/* * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/i386/i386/busdma_machdep.c,v 1.94 2008/08/15 20:51:31 kmacy Exp $ * $DragonFly: src/sys/platform/pc32/i386/busdma_machdep.c,v 1.23 2008/06/05 18:06:32 swildner Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX needed for to access pmap to convert per-proc virtual to physical */ #include #include #include #include #define MAX_BPAGES 1024 /* * 16 x N declared on stack. */ #define BUS_DMA_CACHE_SEGMENTS 8 struct bounce_zone; struct bus_dmamap; struct bus_dma_tag { bus_dma_tag_t parent; bus_size_t alignment; bus_size_t boundary; bus_addr_t lowaddr; bus_addr_t highaddr; bus_dma_filter_t *filter; void *filterarg; bus_size_t maxsize; u_int nsegments; bus_size_t maxsegsz; int flags; int ref_count; int map_count; bus_dma_segment_t *segments; struct bounce_zone *bounce_zone; #ifdef SMP struct spinlock spin; #else int unused0; #endif }; /* * bus_dma_tag private flags */ #define BUS_DMA_BOUNCE_ALIGN BUS_DMA_BUS2 #define BUS_DMA_BOUNCE_LOWADDR BUS_DMA_BUS3 #define BUS_DMA_MIN_ALLOC_COMP BUS_DMA_BUS4 #define BUS_DMA_COULD_BOUNCE (BUS_DMA_BOUNCE_LOWADDR | BUS_DMA_BOUNCE_ALIGN) #define BUS_DMAMEM_KMALLOC(dmat) \ ((dmat)->maxsize <= PAGE_SIZE && \ (dmat)->alignment <= PAGE_SIZE && \ (dmat)->lowaddr >= ptoa(Maxmem)) struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(bp_list, bounce_page) bounce_page_list; STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; #ifdef SMP struct spinlock spin; #else int unused0; #endif int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int reserve_failed; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; }; #ifdef SMP #define BZ_LOCK(bz) spin_lock(&(bz)->spin) #define BZ_UNLOCK(bz) spin_unlock(&(bz)->spin) #else #define BZ_LOCK(bz) crit_enter() #define BZ_UNLOCK(bz) crit_exit() #endif static struct lwkt_token bounce_zone_tok = LWKT_TOKEN_MP_INITIALIZER(bounce_zone_tok); static int busdma_zonecount; static STAILQ_HEAD(, bounce_zone) bounce_zone_list = STAILQ_HEAD_INITIALIZER(bounce_zone_list); static int busdma_priv_zonecount = -1; int busdma_swi_pending; static int total_bounce_pages; static int max_bounce_pages = MAX_BPAGES; static int bounce_alignment = 1; /* XXX temporary */ TUNABLE_INT("hw.busdma.max_bpages", &max_bounce_pages); TUNABLE_INT("hw.busdma.bounce_alignment", &bounce_alignment); struct bus_dmamap { struct bp_list bpages; int pagesneeded; int pagesreserved; bus_dma_tag_t dmat; void *buf; /* unmapped buffer pointer */ bus_size_t buflen; /* unmapped buffer length */ bus_dmamap_callback_t *callback; void *callback_arg; STAILQ_ENTRY(bus_dmamap) links; }; static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist = STAILQ_HEAD_INITIALIZER(bounce_map_callbacklist); static struct spinlock bounce_map_list_spin = SPINLOCK_INITIALIZER(&bounce_map_list_spin); static struct bus_dmamap nobounce_dmamap; static int alloc_bounce_zone(bus_dma_tag_t); static int alloc_bounce_pages(bus_dma_tag_t, u_int, int); static void free_bounce_pages_all(bus_dma_tag_t); static void free_bounce_zone(bus_dma_tag_t); static int reserve_bounce_pages(bus_dma_tag_t, bus_dmamap_t, int); static void return_bounce_pages(bus_dma_tag_t, bus_dmamap_t); static bus_addr_t add_bounce_page(bus_dma_tag_t, bus_dmamap_t, vm_offset_t, bus_size_t); static void free_bounce_page(bus_dma_tag_t, struct bounce_page *); static bus_dmamap_t get_map_waiting(bus_dma_tag_t); static void add_map_callback(bus_dmamap_t); SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD, 0, "Busdma parameters"); SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bounce_pages, 0, "Total bounce pages"); SYSCTL_INT(_hw_busdma, OID_AUTO, max_bpages, CTLFLAG_RD, &max_bounce_pages, 0, "Max bounce pages per bounce zone"); SYSCTL_INT(_hw_busdma, OID_AUTO, bounce_alignment, CTLFLAG_RD, &bounce_alignment, 0, "Obey alignment constraint"); static __inline int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr) { int retval; retval = 0; do { if (((paddr > dmat->lowaddr && paddr <= dmat->highaddr) || (bounce_alignment && (paddr & (dmat->alignment - 1)) != 0)) && (dmat->filter == NULL || dmat->filter(dmat->filterarg, paddr) != 0)) retval = 1; dmat = dmat->parent; } while (retval == 0 && dmat != NULL); return (retval); } static __inline bus_dma_segment_t * bus_dma_tag_lock(bus_dma_tag_t tag, bus_dma_segment_t *cache) { if (tag->flags & BUS_DMA_PROTECTED) return(tag->segments); if (tag->nsegments <= BUS_DMA_CACHE_SEGMENTS) return(cache); #ifdef SMP spin_lock(&tag->spin); #endif return(tag->segments); } static __inline void bus_dma_tag_unlock(bus_dma_tag_t tag) { #ifdef SMP if (tag->flags & BUS_DMA_PROTECTED) return; if (tag->nsegments > BUS_DMA_CACHE_SEGMENTS) spin_unlock(&tag->spin); #endif } /* * Allocate a device specific dma_tag. */ int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_tag_t *dmat) { bus_dma_tag_t newtag; int error = 0; /* * Sanity checks */ if (alignment == 0) alignment = 1; if (alignment & (alignment - 1)) panic("alignment must be power of 2\n"); if (boundary != 0) { if (boundary & (boundary - 1)) panic("boundary must be power of 2\n"); if (boundary < maxsegsz) { kprintf("boundary < maxsegsz:\n"); print_backtrace(-1); maxsegsz = boundary; } } /* Return a NULL tag on failure */ *dmat = NULL; newtag = kmalloc(sizeof(*newtag), M_DEVBUF, M_INTWAIT | M_ZERO); #ifdef SMP spin_init(&newtag->spin); #endif newtag->parent = parent; newtag->alignment = alignment; newtag->boundary = boundary; newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1); newtag->highaddr = trunc_page((vm_paddr_t)highaddr) + (PAGE_SIZE - 1); newtag->filter = filter; newtag->filterarg = filterarg; newtag->maxsize = maxsize; newtag->nsegments = nsegments; newtag->maxsegsz = maxsegsz; newtag->flags = flags; newtag->ref_count = 1; /* Count ourself */ newtag->map_count = 0; newtag->segments = NULL; newtag->bounce_zone = NULL; /* Take into account any restrictions imposed by our parent tag */ if (parent != NULL) { newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr); newtag->highaddr = MAX(parent->highaddr, newtag->highaddr); if (newtag->boundary == 0) { newtag->boundary = parent->boundary; } else if (parent->boundary != 0) { newtag->boundary = MIN(parent->boundary, newtag->boundary); } #ifdef notyet newtag->alignment = MAX(parent->alignment, newtag->alignment); #endif if (newtag->filter == NULL) { /* * Short circuit looking at our parent directly * since we have encapsulated all of its information */ newtag->filter = parent->filter; newtag->filterarg = parent->filterarg; newtag->parent = parent->parent; } if (newtag->parent != NULL) parent->ref_count++; } if (newtag->lowaddr < ptoa(Maxmem)) newtag->flags |= BUS_DMA_BOUNCE_LOWADDR; if (bounce_alignment && newtag->alignment > 1 && !(newtag->flags & BUS_DMA_ALIGNED)) newtag->flags |= BUS_DMA_BOUNCE_ALIGN; if ((newtag->flags & BUS_DMA_COULD_BOUNCE) && (flags & BUS_DMA_ALLOCNOW) != 0) { struct bounce_zone *bz; /* Must bounce */ error = alloc_bounce_zone(newtag); if (error) goto back; bz = newtag->bounce_zone; if ((newtag->flags & BUS_DMA_ALLOCALL) == 0 && ptoa(bz->total_bpages) < maxsize) { int pages; if (flags & BUS_DMA_ONEBPAGE) { pages = 1; } else { pages = atop(round_page(maxsize)) - bz->total_bpages; pages = MAX(pages, 1); } /* Add pages to our bounce pool */ if (alloc_bounce_pages(newtag, pages, flags) < pages) error = ENOMEM; /* Performed initial allocation */ newtag->flags |= BUS_DMA_MIN_ALLOC_COMP; } } back: if (error) kfree(newtag, M_DEVBUF); else *dmat = newtag; return error; } int bus_dma_tag_destroy(bus_dma_tag_t dmat) { if (dmat != NULL) { if (dmat->map_count != 0) return (EBUSY); while (dmat != NULL) { bus_dma_tag_t parent; parent = dmat->parent; dmat->ref_count--; if (dmat->ref_count == 0) { free_bounce_zone(dmat); if (dmat->segments != NULL) kfree(dmat->segments, M_DEVBUF); kfree(dmat, M_DEVBUF); /* * Last reference count, so * release our reference * count on our parent. */ dmat = parent; } else dmat = NULL; } } return (0); } bus_size_t bus_dma_tag_getmaxsize(bus_dma_tag_t tag) { return(tag->maxsize); } /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { int error; error = 0; if (dmat->segments == NULL) { KKASSERT(dmat->nsegments && dmat->nsegments < 16384); dmat->segments = kmalloc(sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF, M_INTWAIT); } if (dmat->flags & BUS_DMA_COULD_BOUNCE) { struct bounce_zone *bz; int maxpages; /* Must bounce */ if (dmat->bounce_zone == NULL) { error = alloc_bounce_zone(dmat); if (error) return error; } bz = dmat->bounce_zone; *mapp = kmalloc(sizeof(**mapp), M_DEVBUF, M_INTWAIT | M_ZERO); /* Initialize the new map */ STAILQ_INIT(&((*mapp)->bpages)); /* * Attempt to add pages to our pool on a per-instance * basis up to a sane limit. */ if (dmat->flags & BUS_DMA_ALLOCALL) { maxpages = Maxmem - atop(dmat->lowaddr); } else if (dmat->flags & BUS_DMA_BOUNCE_ALIGN) { maxpages = max_bounce_pages; } else { maxpages = MIN(max_bounce_pages, Maxmem - atop(dmat->lowaddr)); } if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 || (dmat->map_count > 0 && bz->total_bpages < maxpages)) { int pages; if (flags & BUS_DMA_ONEBPAGE) { pages = 1; } else { pages = atop(round_page(dmat->maxsize)); pages = MIN(maxpages - bz->total_bpages, pages); pages = MAX(pages, 1); } if (alloc_bounce_pages(dmat, pages, flags) < pages) error = ENOMEM; if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0) { if (!error && (dmat->flags & BUS_DMA_ALLOCALL) == 0) dmat->flags |= BUS_DMA_MIN_ALLOC_COMP; } else { error = 0; } } } else { *mapp = NULL; } if (!error) dmat->map_count++; return error; } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { if (map != NULL) { if (STAILQ_FIRST(&map->bpages) != NULL) return (EBUSY); kfree(map, M_DEVBUF); } dmat->map_count--; return (0); } static __inline bus_size_t check_kmalloc(bus_dma_tag_t dmat, const void *vaddr0, int verify) { bus_size_t maxsize = 0; uintptr_t vaddr = (uintptr_t)vaddr0; if ((vaddr ^ (vaddr + dmat->maxsize - 1)) & ~PAGE_MASK) { if (verify || bootverbose) kprintf("boundary check failed\n"); if (verify) print_backtrace(-1); /* XXX panic */ maxsize = dmat->maxsize; } if (vaddr & (dmat->alignment - 1)) { if (verify || bootverbose) kprintf("alignment check failed\n"); if (verify) print_backtrace(-1); /* XXX panic */ if (dmat->maxsize < dmat->alignment) maxsize = dmat->alignment; else maxsize = dmat->maxsize; } return maxsize; } /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * * mapp is degenerate. By definition this allocation should not require * bounce buffers so do not allocate a dma map. */ int bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags, bus_dmamap_t *mapp) { int mflags; /* If we succeed, no mapping/bouncing will be required */ *mapp = NULL; if (dmat->segments == NULL) { KKASSERT(dmat->nsegments < 16384); dmat->segments = kmalloc(sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF, M_INTWAIT); } if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; if (flags & BUS_DMA_ZERO) mflags |= M_ZERO; if (BUS_DMAMEM_KMALLOC(dmat)) { bus_size_t maxsize; *vaddr = kmalloc(dmat->maxsize, M_DEVBUF, mflags); /* * XXX * Check whether the allocation * - crossed a page boundary * - was not aligned * Retry with power-of-2 alignment in the above cases. */ maxsize = check_kmalloc(dmat, *vaddr, 0); if (maxsize) { size_t size; kfree(*vaddr, M_DEVBUF); /* XXX check for overflow? */ for (size = 1; size <= maxsize; size <<= 1) ; *vaddr = kmalloc(size, M_DEVBUF, mflags); check_kmalloc(dmat, *vaddr, 1); } } else { /* * XXX Use Contigmalloc until it is merged into this facility * and handles multi-seg allocations. Nobody is doing * multi-seg allocations yet though. */ *vaddr = contigmalloc(dmat->maxsize, M_DEVBUF, mflags, 0ul, dmat->lowaddr, dmat->alignment, dmat->boundary); } if (*vaddr == NULL) return (ENOMEM); return (0); } /* * Free a piece of memory and it's allociated dmamap, that was allocated * via bus_dmamem_alloc. Make the same choice for free/contigfree. */ void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { /* * dmamem does not need to be bounced, so the map should be * NULL */ if (map != NULL) panic("bus_dmamem_free: Invalid map freed\n"); if (BUS_DMAMEM_KMALLOC(dmat)) kfree(vaddr, M_DEVBUF); else contigfree(vaddr, dmat->maxsize, M_DEVBUF); } static __inline vm_paddr_t _bus_dma_extract(pmap_t pmap, vm_offset_t vaddr) { if (pmap) return pmap_extract(pmap, vaddr); else return pmap_kextract(vaddr); } /* * Utility function to load a linear buffer. lastaddrp holds state * between invocations (for multiple-buffer loads). segp contains * the segment following the starting one on entrace, and the ending * segment on exit. first indicates if this is the first invocation * of this function. */ static int _bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dma_segment_t *segments, int nsegments, pmap_t pmap, int flags, vm_paddr_t *lastpaddrp, int *segp, int first) { vm_offset_t vaddr; vm_paddr_t paddr, nextpaddr; bus_dma_segment_t *sg; bus_addr_t bmask; int seg, error = 0; if (map == NULL) map = &nobounce_dmamap; #ifdef INVARIANTS if (dmat->flags & BUS_DMA_ALIGNED) KKASSERT(((uintptr_t)buf & (dmat->alignment - 1)) == 0); #endif /* * If we are being called during a callback, pagesneeded will * be non-zero, so we can avoid doing the work twice. */ if ((dmat->flags & BUS_DMA_COULD_BOUNCE) && map != &nobounce_dmamap && map->pagesneeded == 0) { vm_offset_t vendaddr; /* * Count the number of bounce pages * needed in order to complete this transfer */ vaddr = (vm_offset_t)buf; vendaddr = (vm_offset_t)buf + buflen; while (vaddr < vendaddr) { paddr = _bus_dma_extract(pmap, vaddr); if (run_filter(dmat, paddr) != 0) map->pagesneeded++; vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK)); } } /* Reserve Necessary Bounce Pages */ if (map->pagesneeded != 0) { struct bounce_zone *bz; bz = dmat->bounce_zone; BZ_LOCK(bz); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { BZ_UNLOCK(bz); error = ENOMEM; goto free_bounce; } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ map->dmat = dmat; map->buf = buf; map->buflen = buflen; STAILQ_INSERT_TAIL( &dmat->bounce_zone->bounce_map_waitinglist, map, links); BZ_UNLOCK(bz); return (EINPROGRESS); } } BZ_UNLOCK(bz); } KKASSERT(*segp >= 1 && *segp <= nsegments); seg = *segp; sg = &segments[seg - 1]; vaddr = (vm_offset_t)buf; nextpaddr = *lastpaddrp; bmask = ~(dmat->boundary - 1); /* note: will be 0 if boundary is 0 */ /* force at least one segment */ do { bus_size_t size; /* * Per-page main loop */ paddr = _bus_dma_extract(pmap, vaddr); size = PAGE_SIZE - (paddr & PAGE_MASK); if (size > buflen) size = buflen; if (map->pagesneeded != 0 && run_filter(dmat, paddr)) { /* * note: this paddr has the same in-page offset * as vaddr and thus the paddr above, so the * size does not have to be recalculated */ paddr = add_bounce_page(dmat, map, vaddr, size); } /* * Fill in the bus_dma_segment */ if (first) { sg->ds_addr = paddr; sg->ds_len = size; first = 0; } else if (paddr == nextpaddr) { sg->ds_len += size; } else { sg++; seg++; if (seg > nsegments) break; sg->ds_addr = paddr; sg->ds_len = size; } nextpaddr = paddr + size; /* * Handle maxsegsz and boundary issues with a nested loop */ for (;;) { bus_size_t tmpsize; /* * Limit to the boundary and maximum segment size */ if (((nextpaddr - 1) ^ sg->ds_addr) & bmask) { tmpsize = dmat->boundary - (sg->ds_addr & ~bmask); if (tmpsize > dmat->maxsegsz) tmpsize = dmat->maxsegsz; KKASSERT(tmpsize < sg->ds_len); } else if (sg->ds_len > dmat->maxsegsz) { tmpsize = dmat->maxsegsz; } else { break; } /* * Futz, split the data into a new segment. */ if (seg >= nsegments) goto fail; sg[1].ds_len = sg[0].ds_len - tmpsize; sg[1].ds_addr = sg[0].ds_addr + tmpsize; sg[0].ds_len = tmpsize; sg++; seg++; } /* * Adjust for loop */ buflen -= size; vaddr += size; } while (buflen > 0); fail: if (buflen != 0) error = EFBIG; *segp = seg; *lastpaddrp = nextpaddr; free_bounce: if (error && (dmat->flags & BUS_DMA_COULD_BOUNCE) && map != &nobounce_dmamap) { _bus_dmamap_unload(dmat, map); return_bounce_pages(dmat, map); } return error; } /* * Map the buffer buf into bus space using the dmamap map. */ int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *callback, void *callback_arg, int flags) { bus_dma_segment_t cache_segments[BUS_DMA_CACHE_SEGMENTS]; bus_dma_segment_t *segments; vm_paddr_t lastaddr = 0; int error, nsegs = 1; if (map != NULL) { /* * XXX * Follow old semantics. Once all of the callers are fixed, * we should get rid of these internal flag "adjustment". */ flags &= ~BUS_DMA_NOWAIT; flags |= BUS_DMA_WAITOK; map->callback = callback; map->callback_arg = callback_arg; } segments = bus_dma_tag_lock(dmat, cache_segments); error = _bus_dmamap_load_buffer(dmat, map, buf, buflen, segments, dmat->nsegments, NULL, flags, &lastaddr, &nsegs, 1); if (error == EINPROGRESS) { KKASSERT((dmat->flags & (BUS_DMA_PRIVBZONE | BUS_DMA_ALLOCALL)) != (BUS_DMA_PRIVBZONE | BUS_DMA_ALLOCALL)); if (dmat->flags & BUS_DMA_PROTECTED) panic("protected dmamap callback will be defered\n"); bus_dma_tag_unlock(dmat); return error; } callback(callback_arg, segments, nsegs, error); bus_dma_tag_unlock(dmat); return 0; } /* * Like _bus_dmamap_load(), but for mbufs. */ int bus_dmamap_load_mbuf(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0, bus_dmamap_callback2_t *callback, void *callback_arg, int flags) { bus_dma_segment_t cache_segments[BUS_DMA_CACHE_SEGMENTS]; bus_dma_segment_t *segments; int nsegs, error; /* * XXX * Follow old semantics. Once all of the callers are fixed, * we should get rid of these internal flag "adjustment". */ flags &= ~BUS_DMA_WAITOK; flags |= BUS_DMA_NOWAIT; segments = bus_dma_tag_lock(dmat, cache_segments); error = bus_dmamap_load_mbuf_segment(dmat, map, m0, segments, dmat->nsegments, &nsegs, flags); if (error) { /* force "no valid mappings" in callback */ callback(callback_arg, segments, 0, 0, error); } else { callback(callback_arg, segments, nsegs, m0->m_pkthdr.len, error); } bus_dma_tag_unlock(dmat); return error; } int bus_dmamap_load_mbuf_segment(bus_dma_tag_t dmat, bus_dmamap_t map, struct mbuf *m0, bus_dma_segment_t *segs, int maxsegs, int *nsegs, int flags) { int error; M_ASSERTPKTHDR(m0); KASSERT(maxsegs >= 1, ("invalid maxsegs %d\n", maxsegs)); KASSERT(maxsegs <= dmat->nsegments, ("%d too many segments, dmat only support %d segments\n", maxsegs, dmat->nsegments)); KASSERT(flags & BUS_DMA_NOWAIT, ("only BUS_DMA_NOWAIT is supported\n")); if (m0->m_pkthdr.len <= dmat->maxsize) { int first = 1; vm_paddr_t lastaddr = 0; struct mbuf *m; *nsegs = 1; error = 0; for (m = m0; m != NULL && error == 0; m = m->m_next) { if (m->m_len == 0) continue; error = _bus_dmamap_load_buffer(dmat, map, m->m_data, m->m_len, segs, maxsegs, NULL, flags, &lastaddr, nsegs, first); if (error == ENOMEM && !first) { /* * Out of bounce pages due to too many * fragments in the mbuf chain; return * EFBIG instead. */ error = EFBIG; } first = 0; } #ifdef INVARIANTS if (!error) KKASSERT(*nsegs <= maxsegs && *nsegs >= 1); #endif } else { *nsegs = 0; error = EINVAL; } KKASSERT(error != EINPROGRESS); return error; } /* * Like _bus_dmamap_load(), but for uios. */ int bus_dmamap_load_uio(bus_dma_tag_t dmat, bus_dmamap_t map, struct uio *uio, bus_dmamap_callback2_t *callback, void *callback_arg, int flags) { vm_paddr_t lastaddr; int nsegs, error, first, i; bus_size_t resid; struct iovec *iov; pmap_t pmap; bus_dma_segment_t cache_segments[BUS_DMA_CACHE_SEGMENTS]; bus_dma_segment_t *segments; bus_dma_segment_t *segs; int nsegs_left; if (dmat->nsegments <= BUS_DMA_CACHE_SEGMENTS) segments = cache_segments; else segments = kmalloc(sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF, M_WAITOK | M_ZERO); /* * XXX * Follow old semantics. Once all of the callers are fixed, * we should get rid of these internal flag "adjustment". */ flags &= ~BUS_DMA_WAITOK; flags |= BUS_DMA_NOWAIT; resid = (bus_size_t)uio->uio_resid; iov = uio->uio_iov; segs = segments; nsegs_left = dmat->nsegments; if (uio->uio_segflg == UIO_USERSPACE) { struct thread *td; td = uio->uio_td; KASSERT(td != NULL && td->td_proc != NULL, ("bus_dmamap_load_uio: USERSPACE but no proc")); pmap = vmspace_pmap(td->td_proc->p_vmspace); } else { pmap = NULL; } error = 0; nsegs = 1; first = 1; lastaddr = 0; for (i = 0; i < uio->uio_iovcnt && resid != 0 && !error; i++) { /* * Now at the first iovec to load. Load each iovec * until we have exhausted the residual count. */ bus_size_t minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len; caddr_t addr = (caddr_t) iov[i].iov_base; error = _bus_dmamap_load_buffer(dmat, map, addr, minlen, segs, nsegs_left, pmap, flags, &lastaddr, &nsegs, first); first = 0; resid -= minlen; if (error == 0) { nsegs_left -= nsegs; segs += nsegs; } } /* * Minimum one DMA segment, even if 0-length buffer. */ if (nsegs_left == dmat->nsegments) --nsegs_left; if (error) { /* force "no valid mappings" in callback */ callback(callback_arg, segments, 0, 0, error); } else { callback(callback_arg, segments, dmat->nsegments - nsegs_left, (bus_size_t)uio->uio_resid, error); } if (dmat->nsegments > BUS_DMA_CACHE_SEGMENTS) kfree(segments, M_DEVBUF); return error; } /* * Release the mapping held by map. */ void _bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { STAILQ_REMOVE_HEAD(&map->bpages, links); free_bounce_page(dmat, bpage); } } void _bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bounce_page *bpage; if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { /* * Handle data bouncing. We might also * want to add support for invalidating * the caches on broken hardware */ switch (op) { case BUS_DMASYNC_PREWRITE: while (bpage != NULL) { bcopy((void *)bpage->datavaddr, (void *)bpage->vaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; break; case BUS_DMASYNC_POSTREAD: while (bpage != NULL) { bcopy((void *)bpage->vaddr, (void *)bpage->datavaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; break; case BUS_DMASYNC_PREREAD: case BUS_DMASYNC_POSTWRITE: /* No-ops */ break; } } } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz, *new_bz; KASSERT(dmat->bounce_zone == NULL, ("bounce zone was already assigned\n")); new_bz = kmalloc(sizeof(*new_bz), M_DEVBUF, M_INTWAIT | M_ZERO); lwkt_gettoken(&bounce_zone_tok); if ((dmat->flags & BUS_DMA_PRIVBZONE) == 0) { /* * For shared bounce zone, check to see * if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if (dmat->alignment <= bz->alignment && dmat->lowaddr >= bz->lowaddr) { lwkt_reltoken(&bounce_zone_tok); dmat->bounce_zone = bz; kfree(new_bz, M_DEVBUF); return 0; } } } bz = new_bz; #ifdef SMP spin_init(&bz->spin); #endif STAILQ_INIT(&bz->bounce_page_list); STAILQ_INIT(&bz->bounce_map_waitinglist); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat->lowaddr; bz->alignment = round_page(dmat->alignment); ksnprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr); if ((dmat->flags & BUS_DMA_PRIVBZONE) == 0) { ksnprintf(bz->zoneid, 8, "zone%d", busdma_zonecount); busdma_zonecount++; STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); } else { ksnprintf(bz->zoneid, 8, "zone%d", busdma_priv_zonecount); busdma_priv_zonecount--; } lwkt_reltoken(&bounce_zone_tok); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_ctx); bz->sysctl_tree = SYSCTL_ADD_NODE(&bz->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD, 0, ""); if (bz->sysctl_tree == NULL) { sysctl_ctx_free(&bz->sysctl_ctx); return 0; /* XXX error code? */ } SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests"); SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "reserve_failed", CTLFLAG_RD, &bz->reserve_failed, 0, "Total bounce page reservations that were failed"); SYSCTL_ADD_STRING(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_INT(&bz->sysctl_ctx, SYSCTL_CHILDREN(bz->sysctl_tree), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, 0, ""); return 0; } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages, int flags) { struct bounce_zone *bz = dmat->bounce_zone; int count = 0, mflags; if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; while (numpages > 0) { struct bounce_page *bpage; bpage = kmalloc(sizeof(*bpage), M_DEVBUF, M_INTWAIT | M_ZERO); bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF, mflags, 0ul, bz->lowaddr, bz->alignment, 0); if (bpage->vaddr == 0) { kfree(bpage, M_DEVBUF); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); BZ_LOCK(bz); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bounce_pages++; bz->total_bpages++; bz->free_bpages++; BZ_UNLOCK(bz); count++; numpages--; } return count; } static void free_bounce_pages_all(bus_dma_tag_t dmat) { struct bounce_zone *bz = dmat->bounce_zone; struct bounce_page *bpage; BZ_LOCK(bz); while ((bpage = STAILQ_FIRST(&bz->bounce_page_list)) != NULL) { STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); KKASSERT(total_bounce_pages > 0); total_bounce_pages--; KKASSERT(bz->total_bpages > 0); bz->total_bpages--; KKASSERT(bz->free_bpages > 0); bz->free_bpages--; contigfree((void *)bpage->vaddr, PAGE_SIZE, M_DEVBUF); kfree(bpage, M_DEVBUF); } if (bz->total_bpages) { kprintf("#%d bounce pages are still in