDmap)) #define PDPmap ((pd_entry_t *)(addr_PDPmap)) #define PML4map ((pd_entry_t *)(addr_PML4map)) #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ #endif #ifdef _KERNEL /* * XXX */ #define vtophys(va) pmap_kextract(((vm_offset_t)(va))) #define vtophys_pte(va) ((pt_entry_t)pmap_kextract(((vm_offset_t)(va)))) #endif #define pte_load_clear(pte) atomic_readandclear_long(pte) static __inline void pte_store(pt_entry_t *ptep, pt_entry_t pte) { *ptep = pte; } #define pde_store(pdep, pde) pte_store((pdep), (pde)) /* * Pmap stuff */ struct pv_entry; struct vm_page; struct vm_object; struct vmspace; struct md_page { int pv_list_count; TAILQ_HEAD(,pv_entry) pv_list; }; /* * Each machine dependent implementation is expected to * keep certain statistics. They may do this anyway they * so choose, but are expected to return the statistics * in the following structure. * * NOTE: We try to match the size of the pc32 pmap with the vkernel pmap * so the same utilities (like 'ps') can be used on both. */ struct pmap_statistics { long resident_count; /* # of pages mapped (total) */ long wired_count; /* # of pages wired */ }; typedef struct pmap_statistics *pmap_statistics_t; struct pmap { pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ struct vm_page *pm_pdirm; /* VM page for pg directory */ struct vm_object *pm_pteobj; /* Container for pte's */ TAILQ_ENTRY(pmap) pm_pmnode; /* list of pmaps */ TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */ int pm_count; /* reference count */ cpumask_t pm_active; /* active on cpus */ int pm_filler02; /* (filler sync w/vkernel) */ struct pmap_statistics pm_stats; /* pmap statistics */ struct vm_page *pm_ptphint; /* pmap ptp hint */ int pm_generation; /* detect pvlist deletions */ }; #define CPUMASK_LOCK CPUMASK(SMP_MAXCPU) #define CPUMASK_BIT SMP_MAXCPU /* for 1LLU << SMP_MAXCPU */ #define pmap_resident_count(pmap) (pmap)->pm_stats.resident_count typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap; #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_table. */ typedef struct pv_entry { pmap_t pv_pmap; /* pmap where mapping lies */ vm_offset_t pv_va; /* virtual address for mapping */ TAILQ_ENTRY(pv_entry) pv_list; TAILQ_ENTRY(pv_entry) pv_plist; struct vm_page *pv_ptem; /* VM page for pte */ } *pv_entry_t; #ifdef _KERNEL #define NPPROVMTRR 8 #define PPRO_VMTRRphysBase0 0x200 #define PPRO_VMTRRphysMask0 0x201 struct ppro_vmtrr { u_int64_t base, mask; }; extern struct ppro_vmtrr PPro_vmtrr[NPPROVMTRR]; extern caddr_t CADDR1; extern pt_entry_t *CMAP1; extern vm_paddr_t dump_avail[]; extern vm_paddr_t avail_end; extern vm_paddr_t avail_start; extern vm_offset_t clean_eva; extern vm_offset_t clean_sva; extern char *ptvmmap; /* poor name! */ void pmap_interlock_wait (struct vmspace *); void pmap_bootstrap (vm_paddr_t *); void *pmap_mapdev (vm_paddr_t, vm_size_t); void *pmap_mapdev_uncacheable(vm_paddr_t, vm_size_t); void pmap_unmapdev (vm_offset_t, vm_size_t); struct vm_page *pmap_use_pt (pmap_t, vm_offset_t); #ifdef SMP void pmap_set_opt (void); #endif vm_paddr_t pmap_kextract(vm_offset_t); #endif /* _KERNEL */ #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */