/* * Copyright (c) 1998 Mark Newton * Copyright (c) 1994 Christos Zoulas * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/svr4/svr4_misc.c,v 1.13.2.7 2003/01/14 21:33:58 dillon Exp $ * $DragonFly: src/sys/emulation/svr4/Attic/svr4_misc.c,v 1.33 2006/05/05 21:15:08 dillon Exp $ */ /* * SVR4 compatibility module. * * SVR4 system calls that are implemented differently in BSD are * handled here. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "svr4.h" #include "svr4_types.h" #include "svr4_signal.h" #include "svr4_proto.h" #include "svr4_util.h" #include "svr4_sysconfig.h" #include "svr4_dirent.h" #include "svr4_acl.h" #include "svr4_ulimit.h" #include "svr4_statvfs.h" #include "svr4_hrt.h" #include "svr4_mman.h" #include "svr4_wait.h" #include #include #include #include #if defined(__DragonFly__) || defined(__FreeBSD__) #include #endif #if defined(NetBSD) # if defined(UVM) # include # endif #endif #define BSD_DIRENT(cp) ((struct dirent *)(cp)) static int svr4_mknod (register_t *, char *, svr4_mode_t, svr4_dev_t); static __inline clock_t timeval_to_clock_t (struct timeval *); static int svr4_setinfo (struct proc *, int, svr4_siginfo_t *); struct svr4_hrtcntl_args; static int svr4_hrtcntl (struct svr4_hrtcntl_args *, register_t *); static void bsd_statfs_to_svr4_statvfs (const struct statfs *, struct svr4_statvfs *, int); static void bsd_statfs_to_svr4_statvfs64 (const struct statfs *, struct svr4_statvfs64 *, int); static struct proc *svr4_pfind (pid_t pid); /* BOGUS noop */ #if defined(BOGUS) int svr4_sys_setitimer(struct svr4_sys_setitimer_args *uap) { uap->sysmsg_result = 0; return 0; } #endif int svr4_sys_wait(struct svr4_sys_wait_args *uap) { struct wait_args w4; int error, *retval = &uap->sysmsg_result, st, sig; size_t sz = sizeof(*SCARG(&w4, status)); SCARG(&w4, rusage) = NULL; SCARG(&w4, options) = 0; if (SCARG(uap, status) == NULL) { caddr_t sg = stackgap_init(); SCARG(&w4, status) = stackgap_alloc(&sg, sz); } else SCARG(&w4, status) = SCARG(uap, status); SCARG(&w4, pid) = WAIT_ANY; w4.sysmsg_result = 0; if ((error = wait4(&w4)) != 0) return error; *retval = w4.sysmsg_result; if ((error = copyin(SCARG(&w4, status), &st, sizeof(st))) != 0) return error; if (WIFSIGNALED(st)) { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0177) | SVR4_BSD2SVR4_SIG(sig); } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) st = (st & ~0xff00) | (SVR4_BSD2SVR4_SIG(sig) << 8); } /* * It looks like wait(2) on svr4/solaris/2.4 returns * the status in retval[1], and the pid on retval[0]. */ retval[1] = st; if (SCARG(uap, status)) if ((error = copyout(&st, SCARG(uap, status), sizeof(st))) != 0) return error; return 0; } int svr4_sys_execv(struct svr4_sys_execv_args *uap) { struct execve_args ap; caddr_t sg; int error; sg = stackgap_init(); CHECKALTEXIST(&sg, uap->path); /* note: parts of result64 may be maintained or cleared by execve */ ap.sysmsg_result64 = uap->sysmsg_result64; ap.fname = uap->path; ap.argv = uap->argp; ap.envv = NULL; error = execve(&ap); uap->sysmsg_result64 = ap.sysmsg_result64; return(error); } int svr4_sys_execve(struct svr4_sys_execve_args *uap) { struct execve_args ap; caddr_t sg; int error; sg = stackgap_init(); CHECKALTEXIST(&sg, uap->path); SCARG(&ap, fname) = SCARG(uap, path); SCARG(&ap, argv) = SCARG(uap, argp); SCARG(&ap, envv) = SCARG(uap, envp); ap.sysmsg_result = 0; error = execve(&ap); uap->sysmsg_result = ap.sysmsg_result; return(error); } int svr4_sys_time(struct svr4_sys_time_args *v) { struct svr4_sys_time_args *uap = v; int error = 0; struct timeval tv; microtime(&tv); if (SCARG(uap, t)) error = copyout(&tv.tv_sec, SCARG(uap, t), sizeof(*(SCARG(uap, t)))); v->sysmsg_result = (int) tv.tv_sec; return error; } /* * Read SVR4-style directory entries. We suck them into kernel space so * that they can be massaged before being copied out to user code. * * This code is ported from the Linux emulator: Changes to the VFS interface * between FreeBSD and NetBSD have made it simpler to port it from there than * to adapt the NetBSD version. */ int svr4_sys_getdents64(struct svr4_sys_getdents64_args *uap) { struct thread *td = curthread; /* XXX */ struct proc *p = td->td_proc; struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4reclen=0; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; struct vattr va; off_t off; struct svr4_dirent64 svr4_dirent; int buflen, error, eofflag, nbytes, justone; u_long *cookies = NULL, *cookiep; int ncookies; KKASSERT(p); DPRINTF(("svr4_sys_getdents64(%d, *, %d)\n", uap->fd, uap->nbytes)); if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) { return (error); } if ((fp->f_flag & FREAD) == 0) return (EBADF); vp = (struct vnode *) fp->f_data; if (vp->v_type != VDIR) return (EINVAL); if ((error = VOP_GETATTR(vp, &va, td))) { return error; } nbytes = SCARG(uap, nbytes); if (nbytes == 1) { nbytes = sizeof (struct svr4_dirent64); justone = 1; } else justone = 0; off = fp->f_offset; #define DIRBLKSIZ 512 /* XXX we used to use ufs's DIRBLKSIZ */ buflen = max(DIRBLKSIZ, nbytes); buflen = min(buflen, MAXBSIZE); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; if (cookies) { free(cookies, M_TEMP); cookies = NULL; } error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookies); if (error) { goto out; } inp = buf; outp = (caddr_t) SCARG(uap, dp); resid = nbytes; if ((len = buflen - auio.uio_resid) <= 0) { goto eof; } cookiep = cookies; if (cookies) { /* * When using cookies, the vfs has the option of reading from * a different offset than that supplied (UFS truncates the * offset to a block boundary to make sure that it never reads * partway through a directory entry, even if the directory * has been compacted). */ while (len > 0 && ncookies > 0 && *cookiep <= off) { bdp = (struct dirent *) inp; len -= _DIRENT_DIRSIZ(bdp); inp += _DIRENT_DIRSIZ(bdp); cookiep++; ncookies--; } } while (len > 0) { if (cookiep && ncookies == 0) break; bdp = (struct dirent *) inp; reclen = _DIRENT_DIRSIZ(bdp); if (reclen & 3) { DPRINTF(("svr4_readdir: reclen=%d\n", reclen)); error = EFAULT; goto out; } if (bdp->d_ino == 0) { inp += reclen; if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; len -= reclen; continue; } svr4reclen = SVR4_RECLEN(&svr4_dirent, bdp->d_namlen); if (reclen > len || resid < svr4reclen) { outp++; break; } svr4_dirent.d_ino = (long) bdp->d_ino; if (justone) { /* * old svr4-style readdir usage. */ svr4_dirent.d_off = (svr4_off_t) svr4reclen; svr4_dirent.d_reclen = (u_short) bdp->d_namlen; } else { svr4_dirent.d_off = (svr4_off_t)(off + reclen); svr4_dirent.d_reclen = (u_short) svr4reclen; } strcpy(svr4_dirent.d_name, bdp->d_name); if ((error = copyout((caddr_t)&svr4_dirent, outp, svr4reclen))) goto out; inp += reclen; if (cookiep) { off = *cookiep++; ncookies--; } else off += reclen; outp += svr4reclen; resid -= svr4reclen; len -= reclen; if (justone) break; } if (outp == (caddr_t) SCARG(uap, dp)) goto again; fp->f_offset = off; if (justone) nbytes = resid + svr4reclen; eof: uap->sysmsg_result = nbytes - resid; out: if (cookies) free(cookies, M_TEMP); VOP_UNLOCK(vp, 0); free(buf, M_TEMP); return error; } int svr4_sys_getdents(struct svr4_sys_getdents_args *uap) { struct thread *td = curthread; struct proc *p = td->td_proc; struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4_reclen; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; struct svr4_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag; u_long *cookiebuf = NULL, *cookie; int ncookies = 0, *retval = &uap->sysmsg_result; KKASSERT(p); if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) return (EBADF); vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) return (EINVAL); buflen = min(MAXBSIZE, SCARG(uap, nbytes)); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); off = fp->f_offset; again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_resid = buflen; auio.uio_offset = off; /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookiebuf); if (error) goto out; inp = buf; outp = SCARG(uap, buf); resid = SCARG(uap, nbytes); if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = _DIRENT_DIRSIZ(bdp); if (reclen & 3) panic("svr4_sys_getdents64: bad reclen"); off = *cookie++; /* each entry points to the next */ if ((off >> 32) != 0) { uprintf("svr4_sys_getdents64: dir offset too large for emulated program"); error = EINVAL; goto out; } if (bdp->d_ino == 0) { inp += reclen; /* it is a hole; squish it out */ continue; } svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < svr4_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a SVR4-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = (svr4_ino_t)bdp->d_ino; idb.d_off = (svr4_off_t)off; idb.d_reclen = (u_short)svr4_reclen; strcpy(idb.d_name, bdp->d_name); if ((error = copyout((caddr_t)&idb, outp, svr4_reclen))) goto out; /* advance past this real entry */ inp += reclen; /* advance output past SVR4-shaped entry */ outp += svr4_reclen; resid -= svr4_reclen; } /* if we squished out the whole block, try again */ if (outp == SCARG(uap, buf)) goto again; fp->f_offset = off; /* update the vnode offset */ eof: *retval = SCARG(uap, nbytes) - resid; out: VOP_UNLOCK(vp, 0); if (cookiebuf) free(cookiebuf, M_TEMP); free(buf, M_TEMP); return error; } int svr4_sys_mmap(struct svr4_sys_mmap_args *uap) { struct mmap_args mm; int *retval; int error; retval = &uap->sysmsg_result; #define _MAP_NEW 0x80000000 /* * Verify the arguments. */ if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (SCARG(uap, len) == 0) return EINVAL; SCARG(&mm, prot) = SCARG(uap, prot); SCARG(&mm, len) = SCARG(uap, len); SCARG(&mm, flags) = SCARG(uap, flags) & ~_MAP_NEW; SCARG(&mm, fd) = SCARG(uap, fd); SCARG(&mm, addr) = SCARG(uap, addr); SCARG(&mm, pos) = SCARG(uap, pos); mm.sysmsg_resultp = NULL; error = mmap(&mm); uap->sysmsg_resultp = mm.sysmsg_resultp; return(error); } int svr4_sys_mmap64(struct svr4_sys_mmap64_args *uap) { struct proc *p = curproc; struct mmap_args mm; void *rp; int error; #define _MAP_NEW 0x80000000 /* * Verify the arguments. */ if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (SCARG(uap, len) == 0) return EINVAL; SCARG(&mm, prot) = SCARG(uap, prot); SCARG(&mm, len) = SCARG(uap, len); SCARG(&mm, flags) = SCARG(uap, flags) & ~_MAP_NEW; SCARG(&mm, fd) = SCARG(uap, fd); SCARG(&mm, addr) = SCARG(uap, addr); SCARG(&mm, pos) = SCARG(uap, pos); rp = (void *) round_page((vm_offset_t)(p->p_vmspace->vm_daddr + maxdsiz)); if ((SCARG(&mm, flags) & MAP_FIXED) == 0 && SCARG(&mm, addr) != 0 && (void *)SCARG(&mm, addr) < rp) SCARG(&mm, addr) = rp; mm.sysmsg_resultp = 0; error = mmap(&mm); uap->sysmsg_resultp = mm.sysmsg_resultp; return(error); } int svr4_sys_fchroot(struct svr4_sys_fchroot_args *uap) { struct thread *td = curthread; /* XXX */ struct proc *p = td->td_proc; struct ucred *cred; struct filedesc *fdp; struct vnode *vp; struct file *fp; int error; KKASSERT(p); cred = p->p_ucred; fdp = p->p_fd; if ((error = suser(td)) != 0) return error; if ((error = getvnode(fdp, SCARG(uap, fd), &fp)) != 0) return error; vp = (struct vnode *) fp->f_data; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_type != VDIR || fp->f_ncp == NULL) error = ENOTDIR; else error = VOP_ACCESS(vp, VEXEC, cred, td); VOP_UNLOCK(vp, 0); if (error) return error; vref(vp); if (fdp->fd_rdir != NULL) { vrele(fdp->fd_rdir); cache_drop(fdp->fd_nrdir); } fdp->fd_rdir = vp; fdp->fd_nrdir = cache_hold(fp->f_ncp); /* stopgap */ return 0; } static int svr4_mknod(register_t *retval, char *path, svr4_mode_t mode, svr4_dev_t dev) { caddr_t sg = stackgap_init(); int error; CHECKALTEXIST(&sg, path); if (S_ISFIFO(mode)) { struct mkfifo_args ap; SCARG(&ap, path) = path; SCARG(&ap, mode) = mode; error = mkfifo(&ap); *retval = ap.sysmsg_result; } else { struct mknod_args ap; SCARG(&ap, path) = path; SCARG(&ap, mode) = mode; SCARG(&ap, dev) = dev; error = mknod(&ap); *retval = ap.sysmsg_result; } return(error); } int svr4_sys_mknod(struct svr4_sys_mknod_args *uap) { int *retval; retval = &uap->sysmsg_result; return svr4_mknod(retval, SCARG(uap, path), SCARG(uap, mode), (svr4_dev_t)svr4_to_bsd_odev_t(SCARG(uap, dev))); } int svr4_sys_xmknod(struct svr4_sys_xmknod_args *uap) { int *retval; retval = &uap->sysmsg_result; return svr4_mknod(retval, SCARG(uap, path), SCARG(uap, mode), (svr4_dev_t)svr4_to_bsd_dev_t(SCARG(uap, dev))); } int svr4_sys_vhangup(struct svr4_sys_vhangup_args *uap) { return 0; } int svr4_sys_sysconfig(struct svr4_sys_sysconfig_args *uap) { int *retval; retval = &uap->sysmsg_result; switch (SCARG(uap, name)) { case SVR4_CONFIG_UNUSED: *retval = 0; break; case SVR4_CONFIG_NGROUPS: *retval = NGROUPS_MAX; break; case SVR4_CONFIG_CHILD_MAX: *retval = maxproc; break; case SVR4_CONFIG_OPEN_FILES: *retval = maxfiles; break; case SVR4_CONFIG_POSIX_VER: *retval = 198808; break; case SVR4_CONFIG_PAGESIZE: *retval = PAGE_SIZE; break; case SVR4_CONFIG_CLK_TCK: *retval = 60; /* should this be `hz', ie. 100? */ break; case SVR4_CONFIG_XOPEN_VER: *retval = 2; /* XXX: What should that be? */ break; case SVR4_CONFIG_PROF_TCK: *retval = 60; /* XXX: What should that be? */ break; case SVR4_CONFIG_NPROC_CONF: *retval = 1; /* Only one processor for now */ break; case SVR4_CONFIG_NPROC_ONLN: *retval = 1; /* And it better be online */ break; case SVR4_CONFIG_AIO_LISTIO_MAX: case SVR4_CONFIG_AIO_MAX: case SVR4_CONFIG_AIO_PRIO_DELTA_MAX: *retval = 0; /* No aio support */ break; case SVR4_CONFIG_DELAYTIMER_MAX: *retval = 0; /* No delaytimer support */ break; case SVR4_CONFIG_MQ_OPEN_MAX: *retval = msginfo.msgmni; break; case SVR4_CONFIG_MQ_PRIO_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_RTSIG_MAX: *retval = 0; break; case SVR4_CONFIG_SEM_NSEMS_MAX: *retval = seminfo.semmni; break; case SVR4_CONFIG_SEM_VALUE_MAX: *retval = seminfo.semvmx; break; case SVR4_CONFIG_SIGQUEUE_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_SIGRT_MIN: case SVR4_CONFIG_SIGRT_MAX: *retval = 0; /* No real time signals */ break; case SVR4_CONFIG_TIMER_MAX: *retval = 3; /* XXX: real, virtual, profiling */ break; #if defined(NOTYET) case SVR4_CONFIG_PHYS_PAGES: #if defined(UVM) *retval = uvmexp.free; /* XXX: free instead of total */ #else *retval = cnt.v_free_count; /* XXX: free instead of total */ #endif break; case SVR4_CONFIG_AVPHYS_PAGES: #if defined(UVM) *retval = uvmexp.active; /* XXX: active instead of avg */ #else *retval = cnt.v_active_count; /* XXX: active instead of avg */ #endif break; #endif /* NOTYET */ default: return EINVAL; } return 0; } extern int swap_pager_full; /* ARGSUSED */ int svr4_sys_break(struct svr4_sys_break_args *uap) { struct thread *td = curthread; /* XXX */ struct proc *p = td->td_proc; struct vmspace *vm; vm_offset_t new, old, base, ns; int rv; KKASSERT(p); vm = p->p_vmspace; base = round_page((vm_offset_t) vm->vm_daddr); ns = (vm_offset_t)SCARG(uap, nsize); new = round_page(ns); if (new > base) { if ((new - base) > (unsigned) p->p_rlimit[RLIMIT_DATA].rlim_cur) { return ENOMEM; } if (new >= VM_MAXUSER_ADDRESS) { return (ENOMEM); } } else if (new < base) { /* * This is simply an invalid value. If someone wants to * do fancy address space manipulations, mmap and munmap * can do most of what the user would want. */ return EINVAL; } old = base + ctob(vm->vm_dsize); if (new > old) { vm_size_t diff; diff = new - old; if (vm->vm_map.size + diff > p->p_rlimit[RLIMIT_VMEM].rlim_cur) return(ENOMEM); rv = vm_map_find(&vm->vm_map, NULL, 0, &old, diff, FALSE, VM_PROT_ALL, VM_PROT_ALL, 0); if (rv != KERN_SUCCESS) { return (ENOMEM); } vm->vm_dsize += btoc(diff); } else if (new < old) { rv = vm_map_remove(&vm->vm_map, new, old); if (rv != KERN_SUCCESS) { return (ENOMEM); } vm->vm_dsize -= btoc(old - new); } return (0); } static __inline clock_t timeval_to_clock_t(struct timeval *tv) { return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz); } int svr4_sys_times(struct svr4_sys_times_args *uap) { int error, *retval = &uap->sysmsg_result; struct tms tms; struct timeval t; struct rusage *ru; struct rusage r; struct getrusage_args ga; caddr_t sg = stackgap_init(); ru = stackgap_alloc(&sg, sizeof(struct rusage)); SCARG(&ga, who) = RUSAGE_SELF; SCARG(&ga, rusage) = ru; error = getrusage(&ga); if (error) return error; if ((error = copyin(ru, &r, sizeof r)) != 0) return error; tms.tms_utime = timeval_to_clock_t(&r.ru_utime); tms.tms_stime = timeval_to_clock_t(&r.ru_stime); SCARG(&ga, who) = RUSAGE_CHILDREN; error = getrusage(&ga); if (error) return error; if ((error = copyin(ru, &r, sizeof r)) != 0) return error; tms.tms_cutime = timeval_to_clock_t(&r.ru_utime); tms.tms_cstime = timeval_to_clock_t(&r.ru_stime); microtime(&t); *retval = timeval_to_clock_t(&t); return copyout(&tms, SCARG(uap, tp), sizeof(tms)); } int svr4_sys_ulimit(struct svr4_sys_ulimit_args *uap) { struct proc *p = curproc; int *retval = &uap->sysmsg_result; switch (SCARG(uap, cmd)) { case SVR4_GFILLIM: *retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur / 512; if (*retval == -1) *retval = 0x7fffffff; return 0; case SVR4_SFILLIM: { int error; struct __setrlimit_args srl; struct rlimit krl; caddr_t sg = stackgap_init(); struct rlimit *url = (struct rlimit *) stackgap_alloc(&sg, sizeof *url); krl.rlim_cur = SCARG(uap, newlimit) * 512; krl.rlim_max = p->p_rlimit[RLIMIT_FSIZE].rlim_max; error = copyout(&krl, url, sizeof(*url)); if (error) return error; SCARG(&srl, which) = RLIMIT_FSIZE; SCARG(&srl, rlp) = (struct rlimit *)url; error = setrlimit(&srl); if (error) return error; *retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur; if (*retval == -1) *retval = 0x7fffffff; return 0; } case SVR4_GMEMLIM: { struct vmspace *vm = p->p_vmspace; register_t r = p->p_rlimit[RLIMIT_DATA].rlim_cur; if (r == -1) r = 0x7fffffff; r += (long) vm->vm_daddr; if (r < 0) r = 0x7fffffff; *retval = r; return 0; } case SVR4_GDESLIM: *retval = p->p_rlimit[RLIMIT_NOFILE].rlim_cur; if (*retval == -1) *retval = 0x7fffffff; return 0; default: return EINVAL; } } static struct proc * svr4_pfind(pid_t pid) { struct proc *p; /* look in the live processes */ if ((p = pfind(pid)) != NULL) return p; /* look in the zombies */ for (p = zombproc.lh_first; p != 0; p = p->p_list.le_next) if (p->p_pid == pid) return p; return NULL; } int svr4_sys_pgrpsys(struct svr4_sys_pgrpsys_args *uap) { struct proc *p = curproc; int *retval = &uap->sysmsg_result; switch (SCARG(uap, cmd)) { case 1: /* setpgrp() */ /* * SVR4 setpgrp() (which takes no arguments) has the * semantics that the session ID is also created anew, so * in almost every sense, setpgrp() is identical to * setsid() for SVR4. (Under BSD, the difference is that * a setpgid(0,0) will not create a new session.) */ { struct setsid_args sida; sida.sysmsg_result = 0; setsid(&sida); /* ignore result? */ } /*FALLTHROUGH*/ case 0: /* getpgrp() */ *retval = p->p_pgrp->pg_id; return 0; case 2: /* getsid(pid) */ if (SCARG(uap, pid) != 0 && (p = svr4_pfind(SCARG(uap, pid))) == NULL) return ESRCH; /* * This has already been initialized to the pid of * the session leader. */ *retval = (register_t) p->p_session->s_leader->p_pid; return 0; case 3: /* setsid() */ { struct setsid_args sida; int error; sida.sysmsg_result = 0; error = setsid(&sida); uap->sysmsg_result = sida.sysmsg_result; return(error); } case 4: /* getpgid(pid) */ if (SCARG(uap, pid) != 0 && (p = svr4_pfind(SCARG(uap, pid))) == NULL) return ESRCH; *retval = (int) p->p_pgrp->pg_id; return 0; case 5: /* setpgid(pid, pgid); */ { struct setpgid_args sa; int error; SCARG(&sa, pid) = SCARG(uap, pid); SCARG(&sa, pgid) = SCARG(uap, pgid); sa.sysmsg_result = 0; error = setpgid(&sa); uap->sysmsg_result = sa.sysmsg_result; } default: return EINVAL; } } #define syscallarg(x) union { x datum; register_t pad; } struct svr4_hrtcntl_args { int cmd; int fun; int clk; svr4_hrt_interval_t * iv; svr4_hrt_time_t * ti; }; static int svr4_hrtcntl(struct svr4_hrtcntl_args *uap, register_t *retval) { switch (SCARG(uap, fun)) { case SVR4_HRT_CNTL_RES: DPRINTF(("htrcntl(RES)\n")); *retval = SVR4_HRT_USEC; return 0; case SVR4_HRT_CNTL_TOFD: DPRINTF(("htrcntl(TOFD)\n")); { struct timeval tv; svr4_hrt_time_t t; if (SCARG(uap, clk) != SVR4_HRT_CLK_STD) { DPRINTF(("clk == %d\n", SCARG(uap, clk))); return EINVAL; } if (SCARG(uap, ti) == NULL) { DPRINTF(("ti NULL\n")); return EINVAL; } microtime(&tv); t.h_sec = tv.tv_sec; t.h_rem = tv.tv_usec; t.h_res = SVR4_HRT_USEC; return copyout(&t, SCARG(uap, ti), sizeof(t)); } case SVR4_HRT_CNTL_START: DPRINTF(("htrcntl(START)\n")); return ENOSYS; case SVR4_HRT_CNTL_GET: DPRINTF(("htrcntl(GET)\n")); return ENOSYS; default: DPRINTF(("Bad htrcntl command %d\n", SCARG(uap, fun))); return ENOSYS; } } int svr4_sys_hrtsys(struct svr4_sys_hrtsys_args *uap) { int *retval = &uap->sysmsg_result; switch (SCARG(uap, cmd)) { case SVR4_HRT_CNTL: return svr4_hrtcntl((struct svr4_hrtcntl_args *)(&uap->sysmsg + 1), retval); case SVR4_HRT_ALRM: DPRINTF(("hrtalarm\n")); return ENOSYS; case SVR4_HRT_SLP: DPRINTF(("hrtsleep\n")); return ENOSYS; case SVR4_HRT_CAN: DPRINTF(("hrtcancel\n")); return ENOSYS; default: DPRINTF(("Bad hrtsys command %d\n", SCARG(uap, cmd))); return EINVAL; } } static int svr4_setinfo(struct proc *p, int st, svr4_siginfo_t *s) { svr4_siginfo_t i; int sig; memset(&i, 0, sizeof(i)); i.si_signo = SVR4_SIGCHLD; i.si_errno = 0; /* XXX? */ if (p) { i.si_pid = p->p_pid; if (p->p_flag & P_ZOMBIE) { i.si_stime = p->p_ru->ru_stime.tv_sec; i.si_utime = p->p_ru->ru_utime.tv_sec; } else { i.si_stime = p->p_stats->p_ru.ru_stime.tv_sec; i.si_utime = p->p_stats->p_ru.ru_utime.tv_sec; } } if (WIFEXITED(st)) { i.si_status = WEXITSTATUS(st); i.si_code = SVR4_CLD_EXITED; } else if (WIFSTOPPED(st)) { sig = WSTOPSIG(st); if (sig >= 0 && sig < NSIG) i.si_status = SVR4_BSD2SVR4_SIG(sig); if (i.si_status == SVR4_SIGCONT) i.si_code = SVR4_CLD_CONTINUED; else i.si_code = SVR4_CLD_STOPPED; } else { sig = WTERMSIG(st); if (sig >= 0 && sig < NSIG) i.si_status = SVR4_BSD2SVR4_SIG(sig); if (WCOREDUMP(st)) i.si_code = SVR4_CLD_DUMPED; else i.si_code = SVR4_CLD_KILLED; } DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n", i.si_pid, i.si_signo, i.si_code, i.si_errno, i.si_status)); return copyout(&i, s, sizeof(i)); } int svr4_sys_waitsys(struct svr4_sys_waitsys_args *uap) { struct proc *p = curproc; int nfound; int error, *retval = &uap->sysmsg_result; struct proc *q, *t; switch (SCARG(uap, grp)) { case SVR4_P_PID: break; case SVR4_P_PGID: SCARG(uap, id) = -p->p_pgid; break; case SVR4_P_ALL: SCARG(uap, id) = WAIT_ANY; break; default: return EINVAL; } DPRINTF(("waitsys(%d, %d, %p, %x)\n", SCARG(uap, grp), SCARG(uap, id), SCARG(uap, info), SCARG(uap, options))); loop: nfound = 0; for (q = p->p_children.lh_first; q != 0; q = q->p_sibling.le_next) { if (SCARG(uap, id) != WAIT_ANY && q->p_pid != SCARG(uap, id) && q->p_pgid != -SCARG(uap, id)) { DPRINTF(("pid %d pgid %d != %d\n", q->p_pid, q->p_pgid, SCARG(uap, id))); continue; } nfound++; if ((q->p_flag & P_ZOMBIE) && ((SCARG(uap, options) & (SVR4_WEXITED|SVR4_WTRAPPED)))) { *retval = 0; DPRINTF(("found %d\n", q->p_pid)); if ((error = svr4_setinfo(q, q->p_xstat, SCARG(uap, info))) != 0) return error; if ((SCARG(uap, options) & SVR4_WNOWAIT)) { DPRINTF(("Don't wait\n")); return 0; } /* * If we got the child via ptrace(2) or procfs, and * the parent is different (meaning the process was * attached, rather than run as a child), then we need * to give it back to the ol dparent, and send the * parent a SIGCHLD. The rest of the cleanup will be * done when the old parent waits on the child. */ if ((q->p_flag & P_TRACED) && q->p_oppid != q->p_pptr->p_pid) { t = pfind(q->p_oppid); proc_reparent(q, t ? t : initproc); q->p_oppid = 0; q->p_flag &= ~(P_TRACED | P_WAITED); wakeup((caddr_t)q->p_pptr); return 0; } q->p_xstat = 0; ruadd(&p->p_stats->p_cru, q->p_ru); FREE(q->p_ru, M_ZOMBIE); /* * Finally finished with old proc entry. * Unlink it from its process group and free it. */ leavepgrp(q); LIST_REMOVE(q, p_list); /* off zombproc */ LIST_REMOVE(q, p_sibling); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(q->p_ucred->cr_uidinfo, -1, 0); /* * Free up credentials. */ crfree(q->p_ucred); q->p_ucred = NULL; /* * Release reference to text vnode */ if (q->p_textvp) vrele(q->p_textvp); /* * Give machine-dependent layer a chance * to free anything that cpu_exit couldn't * release while still running in process context. */ vm_waitproc(q); /* XXX what about process 'q' itself? zfree? */ #if defined(__NetBSD__) pool_put(&proc_pool, q); #endif nprocs--; return 0; } if ((q->p_flag & P_STOPPED) && (q->p_flag & P_WAITED) == 0 && (q->p_flag & P_TRACED || (SCARG(uap, options) & (SVR4_WSTOPPED|SVR4_WCONTINUED)))) { DPRINTF(("jobcontrol %d\n", q->p_pid)); if (((SCARG(uap, options) & SVR4_WNOWAIT)) == 0) q->p_flag |= P_WAITED; *retval = 0; return svr4_setinfo(q, W_STOPCODE(q->p_xstat), SCARG(uap, info)); } } if (nfound == 0) return ECHILD; if (SCARG(uap, options) & SVR4_WNOHANG) { *retval = 0; if ((error = svr4_setinfo(NULL, 0, SCARG(uap, info))) != 0) return error; return 0; } if ((error = tsleep((caddr_t)p, PCATCH, "svr4_wait", 0)) != 0) return error; goto loop; } static void bsd_statfs_to_svr4_statvfs(const struct statfs *bfs, struct svr4_statvfs *sfs, int namelen) { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsid.val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flags & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flags & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = namelen; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } static void bsd_statfs_to_svr4_statvfs64(const struct statfs *bfs, struct svr4_statvfs64 *sfs, int namelen) { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsid.val[0]; memcpy(sfs->f_basetype, bfs->f_fstypename, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flags & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flags & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = namelen; memcpy(sfs->f_fstr, bfs->f_fstypename, sizeof(sfs->f_fstr)); /* XXX */ memset(sfs->f_filler, 0, sizeof(sfs->f_filler)); } int svr4_sys_statvfs(struct svr4_sys_statvfs_args *uap) { struct nlookupdata nd; struct svr4_statvfs sfs; struct statfs bfs; int error, namelen; error = nlookup_init(&nd, uap->path, UIO_USERSPACE, NLC_FOLLOW); if (error == 0) error = kern_statfs(&nd, &bfs); if (error == 0) { if (nd.nl_ncp->nc_vp != NULL) error = vn_get_namelen(nd.nl_ncp->nc_vp, &namelen); else error = EINVAL; } nlookup_done(&nd); if (error == 0) { bsd_statfs_to_svr4_statvfs(&bfs, &sfs, namelen); error = copyout(&sfs, uap->fs, sizeof(*uap->fs)); } return (error); } int svr4_sys_fstatvfs(struct svr4_sys_fstatvfs_args *uap) { struct svr4_statvfs sfs; struct statfs bfs; struct proc *p = curthread->td_proc; struct file *fp; int error, namelen; error = kern_fstatfs(uap->fd, &bfs); if (error == 0) error = getvnode(p->p_fd, uap->fd, &fp); if (error == 0) error = vn_get_namelen((struct vnode *)fp->f_data, &namelen); if (error == 0) { bsd_statfs_to_svr4_statvfs(&bfs, &sfs, namelen); error = copyout(&bfs, uap->fs, sizeof(*uap->fs)); } return (error); } int svr4_sys_statvfs64(struct svr4_sys_statvfs64_args *uap) { struct nlookupdata nd; struct svr4_statvfs64 sfs; struct statfs bfs; int error, namelen; error = nlookup_init(&nd, uap->path, UIO_USERSPACE, NLC_FOLLOW); if (error == 0) error = kern_statfs(&nd, &bfs); if (error == 0) { if (nd.nl_ncp->nc_vp != NULL) error = vn_get_namelen(nd.nl_ncp->nc_vp, &namelen); else error = EINVAL; } nlookup_done(&nd); if (error == 0) { bsd_statfs_to_svr4_statvfs64(&bfs, &sfs, namelen); error = copyout(&sfs, uap->fs, sizeof(*uap->fs)); } return (error); } int svr4_sys_fstatvfs64(struct svr4_sys_fstatvfs64_args *uap) { struct svr4_statvfs64 sfs; struct statfs bfs; struct proc *p = curthread->td_proc; struct file *fp; int error, namelen; error = kern_fstatfs(uap->fd, &bfs); if (error == 0) error = getvnode(p->p_fd, uap->fd, &fp); if (error == 0) error = vn_get_namelen((struct vnode *)fp->f_data, &namelen); if (error == 0) { bsd_statfs_to_svr4_statvfs64(&bfs, &sfs, namelen); error = copyout(&bfs, uap->fs, sizeof(*uap->fs)); } return (error); } int svr4_sys_alarm(struct svr4_sys_alarm_args *uap) { int error; struct itimerval *itp, *oitp; struct setitimer_args sa; caddr_t sg = stackgap_init(); itp = stackgap_alloc(&sg, sizeof(*itp)); oitp = stackgap_alloc(&sg, sizeof(*oitp)); timevalclear(&itp->it_interval); itp->it_value.tv_sec = SCARG(uap, sec); itp->it_value.tv_usec = 0; SCARG(&sa, which) = ITIMER_REAL; SCARG(&sa, itv) = itp; SCARG(&sa, oitv) = oitp; error = setitimer(&sa); if (error) return error; if (oitp->it_value.tv_usec) oitp->it_value.tv_sec++; uap->sysmsg_result = oitp->it_value.tv_sec; return 0; } int svr4_sys_gettimeofday(struct svr4_sys_gettimeofday_args *uap) { if (SCARG(uap, tp)) { struct timeval atv; microtime(&atv); return copyout(&atv, SCARG(uap, tp), sizeof (atv)); } return 0; } int svr4_sys_facl(struct svr4_sys_facl_args *uap) { int *retval; retval = &uap->sysmsg_result; *retval = 0; switch (SCARG(uap, cmd)) { case SVR4_SYS_SETACL: /* We don't support acls on any filesystem */ return ENOSYS; case SVR4_SYS_GETACL: return copyout(retval, &SCARG(uap, num), sizeof(SCARG(uap, num))); case SVR4_SYS_GETACLCNT: return 0; default: return EINVAL; } } int svr4_sys_acl(struct svr4_sys_acl_args *uap) { /* XXX: for now the same */ return svr4_sys_facl((struct svr4_sys_facl_args *)uap); } int svr4_sys_auditsys(struct svr4_sys_auditsys_args *uap) { /* * XXX: Big brother is *not* watching. */ return 0; } int svr4_sys_memcntl(struct svr4_sys_memcntl_args *uap) { switch (SCARG(uap, cmd)) { case SVR4_MC_SYNC: { struct msync_args msa; int error; SCARG(&msa, addr) = SCARG(uap, addr); SCARG(&msa, len) = SCARG(uap, len); SCARG(&msa, flags) = (int)SCARG(uap, arg); msa.sysmsg_result = 0; error = msync(&msa); uap->sysmsg_result = msa.sysmsg_result; return(error); } case SVR4_MC_ADVISE: { struct madvise_args maa; int error; SCARG(&maa, addr) = SCARG(uap, addr); SCARG(&maa, len) = SCARG(uap, len); SCARG(&maa, behav) = (int)SCARG(uap, arg); maa.sysmsg_result = 0; error = madvise(&maa); uap->sysmsg_result = maa.sysmsg_result; return(error); } case SVR4_MC_LOCK: case SVR4_MC_UNLOCK: case SVR4_MC_LOCKAS: case SVR4_MC_UNLOCKAS: return EOPNOTSUPP; default: return ENOSYS; } } int svr4_sys_nice(struct svr4_sys_nice_args *uap) { struct setpriority_args ap; int error; SCARG(&ap, which) = PRIO_PROCESS; SCARG(&ap, who) = 0; SCARG(&ap, prio) = SCARG(uap, prio); if ((error = setpriority(&ap)) != 0) return error; /* the cast is stupid, but the structures are the same */ if ((error = getpriority((struct getpriority_args *)&ap)) != 0) return error; uap->sysmsg_result = ap.sysmsg_result; return 0; } int svr4_sys_resolvepath(struct svr4_sys_resolvepath_args *uap) { struct nlookupdata nd; int error; int *retval; retval = &uap->sysmsg_result; error = nlookup_init(&nd, SCARG(uap, path), UIO_USERSPACE, 0); if (error == 0) error = nlookup(&nd); if (error) goto bad; if ((error = copyout(nd.nl_path, SCARG(uap, buf), SCARG(uap, bufsiz))) != 0) { goto bad; } *retval = strlen(nd.nl_path) < SCARG(uap, bufsiz) ? strlen(nd.nl_path) + 1 : SCARG(uap, bufsiz); bad: nlookup_done(&nd); return (error); }