use\n", bz->total_bpages); print_backtrace(-1); } BZ_UNLOCK(bz); } static void free_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz = dmat->bounce_zone; if (bz == NULL) return; if ((dmat->flags & BUS_DMA_PRIVBZONE) == 0) return; free_bounce_pages_all(dmat); dmat->bounce_zone = NULL; sysctl_ctx_free(&bz->sysctl_ctx); kfree(bz, M_DEVBUF); } /* Assume caller holds bounce zone spinlock */ static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz = dmat->bounce_zone; int pages; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (!commit && map->pagesneeded > (map->pagesreserved + pages)) { bz->reserve_failed++; return (map->pagesneeded - (map->pagesreserved + pages)); } bz->free_bpages -= pages; bz->reserved_bpages += pages; KKASSERT(bz->reserved_bpages <= bz->total_bpages); map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return pages; } static void return_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_zone *bz = dmat->bounce_zone; int reserved = map->pagesreserved; bus_dmamap_t wait_map; map->pagesreserved = 0; map->pagesneeded = 0; if (reserved == 0) return; BZ_LOCK(bz); bz->free_bpages += reserved; KKASSERT(bz->free_bpages <= bz->total_bpages); KKASSERT(bz->reserved_bpages >= reserved); bz->reserved_bpages -= reserved; wait_map = get_map_waiting(dmat); BZ_UNLOCK(bz); if (wait_map != NULL) add_map_callback(map); } static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_size_t size) { struct bounce_zone *bz = dmat->bounce_zone; struct bounce_page *bpage; KASSERT(map->pagesneeded > 0, ("map doesn't need any pages")); map->pagesneeded--; KASSERT(map->pagesreserved > 0, ("map doesn't reserve any pages")); map->pagesreserved--; BZ_LOCK(bz); bpage = STAILQ_FIRST(&bz->bounce_page_list); KASSERT(bpage != NULL, ("free page list is empty")); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); KKASSERT(bz->reserved_bpages > 0); bz->reserved_bpages--; bz->active_bpages++; KKASSERT(bz->active_bpages <= bz->total_bpages); BZ_UNLOCK(bz); bpage->datavaddr = vaddr; bpage->datacount = size; STAILQ_INSERT_TAIL(&map->bpages, bpage, links); return bpage->busaddr; } static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage) { struct bounce_zone *bz = dmat->bounce_zone; bus_dmamap_t map; bpage->datavaddr = 0; bpage->datacount = 0; BZ_LOCK(bz); STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links); bz->free_bpages++; KKASSERT(bz->free_bpages <= bz->total_bpages); KKASSERT(bz->active_bpages > 0); bz->active_bpages--; map = get_map_waiting(dmat); BZ_UNLOCK(bz); if (map != NULL) add_map_callback(map); } /* Assume caller holds bounce zone spinlock */ static bus_dmamap_t get_map_waiting(bus_dma_tag_t dmat) { struct bounce_zone *bz = dmat->bounce_zone; bus_dmamap_t map; map = STAILQ_FIRST(&bz->bounce_map_waitinglist); if (map != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) == 0) { STAILQ_REMOVE_HEAD(&bz->bounce_map_waitinglist, links); bz->total_deferred++; } else { map = NULL; } } return map; } static void add_map_callback(bus_dmamap_t map) { spin_lock(&bounce_map_list_spin); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); busdma_swi_pending = 1; setsoftvm(); spin_unlock(&bounce_map_list_spin); } void busdma_swi(void) { bus_dmamap_t map; spin_lock(&bounce_map_list_spin); while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) { STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links); spin_unlock(&bounce_map_list_spin); bus_dmamap_load(map->dmat, map, map->buf, map->buflen, map->callback, map->callback_arg, /*flags*/0); spin_lock(&bounce_map_list_spin); } spin_unlock(&bounce_map_list_spin); }